带电粒子在复合场中的运动问题是中电场磁场中的重点和难点问题

合集下载

高考物理带电粒子在复合场中的运动知识归纳

高考物理带电粒子在复合场中的运动知识归纳

带电粒子在复合场中的运动基础知识归纳1.复合场复合场是指电场、磁场和重力场并存,或其中两场并存,或分区域存在,分析方法和力学问题的分析方法基本相同,不同之处是多了电场力和磁场力,分析方法除了力学三大观点(动力学、动量、能量)外,还应注意:(1) 洛伦兹力永不做功.(2) 重力和电场力做功与路径无关,只由初末位置决定.还有因洛伦兹力随速度而变化,洛伦兹力的变化导致粒子所受合力变化,从而加速度变化,使粒子做变加速运动.2.带电粒子在复合场中无约束情况下的运动性质(1)当带电粒子所受合外力为零时,将做匀速直线运动或处于静止,合外力恒定且与初速度同向时做匀变速直线运动,常见情况有:①洛伦兹力为零(v与B平行),重力与电场力平衡,做匀速直线运动,或重力与电场力合力恒定,做匀变速直线运动.②洛伦兹力与速度垂直,且与重力和电场力的合力平衡,做匀速直线运动.(2)当带电粒子所受合外力充当向心力,带电粒子做匀速圆周运动时,由于通常情况下,重力和电场力为恒力,故不能充当向心力,所以一般情况下是重力恰好与电场力相平衡,洛伦兹力充当向心力.(3)当带电粒子所受合外力的大小、方向均不断变化时,粒子将做非匀变速的 曲线运动 .3.带电粒子在复合场中有约束情况下的运动带电粒子所受约束,通常有面、杆、绳、圆轨道等,常见的运动形式有 直线运动 和 圆周运动 ,此类问题应注意分析洛伦兹力所起的作用.4.带电粒子在交变场中的运动带电粒子在不同场中的运动性质可能不同,可分别进行讨论.粒子在不同场中的运动的联系点是速度,因为速度不能突变,在前一个场中运动的末速度,就是后一个场中运动的初速度.5.带电粒子在复合场中运动的实际应用(1)质谱仪①用途:质谱仪是一种测量带电粒子质量和分离同位素的仪器.②原理:如图所示,离子源S 产生质量为m ,电荷量为q 的正离子(重力不计),离子出来时速度很小(可忽略不计),经过电压为U 的电场加速后进入磁感应强度为B 的匀强磁场中做匀速圆周运动,经过半个周期而达到记录它的照相底片P 上,测得它在P 上的位置到入口处的距离为L ,则qU =21mv 2-0;q B v =m r v 2;L =2r联立求解得m =U L qB 822,因此,只要知道q 、B 、L 与U ,就可计算出带电粒子的质量m ,若q 也未知,则228L B Um q又因m ∝L 2,不同质量的同位素从不同处可得到分离,故质谱仪又是分离同位素的重要仪器.(2)回旋加速器①组成:两个D 形盒、大型电磁铁、高频振荡交变电压,D 型盒间可形成电压U .②作用:加速微观带电粒子.③原理:a .电场加速qU =ΔE kb .磁场约束偏转qBv =m r v 2,r =qBmv ∝v c .加速条件,高频电源的周期与带电粒子在D 形盒中运动的周期相同,即T 电场=T 回旋=qBm π2 带电粒子在D 形盒内沿螺旋线轨道逐渐趋于盒的边缘,达到预期的速率后,用特殊装置把它们引出.④要点深化a .将带电粒子在两盒狭缝之间的运动首尾相连起来可等效为一个初速度为零的匀加速直线运动.b .带电粒子每经电场加速一次,回旋半径就增大一次,所以各回旋半径之比为1∶2∶3∶…c .对于同一回旋加速器,其粒子回旋的最大半径是相同的.d .若已知最大能量为E km ,则回旋次数n =qUE 2km e .最大动能:E km =m r B q 22m 22f .粒子在回旋加速器内的运动时间:t =UBr 2π2m (3)速度选择器①原理:如图所示,由于所受重力可忽略不计,运动方向相同而速率不同的正粒子组成的粒子束射入相互正交的匀强电场和匀强磁场所组成的场区中,已知电场强度为B ,方向垂直于纸面向里,若粒子运动轨迹不发生偏转(重力不计),必须满足平衡条件:qBv =qE ,故v =BE ,这样就把满足v =BE 的粒子从速度选择器中选择出来了. ②特点:a .速度选择器只选择速度(大小、方向)而不选择粒子的质量和电荷量,如上图中若从右侧入射则不能穿过场区.b .速度选择器B 、E 、v 三个物理量的大小、方向互相约束,以保证粒子受到的电场力和洛伦兹力等大、反向,如上图中只改变磁场B 的方向,粒子将向下偏转.c .v ′>v =B E 时,则qBv ′>qE ,粒子向上偏转;当v ′<v =BE 时,qBv ′<qE ,粒子向下偏转.③要点深化a .从力的角度看,电场力和洛伦兹力平衡qE =qvB ;b .从速度角度看,v =BE ; c .从功能角度看,洛伦兹力永不做功.(4)电磁流量计①如图所示,一圆形导管直径为d ,用非磁性材料制成,其中有可以导电的液体流过导管.②原理:导电液体中的自由电荷(正、负离子)在洛伦兹力作用下横向偏转,a 、b 间出现电势差,形成电场.当自由电荷所受电场力和洛伦兹力平衡时,a 、b 间的电势差就保持稳定.由Bqv =Eq =d U q ,可得v =Bd U液体流量Q =Sv =4π2d ·Bd U =BdU 4π (5)霍尔效应如图所示,高为h 、宽为d 的导体置于匀强磁场B 中,当电流通过导体时,在导体板的上表面A 和下表面A ′之间产生电势差,这种现象称为霍尔效应,此电压称为霍尔电压.设霍尔导体中自由电荷(载流子)是自由电子.图中电流方向向右,则电子受洛伦兹力 向上 ,在上表面A 积聚电子,则qvB =qE , E =Bv ,电势差U =Eh =Bhv .又I =nqSv导体的横截面积S =hd得v =nqhdI 所以U =Bhv =d BI k nqd BI k=nq 1,称霍尔系数.重点难点突破一、解决复合场类问题的基本思路1.正确的受力分析.除重力、弹力、摩擦力外,要特别注意电场力和磁场力的分析.2.正确分析物体的运动状态.找出物体的速度、位置及其变化特点,分析运动过程,如果出现临界状态,要分析临界条件.3.恰当灵活地运用动力学三大方法解决问题.(1)用动力学观点分析,包括牛顿运动定律与运动学公式.(2)用动量观点分析,包括动量定理与动量守恒定律.(3)用能量观点分析,包括动能定理和机械能(或能量)守恒定律.