2020届人教A版__解三角形单元测试

合集下载

2020届 人教A版__解三角形-单元测试

2020届 人教A版__解三角形-单元测试

解三角形一、单选题1.在ABC ∆中,B=30︒,C=45︒, c=1,则最短边长为( )A C .12D【答案】B【解析】由题意,易知B C A <<,所以b 最小.由正弦定理,得sin sin c B b C == 2.已知ABC ∆中,2=a ,3=b , 60=B ,那么=∠A ( )A . 45B . 90C . 135或 45D . 150或 30 【答案】A 【解析】试题分析:利用正弦定理,B bA a sin sin =得:22360sin 2sin sin 0===bB a A ,由于b a <,则B A <,于是045=A ,选A. 考点:利用正、余弦定理解三角形.【易错点评】利用正弦定理求三角形的内角,当求出b a <22sin =A 时,容易得出045=A 或 135,这时务必要研究角A 的范围,由于,则B A <,说明角A 为锐角,所以045=A .3.已知ABC ∆满足a b >,则下列结论错误的是( )A .AB > B .sin sin A B >C .cos cos A B <D .sin2sin2A B > 【答案】D【解析】由大边对大角,可知A B >,所以A 正确; 由正弦定理可知, sin sin A B >,所以B 正确;由A B >,且cos y x =在()0,π单调递减,可知cos cos A B <,所以C 正确; 当90,30A B ==时, a b >,但sin2sin2A B <,所以D 错误。

故选D 。

点睛:本题考查三角函数与解三角形的应用。

本题中涉及到大边对大角的应用,正弦定理的应用,三角函数单调性的应用等,需要学生对三角模块的综合掌握,同时结合特殊值法去找反例,提高解题效率。

4.在∆ABC 中,,30,,1=∠==A x b a 则使∆ABC 有两解的x 的范围是( )A 、)332,1( B 、),1(+∞ C 、)2,332( D 、)2,1( 【答案】D 【解析】试题分析:结合图形可知,三角形有两解的条件为,sin b x a b A a =><,所以01,sin 301b x x =><,12x <<,故选D 。

2020届人教A版解三角形单元测试(2)

2020届人教A版解三角形单元测试(2)

解三角形一、单选题1.在△ABC 中,角A 、B 、C 的对边分别为a 、b 、c ,若a2+c2-b2=3ac ,则角B 的值为A 、6πB 、3πC 、6π或65πD 、3π或32π【答案】A 【解析】略 2.ABC ∆中,已知sin cos cos a b cA B C==,则ABC ∆为( ) A .等边三角形 B .等腰直角三角形C .有一个内角为30°的直角三角形D .有一个内角为30°的等腰三角形 【答案】B 【解析】因为sin cos cos a b c A B C ==,所以sin sin sin sin cos cos 4A B C B C A B C π==∴== ,即ABC ∆为等腰直角三角形,选B.3.已知△ABC 中,sinA :sinB :sinC =1 :1 是A .60°B .90°C .120°D .135° 【答案】C 【解析】略4.锐角ABC ∆中,若2A B =,则ab的取值范围是A 、()1,2B 、(C 、)2D 、【答案】D 【解析】略5.(2015秋•潍坊期末)在△ABC 中,内角A ,B ,C 的对边分别是a ,b ,c ,且满足bcosC=a ,则△ABC 的形状是( )A .等边三角形B .锐角三角形C .直角三角形D .钝角三角形 【答案】C【解析】试题分析:已知等式利用余弦定理化简,整理可得:a 2+c 2=b 2,利用勾股定理即可判断出△ABC 的形状.解:在△ABC 中,∵bcosC=a , ∴由余弦定理可得:cosC==,整理可得:a 2+c 2=b 2,∴利用勾股定理可得△ABC 的形状是直角三角形. 故选:C .考点:正弦定理;余弦定理.6.在ABC ∆中,角A 、B 、C 所对应的变分别为a 、b 、c ,则“”a b ≤是“sin sin ?A B ≤的( )A .充分必要条件B .充分非必要条件C .必要非充分条件D .非充分非必要条件 【答案】A【解析】试题分析:由正弦定理得2sin sin a bR A B==(其中R 为ABC ∆外接圆的半径),则2sin a R A =, 2sin b R B =, 2sin 2sin sin sin a b R A R B A B ≤⇔≤⇔≤,因此“”a b ≤是“sin sin ?A B ≤的充分必要必要条件,故选A.考点:本题考查正弦定理与充分必要条件的判定,属于中等题.视频7.在钝角三角形ABC 中,三边长是连续自然数,则这样的三角形( ) A .一个也没有 B .有无数个 C .仅有一个 D .仅有2个 【答案】C 【解析】试题分析:设三边长分别是x ,x+1,x+2(x ∈N *) ∵三角形ABC 是钝角三角形ABC ∴最长边所对的角为钝角,可得x 2+(x+1)2<(x+2)2,整理得x 2﹣2x ﹣3<0 解之得﹣1<x <3,满足条件的正整数x=1或2但是三边为1、2、3时,不能构成三角形;而三边为2、3、4时,恰好构成钝角三角形 因此满足条件的三角形只有1个 考点:三角形的形状判断8.在△ABC 中,若)sin()sin(C B A C B A +-=-+,则△ABC 必是( ) A .等腰三角形 B .直角三角形C .等腰或直角三角形D .等腰直角三角 【答案】C 【解析】试题分析:利用三角形内角和可将已知条件化为,B C 2sin 2sin =,2C B π=+=∴或C B ,故选C .考点:三角形形状的判断.9.在ABC ∆中, •3AB BC =,其面积32S ⎡∈⎢⎣,则AB BC 与夹角的取值范围为( ) A .,64ππ⎡⎤⎢⎥⎣⎦ B .,43ππ⎡⎤⎢⎥⎣⎦ C .,63ππ⎡⎤⎢⎥⎣⎦ D .23,34ππ⎡⎤⎢⎥⎣⎦【答案】B【解析】设|,?AB c BC a ==, AB 与BC 的夹角为θ33cos ?,AB BC ac ac cos θθ∴⋅==∴=13332222S acsin tan tan θθθ∴≤≤== 144tan ππθθ∴≤≤≤≤.故选B .10.在ABC △中,已知D 是AB 边上一点,若4AB DB =,1()4CD CA CB R λλ=+∈,则λ的值为A .23 B. 34 C. 23- D . 34-【答案】B 【解析】略11.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若sinA =sinC ,则△ABC 一定是 A .直角三角形 B .等腰三角形 C .锐角三角形 D .钝角三角形 【答案】B【解析】由正弦定理设asinA =bsinB=csinC=k,又sinA=sinC,即ak=ck,所以a=c.故选B.12.在ΔABC中,b=asinC,c=acosB,则ΔABC一定是()A.等腰三角形B.等腰直角三角形C.等边三角形D.直角三角形【答案】B【解析】在ΔABC中,∵b=asinC,c=acosB,由正弦定理可得sinB=sinAsinC,sinC=sinAsinB,∴sinB=sinAsinAsinB,∴sinA=1,∴A=π2,∴sinC=sinAsinB,即sinC=sinB,∴由正弦定理可得c=b,故ΔABC一定是等腰直角三角形,故选B.二、填空题13.在锐角三角形ABC中,角A,B,C所对的边分别为a,b,c, a=1,且(bc−2)cosA+ accosB=1−b2,则△ABC面积的最大值为______________.【答案】√34【解析】【分析】根据余弦定理得到参数a的值,进而得到bc=1,根据重要不等式可得到面积的最值.【详解】由(bc−2)cosA+accosB=1−b2,得c(bcosA+acosB)+b2=1+2cosA,由bcosA+acosBc =sinBcosA+sinAcosBsinC=sin⁡(A+B)sinC=1,所以bcosA+acosB=c.所以c2+b2=1+2cosA,故cosA=c2+b2−12,又由余弦定理,cosA=c 2+b2−a22bc, a=1,故bc=1,又cosA=c 2+b2−12≥2bc−12=12,所以sinA≤√32,故S△ABC=12bcsinA≤√34,当且仅当b=c=1即△ABC为等边三角形时等号成立,所以△ABC面积的最大值为√34.故答案为:√34【点睛】在解与三角形有关的问题时,正弦定理、余弦定理是两个主要依据. 解三角形时,有时可用正弦定理,有时也可用余弦定理,应注意用哪一个定理更方便、简捷一般来说,当条件中同时出现ab及b2、a2时,往往用余弦定理,而题设中如果边和正弦、余弦函数交叉出现时,往往运用正弦定理将边化为正弦函数再结合和、差、倍角的正余弦公式进行解答.14.在ABC ∆中,有下列命题: ①sin sin a A b B =; ②sin sin a B b A =; ③cos cos a B b A =;④若sin sin A B >,则A B >; ⑤若A B >,则sin sin A B >. 其中恒成立的命题序号为_____________ 【答案】②④⑤ 【解析】试题分析:由正弦定理得,命题①等价于22b a =,显然只有等腰三角形时才成立;命题②显然成立;cos cos a B b A=B A B A A B B A =⇔=-⇔=⇔0)sin(cos sin cos sin ,故只有在等腰三角形时成立;B A b a B sin sin A >⇔>⇔>,显然命题④⑤成立,考点:运用正弦定理判断与三角形的命题。

