八因素五水平均匀设计
6 均匀设计

• 思考题:
• 正交设计和均匀设计各有什么特点?正 交试验设计的基本步骤有哪些?
• 有一组实验数据,用最小二乘法原理可 配置成一元线性回归方程和一元指数回 归方程,如何判断哪个方程更拟合实验 数据?
4 需要注意的问题
• • • • • 试验次数问题 设计表的选择 回归模型建立 回归模型优化 试验参数优化
4.1 试验次数问题
均匀设计的最大特点是试验次数等于 因素的最大水平数 试验次数与被考察的因素的个数有关, 建议试验次数选为因素数的3倍左右为 宜, 这样选择的均匀设计表的均匀性好, 也有利于以后的建模和优化。
第六章 均匀设计
Uniform Design
1 均匀设计的概念与特点 2 均匀设计表 3 均匀设计的基本步骤
4 均匀设计应注意的问题
1 均匀设计的概念和特点
1.1 均匀设计的概念
均匀设计是由中国数学家方开泰教授和王元教授 在1978年共同提出,是数论方法中的“维蒙特卡罗 方法”的一个应用,已得到国际上广泛承认。 只考虑试验点在试验范围内均匀分布的一种试验 设计方法。 它适用于多因素、多水平的试验设计,是部分实 施的试验设计。 试验次数等于因素的水平数,比正交设计更能减少 试验次数。
4.2 模型好坏的判断标准问题
F检验给出的显著性与否是判断回归模型是否有 效的重要依据,如在复相关系数或相关系数上,R2 数 值越大越好, 但模型的好坏,在数理统计中还有误差自由度 和离回归标准误进行判断。 模型一般应保持误差自由度≥5,前面有 “试 验次数选为因素数的3倍左右为宜” 观点就在于此。
1.2 均匀设计的特点
1)均匀设计具有试验设计方法的共性及本质
内容,从少量试验结果中获取带规律性的结 果,也可进行回归分析。
第八章 均匀设计

例8.3.2 为了研究环境污染对人体的危害,考察镉(Cd)、铜(Cu)、 锌(Zn)、镍(Ni)、铬(Cr)、铅(Pb)的不同含量(包括交互作用)对老鼠 寿命的影响. 每种金属含量都取17个水平(百万分之一,ppm): 0.01,0.05,0.1,0.2,0.4,0.8,1,2,4,5,8,10,12,14, 16,18,20. 选用U17(1716)表,由相应的使用表知,六个因素安排 在1、4、6、10、14、15列,试验方案和试验结果如程序数据所示. 由于每种金属的含量从0.01到20,最大和最小相差200倍,直接 用各因素的水平值作回归不易获得好的结果,因此对各金属含量 取对数后作回归分析,又因各金属含量之间有交互作用,所以选 用二次回归. 试验次数n=17, 不可能也不必要考虑所有的二次项和交互项, 只 要考虑显著因素的交互以及专业角度认为值得考虑的因素与项 .
采用分析员应用系统在线性回归主窗口Model采用
stepwise selection, 临界水平Criteria可取α=0.15或0.25以确 定主要因素(本例取5项或9项).
α=0.15时 Parameter Estimates Parameter Standard Estimate Error t Value 35.57486 10.21599 6.30963 3.30969 6.66639 4.51329 2.62857 1.73431 1.92423 1.98003 1.98307 1.63804 13.53 5.89 3.28 1.67 3.36 2.76
均匀设计的结果分析: (1)简单方法是使用直观分析法,从试验点中选一 个指标最优的点,相应的因素水平组合即为较优 工艺条件. 由于试验点均匀分散,试验点中较优 的工艺条件离全面试验的最优工艺条件不会很远. (2)在条件允许的情况下,即通常在误差有一定的 自由度即n-1-p>0的情况下,均匀设计的结果分析 可以采用回归分析(利用SAS完成计算).
均匀设计讲稿

