正余弦定理知识点总结及高考考试题型
正余弦定理知识点及题型归纳

正余弦定理是三角学中的重要知识点,用于解决与三角形相关的问题。
下面是对正余弦定理的知识点及题型归纳:一、正弦定理1. 定义:在任意三角形ABC中,设角A、B、C所对应的边分别为a、b、c,那么有sinA/a = sinB/b = sinC/c。
2. 性质:-等式两边同时乘以任意非零常数,等式仍然成立;-等式两边同时除以相同的角,等式仍然成立;-等式两边同时取反函数,等式仍然成立。
3. 应用:-已知三个角的度数,求边长;-已知两个边的长度,求第三个边的长度;-已知一个角和一条边的长度,求另外两个角的度数;-已知一个角和两条边的长度,求第三个角的度数。
二、余弦定理1. 定义:在任意三角形ABC中,设角A、B、C所对应的边分别为a、b、c,那么有cosA = (b ²+ c²- a²) / (2bc)。
2. 性质:-等式两边同时乘以任意非零常数,等式仍然成立;-等式两边同时除以相同的角,等式仍然成立;-等式两边同时取反函数,等式仍然成立。
3. 应用:-已知三个角的度数,求边长;-已知两个边的长度,求第三个边的长度;-已知一个角和一条边的长度,求另外两个角的度数;-已知一个角和两条边的长度,求第三个角的度数。
三、题型归纳1. 已知三个角的度数,求边长:-根据正弦定理或余弦定理,将已知的角度代入公式中,求解边长;-如果已知的是弧度制的角度,需要将其转换为角度制。
2. 已知两个边的长度,求第三个边的长度:-根据正弦定理或余弦定理,将已知的两个边的长度代入公式中,求解第三个边的长度;-如果已知的是弧度制的角度,需要将其转换为角度制。
3. 已知一个角和一条边的长度,求另外两个角的度数:-根据正弦定理或余弦定理,将已知的角度和边的长度代入公式中,求解另外两个角的度数;-如果已知的是弧度制的角度,需要将其转换为角度制。
4. 已知一个角和两条边的长度,求第三个角的度数:-根据正弦定理或余弦定理,将已知的角度和两条边的长度代入公式中,求解第三个角的度数;-如果已知的是弧度制的角度,需要将其转换为角度制。
正余弦定理知识点总结及高考考试题型

正余弦定理知识点总结及高考考试题型一、正余弦定理的概念正余弦定理,又称余正定理、角-边-角定理,是指用三角形中的一个角和与它相对的两边的长度,来表示三角形中的另外两个角与其对应的两边之间的关系的公式。
二、正余弦定理的形式对于一个三角形ABC,设三个边分别为a、b、c,对应的角分别为A、B、C,将角A所对应的边称为边a,角B所对应的边称为边b,角C所对应的边称为边c。
(1)正弦定理:$\frac{a}{\sin A}=\frac{b}{\sinB}=\frac{c}{\sin C}$(2)余弦定理:$a^2=b^2+c^2-2bc\cos A$$b^2=a^2+c^2-2ac\cos B$$c^2=a^2+b^2-2ab\cos C$三、正余弦定理的应用正余弦定理是基本的三角函数之一,它们在高中数学教育中被广泛应用。
通常在三角形的求面积过程中被使用。
考生还需能够将它们应用在其他相关的三角形求解问题中。
例如,可以用正余弦定理解决以下问题:(1)求三角形的面积。
(2)判断三角形是否为等腰三角形,是否为等边三角形。
(3)确定三角形的内角度数。
(4)求解三角形的未知边和角。
四、正余弦定理在高考考试中的出现形式正余弦定理在高考考试中经常作为解决三角形问题的关键公式。
它们常表现为单独的选择题或解答题,也可能是复合型题目的一部分。
(1)选择题样例:已知三角形ABC的边长分别为11、12、13,若$\angle C$ 的角度等于$\frac{\pi}{2}$,则$\sin A+\cos B$ 等于()A. $\frac{24}{13}$B. $\frac{22}{13}$C. $\frac{20}{13}$D. $\frac{18}{13}$(2)解答题样例:已知$\triangle ABC$,且$AB=8, AC=6,BC=10$,则$\triangle ABC$的面积是多少?解:由余弦定理,$\cos A=\frac{b^2+c^2-a^2}{2bc}=\frac{100-36-64}{2×10×8}=-\frac{1}{8}$由正弦定理,$2S=\frac{1}{2}bc\sin A=24\sin A=24\sqrt{1-\cos^2 A}=24\sqrt{1-\frac{1}{64}}=\frac{48}{\sqrt{3}}$因此,$\triangle ABC$ 的面积为$\frac{24}{\sqrt{3}}$。
正余弦定理知识点与题型归纳

解三角形 一.正弦定理:A a sin =B bsin =C c sin =2R ,其中R 是三角形外接圆半径.正弦定理的如下变形常在解题中用到 1.(1) a=2RsinA (2) b=2RsinB (3) c=2RsinC 2.(1) sinA=a/2R (2) sinB=b/2R (3) sinC=c/2R3.a :b :c=sinA :sinB:sinC二.余弦定理:1. a^2 = b^2 + c^2 - 2·b ·c ·cosA2. b^2 = a^2 + c^2 - 2·a ·c ·cosB3. c^2 = a^2 + b^2 - 2·a ·b ·cosC 余弦定理的如下变形常在解题中用到1. cosC = (a^2 + b^2 - c^2) / (2·a ·b)2. cosB = (a^2 + c^2 - b^2) / (2·a ·c)3. cosA = (c^2 + b^2 - a^2) / (2·b ·c ) 三.余弦定理和正弦定理的面积公式S △ABC =21absinC=21bcsinA=21acsinB(常用类型:已知三角形两边及其夹角)判断三角形的形状有两种途径:(1)将已知的条件统一化成边的关系,用代数求和法求解(2)将已知的条件统一化成角的关系,用三角函数法求解三.解三角形的实际应用测量中相关的名称术语仰角:视线在水平线以上时,在视线所在的垂直平面,视线与水平线所成的角叫做仰角。
俯角:视线在水平线以下时,在视线所在的垂直平面,视线与水平线所成的角叫俯角方向角:从指定方向线到目标方向的水平角(一)已知两角及一边解三角形例1已知在△ABC中,c=10,A=45°,C=30°,求a、b和B.(二)已知两边和其中一边对角解三角形例2 在△ABC中,已知角A,B,C所对的边分别为a,b,C,若a=2√3,b =√6,A=45°,求边长C(三)已知两边及夹角,解三角形例3△ABC中,已知b=3,c=33,B=30°,求角A,角C和边a.例四:在△ABC中,若∠B=30°, AB=2, AC=2, 则△ABC的面积是例五.判断三角形的形状(1)正弦定理判断在△ABC中,若a2tan B=b2tan A,试判断△ABC的形状.(2)余弦定理判断在△ABC中,若b2sin2C+c2sin2B=2bc cos B cos C,试判断三角形的形状.例六判断解得个数不解三角形,判断下列三角形的解的个数:(1)a=5,b=4,A=120度(2)a=7,b=14,A=150度(3)a=9,b=10,A=60度(4)c=50,b=72,C=135度考试类型一、求解斜三角形中的基本元素指已知两边一角(或二角一边或三边),求其它三个元素问题,进而求出三角形的三线(高线、角平分线、中线)及周长等基本问题.1、ABC ∆中,3π=A ,BC =3,则ABC ∆的周长为( )A .33sin 34+⎪⎭⎫⎝⎛+πB B .36sin 34+⎪⎭⎫ ⎝⎛+πB C .33sin 6+⎪⎭⎫ ⎝⎛+πB D .36sin 6+⎪⎭⎫⎝⎛+πB 2、 在ΔABC 中,已知66cos ,364==B AB ,AC 边上的中线BD =5,求sin A 的值. 3、在△ABC 中,角A ,B ,C 所对的边长分别为a ,b ,c ,若∠C=120°,c=2a ,则 A.a >b B.a <b C. a =b D.a 与b 的大小关系不能确定 4、在△ABC 中,角A,B,C 的对边分别是a,b,c ,若223a b bc -=,sin 23sin C B =,则A=(A )030 (B )060 (C )0120 (D )0150 5、在ABC ∆中,a=15,b=10,A=60°,则cos B = A -223 B 223 C -63 D 636、在△ABC 中,若b = 1,c =3,23C π∠=,则a = 。
正余弦定理知识点总结及高考考试题型

三角函数五——正、余弦定理一、知识点 (一)正弦定理:2,sin sin sin a b cR A B C===其中R 是三角形外接圆半径. 变形公式:(1)化边为角:2sin ,2sin ,2sin ;a R A b R B c R C ===a b c3sin B C4(((解可 2、余弦定理可以解决的问题: (1)已知三边,求三个角;(解唯一)(2)已知两边和它们的夹角,求第三边和其他两个角;(解唯一):(3)两边和其中一边对角,求另一边,进而可求其它的边和角.(解可能不唯一)三、正、余弦定理的应用射影定理:cos cos ,cos cos ,cos cos .a b C c B b a C c A c a B b A =+=+=+有关三角形内角的几个常用公式 解三角形常见的四种类型(1)已知两角,A B 与一边a :由180A B C ++=︒及正弦定理sin sin sin a b cA B B==,可 求出C ∠,再求,b c 。
(2)已知两边,b c 与其夹角A ,由2222cos a b c bc A =+-,求出a ,再由余弦定理, 求出角,B C 。
(3)已知三边a b c 、、,由余弦定理可求出A B C ∠∠∠、、。
