任意角习题与答案(第一课时)-数学高一必修4第一章1.1.1人教A版

合集下载

人教a版必修4学案:1.1.1任意角(含答案)

人教a版必修4学案:1.1.1任意角(含答案)

第一章三角函数§1.1任意角和弧度制1.1.1任意角自主学习知识梳理1.角的概念(1)角的概念:角可以看成平面内________________绕着________从一个位置________到另一个位置所成的图形.(2)角的分类:按旋转方向可将角分为如下三类:类型定义图示正角按______________________形成的角负角按________________形成的角零角一条射线________________,称它形成了一个零角2.象限角角的顶点与坐标原点重合,角的始边与x轴的非负半轴重合,那么,角的终边(除端点外)在第几象限,就说这个角是______________.如果角的终边在坐标轴上,就认为这个角不属于任何一个象限.3.终边相同的角所有与角α终边相同的角,连同角α在内,可构成一个集合S={β|β=____________},即任一与角α终边相同的角,都可以表示成角α与____________的和.4.终边落在坐标轴上角的集合终边所在的位置角的集合x轴正半轴x轴负半轴x轴y轴正半轴y轴负半轴y轴自主探究终边落在各个象限的角的集合.α终边所在的象限角α的集合第一象限第二象限第三象限第四象限对点讲练知识点一终边相同的角与象限角例1在0°~360°范围内,找出与下列各角终边相同的角,并判定它们是第几象限角.(1)-150°;(2)650°;(3)-950°15′.回顾归纳 解答本题可先利用终边相同的角的关系:β=α+k ·360°,k ∈Z ,把所给的角化归到0°~360°范围内,然后利用0°~360°范围内的角分析该角是第几象限角. 变式训练1 判断下列角的终边落在第几象限内: (1)1 400°; (2)-2 010°.知识点二 终边相同的角的应用例2 已知,如图所示,(1)写出终边落在射线OA ,OB 上的角的集合; (2)写出终边落在阴影部分(包括边界)的角的集合.回顾归纳 解答此类题目应先在0°~360°上写出角的集合,再利用终边相同的角写出符合条件的所有角的集合,如果集合能化简的还要化成最简.变式训练2 如图所示,写出终边落在阴影部分的角的集合.知识点三 角的象限的判断例3 已知α是第二象限角,试确定2α,α2的终边所在的位置.回顾归纳 若已知角α是第几象限角,判断α2,α3等是第几象限角,主要方法是解不等式并对k 进行分类讨论.考查角的终边的位置.变式训练3 已知α为第三象限角,则α2所在的象限是( )A .第一或第二象限B .第二或第三象限C .第一或第三象限D .第二或第四象限1.对角的理解,初中阶段是以“静止”的眼光看,高中阶段应用“运动”的观点下定义,理解这一概念时,要注意“旋转方向”决定角的“正负”,“旋转幅度”决定角的“绝对值大小”.2.关于终边相同角的认识一般地,所有与角α终边相同的角,连同角α在内,可构成一个集合S ={β|β=α+k ·360°,k ∈Z },即任一与角α终边相同的角,都可以表示成角α与整数个周角的和.注意:(1)α为任意角.(2)k ·360°与α之间是“+”号,k ·360°-α可理解为k ·360°+(-α).(3)相等的角,终边一定相同;终边相同的角不一定相等,终边相同的角有无数多个,它们相差360°的整数倍.(4)k ∈Z 这一条件不能少.课时作业一、选择题 1.与405°角终边相同的角是( ) A .k ·360°-45°,k ∈Z B .k ·180°-45°,k ∈Z C .k ·360°+45°,k ∈Z D .k ·180°+45°,k ∈Z 2.若α=45°+k ·180° (k ∈Z ),则α的终边在( ) A .第一或第三象限 B .第二或第三象限 C .第二或第四象限 D .第三或第四象限 3.若角α与β的终边相同,则α-β的终边落在( ) A .x 轴的正半轴 B .x 轴的负半轴 C .y 轴的正半轴 D .y 轴的负半轴 4.若α是第四象限角,则180°-α是( ) A .第一象限角 B .第二象限角 C .第三象限角 D .第四象限角 5. 如图,终边落在阴影部分(含边界)的角的集合是( )A .{α|-45°≤α≤120°}B .{α|120°≤α≤315°}C .{α|k ·360°-45°≤α≤k ·360°+120°,k ∈Z }D .{α|k ·360°+120°≤α≤k ·360°+315°,k ∈Z }二、填空题6.经过10分钟,分针转了________度.7.下列命题:①第一象限角都是锐角;②锐角都是第一象限角;③第一象限角一定不是负角;④第二象限角大于第一象限角;⑤第二象限角是钝角;⑥小于180°的角是钝角、直角或锐角.其中判断错误的是______.(把有关命题的序号写上即可)8.若α=1 690°,角θ与α终边相同,且-360°<θ<360°,则θ=________.三、解答题9.在与角-2 010°终边相同的角中,求满足下列条件的角.(1)最小的正角;(2)最大的负角;(3)-720°~720°内的角.10.已知角x的终边落在图示阴影部分区域,写出角x组成的集合.第一章三角函数§1.1任意角和弧度制1.1.1任意角知识梳理1.(1)一条射线端点旋转(2)类型定义图示正角按逆时针方向旋转形成的角负角按顺时针方向旋转形成的角零角一条射线没有作任何旋转,称它形成了一个零角3.α+k·360°,k∈Z整数个周角4.