2020届 人教A版解三角形-单元测试

2020届 人教A版解三角形-单元测试
2
则 c = 7 3.
故选 D.
【点睛】
本题考查余弦定理,以及特殊角的三角函数值,熟练掌握余弦定理是解本题的关键.
8.在 ABC 中,已知 AB= 2 AC,∠B=30°,则∠A= ( )
A.45°
B.15°
C.45°或 135°
D.15°或 105°
【答案】D
【解析】
试题分析:由正弦定理可解得 sinC,结合范围 C∈(0,180°),可得 C,利用三角形
A.30 2海里
B.30 3海里
C.45 3海里
D.45 2海里
【答案】B
【解析】略
3.在△
ABC
中,角
A,B,C
的对边分别为
a,b,c,已知
a
=
5,π
3
<
C
<
π,若 b
2 a−b
=
sin 2C ,
sin A−sin 2C
则 c 等于
A. 5 B. 3 C.3 D.5 【答案】D
【解析】
【分析】
由π < C < π,故利用正弦定理将条件 b = sin 2C 中边化成角,然后变形可得 sinB = sin2C,
试 题 分 析 :∵ 在 △ABC 中 , a 2,A 45 , 且 此 三 角形 有 两 解 , ∴ 由 正 弦 定 理 a b 2 2 ,∴ b 2 2 sin A ,B C 180 45 135 ,由 B 有两个值,
sin A sin B 得到这两个值互补,若 B 45 ,则和 B 互补的角大于等于135 ,这样 A B 180 ,
∵AD1∥BC1,∴∠AD1P 为 D1P 与 BC1 所在的直线所成的角,在ΔAD1P 中,

2020届人教A版__解三角形-单元测试

2020届人教A版__解三角形-单元测试

解三角形一、单选题1.已知α是三角形的一个内角,且32cos sin =+αα,则这个三角形( ) A .锐角三角形 B .钝角三角形 C .不等腰的直角三角形 D .等腰直角三角形 【答案】B 【解析】 试题分析:由题32cos sin =+αα, 则:()2225sin cos ,sin cos 0318αααα⎛⎫+==-< ⎪⎝⎭因为: sin 0,cos 0αα><,则三角形为钝角三角形。