(4讲解 (知∆A ∠,A .由a c ==,075C ∠=,所以030B ∠=,1sin 2B =由正弦定理得1sin 2sin 2a b B A =⋅==,故选A(2013·新课标Ⅰ高考文科·T10)已知锐角△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,02cos cos 232=+A A ,7=a ,c=6,则=b ( ) A.10B.9C.8D.5【解题指南】由02cos cos 232=+A A ,利用倍角公式求出A cos 的值,然后利用正弦定理或余弦定理求得b 的值.【解析】选D.因为02cos cos 232=+A A ,所以01cos 2cos 2322=-+A A ,解得251cos 2=A , 方法一:因为△ABC 为锐角三角形,所以51cos =A ,562sin =A . 由正弦定理C cA a sin sin =得,C sin 65627=.6sin =C 所以sin =B5.方法二5∴sin 9、()0C =,求边又1+即12cos 0A -=,2,又0°<A<180°,所以A =60°.在△ABC 中,由正弦定理sin sin a b A B =得sin 2sin 2b A B a ===, 又∵b a <,所以B <A ,B =45°,C =75°,∴BC 边上的高AD 752sin(4530)=+在锐角△ABC 中,内角A,B,C 的对边分别为a,b,c ,且 b.(1)求角A 的大小.(2)若a=6,b+c=8,求△ABC 的面积.【解题指南】(1)由正弦定理易求角A 的大小;(2)根据余弦定理,借助三角形的面积公式求解.【解析】(1)由及正弦定理sin sin a bA B=,得, 因为(2)b 2+c 26、(3,则c =.4、(2012福建文)在ABC ∆中,已知60,45,BAC ABC BC ∠=︒∠=︒=,则AC =_______.【解析】由正弦定理得sin 45AC AC =⇒=︒5、(2011北京)在ABC 中,若15,,sin 43b B A π=∠==,则a = .【答案】325 【解析】:由正弦定理得sin sin a b A B =又15,,sin 43b B A π=∠==所以5,13sin 34a a π==1、在△ABC 中,角,,A B C 的对边分别为,,abc ,3A π=,1a b ==,则c =( )A 、1B 、2 C1 D 、32、在△ABC 中,分别为的对边.如果成等差数列,30°,△ABC 的面 A 、3)75213 C D 4B π=,则___________________.3,=60°AB 的长度等于13(20132012天津理)在ABC ∆中,内角A ,B ,C 所对的边分别是,,a b c ,已知8=5b c ,=2C B ,则cos C =()A .725B .725-C .725±D .2425【答案】A【解析】85,b c =由正弦定理得8sin 5sin B C =,又2C B =,8sin 5sin 2B B ∴=,所以8sin 10sin cos B B B =,易知247sin 0,cos ,cos cos 22cos 1525B B C B B ≠∴===-=(2013·湖南高考文科·T5)在锐角∆ABC 中,角A ,B 所对的边长分别为a ,b. 若2asinB=3b ,则角A 等于( ) A.3π B.4π C.6π D.12π【解题指南】本题先利用正弦定理B bA a sin sin =化简条件等式,注意条件“锐角三角形” .【解析】选A.由2asinB=3b 得2sinAsinB=3sinB,得sinA=23,所以锐角A=3π. (2013·湖南高考理科·T3)在锐角ABC ∆中,角,A B 所对的边长分别为,a b .若2sin ,a B A =则角等于A .12π(2013 A . 3 5,=在△B 0=. (1)(2)若a 【解题指南】(1)借助三角形内角和为π,结合三角恒等变换将条件中的等式转化为只含B 的方程,求出B 的三角函数值,进而可求出角B.(2)根据(1)求出的B 与a c 1+=,由余弦定理可得b 2关于a 的函数,注意到a c 1+=可知0a 1<<,进而可求出b 的范围.【解析】(1)由已知得cos(A B)cos A cos B A cos B 0-++-=,即sin Asin B A cos B 0=.因为sin A 0≠,所以sin B B 0=,又cosB 0≠,所以tan B =,又0B <<π,所以B 3π=.(2)由余弦定理,有222b a c 2accos B =+-,因为a c 1+=,1cos B 2=,所以2211b 3(a )24=-+,又因为0a 1<<,所以21b 14≤<,即1b 12≤<.1sin BAM ∠=∠(2013·上海高考文科·T5)已知∆ABC 的内角A 、B 、C 所对的边分别是a 、b 、c.若a +ab+b 2-c 2=0,则角C 的大小是 .【解析】π32212- cos 0- 222222=⇒-=+=⇒=++C ab c b a C c b ab a 【答案】π32设ABC ∆的内角A ,B ,C 的对边分别为c b a ,,,ac c b a c b a =+-++))(((I )求B ; (II )若413sin sin -=C A ,求C . 【解题指南】(I )由条件ac c b a c b a =+-++))((确定求B 应采用余弦定理. (II )应用三角恒等变换求出C A +及C A -的值,列出方程组确定C 的值. 【解析】(I )因为ac c b a c b a -=+-++))((.所以ac b c a -=-+222.222(II 221+=故-C A10、((I c = 所以A (2012(1(2【解析】(1) 3(cos cos sin sin )16cos cos 3cos cos 3sin sin 13cos()11cos()3BC B C B C B C B C B C A π+-=⎧⎪-=-⎪⎪+=-⎨⎪⎪-=-⎪⎩ 则1cos 3A =. (2)由(1)得sin A =,由面积可得bc=6①,则根据余弦定理2222291cos 2123b c a b c A bc +-+-===则2213b c +=②, ①②两式联立可得32b a =⎧⎪⎨=⎪⎩或32a b =⎧⎪⎨=⎪⎩ 7、(2011全国)△ABC 的内角A 、B 、C 的对边分别为a 、b 、c.己知sin csin sin sin a A C C b B +=.(I )求B ; (Ⅱ)若75,2,A b ==a c 求,. 【解析】(I)由正弦定理得222a cb +=2222cos b a c ac B =+-cos 2B =45B =(II sin30=故6a +=60645c b ==1、∆C 的对边分别为 )2 A A 、30° B 、30°或150° C 、60° D 、60°或120° 8、已知在△ABC 中,sin :sin :sin 3:2:4A B C =,那么cos C 的值为( )A 、14-B 、14C 、23- D 、2310、若△ABC 的内角,,,A B C 满足6sin 4sin 3sin A B C ==,则cos B =A B .34C D .111611、在ABC ∆中,角,,A B C 所对的边分,,a b c .若cos sin a A b B =,则2sin cos cos A A B +=A .-12 B .12C . -1D .112、已知在△ABC 中,10,a b A ===45°,则B = 。
高中数学 正余弦定理

正弦定理和余弦定理一:基础知识理解 1.正弦定理(1)S =12ah (h 表示边a 上的高);(2)S =12bc sin A =12ac sin B =12ab sin C ;(3)S =12r (a +b +c )(r 为三角形的内切圆半径).二:基础知识应用演练1.(2012·广东高考)在△ABC 中,若∠A =60°,∠B =45°,BC =32,则AC =( ) A .43 B .2 3 C. 3D.322.在△ABC 中,a =3,b =1,c =2,则A 等于( ) A .30° B .45° C .60°D .75°3.(教材习题改编)在△ABC 中,若a =18,b =24,A =45°,则此三角形有( )A .无解B .两解C .一解D .解的个数不确定4.(2012·陕西高考)在△ABC 中,角A ,B ,C 所对边的长分别为a ,b ,c .若a =2,B =π6,c =23,则b =________.5.△ABC 中,B =120°,AC =7,AB =5,则△ABC 的面积为________.解析:1选B 由正弦定理得:BC sin A =AC sin B ,即32sin 60°=AC sin 45°,所以AC =3232×22=2 3.2选C ∵cos A =b 2+c 2-a 22bc =1+4-32×1×2=12,又∵0°<A <180°,∴A =60°.3 选B ∵a sin A =b sin B ,∴sin B =b a sin A =2418sin 45°,∴sin B =223.又∵a <b ,∴B 有两个.4 由余弦定理得b 2=a 2+c 2-2ac cos B =4+12-2×2×23×32=4,所以b =2.答案:2 5、解析:设BC =x ,由余弦定理得49=25+x 2-10x cos 120°,整理得x 2+5x -24=0,即x =3. 因此S △ABC =12AB ×BC ×sin B =12×3×5×32=1534. 答案:1534小结:(1)在三角形中,大角对大边,大边对大角;大角的正弦值也较大,正弦值较大的角也较大,即在△ABC 中,A >B ⇔a >b ⇔sin A >sin B .