韧窝断口典型形貌特征

合集下载

弹簧韧窝断口的宏观形貌特征

弹簧韧窝断口的宏观形貌特征

弹簧韧窝断口的宏观形貌特征
弹簧材料在外力作用下因强烈滑移位错堆积,在变形大的区域产生许多显微空洞:或因夹杂物破碎,火杂物和基体金属界面的破碎而形成许多微小孔。

孔洞在外力作用下不断长大、聚集形成裂纹直至最终分离,把这种弹簧断裂方式称为微孔聚集型弹簧断裂,其断口称韧窝断口。

韧窝断口的宏观形貌特征是具有纤维状和剪切唇等标记。

在光滑圆试样的拉伸断口中,纤维区、一般位于断口的中央,粗糙不平,见图3-1纤维区是由无数纤维状“’小峰”组成,“小峰”的小斜面和拉仲轴线大约成45度角。

单相金属、普通碳钢、珠光体钢拉伸断门一般都具有这种特征,高强度马氏体钢纤维区还具有圆环状花样特征。

纵截面呈现比较规则的锯齿状,是一种环形的剪切脊。

弹簧冲击断口上也存在有纤维区,见图3-2(a)(b)。

塑性较高的弹簧材料的冲击断口往往出现两个纤维区,冲击断口示意图见图3-3。

纤维区表面颜色灰暗,无金属光泽。

材料断口分析(第2-4章)

材料断口分析(第2-4章)

青鱼骨花样、瓦纳线
§3、影响解理断裂的因素 1、晶体结构 bcc、hcp—易发生解理断裂 fcc——不易发生解理断裂 2、显微组织 F—断口较光滑,微观呈河流条纹或舌状花样 P—断口呈不连续片层状 M—断口呈锯齿状,出现小刻面
3、温度 T↓,易导致解理断裂
T<Tc,晶体在塑性变形前产生解理裂纹,断口呈现脆性 T>Tc,晶体先发生塑变,后产生解理,即断裂时伴随一定的塑性变形
4、加载速度 V↑,易发生解理断裂
§4、准解理断裂
与解理相比,准解理断裂的特征: ①准解理裂纹源常在准解理平面的内部形成,而解理裂纹源在解理面 边界(晶界)形成 ②准解理裂纹扩展路径比解理裂纹要不连续得多,常在局部地方形成 并局部扩展 ③准解理包含更多的撕裂 ④准解理面的位向并不如铁素体基体的解理面{100}严格对应,不 存在确定的位向关系
准解理裂纹形成机理示意图
准解理断口形貌
准解理断口形貌
第四章
发生的断裂。
沿晶断裂
1、定义:材料沿晶界(原奥氏体晶界、相界、焊合界面) 2、类型:韧性沿晶断裂(沿晶韧断) 脆性沿晶断裂(沿晶脆断)
3、产生原因
※脆性沉淀相沿晶界析出:钢中的碳化物 Al-Li合金中的δ(AlLi)相 ※晶界弱化:杂质Na、S、P等的晶界偏析 合金钢中的高温回火脆性 ※环境:SCC、氢脆、蠕变 ※热应力:焊接材料的HAZ ※晶粒粗大 !
小刻面
放射条纹
人字纹
二、微观形貌特征及形成机理
特征: 扇形花样 解理台阶(cleavage step) 河流花样(river pattern) 舌状花样(tongue pattern) 青鱼骨花样(spine pattern) 瓦纳线(wallner line)

断口形貌特征

断口形貌特征

二)宏观断口特征
1)断口三要素 纤维状区、放射状区、剪切唇。
三要素的大小分布和材质、形状、温度及受力状态有关。有时并不同时出现。
根据的分布类型、面积大小及形状等可以推测应力大小、应力状态、温度、材质 情况;可判断裂源和扩展方向。
2)不同断裂机制断口的宏观特征 1.韧窝断裂 材料由于激烈的局部塑性变形引起的断裂称韧窝断裂或韧性断裂。 韧窝断裂断口的宏观特征是具有纤维状和剪切唇标记。 纤维状呈现凹凸不平的宏观外貌。 剪切唇形貌区域呈现倾斜断面,往往在断口边缘出现。
主要光学仪器为金相显微镜和立体显微镜。
2)电子显微镜断口分析技术
1.透射电镜技术
通常断口凹凸不平,通过复型,利用电子束从样品中透射的电子成象,透射电 镜可以得到高分辨率的电子图象,研究断口的形貌特征。常用倍率为×2000-×30000 )。 2.扫描电镜技术 扫描电镜利用电子束在样品表面上扫描,引起二次电子发射,经放大成象。扫描 电镜不必复型,可直接观察较大的样品。能清晰显示出样品的凹凸形貌特征。在同 一位置可用不同倍率连续放大观察(数十至上万倍)。取样不方便时,也可采用复 型技术。
2.解理断裂 晶体材料受拉应力使晶体沿一定的结晶学平面发生分离的过程称解理断裂,断 口称解理断口。
解理断裂断口的突出宏观特征是具有小刻面和放射状条纹。
解理断口的结晶面呈无规则取向,有闪闪发光特征。称发光的小平面为小刻面。 解理断口的另一特征是具有人字状条纹或放射状条纹。容易判断裂源和扩展方向。
3.滑移分离 滑移分离断口就是剪切断口,与剪切唇相同。断口倾斜,呈 角。
(二)断口形貌特征
(二)断裂机制和断口形貌特征 一)断裂分类
1)按断裂性质分类