均匀设计均匀设计是将数论和多元统计结合的一种安排多因素多水平的试验设计,这种设计是利用均匀设计表安排试验可减少试验次数,而让试验点在试验范围内均匀分散、具有更好的代表性。
一、特点常用的正交设计具有“均匀分散、整齐可比”的特点。
均匀分散性使试验点均衡地分布在试验范围内,具有充分的代表性,即使在正交表各列都排满的情况下,也能得到满意的结果;整齐可比性使试验结果的分析十分方便,易于估计各因素的效应和部分交互作用,从而掌握各因素对指标的影响大小和变化规律。
然而,正交试验为了达到“整齐可比”,试验次数往往比较多,例如一个9水平试验,正交试验至少要92次,试验次数这么多,一般是很难实现的。
若不考虑“整齐可比”,让试验点在试验范围内充分地均匀分散,具有更好的代表性,这种从均匀性出发的试验设计称为均匀内设计。
它有以下优点:(1)试验次数少。
均匀设计让试验点在其试验范围内尽可能地“均匀分散”,试验次数降为与水平数相等。
(2)因素的水平数可多设。
(3)均匀设计试验分析求得回归方程,便于分析各因素对试验结果的影响,可以定量地预知优化条件及优化结果的区间估计。
二、应用范围凡多因素,水平数≧5,特别是水平需从量变关系进行考察分析的试验设计,都可采用均匀设计,由于每个因素的每一个水平只做一次试验,故要求被试因素与非处理因素均易于严格控制,试验条件不宜严格控制或考察因素不宜数量化的不宜用均匀设计。
病人个体差异较大,治疗过程中非处理因素的干扰也较难控制,所以,均匀设计不宜应用于临床疗效研究。
大动物个体差异较大,也不宜用均匀设计进行试验。
而小动物遗传特性及个体条件易做到高度可比性,故以小动物进行多因素多水平试验可用均匀设计。
三、均匀设计表及其使用表1 均匀设计表均匀设计表简称U表,它是按“均匀分散”的特性构造的表格,水平数相同的均匀设计表记为Un(n m),其中U是均匀设计表的代写符号;n是因素水平数,也表示行数,也就是试验次数;m为均匀表的列数,表示最多可安排的因素数。
均匀设计-均匀设计.ppt

3.3.3.2 非线性回归模型(续1)
法、后退法、逐步回归法或最优子集法等进行变量的 筛选。其回归系数求解可经过方程项的转换按多元线 性回归的方法完成。 (2) 多项式回归模型
一般地,包含多变量的任意多项式可表述为:
可通过类似x1=Z1,x2=Z2,x3=Z12,x4=Z1Z2,x5=z22 的变换, 将其按多元线性回归分析。多项式回归在回归分析中 占特殊地位,因为任何函数至少在一
S
列号
D
2 15
0.1632
3 145
0.2649
4 1345
0.3528
5 12345
0.4286
6 1 2 3 4 5 6 0.4942
说明:设计表中的列代表的是各因素的水平, 但具体代表的是哪个因素的水平,需按使用 表确定,使用表s一栏的数字是试验的因素数, 它后面的数字指定了各种因素数进行试验时 该如何选择设计表的列;使用表中D栏代表 不同因素数选择设计表的不同列时均匀设计 的偏差,偏差越小,均匀性越好,试验成功 的几率和结果的可靠性越大。
(4) 用分次试验的指标值和取得该指标值的各因 素水平值建立试验指标—各因素水平关系的回归 模型(这也是均匀设计中的最重要的环节之一);
(5) 成功地建立了回归模型后在各试验因素的试 验范围内寻找最佳的各因素水平组合并进行该组 合的验证试验(也可和步骤6一起进行);
(6) 验证试验成功则进一步缩小水平划分更为细致的新的一 轮的试验,进一步寻找最优试验条件组合。一般 情况下,此次最优条件即为整个试验的最优条件, 试验结束。
3 均匀设计的应用方法
试验设计的共性问题 均匀设计的应用方法 具体问题的解决方法
3.1 试验设计的共性问题
试验设计(如正交试验设计、裂区试验设 计、系统分组设计等)过程必然离不开试验基 础内容的构思(试验的评价指标;试验的因素、 水平的选择和试验次数的拟定)、试验结果数 据的分析等共性方面的问题。试验的因素和水 平的选择关系到一个试验能否成功的关键,下 列的注意事项和建议对使用试验设计(当然也 包括均匀设计)的人员应该是有益的:
均匀设计方法简介