考点:三角函数的变形及三角形形状的判断. 2.【答案】A【解析】本题考查向量的数量积及其最佳值问题如图示以为A 原点,以CA 和CB 所在直线为x 轴和y 轴建立直角坐标系,则()()()0,0,0,3,4,0A B C -,则()4,3CB = .设(),M x y 则()4,CM x y =+,由//CM CB 得443y x +=,即334y x =+,则()3,34x M x +,所以()()33,3,4,344x x AM x CM x =+=++;又AM CM ⊥,则0AM CM ⋅=,则()()()2223331617,34,34390444252x x x x x x x x x +⋅++=+++=++= 所以2251361440x x ++=解得3625x =-或4x =-(舍)所以()3648,2525M =-,所以()3648,2525AM =-设()()3,3,404a N a a +-≤≤,则()3,34a AN a =+,则()()()3648336348144,,33252542542525a a a AM AN a ⋅=-⋅+=-++⨯=即40a -≤≤时取最大值14425AM AN ⋅=故正确答案为A 3.在,则边的边长为( )A .B .3C .D .7【答案】A 【解析】试题分析:由题意得,三角形的面积,解得,在中,由余弦定理得,所以.考点:余弦定理及三角形的面积公式的应用.4.已知ABC ∆中,AB=AC=5,BC=6,则ABC ∆的面积为A .12B .15C .20D .25 【答案】A 【解析】试题分析:因为,ABC ∆中,AB=AC=5,BC=6,所以,BC4=,三角形的面积为12,选A 。

2020届人教A版解三角形单元测试 (3)

2020届人教A版解三角形单元测试 (3)

解三角形一、单选题1.在ABC ∆中,a 、b 、c 分别为内角A 、B 、C 所对的边,已知3π=A ,3=a ,6π=B ,则=b ( )A .1B .3C .3D .33 【答案】B【解析】解:因为13a b a sin B 2b 3sin A sin B sin A 32⨯=∴=== 2.已知ABC ∆中,a b 、分别是角A B 、所对的边,且()0,2,a x x b A =>==60°,若三角形有两解,则x 的取值范围是( )A 、3x >B 、02x <<C 、32x <<D 、32x <≤ 【答案】C 【解析】试题分析:根据正弦定理可得Bx sin 260sin 0=所以x B 3sin =要使三角形有两解需满足0<sinB<1 解得32x << .考点:正弦定理应用3.在△AOB 中(O 为坐标原点), )sin 5,cos 5(),sin 2,cos 2(ββαα==OB OA , 若的面积是则AOB OB OA ∆-=⋅,5A .3B .235C .33D .435 【答案】B 【解析】4.【答案】C 【解析】略 5.【答案】A【解析】本题考查向量的数量积及其最佳值问题如图示以为A 原点,以CA 和CB 所在直线为x 轴和y 轴建立直角坐标系,则()()()0,0,0,3,4,0A B C -,则()4,3CB = .设(),M x y 则()4,CM x y =+,由//CM CB 得443y x +=,即334y x =+,则()3,34x M x +,所以()()33,3,4,344x x AM x CM x =+=++;又AM CM ⊥,则0AM CM ⋅=,则()()()2223331617,34,34390444252x x x x x x x x x +⋅++=+++=++= 所以2251361440x x ++=解得3625x =-或4x =-(舍)所以()3648,2525M =-,所以()3648,2525AM =-设()()3,3,404a N a a +-≤≤,则()3,34a AN a =+,则()()()3648336348144,,33252542542525a a a AM AN a ⋅=-⋅+=-++⨯=即40a -≤≤时取最大值14425AM AN ⋅=故正确答案为AABCMNxy6.(2015秋•宁城县期末)在△ABC 中,a=15,b=10,A=60°,则cosB=( ) A . B . C .D .【答案】C【解析】试题分析:先利用正弦定理求出sinB ,再利用同角三角函数的平方关系,可得结论.解:由正弦定理可得,∴sinB=.∵a >b ,A=60°,∴A >B , ∴=.故选C .考点:正弦定理;同角三角函数间的基本关系.7.在△ABC 中,内角A,B,C 对边的边长分别为,,,a b c A 为锐角,1lg lgb c+= lg sin A =lg 2-, 则ABC ∆为 ( )A .等腰三角形B .等边三角形C .直角三角形D .等腰直角三角形 【答案】D 【解析】试题分析:由已知得lglg sin b A c ==,所以b c =sin A =A 为锐角,故4A π=,由正弦定理得sin sin B C =,则sin C B ,3sin 4B B π(-,展开得B B B ,=0B B ,故tan 1B =,所以4B π=,所以ABC ∆是等腰直角三角形 考点:正弦定理和三角恒等变形.8.△ABC 的三边分别为a ,b ,c ,且a =1,B =45°,S △ABC =2,则△ABC 的外接圆的直径为( ).A .5B .5√2C .4√3D .6√2 【答案】B【解析】分析:由面积公式求得c ,再由余弦定理求得b ,最后由正弦定理求得外接圆直径.详解:∵a =1,B =45°,S △ABC =2,∴由三角形的面积公式得: S =12acsinB =12×1×c ×√22=2,∴c =4√2,又a =1,cosB =√22, 根据余弦定理得:b 2=1+32−8=25,解得b =5. ∴△ABC 的外接圆的直径为b sinB=√22=5√2.故选B .点睛:本题考查解三角形,应用解三角形中的所有公式:正弦定理、余弦定理、三角形面积公式,要注意按照题设条件顺序选用公式.9.ABC ∆,若sin sin a A b B =,则ABC ∆的形状为( )A.等腰三角形B.等腰直角三角形C.直角三角形D.等边三角形 【答案】A 【解析】试题分析:由于已知中sin sin a A b B =,那么根据正弦定理sin sin a bA B=,那么可将角化为边,得到2222a bab a b a b r r=∴=∴=,因此可知该三角形是等腰三角形,故选A 。