(2)在△ABC 中,已知a 、b 和A 时,解的情况如下:A 为锐角A 为钝角 或直角图形关系式 a =b sin A b sin A <a <ba ≥b a >b 解的个数一解两解一解一解(1)利用正弦、余弦定理解三角形[例1] (2012·浙江高考)在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,且b sin A =3a cos B . (1)求角B 的大小; (2)若b =3,sin C =2sin A ,求a ,c 的值.解析:(1)由b sin A =3a cos B 及正弦定理a sin A =b sin B ,得sin B =3cos B ,所以tan B =3,所以B =π3. (2)由sin C =2sin A 及a sin A =csin C ,得c =2a .由b =3及余弦定理b 2=a 2+c 2-2ac cos B ,得9=a 2+c 2-ac . 所以a =3,c =2 3. 思考一下:在本例(2)的条件下,试求角A 的大小.方法小结:1.应熟练掌握正、余弦定理及其变形.解三角形时,有时可用正弦定理,有时也可用余弦定理,应注意用哪一个定理更方便、简捷.2.已知两角和一边,该三角形是确定的,其解是唯一的;已知两边和一边的对角,该三角形具有不唯一性,通常根据三角函数值的有界性和大边对大角定理进行判断.试题变式演练1.△ABC 的三个内角A ,B ,C 所对的边分别为a ,b ,c ,a sin A sin B +b cos 2A =2a .(1)求b a;(2)若c 2=b 2+3a 2,求B .解:(1)由正弦定理得,sin 2A sin B +sin B cos 2A = 2sin A ,即sin B (sin 2A +cos 2A )=2sin A . 故sin B = 2sin A ,所以ba= 2.(2)由余弦定理和c 2=b 2+3a 2,得cos B =(1+3)a2c .由(1)知b 2=2a 2,故c 2=(2+3)a 2.可得cos 2B =12,又cos B >0,故cos B =22,所以B =45°.(2)利用正弦、余弦定理判定三角形的形状[例2] 在△ABC 中a ,b ,c 分别为内角A ,B ,C 的对边,且2a sin A =(2b +c )sin B +(2c +b )sin C . (1)求A 的大小;(2)若sin B +sin C =1,试判断△ABC 的形状.[解析] (1)由已知,根据正弦定理得2a 2=(2b +c )·b +(2c +b )c ,即a 2=b 2+c 2+bc . 由余弦定理得a 2=b 2+c 2-2bc cos A ,故cos A =-12,∵0<A <180°,∴A =120°.(2)由(1)得sin 2A =sin 2B +sin 2C +sin B sin C =34 又sin B +sin C =1,解得sin B =sin C =12.∵0°<B <60°,0°<C <60°,故B =C , ∴△ABC 是等腰的钝角三角形.方法小结:依据已知条件中的边角关系判断三角形的形状时,主要有如下两种方法:(1)利用正、余弦定理把已知条件转化为边边关系,通过因式分解、配方等得出边的相应关系,从而判断三角形的形状;(2)利用正、余弦定理把已知条件转化为内角的三角函数间的关系,通过三角函数恒等变形,得出内角的关系,从而判断出三角形的形状,此时要注意应用A +B +C =π这个结论.[注意] 在上述两种方法的等式变形中,一般两边不要约去公因式,应移项提取公因式,以免漏解.试题变式演练 (2012·安徽名校模拟)已知△ABC 的三个内角A ,B ,C 所对的边分别为a ,b ,c ,向量m =(4,-1),n =⎝⎛⎭⎫cos 2A 2,cos 2A ,且m ·n =72. (1)求角A 的大小;(2)若b +c =2a =23,试判断△ABC 的形状.解:(1)∵m =(4,-1),n =⎝⎛⎭⎫cos 2A2,cos 2A , ∴m ·n =4cos 2A 2-cos 2A =4·1+cos A 2-(2cos 2A -1)=-2cos 2A +2cos A +3.又∵m ·n =72,∴-2cos 2A +2cos A +3=72,解得cos A =12.∵0<A <π,∴A =π3.(2)在△ABC 中,a 2=b 2+c 2-2bc cos A ,且a =3,∴(3)2=b 2+c 2-2bc ·12=b 2+c 2-bc .①又∵b +c =23, ∴b =23-c ,代入①式整理得c 2-23c +3=0,解得c =3,∴b = 3,于是a =b =c = 3,即△ABC 为等边三角形.(3)与三角形面积有关的问题[例3] (2012·新课标全国卷)已知a ,b ,c 分别为△ABC 三个内角A ,B ,C 的对边,a cos C +3a sin C -b -c =0.(1)求A ;(2)若a =2,△ABC 的面积为3,求b ,c .[解] (1)由a cos C +3a sin C -b -c =0及正弦定理得sin A cos C +3sin A sin C -sin B -sin C =0. 因为B =π-A -C , 所以3sin A sin C -cos A sin C -sin C =0. 由于sin C ≠0,所以sin ⎝⎛⎭⎫A -π6=12. 又0<A <π,故A =π3. (2)△ABC 的面积S =12bc sin A =3,故bc =4.而a 2=b 2+c 2-2bc cos A ,故b 2+c 2=8. 解得b =c =2. 方法小结:1.正弦定理和余弦定理并不是孤立的.解题时要根据具体题目合理选用,有时还需要交替使用. 2.在解决三角形问题中,面积公式S =12ab sin C =12bc sin A =12ac sin B 最常用,因为公式中既有边也有角,容易和正弦定理、余弦定理结合应用.试题变式演练 (2012·江西重点中学联考)在△ABC 中,12cos 2A =cos 2A -cos A .(1)求角A 的大小;(2)若a =3,sin B =2sin C ,求S △ABC .解:(1)由已知得12(2cos 2A -1)=cos 2A -cos A ,则cos A =12.因为0<A <π,所以A =π3.(2)由b sin B =c sin C ,可得sin B sin C =b c=2, 即b =2c . 所以cos A =b 2+c 2-a 22bc =4c 2+c 2-94c 2=12, 解得c =3,b =23,所以S △ABC =12bc sin A =12×23×3×32=332.课后强化与提高练习(基础篇-必会题)1.在△ABC 中,a 、b 分别是角A 、B 所对的边,条件“a <b ”是使“cos A >cos B ”成立的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件2.(2012·泉州模拟)在△ABC 中,a ,b ,c 分别是角A ,B ,C 所对的边.若A =π3,b =1,△ABC 的面积为32,则a 的值为( ) A .1 B .2 C.32D. 33.(2013·“江南十校”联考)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,已知a =23,c =22,1+tan A tan B =2c b,则C =( )A .30°B .45°C .45°或135°D .60°4.(2012·陕西高考)在△ABC 中 ,角A ,B ,C 所对边的长分别为a ,b ,c ,若a 2+b 2=2c 2,则cos C 的最小值为( )A.32B.22C.12D .-125.(2012·上海高考)在△ABC 中,若sin 2 A +sin 2B <sin 2C ,则△ABC 的形状是( ) A .锐角三角形 B .直角三角形 C .钝角三角形D .不能确定6.在△ABC 中,角A 、B 、C 所对的边分别是a 、b 、c .若b =2a sin B ,则角A 的大小为________. 解析:由正弦定理得sin B =2sin A sin B ,∵sin B ≠0,7.在△ABC 中,若a =3,b =3,A =π3,则C 的大小为________.8.(2012·北京西城期末)在△ABC 中,三个内角A ,B ,C 的对边分别为a ,b ,c .若b =25,B =π4,9.(2012·北京高考)在△ABC 中,若a =2,b +c =7,cos B =-14,则b =________.10.△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,a sin A +c sin C -2a sin C =b sin B . (1)求B ;(2)若A =75°,b =2,求a ,c .11.(2013·北京朝阳统考)在锐角三角形ABC 中,a ,b ,c 分别为内角A ,B ,C 所对的边,且满足3a -2b sin A =0.(1)求角B 的大小;(2)若a +c =5,且a >c ,b =7,求AB u u u r ·AC u u ur 的值.12.(2012·山东高考)在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,已知sin B (tan A +tan C )=tan A tan C .(1)求证:a ,b ,c 成等比数列; (2)若a =1,c =2,求△ABC 的面积S .课后强化与提高练习(提高篇-选做题)1.(2012·湖北高考)设△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c .