终边所在的位置角的集合x轴正半轴{α|α=k·360°,k∈Z}x轴负半轴{α|α=k·360°+180°,k∈Z}x轴{α|α=k·180°,k∈Z}y轴正半轴{α|α=k·360°+90°,k∈Z}y轴负半轴{α|α=k·360°+270°,k∈Z}y轴{α|α=k·180°+90°,k∈Z}自主探究α终边所在的象角α的集合限第一{α|k·360°<α<k·360°+90°,k∈Z}象限第二{α|k·360°+90°<α<k·360°+180°,k∈Z}象限第三{α|k·360°+180°<α<k·360°+270°,k∈Z}象限第四{α|k·360°-90°<α<k·360°,k∈Z}象限对点讲练例1解(1)因为-150°=-360°+210°,所以在0°~360°范围内,与-150°角终边相同的角是210°角,它是第三象限角.(2)因为650°=360°+290°,所以在0°~360°范围内,与650°角终边相同的角是290°角,它是第四象限角.(3)因为-950°15′=-3×360°+129°45′,所以在0°~360°范围内,与-950°15′角终边相同的角是129°45′角,它是第二象限角.变式训练1解(1)1 400°=3×360°+320°,∵320°是第四象限角,∴1 400°也是第四象限角.(2)-2 010°=-6×360°+150°,∴-2 010°与150°终边相同.∴-2 010°是第二象限角.例2解(1)终边落在射线OA上的角的集合是{α|α=k·360°+210°,k∈Z}.终边落在射线OB上的角的集合是{α|α=k·360°+300°,k∈Z}.(2)终边落在阴影部分(含边界)角的集合是{α|k·360°+210°≤α≤k·360°+300°,k∈Z}.变式训练2解设终边落在阴影部分的角为α,角α的集合由两部分组成.(1){α|k·360°+30°≤α<k·360°+105°,k∈Z}.(2){α|k·360°+210°≤α<k·360°+285°,k∈Z}.∴角α的集合应当是集合(1)与(2)的并集:{α|k·360°+30°≤α<k·360°+105°,k∈Z}∪{α|k·360°+210°≤α<k·360°+285°,k∈Z}={α|2k·180°+30°≤α<2k·180°+105°,k∈Z}∪{α|(2k+1)·180°+30°≤α<(2k+1)·180°+105°,k∈Z}={α|2k·180°+30°≤α<2k·180°+105°或(2k+1)·180°+30°≤α<(2k+1)·180°+105°,k∈Z}={α|k ·180°+30°≤α<k ·180°+105°,k ∈Z }. 例3 解 因为α是第二象限角, 所以k ·360°+90°<α<k ·360°+180°,k ∈Z . 所以2k ·360°+180°<2α<2k ·360°+360°,k ∈Z ,所以2α的终边在第三或第四象限或终边在y 轴的非正半轴上. 因为k ·360°+90°<α<k ·360°+180°,k ∈Z ,所以k ·180°+45°<α2<k ·180°+90°,k ∈Z ,所以当k =2n ,n ∈Z 时,n ·360°+45°<α2<n ·360°+90°,即α2的终边在第一象限; 当k =2n +1,n ∈Z 时,n ·360°+225°<α2<n ·360°+270°,即α2的终边在第三象限.所以α2的终边在第一或第三象限.变式训练3 D [由于k ·360°+180°<α<k ·360°+270°,k ∈Z , 得k 2·360°+90°<α2<k 2·360°+135°. 当k 为偶数时,α2为第二象限角;当k 为奇数时,α2为第四象限角.]课时作业 1.C 2.A3.A [∵α=β+k ·360°,k ∈Z , ∴α-β=k ·360°,k ∈Z .]4.C [可以给α赋一特殊值-60°,则180°-α=240°,故180°-α是第三象限角.]5.C [与边界终边相同的角为k ·360°+120°或k ·360°-45°.故阴影部分的角为k ·360°-45°≤α≤k ·360°+120°,k ∈Z .] 6.-607.①③④⑤⑥解析 ①390°角是第一象限角,可它不是锐角,所以①不正确.②锐角是大于0°且小于90°的角,终边落在第一象限,故是第一象限角,所以②正确. ③-330°角是第一象限角,但它是负角,所以③不正确.④120°角是第二象限角,390°是第一象限角,显然390°>120°,所以④不正确. ⑤480°角是第二象限角,但它不是钝角,所以⑤不正确.⑥0°角小于180°,但它既不是钝角,也不是直角或锐角,故⑥不正确. 8.-110°或250°解析 ∵α=1 690°=4×360°+250°,∴θ=k ·360°+250°,k ∈Z .∵-360°<θ<360°, ∴k =-1或0. ∴θ=-110°或250°.9.解(1)∵-2 010°=-6×360°+150°,∴与角-2 010°终边相同的最小正角是150°.(2)∵-2 010°=-5×360°+(-210°),∴与角-2 010°终边相同的最大负角是-210°.(3)∵-2 010°=-6×360°+150°,∴与-2 010°终边相同也就是与150°终边相同.由-720°≤k·360°+150°<720°,k∈Z,解得:k=-2,-1,0,1.代入k·360°+150°依次得:-570°,-210°,150°,510°.10.解(1){x|k·360°-135°≤x≤k·360°+135°,k∈Z}.(2){x|k·360°+30°≤x≤k·360°+60°,k∈Z}∪{x|k·360°+210°≤x≤k·360°+240°,k∈Z}={x|2k·180°+30°≤x≤2k·180°+60°或(2k+1)·180°+30°≤x≤(2k+1)·180°+60°,k∈Z}={x|k·180°+30°≤x≤k·180°+60°,k∈Z}.。