塑性断裂

纤维状断口 (与正应力方向垂直) 剪切断口 ( 45 、剪切唇)

材料失效分析(第二至四章解理断裂和沿晶断裂)

材料失效分析(第二至四章解理断裂和沿晶断裂)

青鱼骨花样、瓦纳线
§3、影响解理断裂的因素
1、晶体结构 bcc、hcp—易发生解理断裂 fcc——不易发生解理断裂
2、显微组织 F—断口较光滑,微观呈河流条纹或舌状花样 P—断口呈不连续片层状 M—断口呈锯齿状,出现小刻面
3、温度 T↓,易导致解理断裂
T<Tc,晶体在塑性变形前产生解理裂纹,断口呈现脆性 T>Tc,晶体先发生塑变,后产生解理,即断裂时伴随一定的塑性变形
存在确定的位向关系
准解理裂纹形成机理示意图
准解理断口形貌
准解理断口形貌
第四章 沿晶断裂
1、定义:材料沿晶界(原奥氏体晶界、相界、焊合界面) 发生的断裂。
2、类型:韧性沿晶断裂(沿晶韧断) 脆性沿晶断裂(沿晶脆断)
3、产生原因
※脆性沉淀相沿晶界析出:钢中的碳化物
Al-Li合金中的δ(AlLi)相
扭转晶界——在亚晶界出产生新的裂纹,河流激增
大角度晶界:河流不能通过,在晶界出产生新的裂纹,向外扩展 ,
形成扇形花样
大角度晶界,扇形花样
3、舌状花样
特点:形状象“舌头”,一般在钢铁材料中成组出 现。
形成机理:
解理裂纹沿着孪晶面{112}产生二次解理及局部塑性变 形撕裂的结果。在低温、高速变形时容易发生孪生变形, 也就容易出现舌状花样。
例2 晶粒过分粗大—细化晶粒处理 晶界弱化——净化晶界 环境介质——改善工作环境 热应力——退火消除
精品文档 欢迎下载
读书破万卷,下笔如有神--杜甫
瓦纳线
(二)形成机理(模型)
1、解理台阶 解理裂纹与螺位错交截形成台阶
台阶形成过程的简化图
通过二次解理或撕裂相互连接形成台阶(撕裂棱)
台阶的性质
台阶在扩展过程中会发生合并或消失(台阶高度减小) 相同方向的台阶合并后高度增加 相反方向的台阶合并后高度减小或消失 台阶高度与柏氏矢量大小、位错密度之间存在一定关系

材料断口分析(第二至四章)

材料断口分析(第二至四章)

§2、解理断口形貌特征
一、宏观形貌特征
1、放射状条纹
2、人字纹
3、小刻面(facet):发亮的小晶面
解理断口上的结晶面 宏观上呈无规则取向
强光下可见到闪闪发光的特征
解理断口是由许多小刻面组成 的,每个小刻面代表一个晶粒
二、微观形貌特征及形成机理
特征:
扇形花样 解理台阶(cleavage step) 河流花样(river pattern) 舌状花样(tongue pattern)
2、产生的原因是什么?
3、正火后为什么强度和塑性均有提高?
例2:
在什么条件下易出现沿晶断裂?怎样防止沿晶断裂?
例 1: 1、结晶状脆性断口(过热脆性结晶状断口) 2、产生原因: ①锻造温度过高,使原奥氏体晶粒过分粗大;
②压下量不足,晶粒破碎不够;
③终锻温度过高,发生了晶粒长大,使晶粒过粗或粗 细不均。
青鱼骨花样(spine pattern)
瓦纳线(wallner line)
扇形花样
解理台阶
河流花样
舌状花样
青鱼骨花样
瓦纳线
(二)形成机理(模型) 1、解理台阶
解理裂纹与螺位错交截形成台阶
台阶形成过程的简化图
通过二次解理或撕裂相互连接形成台阶(撕裂棱)
台阶的性质
台阶在扩展过程中会发生合并或消失(台阶高度减小) 相同方向的台阶合并后高度增加 相反方向的台阶合并后高度减小或消失 台阶高度与柏氏矢量大小、位错密度之间存在一定关系
3、正火发生可使晶粒细化,改善锻件质量。
例2
晶粒过分粗大—细化晶粒处理
晶界弱化——净化晶界 环境介质——改善工作环境 热应力——退火消除
本章完
一、宏观形貌特征