若三边的长为连续的三个正整数,且A >B >C ,3b =20a cos A ,则sin A ∶sin B ∶sin C 为( )A .4∶3∶2B .5∶6∶7C .5∶4∶3D .6∶5∶42.(2012·长春调研)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,已知4sin 2A +B 2-cos 2C =72,且a +b =5,c =7,则△ABC 的面积为________.3.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且满足(2b -c )cos A -a cos C =0. (1)求角A 的大小;(2)若a =3,S △ABC =334,试判断△ABC 的形状,并说明理由.选做题1.已知a ,b ,c 分别是△ABC 的三个内角A ,B ,C 所对的边.若a =1,b =3,A +C =2B ,则sin C=________.2.在△ABC 中,a =2b cos C ,则这个三角形一定是( ) A .等腰三角形 B .直角三角形 C .等腰直角三角形D .等腰或直角三角形3.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,已知 cos 2C =-14.(1)求sin C 的值;(2)当a =2,2sin A =sin C 时,求b 及c 的长.4.设△ABC 的内角A ,B ,C 所对的边长分别为a ,b ,c , 且cos B =45,b =2.(1)当A =30°时,求a 的值;(2)当△ABC 的面积为3时,求a +c 的值.课后强化与提高练习(基础篇-必会题)解析1解析:选C a <b ⇔A <B ⇔cos A >cos B .2解析:选D 由已知得12bc sin A =12×1×c ×sin π3=32,解得c =2,则由余弦定理可得a 2=4+1-2×2×1×cos π3=3⇒a = 3.3解析:选B 由1+tan A tan B =2cb 和正弦定理得cos A sin B +sin A cos B =2sin C cos A ,即sin C =2sin C cos A ,所以cos A =12,则A =60°.由正弦定理得23sin A =22sin C ,则sin C =22,又c <a ,则C <60°,故C =45°. 4解析:选C 由余弦定理得a 2+b 2-c 2=2ab cos C ,又c 2=12(a 2+b 2),得2ab cos C =12(a 2+b 2),即cosC =a 2+b 24ab ≥2ab 4ab =12.6解析:选C 由正弦定理得a 2+b 2<c 2,所以cos C =a 2+b 2-c 22ab<0,所以C 是钝角,故△ABC 是钝角三角形.∴sin A =12,∴A =30°或A =150°.答案:30°或150°7解析:由正弦定理可知sin B =b sin Aa =3sinπ33=12,所以B =π6或5π6(舍去),所以C =π-A -B =π-π3-π6=π2.答案:π28解析:根据正弦定理得b sin B =c sin C ,则c =b sin Csin B=22,再由余弦定理得b 2=a 2+c 2-2ac cos B ,即a 2-4a -12=0,(a +2)(a -6)=0,解得a =6或a =-2(舍去).答案:22 69解析:根据余弦定理代入b 2=4+(7-b )2-2×2×(7-b )×⎝⎛⎭⎫-14,解得b =4.答案:4 10解:(1)由正弦定理得a 2+c 2-2ac =b 2.由余弦定理得b 2=a 2+c 2-2ac cos B . 故cos B =22,因此B =45°. (2)sin A =sin(30°+45°)=sin 30°cos 45°+cos 30°sin 45°=2+64. 故a =b ×sin A sin B =2+62=1+3,c =b ×sin C sin B =2×sin 60°sin 45°= 6.11解:(1)因为3a -2b sin A =0,所以 3sin A -2sin B sin A =0,因为sin A ≠0,所以sin B =32.又B 为锐角,所以B =π3. (2)由(1)可知,B =π3.因为b = 7.根据余弦定理,得7=a 2+c 2-2ac cos π3,整理,得(a +c )2-3ac =7.由已知a +c =5,得ac =6.又a >c ,故a =3,c =2. 于是cos A =b 2+c 2-a 22bc =7+4-947=714,所以AB u u u r ·AC u u u r =|AB u u u r |·|AC u u ur |cos A =cb cos A=2×7×714=1. 12解:(1)证明:在△ABC 中,由于sin B (tan A +tan C )= tan A tan C ,所以sin B ⎝⎛⎭⎫sin A cos A +sin C cos C =sin A cos A ·sin Ccos C , 因此sin B (sin A cos C +cos A sin C )=sin A sin C , 所以sin B sin(A +C )=sin A sin C . 又A +B +C =π,所以sin(A +C )=sin B ,因此sin 2B =sin A sin C .由正弦定理得b 2=ac ,即a ,b ,c 成等比数列.(2)因为a =1,c =2,所以b =2,由余弦定理得cos B =a 2+c 2-b 22ac =12+22-22×1×2=34, 因为0<B <π,所以sin B =1-cos 2B =74, 故△ABC 的面积S =12ac sin B =12×1×2×74=74. 课后强化与提高练习(提高篇-选做题)解析1解析:选D 由题意可得a >b >c ,且为连续正整数,设c =n ,b =n +1,a =n +2(n >1,且n ∈N *),则由余弦定理可得3(n +1)=20(n +2)·(n +1)2+n 2-(n +2)22n (n +1),化简得7n 2-13n -60=0,n ∈N *,解得n =4,由正弦定理可得sin A ∶sin B ∶sin C =a ∶b ∶c =6∶5∶4.2解析:因为4sin 2A +B 2-cos 2C =72,所以2[1-cos(A +B )]-2cos 2C +1=72, 2+2cos C -2cos 2C +1=72,cos 2C -cos C +14=0,解得cos C =12.根据余弦定理有cos C =12=a 2+b 2-72ab, ab =a 2+b 2-7,3ab =a 2+b 2+2ab -7=(a +b )2-7=25-7=18,ab =6,所以△ABC 的面积S △ABC =12ab sin C =12×6×32=332.答案:3323解:(1)法一:由(2b -c )cos A -a cos C =0及正弦定理,得(2sin B -sin C )cos A -sin A cos C =0,∴2sin B cos A -sin(A +C )=0,sin B (2cos A -1)=0. ∵0<B <π,∴sin B ≠0,∴cos A =12.∵0<A <π,∴A =π3. 法二:由(2b -c )cos A -a cos C =0,及余弦定理,得(2b -c )·b 2+c 2-a 22bc -a ·a 2+b 2-c 22ab=0, 整理,得b 2+c 2-a 2=bc ,∴cos A =b 2+c 2-a 22bc =12,∵0<A <π,∴A =π3. (2)∵S △ABC =12bc sin A =334, 即12bc sin π3=334,∴bc =3,①∵a 2=b 2+c 2-2bc cos A ,a =3,A =π3, ∴b 2+c 2=6,②由①②得b =c =3,∴△ABC 为等边三角形.选择题解析1解析:在△ABC 中,A +C =2B ,∴B =60°.又∵sin A =a sin B b =12,∴A =30°或150°(舍),∴C =90°,∴sin C =1.答案:12解析:选A 法一:(化边为角)由正弦定理知:sin A =2sin B cos C ,又A =π-(B +C ),∴sin A =sin(B +C )=2sin B cos C .∴sin B cos C +cos B sin C =2sin B cos C ,∴sin B cos C -cos B sin C =0,∴sin(B -C )=0.又∵B 、C 为三角形内角,∴B =C .法二:(化角为边)由余弦定理知cos C =a 2+b 2-c 22ab, ∴a =2b ·a 2+b 2-c 22ab =a 2+b 2-c 2a, ∴a 2=a 2+b 2-c 2,∴b 2=c 2,∴b =c .3解:(1)因为cos 2C =1-2sin 2C =-14,且0<C <π, 所以sin C =104. (2)当a =2,2sin A =sin C 时,由正弦定理a sin A =c sin C ,得c =4.由cos 2C =2cos 2C -1=-14,及0<C <π得cos C =±64. 由余弦定理c 2=a 2+b 2-2ab cos C ,得b 2±6b -12=0,解得b =6或26,所以⎩⎨⎧ b =6,c =4或⎩⎨⎧b =26,c =4.4 解:(1)因为cos B =45,所以sin B =35. 由正弦定理a sin A =b sin B ,可得a sin 30°=103,所以a =53. (2)因为△ABC 的面积S =12ac ·sin B ,sin B =35,所以310ac =3,ac =10. 由余弦定理得b 2=a 2+c 2-2ac cos B ,得4=a 2+c 2-85ac =a 2+c 2-16,即a 2+c 2=20. 所以(a +c )2-2ac =20,(a +c )2=40.所以a +c =210.。