人教版高中数学必修四教材用书第一章 三角函数 1.1.1 任意角 Word版含答案

人教版高中数学必修四教材用书第一章 三角函数 1.1.1 任意角 Word版含答案

.任意角和弧度制.任意角[提出问题]问题:当钟表慢了(或快了),我们会将分针按某个方向转动,把时间调整准确.在调整的过程中,分针转动的角度有什么不同?提示:旋转方向不同.问题:在体操或跳水比赛中,运动员会做出“转体两周”“向前翻腾两周半”等动作,做上述动作时,运动员分别转体多少度?提示:顺时针方向旋转了°或逆时针方向旋转了°,顺时针方向旋转了°.[导入新知]角的分类.按旋转方向.()角的终边在第几象限,则称此角为第几象限角;()角的终边在坐标轴上,则此角不属于任何一个象限.[化解疑难].任意角的概念认识任意角的概念应注意三个要素:顶点、始边、终边.()用旋转的观点来定义角,就可以把角的概念推广到任意角,包括任意大小的正角、负角和零角.()对角的概念的认识关键是抓住“旋转”二字.①要明确旋转方向;②要明确旋转角度的大小;③要明确射线未作任何旋转时的位置..象限角的前提条件角的顶点与坐标原点重合,角的始边与轴的非负半轴重合.[提出问题]在条件“角的顶点与坐标原点重合,始边与轴非负半轴重合”下,研究下列角:°,°,-°.问题:这三个角的终边位置相同吗?提示:相同.问题:如何用含°的式子表示°和-°?提示:°=×°+°,-°=-×°+°.问题:确定一条射线,以它为终边的角是否唯一?提示:不唯一.[导入新知]终边相同的角所有与角α终边相同的角,连同角α在内,可构成一个集合=,即任一与角α终边相同的角,都可以表示成角α与整数个周角的和.[化解疑难]所有与角α终边相同的角,连同角α在内可以用式子·°+α,∈表示,在运用时需注意以下几点.()是整数,这个条件不能漏掉.()α是任意角.()·°,∈与α之间用“+”连接,如·°-°,∈应看成·°+(-°),∈.()终边相同的角不一定相等,终边相同的角有无数个,它们相差周角的整数倍;相等的角终边一定相同.[例] 已知角的顶点与坐标原点重合,始边落在轴的非负半轴上,作出下列各角,并指出它们是第几象限角.()-°;()°;()-°.。

高一数学人教A版必修4学案:111任意角含答案1.doc

高一数学人教A版必修4学案:111任意角含答案1.doc

THE FIRST CHAPTER第一章三角函数1. 1任意角和弧度制1. 1.1任意角[学习目标]1•了解角的概念2掌握正角、负角和零角的概念,理解任意角的意义.3.熟练掌握象限角、终边相同的角的概念,会用集合符号表示这些角.尹预习导学全挑战自我•点点落实________________________________________________ [知识链接]1.手表慢了5分钟,如何校准?手表快了1.5小吋,又如何校准?答可将分针顺时针方向旋转30。

;可将时针逆时针方向旋转45。

.2.在初中角是如何定义的?答定义1:有公共端点的两条射线组成的儿何图形叫做角.定义2:平面内一条射线绕着端点从一个位置旋转到另一个位置所形成的图形叫做角.3.初中所学角的范围是什么?答角的范围是[0。

,360°].[预习导引]1.角的概念(1)角的概念:角可以看成平面内一条射线绕着端点从一个位置旋转到另一个位置所成的图形.(2)角的表示方法:①常用大写字母儿3, C等表示:②也可以用希腊字母$、匸匕等表示;③特别是当角作为变量时,常用字母丄表示.(3)角的分类:按旋转方向可将角分为如下三类:2.象限角角的顶点与坐标原点重合,角的始边与x轴的非负半轴重合,那么,角的终边(除端点外)在第儿象限,就说这个角是第儿象限角.如果角的终边在坐标轴上,就认为这个角不属于任何一个象限.3.终边相同的角所有与角a终边相同的角,连同角a在内,可构成一个集合S={0|0=a+E36O。

,MZ}, 即任一与角a终边相同的角,都可以表示成角a与整数个周角的和.戸课堂讲义/ 重点难点,个个击破 ____________________________________________________________要点一任意角概念的辨析例1在下列说法中:①0。