针对不同的问题灵活地选用,但必须弄清各种规律的成立条件与适用范围.二、复合场类问题中重力考虑与否分三种情况1.对于微观粒子,如电子、质子、离子等一般不做特殊交待就可以不计其重力,因为其重力一般情况下与电场力或磁场力相比太小,可以忽略;而对于一些实际物体,如带电小球、液滴、金属块等不做特殊交待时就应考虑其重力.2.在题目中有明确交待是否要考虑重力的,这种情况比较正规,也比较简单.3.直接看不出是否要考虑重力的,在进行受力分析与运动分析时,要由分析结果,先进行定性确定是否要考虑重力.典例精析1.带电粒子在复合场中做直线运动的处理方法【例1】如图所示,足够长的光滑绝缘斜面与水平面间的夹角为α(sin α=0.6),放在水平方向的匀强电场和匀强磁场中,电场强度E =50 V/m ,方向水平向左,磁场方向垂直纸面向外.一个电荷量q =+4.0×10-2 C 、质量m =0.40 kg 的光滑小球,以初速度v 0=20 m/s 从斜面底端向上滑,然后又下滑,共经过3 s脱离斜面.求磁场的磁感应强度(g 取10 m /s 2).【解析】小球沿斜面向上运动的过程中受力分析如图所示.由牛顿第二定律,得qE cos α+mg sin α=ma 1,故a 1=g sin α+m qE αcos =10×0.6 m/s 2+40.08.050100.42⨯⨯⨯- m/s 2=10 m/s 2,向上运动时间t 1=100a v --=2 s小球在下滑过程中的受力分析如图所示.小球在离开斜面前做匀加速直线运动,a 2=10 m/s 2运动时间t 2=t -t 1=1 s脱离斜面时的速度v =a 2t 2=10 m/s在垂直于斜面方向上有:qvB +qE sin α=mg cos α故B =T 106.050-T 10100.48.01040.0 sin cos 2⨯⨯⨯⨯⨯=--v E qv mg αα=5 T 【思维提升】(1)知道洛伦兹力是变力,其大小随速度变化而变化,其方向随运动方向的反向而反向.能从运动过程及受力分析入手,分析可能存在的最大速度、最大加速度、最大位移等.(2)明确小球脱离斜面的条件是F N =0.【拓展1】如图所示,套在足够长的绝缘粗糙直棒上的带正电小球,其质量为m ,带电荷量为q ,小球可在棒上滑动,现将此棒竖直放入沿水平方向且互相垂直的匀强磁场和匀强电场中.设小球电荷量不变,小球由静止下滑的过程中( BD )A.小球加速度一直增大B.小球速度一直增大,直到最后匀速C.杆对小球的弹力一直减小D.小球所受洛伦兹力一直增大,直到最后不变【解析】小球由静止加速下滑,f洛=Bqv 在不断增大,开始一段,如图(a):f 洛<F 电,水平方向有f 洛+F N =F电,加速度a =m f mg -,其中f =μF N ,随着速度的增大,f 洛增大,F N 减小,加速度也增大,当f 洛=F 电时,a 达到最大;以后如图(b):f 洛>F 电,水平方向有f 洛=F 电+F N ,随着速度的增大,F N 也增大,f 也增大,a =mf mg -减小,当f =mg 时,a =0,此后做匀速运动,故a 先增大后减小,A 错,B 对,弹力先减小后增大,C 错,由f 洛=Bqv 知D 对.2.灵活运用动力学方法解决带电粒子在复合场中的运动问题【例2】如图所示,水平放置的M 、N 两金属板之间,有水平向里的匀强磁场,磁感应强度B =0.5 T.质量为m 1=9.995×10-7kg 、电荷量为q =-1.0×10-8 C 的带电微粒,静止在N 板附近.在M 、N 两板间突然加上电压(M 板电势高于N 板电势)时,微粒开始运动,经一段时间后,该微粒水平匀速地碰撞原来静止的质量为m 2的中性微粒,并粘合在一起,然后共同沿一段圆弧做匀速圆周运动,最终落在N 板上.若两板间的电场强度E =1.0×103 V/m ,求:(1)两微粒碰撞前,质量为m 1的微粒的速度大小;(2)被碰撞微粒的质量m 2;(3)两微粒粘合后沿圆弧运动的轨道半径.【解析】(1)碰撞前,质量为m 1的微粒已沿水平方向做匀速运动,根据平衡条件有m 1g +qvB =qE解得碰撞前质量m 1的微粒的速度大小为v =5.0100.11010995.9100.1100.187381⨯⨯⨯⨯-⨯⨯⨯=----qB g m qE m/s =1 m/s (2)由于两微粒碰撞后一起做匀速圆周运动,说明两微粒所受的电场力与它们的重力相平衡,洛伦兹力提供做匀速圆周运动的向心力,故有(m 1+m 2)g =qE解得m 2=g qE 1m -=)10995.910100.1100.1(738--⨯-⨯⨯⨯ kg =5×10-10 kg (3)设两微粒一起做匀速圆周运动的速度大小为v ′,轨道半径为R ,根据牛顿第二定律有qv ′B =(m 1+m 2)R v 2'研究两微粒的碰撞过程,根据动量守恒定律有m 1v =(m 1+m 2)v ′ 以上两式联立解得R =5.0100.1110995.9)(87121⨯⨯⨯⨯=='+--qB v m qB v m m m ≈200 m 【思维提升】(1)全面正确地进行受力分析和运动状态分析,f 洛随速度的变化而变化导致运动状态发生新的变化.(2)若mg 、f 洛、F 电三力合力为零,粒子做匀速直线运动.(3)若F 电与重力平衡,则f 洛提供向心力,粒子做匀速圆周运动.(4)根据受力特点与运动特点,选择牛顿第二定律、动量定理、动能定理及动量守恒定律列方程求解.【拓展2】如图所示,在相互垂直的匀强磁场和匀强电场中,有一倾角为θ的足够长的光滑绝缘斜面.磁感应强度为B ,方向水平向外;电场强度为E ,方向竖直向上.有一质量为m 、带电荷量为+q 的小滑块静止在斜面顶端时对斜面的正压力恰好为零.(1)如果迅速把电场方向转为竖直向下,求小滑块能在斜面上连续滑行的最远距离L 和所用时间t ;(2)如果在距A 端L /4处的C 点放入一个质量与滑块相同但不带电的小物体,当滑块从A 点静止下滑到C 点时两物体相碰并黏在一起.求此黏合体在斜面上还能再滑行多长时间和距离?