均匀设计方法简介在工农业生产和科学研究中,常须做试验,以获得予期目的:改进生产工艺,提高产品收率或质量,合成出某化合物等等。
怎样做试验,是大有学问的。
本世纪30年代,费歇(R.A.Fisher)在试验设计和统计分析方面做了一系列先驱工作,使试验设计成为统计科学的一个分支。
今天,试验设计理论更完善,试验设计应用更广泛。
本节着重介绍均匀设计方法。
一、试验设计对于一项试验,例如用微波加热法通过离子交换制备Cu13X分子筛。
我们可以13X分子筛、CuCl2为原料来制备,为寻找最佳条件,应如何设计这个试验呢?若我们已确定了微波加热功率(A)、交换时间(B)、交换液摩尔浓度(C)为三个影响因素,每个因素取五个不同值(即水平:A1,…,A5,B1,…,B5,C1,…,C5)。
有两种方法最易想到:1.全面试验:将每个因素的不同水平组合做同样数目的试验。
对上述示例,不计重复试验,共需做5×5×5=125次试验。
2.多次单因素试验:依次考查各因素(考查某因素时,其它因素固定)取最佳值。
容易知道,对上示例(不计重复试验)共需做3×5=15次试验。
该法在工程和科学试验中常被人们采用,可当考查的因素间有交互作用时,该法所得结论一般不真。
3.正交设计法:利用正交表来安排试验。
本世纪60年代,日本统计学家田口玄一将试验设计中应用最广的正交设计表格化,使正交试验设计得到更广泛的使用。
70年代以来,我国许多统计学家深入工厂、科研单位,与广大工程技术人员、工人一起,广泛开展正交设计的研究、应用,取得了大批成果。
该法是目前最流行,效果相当好的方法。
正交表记为:L n(q m),这里“L”表示正交表,“n”表总共要做的试验次数,“q”表每个因素都有q个水平,“m”表该表有4列,最多可安排m个因素。
常用的二水平正交表为L4(23),L8(27),L16(215),L32(231);三水平正交表有L9(34),L27(313);四水平正交表L16(45)及五水平正交表L25(56)等。
均匀试验设计

均匀试验设计主要参考文献:1、方开泰. 均匀设计与均匀设计表. 北京:科学出版社,19942、林维萱. 试验设计方法.大连:大连海事大学出版社,19953、栾军. 现在试验设计优化方法. 上海:上海交通大学出版社,19954、茆诗松等. 回归分析及其试验设计. 上海:华东师范大学出版社, 1981一、均匀设计的概念及特点均匀设计是由我国数学家方开泰教授和王元教授于1978年提出的。
1978年,七机部由于导弹设计的要求,提出了一个五因素的试验,希望每个因素的水平数要多于10,而试验总数又不超过50。
显然,正交试验设计不能用。
对于一个水平数为m的正交试验,至少要做m2次试验,如m=10时,m2=100,即至少要做100次试验,这在实际中是难于实施的。
因此,正交试验设计方法只适用于因素水平数不太多的多因素试验。
正交表的特点是使试验点“均匀分散、整齐可比”。
“均匀分散”即均匀性,使试验点均匀分布在试验范围内,让每个试验点都具有一定的代表性,可以用部分试验反映全面试验的情况,大大减少试验次数。
“整齐可比”就是综合可比性,使试验结果的分析十分方便,易于分析各因素及其交互作用对试验指标的影响大小及规律性。
但是,为了保证整齐可比性(即“均衡搭配”),对任意两个因素而言,必须是全面试验,每个因素的水平必须有重复。
这样,试验点在试验范围内就不能充分均匀分散,试验点就不能太少。
综上所述,正交试验为了保证“整齐可比”,使均匀性受到了一定限制,使试验点的代表性还不够强,试验次数不能充分地少,如果不考虑整齐可比(即综合可比)性,而完全保证均匀性,让试验点在试验范围内充分地均匀分散,不仅可大大减少试验点,而且仍能得到反映试验体系主要特征的试验结果。
这种从均匀性出发的试验设计,称为均匀试验设计。
均匀试验设计的最大优点是可以节省大量的试验工作量,尤其在试验因素水平较多的情况下,其优势更为明显。
例如,一个四因素七水平试验,进行一轮全面试验要做74=2401次,用正交试验也至少要做72 = 49次,而用均匀试验则仅需7次。
8. 均匀试验设计表解析

2
2 4 6 8 10 1 3 5 7 9 11
4
4 8 1 5 9 2 6 10 3 7 11
5
5 10 4 9 3 8 2 7 1 6 11
6
6 1 7 2 8 3 9 4 10 5 11
7
7 3 10 6 2 9 5 1 8 4 11
8
8 5 2 10 7 4 1 9 6 3 11
9 10
9 7 5 3 1 10 8 6 4 2 11 10 9 8 7 6 5 4 3 2 1 11
8
8 5 2 10 7 4 1 9 6 3
9 10
9 7 5 3 1 10 8 6 4 2 10 9 8 7 6 5 4 3 2 1
1 2 3 4 5 6 7 8 9 10
列号 试验号
U11(1110)均匀设计表
3
3 6 9 1 4 7 10 2 5 8 11
1
1 2 3 4 5 6 7 8 9 10 11
U9(96)均匀设计表
1
1 2 3 4 5 6 7 8 9
列号
试验号
2
2 4 6 8 1 3 5 7 9
3
4 8 3 7 2 6 1 5 9
4
5 1 6 2 7 3 8 4 9
5
7 5 3 1 8 6 4 2 9
6
8 7 6 5 4 3 2 1 9
1 2 3 4 5 6 7 8 9
列号 试验号
平
140.0 140.5
136.5 137.0 137.5 138.0 138.5 139.0 139.5
220
230
240
250
选择U9(96)均匀设计表 同时根据U9(96)设计使用表可将两因 素分别安排在第一列、第三列。试验方 案及结果见下表:
均匀设计