〜90。

的角是第一象限角;②第二象限角大于第一象限角;③钝角都是第二象限角;④小于90。

人教A版高中数学必修4课后习题 第一章 1.1.1 任意角

人教A版高中数学必修4课后习题 第一章 1.1.1 任意角

第一章三角函数1.1 任意角和弧度制1.1.1 任意角课后篇巩固探究1.200°角是( )A.第一象限角B.第二象限角C.第三象限角D.第四象限角180°<200°<270°,第三象限角α的取值范围为k·360°+180°<α<k·360°+270°,k∈Z,所以200°角是第三象限角.2.在-360°≤α<0°范围内与60°角终边相同的角为( )A.-300°B.-300°,60°C.60°D.420°60°角终边相同的角α可表示为α=60°+k·360°,当k=-1时,α=-300°,故在-360°≤α<0°范围内与60°角终边相同的角为-300°.3.若角θ是第四象限角,则90°+θ是( )A.第一象限角B.第二象限角C.第三象限角D.第四象限角,将θ的终边按逆时针方向旋转90°得90°+θ的终边,则90°+θ是第一象限角.4.角α=45°+k×180°(k∈Z)的终边落在( )A.第一或第三象限B.第一或第二象限C.第二或第四象限D.第三或第四象限k是偶数时,角α是第一象限角,当k是奇数时,角α是第三象限角.5.如图,终边在阴影部分(含边界)的角的集合是( )A.{α|-45°≤α≤120°}B.{α|120°≤α≤315°}C.{α|-45°+k·360°≤α≤120°+k·360°,k∈Z}D.{α|120°+k·360°≤α≤315°+k·360°,k∈Z},终边落在阴影部分(含边界)的角的集合是{α|-45°+k·360°≤α≤120°+k·360°,k∈Z}.故选C.±45°,k∈Z},P=,P之间的关系为( ) 6.已知集合M={x|x=k·180°2A.M=PB.M⊆PC.M⊇PD.M∩P=⌀±45°=k·90°±45°=(2k±1)·45°,k∈Z, M,x=k·180°2对于集合P,x=k·180°±90°=k·45°±90°=(k±2)·45°,k∈Z.∴4M⊆P.7.已知角α,β的终边关于直线x+y=0对称,且α=-60°,则β=.-90°到0°的范围内,-60°角的终边关于直线y=-x对称的射线的对应角为-45°+15°=-30°,所以β=-30°+k·360°,k∈Z.30°+k·360°,k∈Z8.若角α与角288°终边相同,则在0°~360°内终边与角α4终边相同的角是.,得α=288°+k·360°(k∈Z),α4=72°+k·90°(k∈Z).又α4在0°~360°内,所以k=0,1,2,3,相应地有α4=72°,162°,252°,342°.9.终边落在图中阴影部分所示的区域内(包括边界)的角的集合为.由图易知在0°~360°范围内,终边落在阴影区域内(包括边界)的角为45°≤α≤90°与225°≤α≤270°,故终边落在阴影部分所示的区域内(包括边界)的角的集合为{α|k·360°+45°≤α≤k·360°+90°,k ∈Z}∪{α|k·360°+225°≤α≤k·360°+270°,k∈Z}={α|k·180°+45°≤α≤k·180°+90°,k∈Z}.Z}10.已知α=-1 910°.(1)把α写成β+k·360°(k∈Z,0°≤β<360°)的形式,并指出它是第几象限角;(2)求θ,使θ与α的终边相同,且-720°≤θ<0°.设α=β+k·360°(k∈Z),则β=-1910°-k·360°(k∈Z).令-1910°-k·360°≥0,解得k≤-1910360=-51136.k的最大整数解为k=-6,求出相应的β=250°,于是α=250°-6×360°,它是第三象限角.(2)令θ=250°+n·360°(n∈Z),取n=-1,-2就得到符合-720°≤θ<0°的角. 250°-360°=-110°,250°-720°=-470°.故θ=-110°或θ=-470°.11.已知角α的终边在图中阴影部分所表示的范围内(不包括边界),写出角α的集合.0°~360°范围内,终边落在阴影部分内的角为30°<α<150°与210°<α<330°,故所有满足题意的角α的集合为{α|k·360°+30°<α<k·360°+150°,k∈Z}∪{α|k·360°+210°<α<k·360°+330°,k∈Z}={α|n·180°+30°<α<n·180°+150°,n∈Z}.12.已知α,β都是锐角,且α+β的终边与-280°角的终边相同,α-β的终边与670°角的终边相同,求角α,β的大小.-280°+k·360°,k∈Z.∵α,β都是锐角,∴0°<α+β<180°.取k=1,得α+β=80°.①α-β=670°+k·360°,k∈Z.∵α,β都是锐角,∴-90°<α-β<90°.取k=-2,得α-β=-50°.②由①②,得α=15°,β=65°.。