【解析】(1)由题意知qE =mg场强转为竖直向下时,设滑块要离开斜面时的速度为v ,由动能定理有(mg +qE )L sin θ=221mv ,即2mgL sin θ=221mv 当滑块刚要离开斜面时由平衡条件有qvB =(mg +qE )cos θ,即v =qBmg θ cos 2 由以上两式解得L =θθ sin cos 2222B q g m根据动量定理有t =θθ cot sin 2qBm mg mv = (2)两物体先后运动,设在C 点处碰撞前滑块的速度为v C ,则2mg ·4L sin θ=21mv 2 设碰后两物体速度为u ,碰撞前后由动量守恒有mv C =2mu 设黏合体将要离开斜面时的速度为v ′,由平衡条件有qv ′B =(2mg +qE )cos θ=3mg cos θ由动能定理知,碰后两物体共同下滑的过程中有3mg sin θ·s =21·2mv ′2-21·2mu 2 联立以上几式解得s =12sin cos 32222L B q g m -θθ将L 结果代入上式得s =θθ sin 12cos 352222B q g m碰后两物体在斜面上还能滑行的时间可由动量定理求得t ′=qBm mg mu v m 35 sin 322=-'θcot θ 【例3】在平面直角坐标系xOy 中,第Ⅰ象限存在沿y 轴负方向的匀强电场,第Ⅳ象限存在垂直于坐标平面向外的匀强磁场,磁感应强度为B .一质量为m 、电荷量为q的带正电粒子从y 轴正半轴上的M 点以速度v 0垂直于y轴射入电场,经x 轴上的N 点与x 轴正方向成θ=60°角射入磁场,最后从y 轴负半轴上的P 点垂直于y 轴射出磁场,如图所示.不计重力,求:(1)M 、N 两点间的电势差U MN ;(2)粒子在磁场中运动的轨道半径r ;(3)粒子从M 点运动到P 点的总时间t .【解析】(1)设粒子过N 点时的速度为v ,有vv 0=cos θ ①v =2v 0 ②粒子从M 点运动到N 点的过程,有qU MN =2022121mv mv - ③U MN =3mv 20/2q ④(2)粒子在磁场中以O ′为圆心做匀速圆周运动,半径为O ′N ,有qvB =r mv 2 ⑤r =qBmv 02 ⑥(3)由几何关系得ON =r sin θ ⑦设粒子在电场中运动的时间为t 1,有ON =v 0t 1 ⑧t 1=qB m 3 ⑨粒子在磁场中做匀速圆周运动的周期T =qBm π2 ⑩ 设粒子在磁场中运动的时间为t 2,有t 2=2ππθ-T ⑪ t 2=qBm 32π ⑫ t =t 1+t 2=qB m 3π)233(+【思维提升】注重受力分析,尤其是运动过程分析以及圆心的确定,画好示意图,根据运动学规律及动能观点求解.【拓展3】如图所示,真空室内存在宽度为s=8 cm 的匀强磁场区域,磁感应强度B =0.332 T ,磁场方向垂直于纸面向里.紧靠边界ab 放一点状α粒子放射源S ,可沿纸面向各个方向放射速率相同的α粒子.α粒子质量为m =6.64×10-27 kg ,电荷量为q =+3.2×10-19 C ,速率为v =3.2×106 m/s.磁场边界ab 、cd 足够长,cd 为厚度不计的金箔,金箔右侧cd 与MN 之间有一宽度为L =12.8 cm 的无场区域.MN 右侧为固定在O 点的电荷量为Q =-2.0×10-6 C 的点电荷形成的电场区域(点电荷左侧的电场分布以MN 为边界).不计α粒子的重力,静电力常量k =9.0×109 N ·m 2/C 2,(取sin 37°=0.6,cos 37°=0.8)求:(1)金箔cd 被α粒子射中区域的长度y ;(2)打在金箔d 端离cd 中心最远的粒子沿直线穿出金箔,经过无场区进入电场就开始以O 点为圆心做匀速圆周运动,垂直打在放置于中心线上的荧光屏FH 上的E 点(未画出),计算OE 的长度;(3)计算此α粒子从金箔上穿出时损失的动能.【解析】(1)粒子在匀强磁场中做匀速圆周运动,洛伦兹力提供向心力,有qvB =m R v 2,得R =Bqmv =0.2 m 如图所示,当α粒子运动的圆轨迹与cd 相切时,上端偏离O ′最远,由几何关系得O ′P =22)(s R R --=0.16 m当α粒子沿Sb 方向射入时,下端偏离O ′最远,由几何关系得O ′Q =)(2s R R --=0.16 m故金箔cd 被α粒子射中区域的长度为y =O ′Q +O ′P =0.32 m(2)如上图所示,OE 即为α粒子绕O 点做圆周运动的半径r .α粒子在无场区域做匀速直线运动与MN 相交,下偏距离为y ′,则tan 37°=43,y ′=L tan 37°=0.096 m 所以,圆周运动的半径为r =︒'+'37 cos Q O y =0.32 m (3)设α粒子穿出金箔时的速度为v ′,由牛顿第二定律有k r v m r Qq 22'=α粒子从金箔上穿出时损失的动能为ΔE k =21mv 2-21mv ′2=2.5×10-14 J 易错门诊3.带电体在变力作用下的运动【例4】竖直的平行金属平板A 、B 相距为d ,板长为L ,板间的电压为U ,垂直于纸面向里、磁感应强度为B 的磁场只分布在两板之间,如图所示.带电荷量为+q 、质量为m 的油滴从正上方下落并在两板中央进入板内空间.已知刚进入时电场力大小等于磁场力大小,最后油滴从板的下端点离开,求油滴离开场区时速度的大小.【错解】由题设条件有Bqv =qE =q dU ,v =Bd U ;油滴离开场区时,水平方向有Bqv +qE =ma ,v 2x =2a ·m qU d 22= 竖直方向有v 2y =v 2+2gL离开时的速度v ′=m qU d B U gL v v y x 2222222++=+【错因】洛伦兹力会随速度的改变而改变,对全程而言,带电体是在变力作用下的一个较为复杂的运动,对这样的运动不能用牛顿第二定律求解,只能用其他方法求解.【正解】由动能定理有mgL +qE 212122-'=v m d mv 2 由题设条件油滴进入磁场区域时有Bqv =qE ,E =U /d由此可以得到离开磁场区域时的速度v ′=m qU d B U gL ++2222【思维提升】解题时应该注意物理过程和物理情景的把握,时刻注意情况的变化,然后结合物理过程中的受力特点和运动特点,利用适当的解题规律解决问题,遇到变力问题,特别要注意与能量有关规律的运用.。