人教版数学高三第一章解三角形单元测试精选(含答案)1

人教版数学高三第一章解三角形单元测试精选(含答案)1
5
(1)求 BC 边长; (2)求 AB 边上中线 CD 的长.
【来源】北京 101 中学 2018-2019 学年下学期高一年级期中考试数学试卷
【答案】(1) 3 2 ;(2) 13 .
33.ABC 中,角 A,B,C 所对的边分别为 a,b,c,已知 a 3, cos A 6 , B A ,
【答案】C
3.在 ABC 中,若 a b cb c a 3bc ,则 A ( )
A. 90
B. 60
C.135
D.150
【来源】2015-2016 学年江西省金溪一中高一下期中数学试卷(带解析)
【答案】B
4.设在 ABC 中,角 A,B,C 所对的边分别为 a,b, c , 若 b cos C c cos B a sin A ,
【答案】C
21.设 ABC 的内角 A, B,C 所对边的长分别为 a, b, c ,若 b c 2a, 3sin A 5sin B ,
则角 C =( )
A.
3 3
C.
4
2
B.
3 5
D.
6
【来源】2013 年全国普通高等学校招生统一考试文科数学(安徽卷带解析)
【答案】B
22.在△ABC 中,角 A、B、C 的对边分别为 a、b、c,若 a2 b2 c2 tanB 3ac ,
A.3 6
B.9 6
C.3
D.6
【来源】福建省晋江市季延中学 2017-2018 学年高一下学期期末考试数学试题
【答案】A
2.已知△ABC 的内角 A,B,C 的对边分别为 a,b,c,且cc−−ba=sinCsi+nAsinB,则 B= (
)
A.π
6

2020届人教A版-解三角形__单元测试

2020届人教A版-解三角形__单元测试

解三角形一、单选题1.设△ABC 的外接圆半径为R ,且已知AB =4,∠C =45°,则R = ( ) A .2 B.C. D.【答案】D 【解析】如图:AD 是直径,则045D C ∠=∠=在直角三角形ABD 中,42sin sin 45AB R AD D ====R =故选D2.在ΔABC 中,角A ,B ,C 所对边分别是a ,b ,c ,若b =√11,c =3,且sinC =3√1111,满足题意的ΔABC 有( )A .0个B .一个C .2个D .不能确定 【答案】B【解析】b =√11,c =3,b >c ,C 为锐角,且sinC =3√1111, bsinC =√11×3√1111=3=c ,满足题意的ΔABC 有一个,选B.3.在ΔABC 中,角A 、B 、C 所对的边分别是a 、b 、c ,已知a =1,b =√3,A =30∘,则c 边的长为( )BCA .2B .1C .1或2D .√3或2 【答案】C【解析】试题分析:;已知两边和其中一边的对角,可由正弦定理得到角B 的大小,再根据三角形的三角关系,得到三角形的形状,进而求得边长. 详解:根据正弦定理得到asinA =bsinB ⇒sinB =√32,故角B 为60∘或120∘,当角B 为60∘时角C 等于直角,三角形满足勾股定理,得到边c 等于2;当角B 等于120∘,角C 也等于30∘,此时三角形是等腰三角形,得到边c 等于1. 故答案为:C.点睛:本题主要考查正弦定理边角互化及余弦定理的应用与特殊角的三角函数,属于简单题. 对余弦定理一定要熟记两种形式:(1)a 2=b 2+c 2−2bc cos A ;(2)cos A =b 2+c 2−a 22bc,同时还要熟练掌握运用两种形式的条件.另外,在解与三角形、三角函数有关的问题时,还需要记住30o ,45o ,60o 等特殊角的三角函数值,以便在解题中直接应用. 4.已知ΔABC 的三个内角A ,B ,C 所对的边分别为a ,b ,c ,a =2bcosC ,且b−ac−a =sinA+sinC sinB,则这个三角形的形状是( )A .等边三角形B .钝角三角形C .直角三角形D .等腰直角三角形 【答案】A【解析】分析:先由正弦定理进行角化边得到a 2+b 2-c 2=ab 再由余弦定理可得C 值,结合a =2bcosC 即可得出结论.详解:由正弦定理化简(a-c )(sinA+sinC )=(a-b )sinB ,得:(a-c )(a+c )=b (a-b ), 整理得:a 2-c 2=ab-b 2,即a 2+b 2-c 2=ab ,由余弦定理得cosC =a 2+b 2−c 22ab=12⇒C =π3,再由a =2bcosC ,可得a=b ,结合C=60°,故三角形的形状为等边三角形,选A. 点睛:考查正余弦定理的运用,对b−ac−a =sinA+sinC sinB角化边得到a 2+b 2-c 2=ab 再由余弦定理得出C 值是解题关键,属于中档题.5.在△ABC 中,三边长AB =7,BC =5,AC =6,则AB ⃗⃗⃗⃗⃗ ⋅BC ⃗⃗⃗⃗⃗ 等于( ) A .19 B .−19 C .18 D .−18 【答案】B 【解析】 【分析】利用余弦定理求得cosB ,再利用数量积公式,即可求出结果. 【详解】∵三边长AB=7,BC=5,AC=6,∴cosB=AB2+BC2−AC22AB⋅BC =72+52−622×7×5=1935AB⋅BC=AB⋅BCcos(π−B)=7×5×(−1935)=−19.故选B.【点睛】本题考查平面向量数量积的运算,考查余弦定理,解题关键是明确数量积中两个向量的夹角与三角形内角的关系.6.在ΔABC中,tanA是以−4为第3项,4为第7项的等差数列的公差,tanB是以13为第3项,9为第6项的等比数列的公比,则该三角形形状为()A.锐角三角形B.直角三角形C.钝角三角形D.等腰三角形【答案】A【解析】【分析】首先由等差数列的通项公式和等比数列的通项公式,结合已知可得tanA=2,tanB=3,然后利用两角和的正切公式可求出tan(A+B)=−1,从而求出∠C,再结合题意确定A、B的范围,从而确定△ABC的形状.【详解】解:由题意可得,tanA=4−(−4)7−3=2,(tanB)3=913=27,所以tanB=3故tan(A+B)=2+31−2×3=−1,∵0<A+B<π,∴A+B=3π4,∴∠C=π4;又∵tanA>0,tanB>0,0<A<π,0<B<π,∴0<A<π2,0<B<π2,故△ABC为锐角三角形.故选:A.【点睛】本题主要考查了等差数列和等比数列的通项公式,两角和的正切公式,考查计算能力及分析能力,属于中档题。