1.1.1 任意角 学案(含答案)人教A版数学必修4

1.1.1 任意角 学案(含答案)人教A版数学必修4

1.1.1 任意角学案(含答案)人教A版数学必修41.1任意角和弧度制任意角和弧度制11.1任意角任意角学习目标1.了解角的概念.2.掌握正角.负角和零角的概念,理解任意角的意义.3.熟练掌握象限角.终边相同的角的概念,会用集合符号表示这些角知识点一角的相关概念1.角的概念角可以看成平面内一条射线绕着端点O从一个位置OA旋转到另一个位置OB所成的图形点O是角的顶点,射线OA,OB分别是角的始边和终边2按照角的旋转方向,分为如下三类类型定义正角按逆时针方向旋转形成的角负角按顺时针方向旋转形成的角零角一条射线没有作任何旋转,称它形成了一个零角思考始边与终边重合的角是零角,这句话正确吗答案不正确,当射线旋转整数圈时,始边与终边也重合,但此时形成的角不是零角知识点二象限角.轴线角在平面直角坐标系内,使角的顶点与原点重合,角的始边与x轴的非负半轴重合象限角终边在第几象限就是第几象限角;轴线角终边落在坐标轴上的角知识点三终边相同的角终边相同角的表示所有与角终边相同的角,连同角在内,可构成一个集合S|k360,kZ,即任一与角终边相同的角,都可以表示成角与整数个周角的和1经过1小时,时针转过30.提示因为是顺时针旋转,所以时针转过30.2小于90的角是锐角提示锐角是指大于0且小于90的角3钝角是第二象限角4第一象限角都是锐角题型一任意角概念的理解例11给出下列说法锐角都是第一象限角;第一象限角一定不是负角;小于180的角是钝角或直角或锐角其中正确说法的序号为________把正确说法的序号都写上2将时钟拨快20分钟,则分针转过的度数是________考点任意角的概念题点对任意角概念的理解答案12120解析1锐角指大于0小于90的角,都是第一象限角,所以对;由任意角的概念知,第一象限角也可为负角,小于180的角还有负角.零角,所以错误2分针每分钟转6,由于顺时针旋转,所以20分钟转了120.反思感悟解决此类问题要正确理解锐角.钝角.090角.象限角等概念角的概念推广后,确定角的关键是确定旋转的方向和旋转量的大小跟踪训练11若角的顶点在原点,角的始边与x轴的非负半轴重合,给出下列四个命题0角是第一象限角;相等的角的终边一定相同;终边相同的角有无限多个;与30角终边相同的角都是第四象限角其中正确的有A1个B2个C3个D4个2时针走过2小时40分,则分针转过的角度是________考点任意角的概念题点对任意角概念的理解答案1C2960解析1错误,0角是轴线角;正确2分针按顺时针方向转动,则转过的角度是负角为360223960.题型二象限角的判定例21已知下列各角120;240;180;495.其中是第二象限角的是ABCD考点象限角题点对象限角的判断答案D解析120为第三象限角,错;240360120,120为第二象限角,240也为第二象限角,故对;180为轴线角;495360135,135为第二象限角,495为第二象限角,故对故选D.2若角是第三象限角,则角2的终边所在的区域是如图所示的区域不含边界ABCD考点象限角题点判断角所在象限答案A解析是第三象限角,k360180k360270kZ,k180902k180135kZ当k2nnZ 时,n360902n360135,nZ,其终边在区域内;当k2n1nZ时,n3602702n360315,nZ,其终边在区域内角2的终边所在的区域为.反思感悟1判断象限角的步骤当0360时,直接写出结果当0或360时,将化为k360kZ,0360,转化为判断角所属的象限2一般地,要确定n所在的象限,可以作出各个象限的从原点出发的n等分射线,它们与坐标轴把周角分成4n个区域,从x轴的非负半轴起,按逆时针方向把这4n个区域依次标上1,2,3,4,,1,2,3,4,标号为几的区域,就是根据所在第几象限时,n的终边所落在的区域,如此,n所在的象限就可以由标号区域所在的象限直观的看出跟踪训练2xx河南郑州高二期末若k18045,kZ,则终边所在的象限是A第一.三象限B第一.二象限C第二.四象限D第三.四象限考点对角所在象限的判断题点象限角判断答案A解析由题意知k18045,kZ,当k2n1,nZ时,2n18018045n360225,nZ,其终边在第三象限;当k2n,nZ时,2n18045n36045,nZ,其终边在第一象限综上,终边所在的象限是第一或第三象限题型三终边相同的角例3在与角10030终边相同的角中,求满足下列条件的角1最大的负角;2最小的正角;3范围360720内的角考点终边相同的角题点终边相同的角表示方法解与10030终边相同的角的一般形式为k36010030kZ,1由360k360100300,得10390k36010030,解得k28,故所求的最大负角为50.2由0k36010030360,得10030k3609670,解得k27,故所求的最小正角为310.3由360k36010030720,得9670k3609310,解得k26,故所求的角为670.反思感悟求适合某种条件且与已知角终边相同的角,其方法是先求出与已知角终边相同的角的一般形式,再依条件构建不等式求出k的值跟踪训练3已知315.1把改写成k360kZ,0360的形式,并指出它是第几象限角;2求,使与终边相同,且1080360.考点终边相同的角题点终边相同的角.象限角解1因为31536045.又045360,所以把写成k360kZ,0360的形式为3604545,它是第一象限角2与315终边相同的角为k36045kZ,所以当k3,2时,1035,675,满足1080360.即得所求角为1035和675.求终边在给定直线上的角的集合典例写出终边在直线y3x上的角的集合考点终边相同的角题点任意角的综合应用解终边在y3xx0上的角的集合是S1|120k360,kZ;终边在y3xx0上的角的集合是S2|300k360,kZ因此,终边在直线y3x上的角的集合是SS1S2|120k360,kZ|300k360,kZ,即S|1202k180,kZ|1202k1180,kZ|120n180,nZ故终边在直线y3x上的角的集合是S|120n180,nZ素养评析1可以先画出直线y3x,借助几何直观理解问题.建立形与数的联系,通过学习提升直观想象的数学核心素养2在具体操作时,要注意把直线y3x分成两部分y3xx0和y3xx0进行讨论.1下列说法正确的是A第一象限的角一定是正角B三角形的内角不是锐角就是钝角C锐角小于90D终边相同的角相等考点任意角的概念题点任意角的概念的理解答案C解析355是第一象限的角,但不是正角,所以A错误;三角形的内角可能是90,所以B错误;锐角小于90,C正确;45与405角的终边相同,但不相等,所以D错误故选C.22018是A第一象限角B第二象限角C第三象限角D第四象限角考点象限角.轴线角题点象限角答案C解析20185360218,故2018是第三象限角3与457角终边相同的角的集合是A|k360457,kZB|k36097,kZC|k360263,kZD|k360263,kZ考点终边相同的角题点终边相同的角答案C解析4572360263,故选C.4已知角的终边在直线3xy0上则角的集合S为__________考点终边相同的角题点任意角的综合应用答案|60n180,nZ解析如图,直线3xy0过原点,倾斜角为60,在0360范围内,终边落在射线OA上的角是60,终边落在射线OB上的角是240,所以以射线OA,OB为终边的角的集合分别为S1|60k360,kZ,S2|240k360,kZ,所以,角的集合SS1S2|60k360,kZ|60180k360,kZ|602k180,kZ|602k1180,kZ|60n180,nZ5已知角的集合M|30k90,kZ,回答下列问题1集合M中大于360且小于360的角是哪几个2写出集合M中的第二象限角的一般表达式考点终边相同的角题点象限角.终边相同的角解1令36030k90360,得133k113,又kZ,k4,3,2,1,0,1,2,3,集合M中大于360且小于360的角共有8个,分别是330,240,150,60,30,120,210,300.2集合M中的第二象限角与120角的终边相同,120k360,kZ.1对角的理解,初中阶段是以“静止”的眼光看,高中阶段应用“运动”的观点下定义,理解这一概念时,要注意“旋转方向”决定角的“正负”,“旋转幅度”决定角的“绝对值大小”2关于终边相同的角的认识一般地,所有与角终边相同的角,连同角在内,可构成一个集合S|k360,kZ,即任一与角终边相同的角,都可以表示成角与整数个周角的和注意1为任意角;2k360与之间是“”号,k360可理解为k360;3相等的角终边一定相同;终边相同的角不一定相等,终边相同的角有无数多个,它们相差360的整数倍;4kZ这一条件不能少。