带电粒子在复合场中的运动解题技巧

带电粒子在复合场中的运动解题技巧

带电粒子在复合场中的运动解题技巧带电粒子在电场力作用下的运动和在洛伦兹力作用下的运动,有着不同的运动规律。

带电粒子在复合场中的运动是高考的重点考点,那么掌握答题技巧是关键。

接下来店铺为你整理了带电粒子在复合场中的运动解题技巧,一起来看看吧。

带电粒子在复合场中的运动解题技巧:分离的电场与磁场带电粒子在电场中的加速运动可以利用牛顿第二定律结合匀变速直线运动规律,或者从电场力做功角度出发求出粒子进入下一个场的速度。

对于带电粒子在电场中的偏转,要利用类平抛运动的规律,根据运动的合成与分解,结合牛顿定律和能量关系,求出粒子进入下一个场的速度大小,再结合速度合成与分解之间的关系,速度偏转角正切值与位移偏转角正切值的关系求出速度方向。

带电粒子垂直进入匀强磁场,其运动情况一般是匀速圆周运动的一部分,解决粒子在磁场中的运动情况,关键是确定粒子飞入点和飞出点的位置以及速度方向,再利用几何关系确定圆心和半径。

值得注意的是,若带电粒子从磁场中某个位置飞出后,再经电场的作用在同一个位置以相同的速度大小再次飞入磁场中时,由于飞出和飞入速度方向相反,洛伦兹力的方向相反,粒子两次在磁场中的运动轨迹并不重合!需要强调的是,带电粒子从一个场进入另外一个场,两场之间的连接点是这类问题的中枢,其速度是粒子在前一个场的某速度,是后一个场的初速度,再解决问题时要充分利用这个位置信息。

带电粒子在复合场中的运动解题技巧:多场并存的无约束运动多场并存的无约束运动在解决复合场问题时应首先弄清楚是哪些场共存,注意电场和磁场的方向以及强弱,以便确定带电粒子在场中的受力情况。

带电粒子在复合场中运动时如果没有受到绳子,杆,环等的约束,则带电粒子在空间中可以自由移动,只受场力的作用。

根据空间存在的场的不同,一般带电粒子的运动规律不同,通常可以分为以下几类:1、静止或匀速直线运动如果是重力场与电场共存,说明电场力等于重力。

如果是重力场与磁场共存,说明重力与洛伦兹力平衡。

重难点08 带电粒子在复合场中的运动(解析版)

重难点08 带电粒子在复合场中的运动(解析版)

2022年高考物理【热点·重点·难点】专练(全国通用)重难点08 带电粒子在复合场中的运动【知识梳理】考点带电粒子在组合场中的运动1.带电粒子在组合场中的运动是力电综合的重点和高考热点.这类问题的特点是电场、磁场或重力场依次出现,包含空间上先后出现和时间上先后出现,磁场或电场与无场区交替出现相组合的场等.其运动形式包含匀速直线运动、匀变速直线运动、类平抛运动、圆周运动等,涉及牛顿运动定律、功能关系等知识的应用.复习指导:1.理解掌握带电粒子的电偏转和磁偏转的条件、运动性质,会应用牛顿运动定律进行分析研究,掌握研究带电粒子的电偏转和磁偏转的方法,能够熟练处理类平抛运动和圆周运动.2.学会按照时间先后或空间先后顺序对运动进行分析,分析运动速度的承前启后关联、空间位置的距离关系、运动时间的分配组合等信息将各个运动联系起来.2.解题时要弄清楚场的性质、场的方向、强弱、范围等.3.要进行正确的受力分析,确定带电粒子的运动状态.4.分析带电粒子的运动过程,画出运动轨迹是解题的关键【重点归纳】1、求解带电粒子在组合复合场中运动问题的分析方法(1)正确受力分析,除重力、弹力、摩擦力外要特别注意静电力和磁场力的分析.(2)确定带电粒子的运动状态,注意运动情况和受力情况的结合.(3)对于粒子连续通过几个不同区域、不同种类的场时,要分阶段进行处理.(4)画出粒子运动轨迹,灵活选择不同的运动规律.2、带电粒子在复合场中运动的应用实例(1)质谱仪(2)回旋加速器(3)速度选择器(4)磁流体发电机(5)电磁流量计工作原理【限时检测】(建议用时:30分钟)一、单选题1.如图所示,两个平行金属板水平放置,要使一个电荷量为-q、质量为m的微粒,以速度v沿两板中心轴线S1S2向右运动,可在两板间施加匀强电场或匀强磁场。