新人教A版必修5高中数学第一章解三角形章末检测(B)

新人教A版必修5高中数学第一章解三角形章末检测(B)

第一章 解三角形章末检测(B )新人教A 版必修5(时间:120分钟 满分:150分)一、选择题(本大题共12小题,每小题5分,共60分) 1.在△ABC 中,a =2,b =3,c =1,则最小角为( ) A.π12 B.π6 C.π4 D.π32.△ABC 的三内角A 、B 、C 所对边的长分别是a 、b 、c ,设向量p =(a +c ,b ),q =(b -a ,c -a ),若p ∥q ,则角C 的大小为( ) A.π6 B.π3 C.π2 D.2π33.在△ABC 中,已知||=4,|AC →|=1,S △ABC =3,则AB →²AC →等于( )A .-2B .2C .±4D .±24.△ABC 的内角A 、B 、C 的对边分别为a 、b 、c ,若c =2,b =6,B =120°,则a 等于( )A. 6 B .2 C. 3 D. 25.在△ABC 中,A =120°,AB =5,BC =7,则sin Bsin C的值为( )A.85B.58C.53D.356.已知锐角三角形的边长分别为2,4,x ,则x 的取值范围是( )A .1<x < 5 B.5<x <13 C .1<x <2 5 D .23<x <2 57.在△ABC 中,a =15,b =10,A =60°,则cos B 等于( )A .-223 B.223C .-63 D.638.下列判断中正确的是( )A .△ABC 中,a =7,b =14,A =30°,有两解B .△ABC 中,a =30,b =25,A =150°,有一解 C .△ABC 中,a =6,b =9,A =45°,有两解D .△ABC 中,b =9,c =10,B =60°,无解 9.在△ABC 中,B =30°,AB =3,AC =1,则△ABC 的面积是( )A.34B.32C.3或32D.32或3410.在△ABC 中,BC =2,B =π3,若△ABC 的面积为32,则tan C为( )A. 3 B .1 C.33 D.3211.在△ABC 中,如果sin A sin B +sin A cos B +cos A sin B +cos A cos B =2,则△ABC 是( )A .等边三角形B .钝角三角形C .等腰直角三角形D .直角三角形 12.△ABC 中,若a 4+b 4+c 4=2c 2(a 2+b 2),则角C 的度数是( ) A .60° B .45°或135°13.在△ABC 中,若sin A a=cos Bb,则B =________.14.在△ABC 中,A =60°,AB =5,BC =7,则△ABC 的面积为________.15.一船自西向东匀速航行,上午10时到达一座灯塔P 的南偏西75°距塔64海里的M 处,下午2时到达这座灯塔的东南方向的N 处,则这只船的航行速度为________海里/小时.16.在△ABC 中,角A 、B 、C 所对的边分别为a 、b 、c .若(3b -c )cos A =a cos C ,则cos A =________.三、解答题(本大题共6小题,共70分)17.(10分)如图,H 、G 、B 三点在同一条直线上,在G 、H 两点用测角仪器测得A的仰角分别为α,β,CD=a,测角仪器的高是h,用a,h,α,β表示建筑物高度AB.18.(12分)设锐角三角形ABC的内角A、B、C的对边分别为a、b、c,a=2b sin A.(1)求B的大小.(2)若a=33,c=5,求b.19.(12分)如图所示,已知⊙O的半径是1,点C在直径AB的延长线上,BC=1,点P是⊙O上半圆上的一个动点,以PC为边作等边三角形PCD,且点D与圆心分别在PC的两侧.(1)若∠POB=θ,试将四边形OPDC的面积y表示为关于θ的函数;(2)求四边形OPDC面积的最大值.20.(12分)为了测量两山顶M 、N 间的距离,飞机沿水平方向在A 、B 两点进行测量,A 、B 、M 、N 在同一个铅垂平面内(如示意图).飞机能够测量的数据有俯角和A ,B 间的距离,请设计一个方案,包括:①指出需要测量的数据(用字母表示,并在图中标出);②用文字和公式写出计算M 、N 间的距离的步骤.21.(12分)在△ABC 中,内角A 、B 、C 对边的边长分别是a 、b 、c .已知c =2,C =π3.(1)若△ABC 的面积等于3,求a ,b . (2)若sin B =2sin A ,求△ABC 的面积.22.(12分) 如图所示,扇形AOB ,圆心角AOB 等于60°,半径为2,在弧AB 上有一动点P ,过P 引平行于OB 的直线和OA 交于点C ,设∠AOP =θ,求△POC 面积的最大值及此时θ的值.第一章 解三角形 章末检测 答案 (B)1.B [∵a >b >c ,∴C 最小.∵cos C =a 2+b 2-c 22ab =22+32-122³2³3=32,又∵0<C <π,∴C =π6.]2.B [∵p ∥q ,∴(a +c )(c -a )-b (b -a )=0. ∴c 2=a 2+b 2-ab ,∵c 2=a 2+b 2-2ab cos C ,∴cos C =12,又∵0<C <π,∴C =π3.]∴||²|AC →|²sin A =12³4³1³sin A = 3. ∴sin A =32.又∵0°<A <180°,∴A =60°或120°.²AC →=|AB →|²|AC →|cos A=4³1³cos A =±2.] 4.D [由正弦定理得b sin B =csin C, ∴sin C =c ²sin B b =2sin 120°6=12,∵c <b ,∴C 为锐角.∴C =30°,∴A =180°-120°-30°=30°. ∴a =c = 2.]5.D [由余弦定理得BC 2=AB 2+AC 2-2AB ²AC ²cos A , 即72=52+AC 2-10AC ²cos 120°,∴AC =3.