人教A版高中数学必修四《1.1.1任意角》练习题.docx

人教A版高中数学必修四《1.1.1任意角》练习题.docx

§1.1 任意角和弧度制§1.1.1 任意角【学习目标、细解考纲】理解任意角、象限角的概念,并会用集合来表示终边相同的角。

【知识梳理、双基再现】1、角可以看成平面内一条绕着从一个位置旋转到另一个位置所形成的图形。

2、按逆时针方向旋转形成的角叫做,按顺时针方向旋转形成的角叫做。

如果一条射线没有作任何旋转,我们称它形成了一个,它的和重合。

这样,我们就把角的概念推广到了,包括、和。

3、我们常在内讨论角。

为了讨论问题的方便,使角的与重合,角的与重合。

那么,角的落在第几象限,我们就说这个角是。

如果角的终边落在坐标轴上,就认为这个角。

4、所有与角α终边相同的角,连同角α在内,可构成一个,,即任一与角α终边相同的角,都可以表示成。

【小试身手、轻松过关】5、下列角中终边与330°相同的角是()A.30° B.-30° C.630° D.-630°6、-1120°角所在象限是()A.第一象限 B.第二象限 C.第三象限 D.第四象限7、把-1485°转化为α+k·360°(0°≤α<360°, k∈Z)的形式是()A.45°-4×360°B.-45°-4×360°C.-45°-5×360°D.315°-5×360°8、写出-720°到720°之间与-1068°终边相同的角的集合___________________.【基础训练、锋芒初显】9、终边在第二象限的角的集合可以表示为:()A.{α∣90°<α<180°}B.{α∣90°+k·180°<α<180°+k·180°,k∈Z}C.{α∣-270°+k·180°<α<-180°+k·180°,k∈Z}D.{α∣-270°+k·360°<α<-180°+k·360°,k∈Z}10、已知A={第一象限角},B={锐角},C={小于90°的角},那么A、B、C关系是()A.B=A∩C B.B∪C=C C.A C D.A=B=C11、下列结论正确的是()Α.三角形的内角必是一、二象限内的角 B.第一象限的角必是锐角C.不相等的角终边一定不同D .{}Z k k ∈±⋅=,90360|οοαα={}Z k k ∈+⋅=,90180|οοαα12、若α是第四象限的角,则α-ο180是 .(89上海)A .第一象限的角B .第二象限的角C .第三象限的角D .第四象限的角13、与1991°终边相同的最小正角是_________,绝对值最小的角是_______________.14、若角α的终边为第二象限的角平分线,则α的集合为______________________. 15、在0°到360°范围内,与角-60°的终边在同一条直线上的角为 .16、求所有与所给角终边相同的角的集合,并求出其中的最小正角,最大负角:(1)ο210-; (2)731484'-ο.17、下列说法中,正确的是( )A .第一象限的角是锐角B .锐角是第一象限的角C .小于90°的角是锐角D .0°到90°的角是第一象限的角 【举一反三、能力拓展】18、写出角的终边在下图中阴影区域内角的集合(包括边界)(1) (2) (3)19、已知角α是第二象限角,求:(1)角2α是第几象限的角;(2)角α2终边的位置。

高一数学人教A版必修4练习1.1.1 任 意 角 Word版含解析

高一数学人教A版必修4练习1.1.1 任 意 角 Word版含解析

第一章三角函数三角函数
.任意角和弧度制
.任意角
.理解任意角的概念,特别是象限角、区间角、终边相同的角的概念及其表示方法.
.了解正角、负角、零角的概念.
.注意数形结合思想的应用.
一、任意角
.任意角的概念:角可以看成平面内一条射线绕着端点从一个位置旋转到另一个位置所成的图形.射线的起始位置是角的始边,射线的终止位置是角的终边,射线的端点是角的顶点.
练习:下列说法正确的是()
.最大角是°.最大角是°
.角不可以是负的.角可以任意大小
解析:由角的定义,角可以是任意大小的.故选.
.正角、零角、负角概念:按旋转方向,角可以分为以下三类:
()正角——按逆时针方向旋转所形成的角;
()零角—射线没有作任何旋转形成的角;
()负角——按顺时针方向旋转所形成的角.
练习:时钟的分针经过分钟旋转的角为()
.°.°.-°.-°
解析:时针的分针是按顺时针旋转形成的角,所以为负角.故选.。