设电场强度为E,磁感应强度为B,不计空气阻力,已知重力加速度为g。

下列选项可行的是()A.只施加垂直向里的磁场,且满足mg Bqv =B.同时施加竖直向下的电场和垂直纸面向里的磁场,且满足mg Bv Eq=+C.同时施加竖直向下的电场和水平向右的磁场,且满足mgq E=D.同时施加竖直向上的电场和垂直纸面向外的磁场,且满足mg E Bvq =+【答案】 C【解析】A.只施加垂直向里的磁场,根据左手定则,洛伦兹力竖直向下,无法跟重力平衡。

带电粒子在组合场、复合场中的运动问题分析

带电粒子在组合场、复合场中的运动问题分析

带电粒子在组合场、复合场中的运动问题分析作者:郑先魁来源:《试题与研究·新课程论坛》2012年第29期带电粒子在组合场、复合场中的运动问题是历届高考考查的热点,高考命题结合力学、电磁学的知识,构思新颖、综合性强,注重考查学生对物理过程和运动规律的综合分析能力、运用数学知识解决物理问题的能力及立体空间想象能力,经常作为高考压轴题出现,难度较大。

在复习中,要让学生建立起求解这一类题的基本的分析思路与求解方法。

求解这一问题的基本思路是:先进行受力分析和运动过程分析,从而分清物体的受力情况与运动轨迹,结合牛顿运动定律和功能关系建立各物理量的联系,最后分析求解。

下面分情况分析说明:一、带电粒子在组合场中的分析方法带电粒子分别在两个区域中做类平抛和匀速圆周运动,通过连接点的速度将两种运动联系起来,一般可用类平抛和匀速圆周运动的规律求解。

另外,准确画好运动轨迹图是解题的关键。

理解应用上述方法时可注意以下几点:1.带电粒子依次通过不同场区时,因其受力情况随区域而变化,故其运动规律在不同区域也有所不同。

2.根据区域和运动规律的不同,将粒子运动的过程划分为几个不同的阶段,对不同的阶段选取不同的规律处理。

3.联系不同阶段运动的物理量是速度,因此确定带电粒子在场区边界的速度(包括大小和方向)是解决该类问题的关键。

4.根据受力分析和运动分析,大致画出粒子的运动轨迹图,有利于形观的解决问题。

考例.(2009年全国卷Ⅱ)如右图所示,在宽度分别为l1和l2的两个毗邻的条形区域中分别有匀强磁场和匀强电场,磁场方向垂直于纸面向里,电场方向与电、磁场分界线平行向右。

一带正电荷的粒子以速率v从磁场区域上边界的P点斜射入磁场,然后以垂直于电、磁场分界线的方向进入电场,最后从电场边界上的Q点射出。

已知PQ垂直于电场方向,粒子轨迹与电、磁场分界线的交点到PQ的距离为d。

不计重力,求电场强度与磁感应强度大小之比以及粒子在磁场与电场中运动时间之比。

2019年高考物理考纲解读与热点难点突破专题07带电粒子在复合场中的运动热点难点突破

2019年高考物理考纲解读与热点难点突破专题07带电粒子在复合场中的运动热点难点突破

专题07 带电粒子在复合场中的运动1. 在如图所示的平行板器件中,匀强电场E和匀强磁场B互相垂直.一束初速度为v的带电粒子从左侧垂直电场射入后沿图中直线②从右侧射出.粒子重力不计,下列说法正确的是( )A.若粒子沿轨迹①射出,则粒子的初速度一定大于vB.若粒子沿轨迹①射出,则粒子的动能一定增大C.若粒子沿轨迹③射出,则粒子可能做匀速圆周运动D.若粒子沿轨迹③射出,则粒子的电势能可能增大【答案】D2.如图2所示,空间存在互相垂直的匀强电场和匀强磁场,图中虚线为匀强电场的等势线,一不计重力的带电粒子在M点以某一初速度垂直等势线进入正交电磁场中,运动轨迹如图所示(粒子在N点的速度比在M点的速度大)。

则下列说法正确的是( )图2A.粒子一定带正电B .粒子的运动轨迹一定是抛物线C .电场线方向一定垂直等势面向左D .粒子从M 点运动到N 点的过程中电势能增大 【答案】C【解析】根据粒子在电、磁场中的运动轨迹和左手定则可知,粒子一定带负电,选项A 错误;由于洛伦兹力方向始终与速度方向垂直,故粒子受到的合力是变力,而物体只有在恒力作用下做曲线运动时,轨迹才是抛物线,选项B 错误;由于空间只存在电场和磁场,粒子的速度增大,说明在此过程中电场力对带电粒子做正功,则电场线方向一定垂直等势面向左,选项C 正确;电场力做正功,电势能减小,选项D 错误。