由正弦定理得sin B sin C =AC AB =35.]6.D [由题意,x 应满足条件⎩⎪⎨⎪⎧22+42-x 2>022+x 2-42>0解得:23<x <2 5.]7.D [由正弦定理得15sin 60°=10sin B.∴sin B =10²sin 60°15=33.∵a >b ,A =60°,∴B <60°. ∴cos B =1-sin 2B =1-332=63.]8.B [A :a =b sin A ,有一解; B :A >90°,a >b ,有一解; C :a <b sin A ,无解;D :c >b >c sin B ,有两解.]9.D [由余弦定理AC 2=AB 2+BC 2-2AB ²BC cos B ,∴12=(3)2+BC 2-2³3³BC ³32.整理得:BC 2-3BC +2=0. ∴BC =1或2.当BC =1时,S △ABC =12AB ²BC sin B =12³3³1³12=34.当BC =2时,S △ABC =12AB ²BC sin B =12³3³2³12=32.]10.C [由S △ABC =12BC ²BA sin B =32得BA =1,由余弦定理得AC 2=AB 2+BC 2-2AB ²BC cos B ,∴AC =3,∴△ABC 为直角三角形, 其中A 为直角,∴tan C =AB AC =33.]11.C [由已知,得cos(A -B )+sin(A +B )=2, 又|cos(A -B )|≤1,|sin(A +B )|≤1, 故cos(A -B )=1且sin(A +B )=1, 即A =B 且A +B =90°,故选C.] 12.B [由a 4+b 4+c 4=2c 2a 2+2b 2c 2,得cos 2C =a 2+b 2-c 22ab2=a 4+b 4+c 4+2a 2b 2-2c 2a 2-2b 2c 24a 2b 2=12⇒cos C =±22.∴角C 为45°或135°.]13.45°解析 由正弦定理,sin A a =sin Bb.∴sin B b =cos Bb.∴sin B =cos B .∴B =45°.14.10 3解析 设AC =x ,则由余弦定理得: BC 2=AB 2+AC 2-2AB ²AC cos A ,∴49=25+x 2-5x ,∴x 2-5x -24=0. ∴x =8或x =-3(舍去).∴S △ABC =12³5³8³sin 60°=10 3.15.8 6解析 如图所示,在△PMN 中,PM sin 45°=MNsin 120°,∴MN =64³32=326,∴v =MN4=86(海里/小时).16.33解析 由(3b -c )cos A =a cos C ,得(3b -c )²b 2+c 2-a 22bc=a ²a 2+b 2-c 22ab,即b 2+c 2-a 22bc =33,由余弦定理得cos A =33.17.解 在△ACD 中,∠DAC =α-β, 由正弦定理,得AC sin β=DCα-β,∴AC =a sin βα-β∴AB =AE +EB =AC sin α+h =a sin βsin αα-β+h .18.解 (1)∵a =2b sin A ,∴sin A =2sin B ²sin A ,∴sin B =12.∵0<B <π2,∴B =30°.(2)∵a =33,c =5,B =30°. 由余弦定理b 2=a 2+c 2-2ac cos B=(33)2+52-2³33³5³cos 30°=7. ∴b =7.19.解 (1)在△POC 中,由余弦定理, 得PC 2=OP 2+OC 2-2OP ²OC ²cos θ =5-4cos θ, 所以y =S △OPC +S △PCD =12³1³2sin θ+34³(5-4cos θ) =2sin ⎝ ⎛⎭⎪⎫θ-π3+534.(2)当θ-π3=π2,即θ=5π6时,y max =2+534.答 四边形OPDC 面积的最大值为2+534.20.解 ①需要测量的数据有:A 点到M 、N 点的俯角α1、β1;B 点到M 、N 点的俯角α2、β2;A 、B 的距离d (如图所示).②第一步:计算AM ,由正弦定理AM =d sin α2α1+α2;第二步:计算AN .由正弦定理AN =d sin β2β2-β1;第三步:计算MN ,由余弦定理 MN =AM 2+AN 2-2AM ³AN α1-β1. 21.解 (1)由余弦定理及已知条件得 a 2+b 2-ab =4.又因为△ABC 的面积等于3,所以12ab sin C =3,由此得ab =4.联立方程组⎩⎪⎨⎪⎧ a 2+b 2-ab =4,ab =4,解得⎩⎪⎨⎪⎧a =2,b =2.(2)由正弦定理及已知条件得b =2a .联立方程组⎩⎪⎨⎪⎧a 2+b 2-ab =4,b =2a ,解得⎩⎪⎨⎪⎧a =233,b =433.所以△ABC 的面积S =12ab sin C =233.22.解 ∵CP ∥OB ,∴∠CPO =∠POB =60°-θ, ∠OCP =120°.在△POC 中,由正弦定理得OP sin ∠PCO =CPsin θ,∴2sin 120°=CP sin θ,∴CP =43sin θ.又OC -θ=2sin 120°,∴OC =43sin(60°-θ).因此△POC 的面积为S (θ)=12CP ²OC sin 120°=12²43sin θ²43sin(60°-θ)³32 =43sin θsin(60°-θ)=43sin θ⎝⎛⎭⎪⎪⎫32cos θ-12sin θ =2sin θ²cos θ-23sin 2θ=sin 2θ+33cos 2θ-33=233sin ⎝⎛⎭⎪⎫2θ+π6-33∴θ=π6时,S (θ)取得最大值为33.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