断口的宏观形貌

断口的宏观形貌

断口的宏观形貌、微观形态及断裂机理按断裂的途径,断口可分为穿晶断裂和沿晶断裂两大类。

穿晶断裂又分为穿晶韧性断裂和穿晶解理断裂(其中包括准解理断裂)。

沿晶断裂也分为沿晶韧性断裂和沿晶脆性断裂。

下面分别加以讨论。

1.穿晶断口(1)穿晶韧窝型断口断裂穿过晶粒内部,由大量韧窝的成核、扩展、连接而形成的一种断口。

宏观形貌:在拉伸试验情况下,总是先塑性变形,引起缩颈,然后在缩颈部位裂纹沿与外力垂直的方向扩展,到一定程度后失稳,沿与外力成45°方向快速发展至断裂。

众所周知,这种断口称为杯锥状断口。

断口表面粗糙不平,无金属光泽,故又称为纤维状断口。

微观形态:在电子显微镜和扫描电镜下观察,断口通常是由大量韧窝连接而成的。

每个韧窝的底部往往存在着第二相(包括非金属夹杂)质点。

第二相质点的尺寸远小于韧窝的尺寸。

韧窝形成的原因一般有两种形成情况:1)韧窝底部有第二相质点的情况。

由于第二相质点与基体的力学性能不同(另外,还有第二相质点与基体的结合能力、热膨胀系数、第二相质点本身的大小、形状等的影响),所以在塑性变形过程中沿第二相质点边界(或穿过第二相质点)易形成微孔裂纹的核心。

在应力作用下,这些微孔裂纹的核心逐渐长大,并随着塑性变形的增加,显微孔坑之间的连接部分逐渐变薄,直至最后断裂。

图3-41是微孔穿过第二相质点的示意图。

若微孔沿第二相点边界成核、扩展形成韧窝型裂纹后,则第二相质点留在韧窝的某一侧。

2)在韧窝的底部没有第二相质点存在的情况。

韧窝的形成是由于材料中原来有显微孔穴或者是由于塑性变形而形成的显微孔穴,这些显微孔穴随塑性变形的增大而不断扩展和相互连接,直至断裂。

这种韧窝的形成往往需要进行很大的塑性变形后才能够实现。

因此,在这类断口上往往只有少量的韧窝或少量变形状韧窝,有的甚至经很大的塑性变形后仍见不到韧窝。

当变形不大时,断口呈波纹状或蛇形花样,而当变形很大时,则为无特征的平面。

韧窝的形状与应力状态有较大关系。

断口的宏观形貌、微观形态及断裂机理

断口的宏观形貌、微观形态及断裂机理

断口的宏观形貌、微观形态及断裂机理按断裂的途径,断口可分为穿晶断裂和沿晶断裂两大类。

穿晶断裂又分为穿晶韧性断裂和穿晶解理断裂(其中包括准解理断裂)。

沿晶断裂也分为沿晶韧性断裂和沿晶脆性断裂。

下面分别加以讨论。

1.穿晶断口(1)穿晶韧窝型断口断裂穿过晶粒内部,由大量韧窝的成核、扩展、连接而形成的一种断口。

宏观形貌:在拉伸试验情况下,总是先塑性变形,引起缩颈,然后在缩颈部位裂纹沿与外力垂直的方向扩展,到一定程度后失稳,沿与外力成45°方向快速发展至断裂。

众所周知,这种断口称为杯锥状断口。

断口表面粗糙不平,无金属光泽,故又称为纤维状断口。

微观形态:在电子显微镜和扫描电镜下观察,断口通常是由大量韧窝连接而成的。

每个韧窝的底部往往存在着第二相(包括非金属夹杂)质点。

第二相质点的尺寸远小于韧窝的尺寸。

韧窝形成的原因一般有两种形成情况:1)韧窝底部有第二相质点的情况。

由于第二相质点与基体的力学性能不同(另外,还有第二相质点与基体的结合能力、热膨胀系数、第二相质点本身的大小、形状等的影响),所以在塑性变形过程中沿第二相质点边界(或穿过第二相质点)易形成微孔裂纹的核心。