正弦定理和余弦定理知识点与题型归纳

●高考明方向掌握正弦定理、余弦定理,并能解决一些简单的三角形度量问题.★备考知考情1.利用正、余弦定理求三角形中的边、角问题是高考考查的热点.2.常与三角恒等变换、平面向量相结合出现在解答题中,综合考查三角形中的边角关系、三角形形状的判断等问题.3.三种题型都有可能出现,属中低档题. 一、知识梳理名师一号P62知识点一 正弦定理其中R 为△ABC 外接圆的半径变形1:2sin ,2sin ,2sin ,===a R A b R B c R C 变形2:sin ,sin ,sin ,222===a b c A B C R R R变形3:∶∶∶∶sinA sinB sinC=a b c 注意:补充关于边的齐次式或关于角的正弦的齐次式均可利用正弦定理进行边角互化;知识点二 余弦定理222222222222222222cos ,22cos ,2cos ,cos ,22cos .cos .2⎧+-=⎪⎧=+-⎪+-⎪⎪=+-⇔=⎨⎨=+-⎪⎪⎩+-⎪=⎪⎩b c a A bc a b c bc A a c b b a c ac B B ac c a b ab C a b c C ab 注意:补充1关于边的二次式或关于角的余弦均可考虑利用余弦定理进行边角互化;2勾股定理是余弦定理的特例3在∆ABC 中,222090︒︒<+⇔<<a b c A用于判断三角形形状名师一号P63问题探究 问题3判断三角形形状有什么办法判断三角形形状的两种途径:一是化边为角;二是化角为边, 并常用正弦余弦定理实施边、角转换.知识点三 三角形中常见的结论△ABC 的面积公式有:①S =错误!a ·hh 表示a 边上的高;②S =错误!ab sin C =错误!ac sin B =错误!bc sin A =错误!;--知两边或两边的积及其夹角可求面积③S =错误!ra +b +cr 为内切圆半径.补充1++=A B C π2在三角形中大边对大角,大角对大边.3任意两边之和大于第三边,任意两边之差小于第三边.4有关三角形内角的常用三角函数关系式sin()sin ,cos()cos ,tan()tan sin cos ,cos sin 2222+=+=-+=-++==B C A B C A B C A B C A B C A 利用++=A B C π及诱导公式可得之5在△ABC 中的几个充要条件:名师一号P63问题探究 问题4sin A >sin B 错误!>错误! a >b A >B .补充 cos cos A B A B >⇔<若R ∈、αβ或2k απβπ=-+k Z ∈或2k αβπ=-+k Z ∈45套之7--196锐角△ABC 中的常用结论 ∆ABC 为锐角三角形⇔02<<、、A B C π4.解斜三角形的类型名师一号P63问题探究 问题1利用正、余弦定理可解决哪几类问题在解三角形时,正弦定理可解决两类问题:1已知两角及任一边,求其它边或角;2已知两边及一边的对角,求其它边或角.情况2中结果可能有一解、二解、无解,应注意区分.余弦定理可解决两类问题:1已知两边及夹角或两边及一边对角的问题;2已知三边问题.a b A补充已知两边和其中一边的对角如,,用正弦定理或余弦定理均可名师一号P63问题探究问题2选用正、余弦定理的原则是什么若式子中含有角的余弦或边的二次式,要考虑用余弦定理;若遇到的式子中含有角的正弦或边的一次式时,则考虑用正弦定理;以上特征都不明显时,则要考虑两个定理都有可能用到.补充:一、正弦定理推导必修5证明思路:转化到特殊情形----直角三角形中二、余弦定理推导必修52011年陕西高考考查余弦定理的证明18.本小题满分12分叙述并证明余弦定理;2222cos a b c bc A =+-, 2222cos b c a ca B =+-,2222cos c a b ab C =+-.证明:证法一 如图,2c BC = ()()AC AB AC AB =-•-即2222cos a b c bc A =+-同理可证 2222cos b c a ca B =+-,证法二 已知ABC ∆中,,,A B C 所对边分别为,,,a b c ,以A 为原点,AB 所在直线为x 轴建立直角坐标系,则(cos ,sin ),(,0)C b A b A B c ,∴222222222||(cos )(sin )cos 2cos sin a BC b A c b A b A bc A c b A ==-+=-++222cos b c bc A =+-,即 2222cos a b c bc A =+-同理可证 2222cos b c a ca B =+-,二、例题分析:一利用正、余弦定理解三角形例1.1名师一号P62 对点自测1在△ABC 中,A =60°,B =75°,a =10,则c 等于A .5错误!B .10错误! D .5错误!解析 由A +B +C =180°,知C =45°,由正弦定理得:错误!=错误!.即错误!=错误!. ∴c =错误!.注意:已知两角及任一边,求其它边或角----正弦定理,解唯一例1.2名师一号P62 对点自测2在△ABC 中,若a =3,b =错误!,A =错误!,则C 的大小为________.解析 由正弦定理可知sin B =错误!=错误!=错误!,所以B =错误!或错误!舍去,因为a >b 即A =错误!> B 所以B =错误!所以C =π-A -B =π-错误!-错误!=错误!.一解变式1: 在△ABC 中,若b =3,a =错误!,A =错误!, 则C 的大小为________.答案: sin B >1无解变式2:在ABC ∆中,已知45︒===a b B , 解ABC ∆.答案:60,75,︒︒+===A C c或120,15,2︒︒-===A C c两解变式3:求边c注意:知道两边和其中一边的对角如,,a b A 解三角形 可用正弦定理先求出角B 也可用余弦定理先求出边c 再求解;两种方法均须注意解的个数可能有一解、二解、无解,应注意区分.练习:补充2009山东文17已知函数x x x x f sin sin cos 2cossin 2)(2-+=ϕϕ ππϕ=<<x 在)0(处取最小值; I 求ϕ的值;Ⅱ在ABC ∆中,c b a ,,分别是角A,B,C 的对边,已知,23)(,2,1===A f b a 求角C; 解析 Ⅰfx =2sinx 1cos cos sin sin 2x x ϕϕ++- =sinx+ϕ.因为 fx 在x =π时取最小值,所以 sin π+ϕ=-1,故 sin ϕ=1.又 0<ϕ<π,所以ϕ=2π, Ⅱ由Ⅰ知fx=sinx+2π=cosx. 因为fA=cosA=3,且A 为△ABC 的角, 所以A =6π. 由正弦定理得 sinB =sin b A a =22, 又b >a, 当4π=B 时,,12746πππππ=--=--=B A C 当43π=B 时,.12436πππππ=--=--=B A C 综上所述,12127ππ==C C 或例2. 补充若满足条件060=C ,a BC AB ==,3的ABC ∆有两个,求a 的取值范围. 32<<a注意:判断三角形解的个数常用方法:1在ABC ∆中,已知,,A a b ;构造直角三角形判断 2利用余弦定理判断一元二次方程正根个数 勿忘大边对大角判断已知两边及其中一边对角,判断三角形解的个数的方法:①应用三角形中大边对大角的性质以及正弦函数的值域判断解的个数.②在△ABC 中,已知a 、b 和A ,以点C 为圆心,以边长a 为半径画弧,此弧与除去顶点A 的射线AB 的公共点的个数 即为三角形的个数,解的个数见下表:图示已知a 、b 、A ,△ABC 解的情况.ⅰA 为钝角或直角时解的情况如下:ⅱA 为锐角时,解的情况如下:③运用余弦定理转化为关于一元二次方程 正根个数问题练习:已知ABC ∆中,若22,2==b a ,且三角形有两解,求角A 的取值范围;答案:由条件知b sin A <a ,即2错误!sin A <2, ∴sin A <错误!,∵a <b ,∴A <B ,∴A 为锐角,∴0<A <错误!.例3.1名师一号P62 对点自测3在△ABC 中,a =错误!,b =1,c =2,则A 等于A .30°B .45°C .60°D .75° 解析 由余弦定理得:cos A =错误!=错误!=错误!,∵0<A <π,∴A =60°.注意:已知三边,求其它边或角---余弦定理例3.2名师一号P63 高频考点例122014·新课标全国卷Ⅱ钝角三角形ABC的面积是错误!,AB=1,BC=错误!,则AC=A.5 C.2 D.1解:由题意知S=错误!AB·BC·sin B,△ABC即错误!=错误!×1×错误!sin B,解得sin B=错误!,∴B=45°或B=135°.当B=45°时,AC2=AB2+BC2-2AB·BC·cos B=12+错误!2-2×1×错误!×错误!=1.此时AC2+AB2=BC2,△ABC为直角三角形,不符合题意;当B=135°时,AC2=AB2+BC2-2AB·BC·cos B=12+错误!2-2×1×错误!×错误!=5,解得AC=错误!.符合题意.故选B.注意:已知两边夹角,求其它边或角---余弦定理小结:已知与待求涉及三边和一角的关系---余弦定理例4.1名师一号P63 高频考点例112014·江西卷在△ABC中,内角A,B,C所对的边分别是a,b,c,若3a=2b,则错误!的值为A.-错误!C.1解:∵3a=2b,∴由正弦定理得错误!=错误!=错误!.∴错误!=错误!,∴错误!=2×错误!-1=2×错误!-1=错误!-1=错误!.