高中数学第一章三角函数1.1.1任意角练习(含解析)新人教A版必修4

高中数学第一章三角函数1.1.1任意角练习(含解析)新人教A版必修4

第1课时 任意角1.已知A ={第一象限角},B ={锐角},C ={小于90°的角},那么A ,B ,C 的关系是( )A .B =A ∩C B .B ∪C =CC .A ⊆CD .A =B =C答案 B解析 A ={第一象限角}={θ|k ·360°<θ<90°+k ·360°,k ∈Z },B ={锐角}={θ|0<θ<90°},C ={小于90°的角}={θ|θ<90°}.故选B .2.已知中学生一节课的上课时间一般是45分钟,那么,经过一节课,分针旋转形成的角是( )A .120° B.-120° C.270° D.-270°答案 D解析 分针旋转形成的角是负角,故所求分针旋转形成的角是(-360°)×4560=-270°.A .3π2和2k π-3π2(k ∈Z )B .-π5和22π5C .-7π9和11π9D .20π3和122π9答案 C解析 11π9=2π+-7π9. 4.已知角α的终边过点P ((-2)-1,log 2sin30°),则角α是( )A .第一象限角B .第二象限角C .第三象限角D .第四象限角答案 C解析 ∵(-2)-1=-12,log 2sin30°=log 212=-1,∴点P 的坐标为⎝ ⎛⎭⎪⎫-12,-1,∴点P 在第三象限,∴角α是第三象限角.5.在与角10030°终边相同的角中,求满足下列条件的角.(1)最大的负角;(2)最小的正角;(3)360°~720°的角.解 (1)与10030°终边相同的角的一般形式为β=k ·360°+10030°(k ∈Z ),由-360°<k ·360°+10030°<0°,得-10390°<k ·360°<-10030°,解得k =-28,故所求的最大负角为β=-50°.(2)由0°<k ·360°+10030°<360°,得-10030°<k ·360°<-9670°,解得k =-27,故所求的最小正角为β=310°.(3)由360°<k ·360°+10030°<720°,得-9670°<k ·360°<-9310°,解得k =-26,故所求的角为β=670°.(1)分别写出终边落在OA ,OB 位置上的角的集合;(2)写出终边落在阴影部分(包括边界)的角的集合.解(1)终边落在OA位置上的角的集合为{α|α=90°+45°+k·360°,k∈Z}={α|α=135°+k·360°,k∈Z},终边落在OB位置上的角的集合为{β|β=-30°+k·360°,k∈Z}.(2)由图可知,阴影部分角的集合是由所有介于[-30°,135°]之间的所有与之终边相同的角组成的集合,故该区域可表示为{α|-30°+k·360°≤α≤135°+k·360°,k∈Z}.一、选择题1.下列叙述正确的是( )A.第一或第二象限的角都可作为三角形的内角B.始边相同而终边不同的角一定不相等C.若α是第一象限角,则2α是第二象限角D.钝角比第三象限角小答案 B解析-330°角是第一象限角,但不能作为三角形的内角,故A错误;若α是第一象限角,则k·360°<α<k·360°+90°(k∈Z),所以2k·360°<2α<2k·360°+180°(k∈Z),所以2α是第一象限角或第二象限角或终边在y轴非负半轴上的角,故C错误;-100°角是第三象限角,它比钝角小,故D错误.2.若角α的终边经过点M(0,-3),则角α( )A.是第三象限角B.是第四象限角C.既是第三象限角,又是第四象限角D.不是任何象限的角答案 D解析因为点M(0,-3)在y轴负半轴上,所以角α的终边不在任何象限.3.角α=45°+k·180°,k∈Z的终边落在( )A.第一或第三象限 B.第一或第二象限C.第二或第四象限 D.第三或第四象限答案 A解析当k为偶数时,α的终边在第一象限;当k为奇数时,α的终边在第三象限,故选A.4.终边在直线y=-x上的所有角的集合是( )A.{α|α=k·360°+135°,k∈Z}B.{α|α=k·360°-45°,k∈Z}C.{α|α=k·180°+225°,k∈Z}D.{α|α=k·180°-45°,k∈Z}答案 D解析因为直线过原点,它有两部分,一部分在第二象限,一部分在第四象限,所以排除A,B,又C项部分角出现在第三象限,也排除,故选D.5.已知角2α的终边在x轴的上方,那么α是( )A.第一象限角 B.第一或第二象限角C.第一或第三象限角 D.第一或第四象限角答案 C解析因为角2α的终边在x轴的上方,所以k·360°<2α<k·360°+180°,k∈Z,则有k·180°<α<k·180°+90°,k∈Z.故当k=2n,n∈Z时,n·360°<α<n·360°+90°,α为第一象限角;当k=2n+1,n∈Z时,n·360°+180°<α<n·360°+270°,α为第三象限角.故选C.二、填空题6.在-180°~360°范围内,与2000°角终边相同的角为________.答案-160°,200°解析∵2000°=200°+5×360°,2000°=-160°+6×360°,∴在-180°~360°范围内与2000°角终边相同的角有-160°,200°两个.7.已知θ为小于360°的正角,这个角的4倍角与这个角的终边关于x轴对称,那么θ=________.答案72°,144°,216°,288°解析依题意,可知角4θ与角-θ终边相同,故4θ=-θ+k·360°(k∈Z),故θ=k·72°(k∈Z).又0°<θ<360°,故令k=1,2,3,4得θ=72°,144°,216°,288°.8.