解三角形一、单选题1.已知,,a b c 分别为ABC ∆的三个内角,,A B C 的对边, a =2,且()()()2sin sin sin b A B c b C +-=-,则ABC ∆面积的最大值为A B .2 C . D . 【答案】A【解析】由正弦定理得: ()()()2b a b c b c +-=-,即224b c bc +-=,由余弦定理得:2241cos 222b c bc A bc bc +-===, 3A π∴=,又2242b c bc bc bc bc +-=≥-=,4bc ∴≤,当且仅当2b c ==时取等号,此时ABC ∆为正三角形,则ABC ∆的面积的最大值为11sin 422S bc A ==⨯=故选A. 点睛: 解三角形问题,多为边和角的求值问题,这就需要根据正、余弦定理结合已知条件灵活转化边和角之间的关系,从而达到解决问题的目的.其基本步骤是:第一步:定条件,即确定三角形中的已知和所求,在图形中标出来,然后确定转化的方向.第二步:定工具,即根据条件和所求合理选择转化的工具,实施边角之间的互化.第三步:求结果.2.ABC ∆中,)0,5(),0,5(B A -,点C 在双曲线191622=-y x 上,则CB A sin sin sin -=( ) A53 B 53± C 54 D 54± 【答案】D 【解析】试题分析:根据正弦定理可知C BA sin sin sin -84105BC AC AB ,故选D. 考点:正弦定理,双曲线的定义. 3.如果等腰三角形的顶角的余弦值为35,则底边上的高与底边的比值为 A .12 B .45 C .23D .1 【答案】D【解析】设等腰三角形的顶角为2α,底边上的高为h ,底边长为2x ,由三角形知识得tan x h α=,∵3cos 25α=,∴222222cos sin 1tan 3cos 2cos sin 1tan 5ααααααα--===++,∴1tan 2xhα==,∴2h x =,∴底边上的高与底边的比值为1,故选D 4.ABC ∆的内角A , B , C 所对的边分别为a , b , c , 2a =,b =,45A =︒,则B =( )A .30︒B .60︒C .30︒或150︒D .60︒或120︒ 【答案】A【解析】由正弦定理可得:a bsinA sinB=,1222bsinA sinB a ===. 又因为2a =,b =, a b >,所以A B >,所以30B =︒,故选A.5.设△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,若a =b ,a cos C =c (2-cos A ),则cos B =( ) AB .14CD【答案】B【解析】∵a cos C =c (2-cos A ),∴a cos C +c cos A =2c ,由正弦定理可得:sin A cos C +sin C cos A =2sin C , ∴sin B =sin (A +C )=2sin C , ∴b =2c ,由a =b ,可得a =b =2c ,∴22221cos 2224a cbc B ac c c +-===⋅.故选:B .6.在ABC ∆中,已知A=45,2,a b ==B 等于( )A .30B .60C .150D .30或150 【答案】A 【解析】 试题分析:由正弦定理得045,21sin sin sin sin 0>>∴>==⇒=B b a A a b B B b A a 故知B=300,所以选A. 考点:正弦定理.7.在ABC ∆中,角C B A ,,所对的边长分别为c b a ,,,若060=A ,045=B ,6=a 则=b ( )A .5B .2C .3D .2 【答案】B 【解析】试题分析:由正弦定理得sin sin a bA B=,即006sin 60sin 45b =,得006sin 452sin 60b ==,选B .考点:正弦定理 8.在中,则等于( )A .60°B .45°C .120°D .150° 【答案】D【解析】试题分析:由已知得b 2+c 2-a 2=−√3bc,根据余弦定理cosA =b 2+c 2−a 22bc=−√32, ∴∠A =150°.考点:1、余弦定理;2、特殊角的三角函数值.9.已知a ,b ,c 分别是△ABC 中角A ,B ,C 的对边长,b 和c 是关于x 的方程x 2﹣9x+25cosA=0的两个根(b >c ),且,则△ABC 的形状为( )A .等腰三角形B .锐角三角形C .直角三角形D .钝角三角形 【答案】C 【解析】试题分析:由已知:(sinB+sinC+sinA )(sinB+sinC ﹣sinA )=sinBsinC ,利用正弦定理可得b 2+c 2﹣a 2=bc ,进而利用余弦定理求cosA ,从而可求sinA 的值,由方程x 2﹣9x+25cosA=0,可得x 2﹣9x+20=0,从而b ,c ,利用余弦定理a 2=b 2+c 2﹣2bccosA=9,可求得a ,直接判断三角形的形状即可.解:由已知:(sinB+sinC+sinA )(sinB+sinC ﹣sinA )=sinBsinC ,∴sin 2B+sin 2C ﹣sin 2A=sinBsinC , 由正弦定理:∴b 2+c 2﹣a 2=bc ,由余弦定理cosA==,∴sinA=,又∵由(1)方程x 2﹣9x+25cosA=0即x 2﹣9x+20=0,则b=5,c=4, ∴a 2=b 2+c 2﹣2bccosA=9,∴a=3, ∴b 2=c 2+a 2,三角形是直角三角形10.在锐角三角形中, ,,a b c 分别是内角,,A B C 的对边,设2B A =,则ab的取值范围是( ) A .3232 B .)2,2 C .2,3 D .02(,) 【答案】A 【解析】2,B A =∴由正弦定理sin sin a bA B=得:sin sin sin 1sin sin22sin cos 2cos a A A A b B A A A A ====, B 为锐角,即090B <<,且2,B A A=∴C为锐角,0290{ 0180390A A ︒︒︒<<<-< ,所以233045,cos 22A A <<∴<<22cos 3A <<, 31232cos 2A <<ab 的取值范围是3232,故选A. 11.已知ΔABC 的面积为4,∠A =900,则2AB +AC 的最小值为( ) A .8 B .4 C .8√2 D .4√2 【答案】A【解析】分析:由题意知ΔABC 的面积为4,且∠A =900,得AB ⋅AC =8,再由均值不等式,即可求解2AB +AC 的最小值.详解:由题意知ΔABC 的面积为4,且∠A =900,所以S =12AB ⋅AC =4,即AB ⋅AC =8,所以2AB +AC ≥2√2AB ⋅AC =2√2×8=8,当且仅当AB =2,AC =4时取得等号, 所以2AB +AC 的最小值为8,故选A.点睛:本题主要考查了均值不等式求最小值和三角形的面积公式的应用,其中解答中熟记均值不等式的使用条件,以及等号成立的条件是解答的关键,着重考查了分析问题和解答问题的能力.12.若ΔABC的内角A,B,C所对的边a,b,c满足(a+b)2−c2=4,且C=60∘,则ab的值为()A.34B.23C.32D.43【答案】D【解析】【分析】:根据题意和余弦定理,直接求解。