例4.2名师一号P62 对点自测已知△ABC三边满足a2+b2=c2-错误!ab,则此三角形的最大内角为__________.解析∵a2+b2-c2=-错误!ab,∴cos C=错误!=-错误!,故C=150°为三角形的最大内角.注意:1关于边的齐次式或关于角的正弦的齐次式均可利用正弦定理进行边角互化;2关于边的二次式或关于角的余弦均可考虑利用余弦定理进行边角互化.注意等价转换练习:2010·天津理在△ABC中,内角A,B,C的对边分别是a,b,c,若a2-b2=错误!bc,sin C=2错误!sin B,则A=A.30°B.60°C.120°D.150°解:由余弦定理得:cos A=错误!,由题知b2-a2=-错误!bc,c2=2错误!bc,则cos A=错误!, 又A∈0°,180°,∴A=30°,故选A.注意:已知三边比例关系---余弦定理二三角形的面积例1.1名师一号P62 对点自测62014·福建卷在△ABC中,A=60°,AC=4,BC=2错误!,则△ABC的面积等于________.解析由题意及余弦定理得cos A=错误!=错误!=错误!,解得c=2.所以S=错误!bc sin A=错误!×4×2×sin60°=2错误!.故答案为2错误!.注意:a b A解三角形可用正知道两边和其中一边的对角如,,弦定理先求出角B也可用余弦定理先求出边c再求解;两种方法均须注意解的个数本例用余弦求边更快捷.例1.2名师一号P63 高频考点例32014·浙江卷在△ABC中,内角A,B,C所对的边分别为a,b,c.已知a≠b,c=错误!,cos2A-cos2B=错误!sin A cos A-错误! sin B cos B.1求角C的大小;2若sin A=错误!,求△ABC的面积.解:1由题意得错误!-错误!=错误!sin2A-错误!sin2B,即错误!sin2A-错误!cos2A=错误!sin2B-错误! cos2B,sin错误!=sin错误!.由a≠b,得A≠B,又A+B∈0,π.得2A-错误!+2B-错误!=π,即A+B=错误!,所以C=错误!.2由c=错误!,sin A=错误!,错误!=错误!,得a=错误!.由a<c,得A<C,从而cos A=错误!,故sin B=sin A+C=sin A cos C+cos A sin C=错误!.所以△ABC的面积为S=错误!ac sin B=错误!.规律方法三角形面积公式的应用原则1对于面积公式S=错误!ab sin C=错误!ac sin B=错误! bc sin A,一般是已知哪一个角就使用哪一个公式.2与面积有关的问题,一般要用到正弦定理或余弦定理进行边和角的转化.三三角形形状的判定例1.1名师一号P63 高频考点例2在△ABC中a,b,c分别为内角A,B,C的对边,且2a sin A =2b+c sin B+2c+b sin C.1求A的大小;2若sin B+sin C=1,试判断△ABC的形状.解:1由已知,根据正弦定理得2a2=2b+c·b+2c+bc,即a2=b2+c2+bc.由余弦定理得a2=b2+c2-2bc cos A,故cos A=-错误!,∵0<A<180°,∴A=120°.2由1得sin 2A =sin 2B +sin 2C +sin B sin C =错误!.又sin B +sin C =1,解得sin B =sin C =错误!.∵0°<B <60°,0°<C <60°,故B =C =30°,A =120°.∴△ABC 是等腰钝角三角形.法二:因为A =120°,且A +B +C=180°所以sin B +sin C =1即sin60°-C +sin C =1 可求得C=30°例1.2补充根据所给条件,判断△ABC 的形状.1若a cos A =b cos B ,则△ABC 形状为________. 2若错误!=错误!=错误!,则△ABC 形状为________. 解析:1 解法一: 由正弦定理得sinA cos A =sinB cos B 即sin2A =sin2B22A B ∴= 或 22A B π=-A B ∴= 或 2A B π+= ∴△ABC 是等腰三角形或直角三角形.解法二:由余弦定理得a cos A =b cos Ba ·错误!=b ·错误!a 2c 2-a 4-b 2c 2+b 4=0,∴a 2-b 2c 2-a 2-b 2=0∴a 2-b 2=0或c 2-a 2-b 2=0∴a =b 或c 2=a 2+b 2∴△ABC是等腰三角形或直角三角形.2由正弦定理得错误!=错误!=错误!即tan A=tan B=tan C,∵A、B、C∈0,π,∴A=B=C,∴△ABC为等边三角形.注意:利用正、余弦定理进行边角互化1关于边的齐次式或关于角的正弦的齐次式均可利用正弦定理进行边角互化;2关于边的二次式或关于角的余弦均可考虑利用余弦定理进行边角互化;规律方法依据已知条件中的边角关系判断三角形的形状时,主要有如下两种方法:1利用正、余弦定理把已知条件转化为边边关系,通过因式分解、配方等得出边的相应关系,从而判断三角形的形状.2利用正、余弦定理把已知条件转化为内角的三角函数间的关系,通过三角函数恒等变形,得出内角的关系,从而判断出三角形的形状,此时要注意应用A+B+C=π这个结论.加加练P9 第6题∆中,已知ABC∆为则ABCA.等边三角形B.等腰直角三角形C.锐角三角形D.钝角三角形答案:B计时双基练P252 第2题四三角形的综合问题例1.补充 在△ABC 中,sinC-A=1,sinB=31. Ⅰ求sinA 的值;Ⅱ设AC=错误!,求△ABC 的面积.解:Ⅰ由2C A π-=,且C A B π+=-,∴42B A π=-,∴sin sin()sin )42222B B B A π=-=-, ∴211sin (1sin )23A B =-=,又sin 0A >,∴sin A = Ⅱ如图,由正弦定理得sin sin AC BC B A=∴sin 31sin 3AC A BC B ===, 又sin sin()sin cos cos sin C A B A B A B =+=+∴11sin 223ABC S AC BC C ∆=••==注意:关注三角形内角和、特殊角、三角恒等变换公式、 知两边夹角求面积公式的选择;例2.补充已知ABC ∆中,角A B C 、、所对的边 A BC分别为a b c 、、,3B π∠=,b =求a c +的取值范围解法一:正弦定理结合三角最值 当且仅当62A ππ+=即3A π=时等号成立 法二:余弦定理结合不等式 由2222cos b a c ac B =+-得2228a c ac =+-即()2283a c ac =+-a c ∴+≤当且仅当a c =时等号成立 又三角形两边之和大于第三边注:这是一道好题,刚好都能运用“正余弦定理求解最值问题”的两种主要方法解决; 小结:借助正弦定理,转化为角的正弦值,利用三角函数最值求解借助余弦定理,转化为边的关系,利用均值不等式求解余弦定理注意两数和差与这两数的平方和、两数的积 的关系的运用练习:加加练P11 第11题已知△ABC 中,外接圆半径是1,且满足()()222sin sin sin sin A C A B b -=-,则△ABC 面积的最大值为答案:4计时双基练P251 第6题补充已知向量(sin ,1)2A m =-,()2,cos()nBC =+, ,,A B C 为锐角..ABC ∆的内角,其对应边为a ,b ,c . Ⅰ当m n ⋅取得最大值时,求角A 的大小;Ⅱ在Ⅰ成立的条件下,当a =,求22b c +的取值范围. 解:Ⅰ2(sin 212sin 22sin 2cos 2sin2)cos(sin 22--=++-=+=+-=⋅A A A A A C B A nm 0,0,0sin 2242A A A ππ<<∴<<∴<<,1sinA ∴=时,即A π=时,m n ⋅取得最大值,∴A π=正弦定理:2sin sin sin ===a b c R A B C其中R 为△ABC 外接圆的半径 22442cos 22cos(2)3sin 2cos 242sin(23b c B B B B B π+=---=-+=-ABC ∆为锐角三角形★注意:∆ABC 为锐角三角形⇔02<<、、A B C π讲评:1、计时双基练 P252 基础11---多个三角形问题2014·湖南卷如图,在平面四边形ABCD 中,AD =1,CD =2,AC =错误!.1求cos ∠CAD 的值;2若cos ∠BAD =-错误!,sin ∠CBA =错误!,求BC 的长.解 1由余弦定理可得cos ∠CAD =错误!=错误!=错误!,∴cos ∠CAD =错误!.2∵∠BAD 为四边形内角,∴sin ∠BAD >0且sin ∠CAD >0,则由正余弦的关系可得sin ∠BAD =错误!=错误!,且sin ∠CAD =错误!=错误!,由正弦的和差角公式可得sin ∠BAC =sin ∠BAD -∠CAD=sin ∠BAD cos ∠CAD -sin ∠CAD cos ∠BAD=错误!×错误!-错误!×错误!=错误!+错误!=错误!, 再由△ABC 的正弦定理可得错误!=错误!BC =错误!×错误!=3.2、45套之7--192---方程的思想课后作业一、计时双基练P251基础1-6;课本P63变式思考1、3补充练习1、2、3二、计时双基练P251基础7-11;培优1-4课本P63变式思考2三、课本P64典例、※对应训练补充练习4、5预习 第七节补充练习:1、2009山东文17已知函数x x x x f sin sin cos 2cos sin 2)(2-+=ϕϕ ππϕ=<<x 在)0(处取最小值; I 求ϕ的值;Ⅱ在ABC ∆中,c b a ,,分别是角A,B,C 的对边,已知,23)(,2,1===A f b a 求角C;解析Ⅰfx =2sinx 1cos cos sin sin 2x x ϕϕ++- =sinx+ϕ.