已知角α的终边在图中阴影所表示的范围内(不包括边界),那么α∈________.答案{α|n·180°+30°<α<n·180°+150°,n∈Z}解析在0°~360°范围内,终边落在阴影内的角α的取值范围为30°<α<150°与210°<α<330°,所以所有满足题意的角α的集合为{α|k·360°+30°<α<k·360°+150°,k∈Z}∪{α|k·360°+210°<α<k·360°+330°,k∈Z}={α|2k·180°+30°<α<2k·180°+150°,k∈Z}∪{α|(2k+1)180°+30°<α<(2k+1)·180°+150°,k∈Z}={α|n·180°+30°<α<n·180°+150°,n∈Z}.三、解答题9.记终边在直线y=x上的角的集合为S.(1)写出集合S;(2)写出S中既是正角又小于等于1080°的角的集合M.解(1)终边在直线y=x上的角的集合S={α|α=45°+k·360°,k∈Z}∪{α|α=225°+k·360°,k∈Z}={α|α=45°+k·180°,k∈Z}.(2)由(1)可知,M={45°,225°,405°,585°,765°,945°}.10.(1)若α为第三象限角,试判断90°-α的终边所在的象限;(2)若α为第四象限角,试判断α2的终边所在的象限. 解 (1)因为α为第三象限角,所以180°+k ·360°<α<270°+k ·360°,k ∈Z ,则-180°-k ·360°<90°-α<-90°-k ·360°,k ∈Z ,所以90°-α的终边在第三象限.(2)由于α为第四象限角,即α∈(k ·360°-90°,k ·360°)(k ∈Z ),所以α2∈(k ·180°-45°,k ·180°)(k ∈Z ). 当k =2n ,n ∈Z 时,α2∈(n ·360°-45°,n ·360°)(n ∈Z ),α2是第四象限角; 当k =2n +1,n ∈Z 时,α2∈(n ·360°+135°,n ·360°+180°)(n ∈Z ),α2是第二象限角.综上,可知α2的终边所在的象限是第二或第四象限.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一章三角函数
1.1任意角和弧度制
1.1.1 任意角
测试题
知识点一:终边相同的角
1.设A={θ|θ为锐角},B={θ|θ为小于90°的角},C={θ|θ为第一象限的角},D={θ|θ为小于90°的正角},则下列等式中成立的是()
A.A=B B.B=C
C.A=C D.A=D
2.与405°角终边相同的角是() A.k·360°-45°,k∈Z
B.k·180°-45°,k∈Z
C.k·360°+45°,k∈Z
D.k·180°+45°,k∈Z
3.以下命题正确的是()
A.若α是第一象限角,则2α是第二象限角
B.A={α|α=k·180°,k∈Z},B={β|β=k·90°,k∈Z},则A B
C.若k·360°<α<k·360°+180°(k∈Z),则α为第一或第二象限角
D.终边在x轴上的角可表示为k·360°(k∈Z)
4.(2014·青岛高一检测)若角α的终边和函数y=x的图象重合,则角α的集合S=()
A.{α|α=k·360°+45°,k∈Z}
B.{α|α=k·90°+45°,k∈Z}
C.{α|α=k·360°+225°,k∈Z}
D.{α|α=k·180°+45°,k∈Z}
5.角α,β的终边关于y轴对称,若α=30°,则β=________.
6.下列说法中,正确的是________.(填序号)
①终边落在第一象限的角为锐角;
②锐角是第一象限的角;
③第二象限的角为钝角;
④小于90°的角一定为锐角;
⑤角α与-α的终边关于x轴对称.
7.在-180°~360°范围内,与2 000°角终边相同的角为______.
8. 在与角-2 013°终边相同的角中,求满足下列条件的角. (1)最小的正角; (2)最大的负角; (3)-720°~720°内的角.
9.已知角β的终边在直线3x -y =0上. (1)写出角β的集合S ;
(2)写出S 中适合不等式-360°<β<720°的元素.
知识点二: 象限角与区域角的表示
10.(2014·定西高一检测)-510°在第几象限( ) A.一 B.二 C.三 D.四
11.若α=45°+k ·180° (k ∈Z ),则α的终边在 ( )
A .第一或第三象限
B .第二或第三象限
C .第二或第四象限
D .第三或第四象限
12.若α是第四象限角,则180°-α是 ( )
A .第一象限角
B .第二象限角
C .第三象限角
D .第四象限角
13.在-390°,-885°,1 351°,2 012°这四个角中,其中第四象限角的个数为 ( )
A .0
B .1
C .2
D .3
14.集合M =⎩
⎨⎧
⎭⎬⎫x |x =k ·180°2±45°,k ∈Z ,P =⎩⎨⎧⎭
⎬⎫
x |x =k ·180°4±90°,k ∈Z ,则M 、P 之间的关系为
( ) A .M =P B .M ⊇P C .M ⊆P
D .M ∩P =∅ 15.已知α是第一象限角,则角α
3
的终边不可能落在
( )
A .第一象限
B .第二象限
C.第三象限D.第四象限
16.(2014·临汾高一检测)已知角2α的终边在x轴的上方,那么α是第________象限角. 17.如图1-1-5所示.
图1-1-5
(1)分别写出终边落在OA,OB位置上的角的集合;
(2)写出终边落在阴影部分(包括边界)的角的集合.
【参考答案】。

相关文档
最新文档