(2)在水平金属板间时,微粒做直线运动,则:Bqv 0=q Ud解得:U =Bd2qU 1m(3)若微粒进入磁场偏转后恰与右边界相切,此时对应宽度为D ,则:Bqv 0=m v 20r且r =D解得:D =m Bq2qU 1m11.在第Ⅱ象限内紧贴两坐标轴的一边长为L 的正方形区域内存在匀强磁场,磁感应强度为B ,在第Ⅰ、Ⅳ象限x <L 区域内存在沿y 轴负方向的匀强电场,电场强度大小为E ;在x >L 区域内存在垂直纸面向里、磁感应强度为B ′的矩形匀强磁场,矩形的其中一条边在直线x =L 上。

带电粒子在复合场中的运动重点难点突破

带电粒子在复合场中的运动重点难点突破

带电粒子在复合场中的运动重点难点突破
一、解决复合场类问题的基本思路
1.正确的受力分析.除重力、弹力、摩擦力外,要特别注意电场力和磁场力的分析.
2.正确分析物体的运动状态.找出物体的速度、位置及其变化特点,分析运动过程,如果出现临界状态,要分析临界条件.
3.恰当灵活地运用动力学三大方法解决问题.
(1)用动力学观点分析,包括牛顿运动定律与运动学公式.
(2)用动量观点分析,包括动量定理与动量守恒定律.
(3)用能量观点分析,包括动能定理和机械能(或能量)守恒定律.针对不同的问题灵活地选用,但必须弄清各种规律的成立条件与适用范围.
二、复合场类问题中重力考虑与否分三种情况
1.对于微观粒子,如电子、质子、离子等一般不做特殊交待就可以不计其重力,因为其重力一般情况下与电场力或磁场力相比太小,可以忽略;而对于一些实际物体,如带电小球、液滴、金属块等不做特殊交待时就应考虑其重力.
2.在题目中有明确交待是否要考虑重力的,这种情况比较正规,也比较简单.
3.直接看不出是否要考虑重力的,在进行受力分析与运动分析时,要由分析结果,先进行定性确定是否要考虑重力.
1。

带电粒子在复合场中的问题特点及解题技巧

带电粒子在复合场中的问题特点及解题技巧

带电粒子在复合场中的问题特点及解题技巧摘要:力场、电场、磁场中两个或三个并存的场叫做复合场。

在和动力学的分析方法相比,其中就是多了电场力和磁场力。

解题技巧除了三个观点能量、动量、力学的力等方法外,还可以考虑力和运动的关系。

关键词:带电粒子复合场特点解题技巧带电粒子在复合场中运动的问题,具有一定的难度,综合性较强,涉及力和运动、动量、能量等方面,可以适当地灵活运用力学三大观点来解决这方面的问题。

力的观点:主要是牛顿运动定律和运动学规律。

动量观点:动量定理和动量守恒定律。

能量观点:动能定理和能的转化和守恒定律(包括机械能守恒定律)。

在解决问题的过程中,要根据问题所设定的原理的特点对动态变化进行分析,分析临界动态变化还要分析它的临界条件,分析动态变化要找出物体的速度位置及其变化,可以用极限分析法辅助分析。

一、带点粒子在复合场中运动的常见形式及特点合外力的决定是由质点的运动性质及其初速度所定的。

而带电粒子常见的形成有:1.当带电粒子所受的合外力与运动方向在一条直线上时,粒子做变速直线运动。

2.当带电粒子受到的合外力大小恒定,方向始终和速度方向垂直时,带电粒子将做匀速圆周运动,常见的形式是重力和电场力的合力为零,洛伦兹力充当向心力。

3.带电粒子在复合场中所受到的合外力为零时,粒子将做直线或匀速直线运动。

4.带电粒子做非匀变速曲线运动时,带电微粒所受的合外力的方向、大小均是不断变化的。

分析这类问题的特点主要是:轨迹和粒子的运动情况是较为复杂、抽象、多变的,主要考察学生分析问题的能力。

解决力学题目和解决此类题目很相似,区别就是多了电场力和洛伦磁力。

分析带电粒子在复合场中的运动,除了利用力学的三大观点外,还要注意磁场和电场对带电粒子的特点作用。

二、解题技巧与方法为了提高解题效率和分析能力,可以按照以下思路解答问题:1.要特别分析电场力和磁场力,正确进行受力分析,排除弹力、重力、摩擦力。

2.解决力学问题要合适地运用力的三大方法。

带电粒子在复合场中的运动压轴难题知识归纳总结含答案

带电粒子在复合场中的运动压轴难题知识归纳总结含答案

带电粒子在复合场中的运动压轴难题知识归纳总结含答案一、带电粒子在复合场中的运动压轴题1.在平面直角坐标系xOy中,第Ⅰ象限存在沿y轴负方向的匀强电场,第Ⅳ象限存在垂直于坐标平面向外的匀强磁场,磁感应强度为B.一质量为m、电荷量为q的带正电的粒子从y轴正半轴上的M点以速度v0垂直于y轴射入电场,经x轴上的N点与x轴正方向成θ=60°角射入磁场,最后从y轴负半轴上的P点垂直于y轴射出磁场,如图所示.不计粒子重力,求(1)M、N两点间的电势差U MN ;(2)粒子在磁场中运动的轨道半径r;(3)粒子从M点运动到P点的总时间t.【来源】带电粒子在电场、磁场中的运动【答案】1)U MN=(2)r=(3)t=【解析】【分析】【详解】(1)设粒子过N点时的速度为v,有:解得:粒子从M点运动到N点的过程,有:解得:(2)粒子在磁场中以O′为圆心做匀速圆周运动,半径为r,有:解得:(3)由几何关系得:设粒子在电场中运动的时间为t1,有:粒子在磁场中做匀速圆周运动的周期:设粒子在磁场中运动的时间为t2,有:2.欧洲大型强子对撞机是现在世界上最大、能量最高的粒子加速器,是一种将质子加速对撞的高能物理设备,其原理可简化如下:两束横截面积极小,长度为l-0质子束以初速度v0同时从左、右两侧入口射入加速电场,出来后经过相同的一段距离射入垂直纸面的圆形匀强磁场区域并被偏转,最后两质子束发生相碰。