因为 fx 在x =π时取最小值,所以 sin π+ϕ=-1,故 sin ϕ=1. 又 0<ϕ<π,所以ϕ=2π, Ⅱ由Ⅰ知fx=sinx+2π=cosx. 因为fA=cosA=3,且A 为△ABC 的角, 所以A =6π. 由正弦定理得 sinB =sin b A a =22, 又b >a,当4π=B 时,,12746πππππ=--=--=B A C 当43π=B 时,.12436πππππ=--=--=B A C 综上所述,12127ππ==C C 或 2、 已知ABC ∆中,若22,2==b a ,且三角形有两解,求角A 的取值范围;答案:由条件知b sin A <a ,即2错误!sin A <2,∴sin A <错误!,∵a <b ,∴A <B ,∴A 为锐角,∴0<A <错误!.3、已知△ABC 中,∠A =60°,BC=2错误!,则其外接圆面积为__________.答案:4π★注意:勿忘正弦定理中三角形各边与对角正弦的比为外接圆直径sin sin in 2s a b c A B R C=== R 为三角形外接圆半径 4、在四边形ABCD 中,∠B =∠D =90°,∠A =60°, AB =4,AD =5,则AC 的长为B .2错误!解析 如图,连结AC ,设∠BAC =α,则AC ·cos α=4,AC ·cos60°-α=5,两式相除得,错误!=错误!,展开解得,tan α=错误!∵α为锐角,∴cos α=错误!∴AC =错误!=2错误!解法二:补充△ABD 中,由余弦定理得21BD =由∠B =∠D =90°知AC 为△ABD 的外接圆直径由正弦定理得2127sin sin 620BD AC R A ︒====5、已知向量(sin ,1)2A m =-,()2,cos()nBC =+, ,,A B C 为锐角..ABC ∆的内角,其对应边为a ,b ,c .Ⅰ当m n ⋅取得最大值时,求角A 的大小; Ⅱ在Ⅰ成立的条件下,当a =, 求22b c +的取值范围. 解:Ⅰ2(sin 212sin 22sin 2cos 2sin2)cos(sin 22--=++-=+=+-=⋅A A A A A C B A nm 0,0,0sin 2242A A A ππ<<∴<<∴<<,1sinA ∴=时,即A π=时,m n ⋅取得最大值,∴A π=正弦定理:2sin sin sin ===a b c R A B C其中R 为△ABC 外接圆的半径 22442cos 22cos(2)2cos 242sin(23b c B B B B B π+=---=-+=-∆ABC 为锐角三角形⇔02<<、、A B C π6、2013年广州二模文数 第17题某单位有A 、B 、C 三个工作点,需要建立一个公共无线网络发射点O ,使得发射点到三个工作点的距离相等.已知这三个工作点之间的距离分别为80AB =m ,70BC =m ,50CA =m .假定A 、B 、C 、O 四点在同一平面上.1求BAC ∠的大小;2求点O 到直线BC 的距离.答案13BAC π∠=23m 课后作业三、计时双基练P251基础1-6;课本P63变式思考1补充练习1、3、例2四、计时双基练P251基础7-11;培优1-4课本P63变式思考3补充练习2三、课本P63变式思考2课本P64典例、※对应训练补充练习4、5预习 第七节。
正余弦定理在解三角形中的应用知识点与题型归纳

正余弦定理在解三角形中的应用知识点与题型归纳一、知识点(一). 正弦定理和余弦定理 1.公式在△ABC 中,若角A ,B ,C 所对的边分别是a ,b ,c ,R 为△ABC 的外接圆半径,则定理正弦定理余弦定理内容a sin A =b sin B =c sin C =2R.a 2=b 2+c 2-2bccosA ;b 2=c 2+a 2-2cacosB ; c 2=a 2+b 2-2abcosC变形(1)a =2Rsin A ,b =2Rsin B ,c =2Rsin C ;(2)a ∶b ∶c =sin A ∶sin B ∶sin C ; (3)a +b +c sin A +sin B +sin C=a sin A =2R. bc a c b A 2cos 222-+=;ac b c a B 2cos 222-+=;abc b a C 2cos 222-+=.2.三角形常用面积公式:(1)S =12a ·h a (h a 表示边a 上的高); (2)A bc B ac C ab S sin 21sin 21sin 21===. 3.常用结论:(1).在△ABC 中,A >B ⇔a >b ⇔sin A >sin B; (2).三角形中的射影定理在△ABC 中,B c C b a cos cos +=;A c C a b cos cos +=;B a A b c cos cos +=.(3).内角和公式的变形①sin(A +B)=sin C ;②cos(A +B)=-cos C.(4).角平分线定理:在△ABC 中,若AD 是角A 的平分线,如图,则AB AC =BDDC .(二). 利用正、余弦定理解三角形已知两边和一边的对角或已知两角及一边时,通常选择正弦定理解三角形;已知两边及夹角或已知三边时,通常选择余弦定理.特别是求角时尽量用余弦定理来求,尽量避免分类讨论.在△ABC 中,已知,a b 和A 时,解的情况主要有以下几类:①若A 为锐角时:a bsin Aa bsin A()bsin A a b ()a b ()<⎧⎪=⎪⎨<<⎪⎪≥⎩无解一解直角二解一锐,一钝一解锐角A b a sin = b a ≥ b a A b <<sin sin a b A <一解 一解 两解 无解 ② 若A 为直角或钝角时:a b a b ()≤⎧⎨>⎩无解一解锐角(三). 三角形的形状的判定 1.判断三角形形状的(1). 若b a =或()()()0=---a c c b b a ,则△ABC 为等腰三角形; (2). 若222c b a =+,则△ABC 为以C 为直角的直角三角形; (3). 若222c b a <+,则△ABC 为以C 为钝角的钝角三角形; (4). 若()()022222=-+-c b aba ,则△ABC 为等腰三角形或直角三角形;(5). 若b a =且222c b a =+,则△ABC 为等腰直角三角形;(6). 若B A 2sin 2sin =,即B A =或π2=+B A ,则△ABC 为等腰三角形或直角三角形; (7). 用余弦定理判定三角形的形状(最大角A 的余弦值的符号)①.在ABC ∆中,222222090cos 02b c a A A b c a bc+-<<⇔=>⇔+>,则△ABC 为锐角三角形; ②.在ABC ∆中,22222290cos 02b c a A A b c a bc+-=⇔==⇔+=,则△ABC 为直角三角形; ③.在ABC ∆中,22222290cos 02b c a A A b c a bc+-<⇔=<⇔+<,则△ABC 为钝角三角形; 2.判断三角形形状的2种思路(1).化边:通过因式分解、配方等得出边的相应关系,从而判断三角形的形状.(2).化角:通过三角恒等变形,得出内角的关系,从而判断三角形的形状.此时要注意应用π=++C BA这个结论.(四). 解三角形时的常用结论在ABC ∆中,0180A B C ++=,0902A B C++= (1)在ABC ∆中sin sin cos cos ;A B a b A B A B >⇔>⇔>⇔<(2)角的变换--互补关系:0sin(A+B)=sin(180)sinC C -=,0cos(A+B) cos (180)cosC C =-=-,0tan(A+B) tan(180)tan C C =-=-;(3)角的变换--互余关系:0sinsin (90)cos 222A B C C +=-=,0cos cos(90)sin 222A B C C+=-=, (4)B A B A 222sin 2sin =⇒=或π=+B A 22B A =⇒或2π=+B A .二、典型例题类型一:利用正、余弦定理解三角形【例1】.△ABC 中,,6c =A=45°,a=2,求b 和B ,C.【解答】:解法一 :由正弦定理a c 2=sin C=sin A sin C sin 45sin C 2=︒得,所以若C=60°,则B=75°,a 2b sin B sin 751,sin A sin 45==︒=︒若C=120°,则B=15°,a 2b sin B sin15 1.sin A sin 45==︒=︒解法二:余弦定理2222a b c 2bccos A b 641,=+-=+-=,解得若222a c b b 1cos B==B=75C=602ac +-=︒︒,则,若222a c b b 1,cos B==B=15C=120.2ac 4+-=︒︒则, 解法三:正余弦定理2222a b c 2bccos A b 641=+-=+-=,解得若a b c b 1==sin B=C=sin A sin B sinC 42=,则由,得因为b>c>a ,所以B>C>A ,所以B=75°,C=60°;若a b c b 1==sin B=,sin C=,sin A sin B sinC 42=,则由,得 因为c>a>b ,所以C>A>B ,所以B=15°,C=120°.类型二:用正、余弦定理判断三角形的形状【例2】.已知△ABC 中cos cos a A b B =,试判断△ABC 的形状.【解答】:方法一:用余弦定理化角为边的关系由cos cos a A b B =得22222222b c a a c b a b bc ac+-+-⋅=⋅⇒22222222()()a b c a b a c b +-=+-,即22222()()0a b a b c -+-=,当220a b -=时,ABC ∆为等腰三角形;当2220a b c +-=即222a b c +=时,则ABC ∆为直角三角形; 综上:ABC ∆为等腰或直角三角形.