*
2 (15℃) 3 (30℃)
4 (10℃) 5 (15℃)
4 (25℃)
3 (20℃)
2 (25℃)
1 (20℃)
*
2
均匀设计表
U5(54)
列号 试验号 1 2 3 4 5
均匀设计使用表
因素数 2 列号 1 2 1 2 4
1
1 2 3 4 5
2
2 4 1 3 5
3
,其中pk
1 1 1 n1 1 1 p1 p2 pk
n=15=5*3 15*(1-1/3)*(1-1/5)=8
2
均匀设计表
n=6=2*3
6*(1-1/2)*(1-1/3)=2
列数: 当n为合数时,特别是偶数时,若用上述方法,列数较少, 此时可以通过将奇数表划去最后一行得到比它次数少一的
y=262.54+6.47x1+2.11x2+0.42x3-0.61x4
5
数据分析
回归系数表
P-value
P-value:P值,一般取P值的界限 为0.20,0.05,0.01
Intercept x1 x2 x3 x4
[0,0.01]
因素高度显著,非常重要
(0.01,0.05] 因素显著,重要
0.40 0.03 0.23 0.90 0.84
正交试验 至少需要102次实验
均匀试验 至少需要10次实验
1
简 介
均匀设计(Uniform Design,UD)是由我国数
学家王元和方开泰于1978年首次提出,是我国独 创的一种重大的科学试验方法。
1
简 介
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
八因素五水平均匀设计
八因素五水平均匀设计是一种广泛应用于工程实验和制造业的设计方法。
它通过对八个因素进行五个水平的设计,可以有效地确定最佳的工艺参数,提高产品质量和生产效率。
本文将从八因素的选择、五水平的确定以及八因素五水平设计的优点等方面进行探讨。
选择八个影响工艺参数的因素是八因素五水平均匀设计的第一步。
这些因素应该是对产品质量和生产效率有重要影响的关键参数。
例如,在汽车制造中,八个因素可以包括车身材料、焊接温度、涂装厚度、烘干时间、装配工艺等。
选择合适的因素是保证实验结果可靠性的基础。
接下来,确定五个水平是进行八因素五水平均匀设计的第二步。
五个水平应该覆盖整个参数的范围,以便能够获得全面的实验数据。
例如,在车身材料这一因素中,可以选择铝合金、钢材、复合材料等不同的水平。
确定合适的水平是保证实验结果可重复性的关键。
八因素五水平均匀设计的优点主要有以下几点。
首先,它可以通过少量实验获得大量的信息,节省了时间和成本。
其次,它可以全面考察各个因素对结果的影响,避免了单一因素实验的局限性。
再次,它可以确定最佳的工艺参数组合,提高产品质量和生产效率。
最后,它可以为进一步优化和改进提供参考,为工艺改进提供科学依据。
在进行八因素五水平均匀设计时,需要注意以下几点。
首先,实验设计要合理,需要根据具体情况进行调整。
例如,在实验因素选择时,需要根据产品特性和生产要求进行权衡。
其次,实验数据要真实可靠,需要采取合适的测量方法和数据处理方法。
例如,在测量结果时,需要进行多次重复测量并取平均值。
最后,实验结果要进行科学分析和解释,需要结合统计学方法和专业知识进行综合分析。
八因素五水平均匀设计是一种有效的实验设计方法,可以用于工程实验和制造业中。
通过选择合适的因素和确定合适的水平,可以得到全面可靠的实验结果。
它的优点包括节省时间和成本、全面考察各个因素影响、确定最佳工艺参数组合等。
在实施时需要注意实验设计的合理性、数据的真实可靠性以及结果的科学分析和解释。
八因素五水平均匀设计的应用可以提高产品质量和生产效率,为工程实验和制造业的发展做出贡献。