已知质子质量为m,电量为e;加速极板AB、A′B′间电压均为U0,且满足eU0=32mv02。

两磁场磁感应强度相同,半径均为R,圆心O、O′在质子束的入射方向上,其连线与质子入射方向垂直且距离为H=72R;整个装置处于真空中,忽略粒子间的相互作用及相对论效应。

(1)试求质子束经过加速电场加速后(未进入磁场)的速度ν和磁场磁感应强度B ;(2)如果某次实验时将磁场O 的圆心往上移了2R,其余条件均不变,质子束能在OO′ 连线的某位置相碰,求质子束原来的长度l 0应该满足的条件。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

带电粒子在复合场中的运动问题是中电场磁场中的重点和难点问题,也实际中应用的知识源头,所以要掌握好带点粒子在实际中的应用,一般是这几样是比较常见的。

【例1】某带电粒子从图中速度选择器左端由中点O以速度v0向右射去,从右端中心a下方的b点以速度v1射出;若增大磁感应强度B,该粒子将打到a点上方的c点,且有ac=ab,则该粒子带___电;第二次射出时的速度为_____。

解:B增大后向上偏,说明洛伦兹力向上,所以为带正电。

由于洛伦兹力总不做功,所以两次都是只有电场力做功,第一次为正功,第二次为负功,但功的绝对值相同。

21222222212,21212121vvvmvmvmvmv-=∴-=-【例2】如图所示,一个带电粒子两次以同样的垂直于场线的初速度v0分别穿越匀强电场区和匀强磁场区,场区的宽度均为L偏转角度均为α,求E∶B解:分别利用带电粒子的偏角公式。

在电场中偏转:2tanmvEqL=α,在磁场中偏转:sinmvLBq=α,由以上两式可得αcosvBE=。

可以证明:当偏转角相同时,侧移必然不同(电场中侧移较大);当侧移相同时,偏转角必然不同(磁场中偏转角较大)。

abc【习题反馈】1.(2008学年越秀区高三摸底调研测试)如图所示虚线所围的区域内(为真空环境),存在电场强度为E的匀强电场和磁感强度为B的匀强磁场.已知从左方水平射入的电子,穿过这区域时未发生偏转.设重力可忽略,则在这区域中的E和B的方向可能是()A、E和B都沿水平方向,并与电子运动方向相同B、E和B都沿水平方向,并与电子运动方向相反C、E竖直向上,B水平、垂直纸面向外D、E竖直向上,B水平、垂直纸面向里答案:ABC2.(江苏省连云港市2008届高三第一次调研考试)如图所示,有一带电小球,从两竖直的带电平行板上方某高度处自由落下,两板间匀强磁场方向垂直纸面向外,则小球通过电场、磁场空间时()A.可能做匀加速直线运动B.一定做曲线运动C.只有重力做功D.电场力对小球一定做正功答案:BE,B【例】.(2008年福州市第二轮高中毕业班质检)由中国提供永磁体的阿尔法磁谱仪原理图如图所示,它曾由航天飞机携带升空,将来安装在阿尔法国际航空站中,主要使命之一是探索宇宙中的反物质。

反物质由反粒子组成,反粒子的质量与正粒子相同,带电量与正粒子相等但电性符号相反,例如反质子是H 11-。

假若使一束质子、反质子、α粒子、反α粒子组成的射线,通过O O '进入匀强磁场B 2而形成4条径迹,如图所示,则反α粒子的径迹为( )A .1B .2C .3D .4 答案:B回旋加速器是高考考查的的重点内容之一,但很多同学往往对这类问题似是而非,认识不深,甚至束手无策、,因此在学习过程中,尤其是高三复习过程中应引起重视。

(1)有关物理学史知识和回旋加速器的基本结构和原理1932年美国物理学家应用了带电粒子在磁场中运动的特点发明了回旋加速器,其原理如图所示。

A 0处带正电的粒子源发出带正电的粒子以速度v 0垂直进入匀强磁场,在磁场中匀速转动半个周期,到达A 1时,在A 1 A 1/处造成向上的电场,粒子被加速,速率由v 0增加到v 1,然后粒子以v 1在磁场中匀速转动半个周期,到达A 2/时,在A 2/ A 2处造成向下的电场,粒子又一次被加速,速率由v 1增加到v 2,如此继续下去,每当粒子经过A A /的交界面时都是它被加速,从而速度不断地增加。

带电粒子在磁场中作匀速圆周运动的周期为qBTmπ2=,为达到不断加速的目的,只要在 A A /上加上周期也为T 的交变电压就可以了。

即T电=qBT mπ2=实际应用中,回旋加速是用两个D 形金属盒做外壳,两个D 形金属盒分别充当交流电源的两极,同时金属盒对带电粒子可起到静电屏蔽作用,金属盒可以屏蔽外界电场,盒内电场很弱,这样才能保证粒子在盒内只受磁场力作用而做匀速圆周运动。

(2)带电粒子在D 形金属盒内运动的轨道半径是不等距分布的设粒子的质量为m ,电荷量为q ,两D 形金属盒间的加速电压为U ,匀强磁场的磁感应强度为B ,粒子第一次进入D 形金属盒Ⅱ,被电场加速1次,以后每次进入D 形金属盒Ⅱ都要被电场加速2次。

粒子第n 次进入D 形金属盒Ⅱ时,已经被加速(2n -1)次。

由动能定理得(2n -1)qU =21Mv n 2。

……①第n 次进入D 形金属盒Ⅱ后,由牛顿第二定律得qv n B =mnnr v 2 …… ②由①②两式得rn =qBqU n m)12(2- ……③同理可得第n +1次进入D 形金属盒Ⅱ时的轨道半径r n+1=qBqU n m)12(2+ ……④所以带电粒子在D 形金属盒内任意两个相邻的圆形轨道半径之比为12121+-=+n n r r n n ,可见带电粒子在D 形金属盒内运动时,轨道是不等距分布的,越靠近D 形金属盒的边缘,相邻两轨道的间距越小。