在应力作用下,这些微孔裂纹的核心逐渐长大,并随着塑性变形的增加,显微孔坑之间的连接部分逐渐变薄,直至最后断裂。

图3-41是微孔穿过第二相质点的示意图。

若微孔沿第二相点边界成核、扩展形成韧窝型裂纹后,则第二相质点留在韧窝的某一侧。

2)在韧窝的底部没有第二相质点存在的情况。

韧窝的形成是由于材料中原来有显微孔穴或者是由于塑性变形而形成的显微孔穴,这些显微孔穴随塑性变形的增大而不断扩展和相互连接,直至断裂。

这种韧窝的形成往往需要进行很大的塑性变形后才能够实现。

因此,在这类断口上往往只有少量的韧窝或少量变形状韧窝,有的甚至经很大的塑性变形后仍见不到韧窝。

当变形不大时,断口呈波纹状或蛇形花样,而当变形很大时,则为无特征的平面。

韧窝的形状与应力状态有较大关系。

韧窝断口的微观形貌特征

韧窝断口的微观形貌特征

§3.1 韧窝断口的微观形貌特征
韧窝断口的微观形貌特征是一些大小不等的圆形或椭 圆形的凹坑-韧窝,在韧窝内经常可以看到夹杂物或第二 相粒子。然而并非每个韧窝都包含一个夹杂物或粒子,因 为夹杂物或粒子分布在两个匹配断口上。此外夹杂物在断 裂、运输或超声清洗时也可能脱落。
凹坑的形状有等轴韧窝、剪切韧窝和撕裂韧窝三种。其 形状取决于应力状态。
§3.2.3 韧性断口的诊断
1.对材料塑性的判断 ①柔性系数。一般说来,载荷的柔性系数越小,同一种材
料所表现出来的塑性就越大;应变速率越大,温度越低,同种 材料所表现出来的塑性就越小。
②纤维区、放射区和剪切唇三区的相对大小。纤维区所占 的面积比例越大,说明材料塑性越好。
③颈缩。颈缩越大材料的塑性越好。 ④韧窝尺寸。韧窝的尺寸越大(平均直径越大、深度越 深),材料的塑性就越好。 2.对载荷类型的判断
22Cr双相不锈钢板材的冲击断口
45钢断口形貌
从以上的分析可知:剪切韧窝与撕裂韧 窝形状没有什么区别,只从照片上很难区分, 必须对断口两侧作对应研究,看凸向是否相 同才能确定。
§3.2 韧窝的尺寸
§3.2.1 韧窝的尺寸
韧窝的尺寸包括它的平均直径和深度。影响韧窝尺寸 的主要因素为第二相质点的尺寸、形状、分布,材料本 身的相对塑性、变形硬化指数,外加应力、温度等。
在金属的韧窝断口中,一般最常见的是尺寸大小各 不相等各不相等的韧窝,如大韧窝周围密集着小韧窝 的情况。
SEM
TEM
大韧窝周围密集着小韧窝
韧窝大小、深浅及数量取决于材料断裂时夹杂物或
第二相粒子的大小、间距、数量及材料的塑性和试验温
度。如果夹杂物或第二相粒子多,材料的塑性较差则断
口上形成的韧窝尺寸较小较浅。反之则韧窝较大较深。 成核的密度大、间距小、则韧窝的尺寸小。在材料的 塑性及其他试验条件相同的情况下,第二相粒子大, 韧窝也大;粒子小,韧窝也小。韧窝的深度主要受材 料塑性变相能力的影响。材料的塑性变形能力大,韧 窝深度大,反之韧窝深度小。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

韧窝断口典型形貌特征
韧窝断口是指微孔聚集型断裂的断口上,覆盖着大量显微微坑,这些微坑(窝坑)称为“韧窝”,韧窝是金属塑性断裂的主要微观特征,韧窝断口典型形貌特征是宏观形貌呈纤维状,微观形态呈蜂窝状,断裂面是由一些细小的窝坑构成,窝坑实际上是长大了的空洞核,通常称为韧窝,它是韧窝断裂的最基本形貌特征和识别韧窝断裂机制的最基本依据。

韧窝的形状主要由所受的应力状态所决定,一般可以出现三种不同形状的韧窝花样:正交韧窝、剪切韧窝、撕裂韧窝。

韧窝的大小包括平均直径和深度,用韧窝宽度和深度来度量。

影响韧窝大小的主要因素从材料方面讲为第二相的大小、密度、基体的塑性变形能力、形变硬化指数等,从外界条件讲与应力大小和加载速率有关。

韧窝的尺寸和深度同材料的延性有关,而韧窝的形状则同破坏时的应力状态有关。

由于应力状态不同,相应地在相互匹配的断口偶合面上,其韧窝形状和相互匹配关系是不同的。

脆性断裂和韧性断裂的机理如下:
1.脆性断裂。

主要是解理或准解理,在一定条件下,当应力达到一定
值,快速沿一定的结晶面而发生断裂,在断口上其微观特征主要表现
为河流花样。

2.韧性断裂。

主要是微孔集合型剪切,在断口上其微观特征表现为韧
窝。

相关文档
最新文档