【详解】:(a+b)2−c2=4,整理可得:c2+4=a2+b2+2ab,C=60∘由余弦定理:c2=a2+ b2−2cosCab=a2+b2−ab,由此解得ab=43,故选D【点睛】:余弦定理:c2=a2+b2−2cosCab。

二、填空题13.在ΔABC中,角A,B,C的对边分别为a,b,c,若a2=b2+c2−bc,则asinBb的值为__________.【答案】√32【解析】由题意得b2+c2−a2=bc,∴cosA=b 2+c2−a22bc=bc2bc=12,又0<A<π,故A=π3.在ΔABC中,由正弦定理得asin A =bsinB,∴a sin Bb =sinA=√32.答案:√3214.A、B两只船分别从同在东西方向上相距145km的甲乙两地开出。

A从甲地自东向西行驶,B从乙地自北向南行驶;A的速度是40km/h,,B的速度是16km/h,经过________小时,AB间的距离最短。

【答案】25 8【解析】解:利用方位图,可知,设经过t小时后,相距最近,则有A 行驶的距离为40t,B 行驶的距离为16t ,|AB|= 22214540t)+16t (- 当t=258时,则距离最近 15.[2014·北京海淀区模拟]一船向正北航行,看见正西方向有相距10海里的两个灯塔恰好与它在一条直线上,继续航行半小时后,看见一灯塔在船的南偏西60°方向,另一灯塔在船的南偏西75°方向,则这只船的速度是每小时________.【答案】10海里【解析】如图,依题意有∠BAC =60°,∠BAD =75°,所以∠CAD =∠CDA =15°,从而CD =CA =10,在Rt △ABC 中,可得AB =5,于是这只船的速度是50.5=10(海里/小时). 16.如图,在圆内接四边形ABCD 中,2AB =, 1AD =,33cos sin BC BD CD αβ=+,则四边形ABCD 周长的取值范围为__________.【答案】(37,327+【解析】由题意知, ()BDC παβ∠=-+33cos sin BC BD CD αβ=+,由正弦定理得,3sin 3sin cos sin sin BDC βααβ∠=+ ,即()3sin 3sin cos sin sin αββααβ+=+,由两角差公式并整理得,3sin cos sin sin αβαβ=,又()0αβπ∈,,,所以tan 33πββ=⇒=,由四边形ABCD 为圆的内接四边形,所以23A ππβ∠=-=,由余弦定理得, 22222cos 41221cos 73BD AB AD AB AD A π=+-⋅=+-⨯⨯⨯=,又()2222222cos 3BD BC CD BC CD BC CD BC CD BC CD BC CDβ=+-⋅⋅=+-⋅=+-⋅,所以()()22734BC CD BC CD BC CD +=+-⋅≥,即BC CD +≤,又BC CD BD +>=ABCD 的周长取值范围为(3++.点睛:此题主要考查了圆内接四边形性质、正弦定理、余弦定理在解三角形中的应用,以及两角和差公式、均值不等式的应用等,属于中高档题型,也是高频考点.根据条件cos sin CD αβ=+,由正弦定理、结合两角和正弦公式、圆内接四边形性质,可求出3πβ=,再根据余弦定理、结合均值不等式、三角形两边之和大于第三边可求得四边形ABCD 的周长取值范围为(3+.三、解答题17.在三角形ABC 中,角角A,B,C 所对的边分别为a,b,c ,且a +c =2b =2,a =2sinA ,则此三角形的面积S ΔABC = . 【答案】【解析】试题分析:由题意得,b sinB =asinA =2,而,∴,又2b =a +c ,B 不可能是钝角,cosB =√32,而cosB =(a+c)2−2ac−b 22ac=3−2ac 2ac,即3−2ac 2ac=√32,∴,∴S ΔABC =;故填.考点:1.正弦定理;2.三角形的面积公式.18.设ABC ∆的内角,,A B C 的对边分别为,,a b c , b =, 23B π=. (1)若2a =,求角C ;(2)若D 为AC 的中点, BD =,求ABC ∆的周长.【答案】(1)6π;(2)【解析】试题分析:(1)由正弦定理先求得A ,再由三角形内角和定理可得C ;(2)在ABC ∆中由余弦定理可得,a c 的一个方程,由180ADB CBD ∠+∠=︒,分别应用余弦定理利用这两个角余弦和为0又得一个,a c 的方程,联立可解得,a c ,从而得周长. 试题解析:(1)在ABC 中,由正弦定理得: sin sin b aB A=, 所以1sin 2A =,又由于a b <,所以6A π=, 由于23B π=,所以6C π=. (2)在ABC 中,由余弦定理得2211222a c ac+--=,即2212a c ac ++=.①又由于ADB CDB π∠+∠=,故而cos cos 0ADB CDB ∠+∠=,即:0=,所以2210a c +=,② 解①②得: 2ac =.故而()222214a c a c ac +=++=,即a c +=,所以ABC 的周长为a b c ++=+.19.如图,渔船甲位于岛屿A 的南偏西60°方向的B 处,且与岛屿A 相距12海里,渔船乙以10海里/时的速度从岛屿A 出发沿正北方向航行,若渔船甲同时从B 处出发沿北偏东α的方向追赶渔船乙,刚好用2小时追上,此时到达C 处.(1)求渔船甲的速度; (2)求sinα的值.【答案】(1)21海里/小时;(2)3√314. 【解析】试题分析:解:①∴(4分)∴∴V 甲海里/小时 (6分) ②在中,由正弦定理得∴∴(12分)考点:正弦定理,余弦定理点评:主要是考查了正弦定理和余弦定理的运用,属于基础题。

相关文档
最新文档