(3)带电粒子在回旋加速器内运动,决定其最终能量的因素由于D 形金属盒的大小一定,所以不管粒子的大小及带电量如何,粒子最终从加速器内设出时应具有相同的旋转半径。

由牛顿第二定律得qv n B =m nnr v 2……①和动量大小存在定量关系 m v n =kn mE 2…… ②由①②两式得E k n =mr B q n 2222……③可见,粒子获得的能量与回旋加速器的直径有关,直径越大,粒子获得的能量就越大。

【例3】一个回旋加速器,当外加电场的频率一定时,可以把质子的速率加速到v ,质子所能获得的能量为E ,则:①这一回旋加速器能把α粒子加速到多大的速度? ②这一回旋加速器能把α粒子加速到多大的能量?③这一回旋加速器加速α粒子的磁感应强度跟加速质子的磁感应强度之比为?解:①由qv n B =m nnr v 2得 v n =m qBr n由周期公式T 电=qBmT π2=得知,在外加电场的频率一定时,qB m 为定值,结合④式得αv =v 。

②由③式E k n =mr B q n 2222及qB m为定值得,在题设条件下,粒子最终获得动能与粒子质量成正比。

所以α粒子获得的能量为4E 。

③由周期公式T 电=qB mT π2=得αααq m q m B B H H H ==2∶1。

(4)决定带电粒子在回旋加速器内运动时间长短的因素带电粒子在回旋加速器内运动时间长短,与带电粒子做匀速圆周运动的周期有关,同时还与带电粒在磁场中转动的圈数有关。

设带电粒子在磁场中转动的圈数为n ,加速电压为U 。

因每加速一次粒子获得能量为qU ,每圈有两次加速。

结合E k n =m r B q n 2222知,2nqU =m r B q n 2222,因此n =mU r qB n 422 。

所以带电粒子在回旋加速器内运动时间t =nT =mU r qB n 422.qBm π2=U Br n22π。

【习题反馈】1.(2008年南海区普通高中高考题例研究)回旋加速器是用来加速带电粒子的装置,如图所示.它的核心部分是两个D 形金属盒,两盒相距很近,分别和高频交流电源相连接,两盒间的窄缝中形成匀强电场,使带电粒子每次通过窄缝都得到加速。

两盒放在匀强磁场中,磁场方向垂直于盒底面,带电粒子在磁场中做圆周运动,通过两盒间的窄缝时反复被加速,直到达到最大圆周半径时通过特殊装置被引出。

如果用同一回旋加速器分别加速氚核(H 31)和α粒子(e H 42)比较它们所加的高频交流电源的周期和获得的最大动能的大小,有( )A.加速氚核的交流电源的周期较大,氚核获得的最大动能也较大B.加速氚核的交流电源的周期较大,氚核获得的最大动能较小C.加速氚核的交流电源的周期较小,氚核获得的最大动能也较小D.加速氚核的交流电源的周期较小,氚核获得的最大动能较大答案:B 2.(2008年高考理科综合试题预测卷)在磁感应强度为B 的匀强磁场中,有一与磁场方向垂直长度为L 金属杆aO,已知ab=bc=cO=L/3,a 、c 与磁场中以O 为圆心的同心圆金属轨道始终接触良好.一电容为C 的电容器接在轨道上,如图所示,当金属杆在与磁场垂直的平面内以O 为轴,以角速度ω顺时针匀速转动时( ) A.Uac=2Uab B.Uac=2Ub0 C.电容器带电量Q 249BL Cω=D.若在eO 间连接一个理想电压表,则电压表示数为零 答案:BC×××××××××××××××××××× ×××××××××× ×××××××××× ××××××××××o ab c d e B~【习题反馈】1.(常州市2007~2008学年度第二学期期中质量调研) 磁流体发电是一项新兴技术,它可以把气体的内能直接转化为电能,下图是它的示意图.平行金属板A、B之间有一个很强的匀强磁场,磁感应强度为B,将一束等离子体(即高温下电离的气体,含有大量正、负带电粒子)垂直于B的方向喷入磁场,每个离子的速度为v,电荷量大小为q,A、B两板间距为d,稳定时下列说法中正确的是()A.图中A板是电源的正极 B.图中B板是电源的正极C.电源的电动势为Bvd D.电源的电动势为Bvq答案:BC2.(2008年苏、锡、常、镇四市高三教学情况调查二)某制药厂的污水处理站的管道中安装了如图所示的流量计,该装置由绝缘材料制成,长、宽、高分别为a 、b 、c ,左右两端开口,在垂直于上下底面方向加磁感应强度为B 的匀强磁场,在前后两个面的内侧固定有金属板作为电极,当含有大量正负离子(其重力不计)的污水充满管口从左向右流经该装置时,利用电压表所显示的两个电极间的电压U ,就可测出污水流量Q (单位时间内流出的污水体积).则下列说法正确的是( )A .后表面的电势一定高于前表面的电势,与正负哪种离子多少无关B .若污水中正负离子数相同,则前后表面的电势差为零C .流量Q 越大,两个电极间的电压U 越大D .污水中离子数越多,两个电极间的电压U 越大 答案:AC电场与磁场的综合应用(练习题)1.(2008年湖北省八校高三第三次联考)如图所示,虚线上方有场强为E 的匀强电场,方向竖直向下,虚线上下有磁感应强度相同的匀强磁场,方向垂直纸面向外,ab 是一根长为l 的绝缘细杆,沿电场线放置在虚线上方的场中,b 端在虚线上,将一套在杆上的带正电的小球从a 端由静止释放后,小球先作加速运动,后作匀速运动到达b 端,已知小球与绝缘杆间的动摩擦系数μ=0.3,小球重力忽略不计,当小球脱离杆进入虚线下方后,运动轨迹是半圆,圆的半径是l /3,求带电小球从a 到b 运动过程中克服摩擦力所做的功与电场力所做功的比值。

相关文档
最新文档