方法二:用正弦定理化边为角的关系 由正弦定理得:R Bb A a 2sin sin ==,即A R a sin 2=,B R b sin 2= 因为cos cos a A b B =,所以2sin cos 2sin cos =R A A R B B ,即sin2sin2=A B , 因为()π,0,∈B A , 所以22=A B 或22+=A B π,即=A B 或2+=A B π故ABC ∆为等腰三角形或直角三角形. 【总结升华】(1)要判断三角形的形状特征,必须深入研究边与边的大小关系:是否两边相等?是否三边相等?是否符合勾股定理?还要研究角与角的大小关系:是否两个角相等?是否三个角相等?有无直角或钝角?(2)解题的思想方法是:从条件出发,利用正、余弦定理等进行代换、转化、化简、运算,找出边与边的关系或角与角的关系,从而作出正确判断.(3)一般有两种转化方向:要么转化为边,要么转化为角.(4)判断三角形形状时,用边做、用角做均可.一般地,题目中给的是角,就用角做;题目中给的是边,就用边做,边角之间的转换可用正弦定理或余弦定理.(5)βαβα=⇒=sin sin 或βπα-=,不要丢解.在△ABC 中,已知2222()sin()()sin()a b A B a b A B -+=+-,试判断三角形的形状.【解答】:因为2222()sin()()sin()a b A B a b A B -+=+-,所以222sin cos 2sin cos a B A b A B =, 由正弦定理得:22sin sin cos sin sin cos A B A B A B =,因为ABC ∆中,sin 0A ≠, sin 0B ≠,所以sin cos sin cos A A B B ⋅=⋅,即sin 2sin 2A B =, 所以22A B =或22A B π=-,即:A B =或2π=+B A , 所以ABC ∆是等腰三角形或直角三角形.类型三:与三角形面积有关的问题【例3】.△ABC 的内角A ,B ,C 的对边分别为a ,b ,c.已知sin A +3cos A =0,a =27,b =2.(1)求c ;(2)[一题多解]设D 为BC 边上一点,且AD ⊥AC ,求△ABD 的面积. 【解答】:(1)由已知条件可得tan A =-3,()π,0∈A ,所以32π=A , 在△ABC 中,由余弦定理得32cos 44282πc c -+=,即c 2+2c -24=0, 解得c =-6(舍去),或c =4.(2)法一:如图,由题设可得2π=∠CAD ,所以6π=∠-∠=∠CAD BAC BAD ,故△ABD 面积与△ACD 面积的比值为1216sin21=⋅⋅⋅AD AC AD AB π, 又△ABC 的面积为12×4×2sin ∠BAC =23, 所以△ABD 的面积为 3.法二:由余弦定理得cos C =27, 在Rt △ACD 中,cos C =ACCD ,所以CD =7,所以AD =3,DB =CD =7, 所以S △ABD =S △ACD =12×2×7×sin C =7×37= 3.法三:∠BAD =π6,由余弦定理得cos C =27,所以CD =7,所以AD =3,所以S △ABD =12×4×3×sin ∠DAB = 3. 【总结升华】(1)若已知一个角(角的大小或该角的正弦值、余弦值),一般结合题意求夹这个角的两边或两边之积,再代入公式求解;(2)若已知三边,可先求一个角的余弦值,再求正弦值,最后代入公式得面积;(3)若求面积的最值,一般表示为一个内角的三角函数,利用三角函数的性质求解,也可结合基本不等式求解.(2021·新高考2)在△ABC 中,角A 、B 、C 所对的边长分别为a 、b 、c ,1b a =+,2c a =+. (1)若2sin 3sin C A =,求△ABC 的面积;(2)是否存在正整数a ,使得△ABC 为钝角三角形?若存在,求出a 的值;若不存在,说明理由.【解析】:(1)因为2sin 3sin C A =,则()2223c a a =+=,则4a =,故5b =,6c =,2221cos 28a b c Cab,所以,C 为锐角,则sin 8C ==,因此,11sin 4522ABC S ab C ==⨯⨯=△ (2)显然c b a >>,若ABC 为钝角三角形,则C 为钝角,由余弦定理可得()()()()22222221223cos 022121a a a a b c a a C ab a a a a ++-++---===<++,解得13a -<<,则0<<3a ,由三角形三边关系可得12a a a ++>+,可得1a >,因为Z a ∈,故2a =.类型四:利用正、余弦定理求边角的范围问题【例4】.锐角 △ABC 中,a,b,c 分别是角A,B,C 的对边.(1)若()()(),a c a c b b c +-=-求A 的大小 (2)⎪⎭⎫⎝⎛++=62sin sin 22πB B y 取最大值时,求B 的大小. 【解答】:(1)因为()()(),a c a c b b c +-=-,所以222.b c a bc +-=,故由余弦定理得212cos 222=-+=bc a c b A ,因为A 是锐角三角形的内角,所以20π<<A ,所以3π=A .(2)22sin sin(2)6y B B π=++=1cos2sin 2coscos2sin66B B B ππ-++11cos221sin(2)26B B B π=-=+-,当且仅当3B π=时取等号,所以3π=A .【总结升华】对于三角形中边角的最大值或最小值问题可以运用正弦定理或余弦定理建立所求变量与三角形的角或边之间的函数关系,利用正、余弦函数的有界性或二次函数的知识解决问题. 【变式】已知在锐角ABC ∆中,,,a b c 为角A ,B ,C 所对的边,()22cos 2cos 2Bb c A a a -=- (1)求角A 的值; (2)若a =则求b c +的取值范围.【解答】:(1)在锐角ABC ∆中,根据()21cos 2cos 2cos 2,22B B b c A a a a a +-=-=-⋅ 利用正弦定理可得()sin 2sin cos sin (cos )BC A A B -=- ,即sin cos cos sin 2sin cos B A B A C A += ,即sin()2sin cos A B C A +=,即sin 2sin cos ,C C A = 所以21cos =A ,所以3π=A ,若a = 则由正弦定理可得2sin sin sin b c aB C A===,所以()⎥⎦⎤⎢⎣⎡⎪⎭⎫⎝⎛-+=+=+B B C B c b 32sin sin 2sin sin 2π⎪⎭⎫ ⎝⎛+=+=6sin 32cos 3sin 3πB B B .由于022032B B πππ⎧<<⎪⎪⎨⎪<-<⎪⎩⇒26ππ<<B ⇒3263πππ<+<B , 所以⎥⎦⎤ ⎝⎛∈⎪⎭⎫ ⎝⎛+1,236sin πB ,所以(]32,3∈+c b .【例5】.在△ABC 中,a,b,c 分别是角A,B,C 所对的边,53cos =B ,7=a ,且21-=⋅→→BC AB ,求角C 的大小.【解答】:因为21-=⋅→→BC AB ,所以21=⋅→→BC BA , 所以21cos cos ==⋅=⋅→→→→B ac B BC BA BC BA .又53cos =B ,所以54sin =B ,35=ac . 又7=a ,所以5=c ,所以325357257cos 222222=⨯⨯⨯-+=-+=B ac c a b ,所以24=b . 由正弦定理B bC c sin sin =,得.2254245sin sin =⨯==B b c C因为b c <,所以C 为锐角,所以45=C . 【总结升华】利用正、余弦定理解决三角形中与平面向量有关的问题时,注意数量积定义的应用,其中特别注意向量的夹角与三角形内角之间的关系,例如→AB 与→AC 的夹角等于内角A,但→AB 与→CA 的夹角等于内角A 的补角.在ABC ∆中,a,b,c 分别是角A,B,C 的对边,tan C = (1). 求cos C(2). 若5,2CB CA ⋅= 且9,a b +=求c【解答】:(1)因为tan C =sin cos CC=又因为22sin cos 1C C +=,解得1cos 8C =±.因为tan 0,C >所以C 是锐角,1cos 8C =(2)因为5,2CB CA ⋅=所以5cos 2ab C =,所以20ab =又因为9=+b a ,所以81222=++b ab a ,所以4122=+b a , 所以36cos 2222=-+=C ab b a c ,所以6=c .【例6】.如图所示,已知半圆O 的直径为2,点A 为直径延长线上的一点,OA =2,点B 为半圆上任意一点, 以AB 为一边作等边三角形ABC ,求B 在什么位置时,四边形OACB 面积最大.【解答】:设∠AOB =α,在△ABO 中,由余弦定理),0(,cos 45cos 21221222πααα∈-=⋅⨯⨯-+=AB ,所以243sin 21AB OB OA S S S ABC AOB +⋅⋅⋅=+=∆∆α)cos 45(43sin 1221αα-+⨯⨯⨯=345cos 3sin +-=αα3453sin 2+⎪⎭⎫ ⎝⎛-=πα. 因为πα<<0,所以当23ππα=-,πα65=,即π65=∠AOB 时,四边形OACB 的面积最大. 如图所示,在平面四边形ABCD 中,AB =AD =1,θ=∠BAD ,△BCD 是正三角形.(1)将四边形ABCD 的面积S 表示为θ的函数; (2)求S 的最大值及此时θ角的值. 【解答】:(1)△ABD 的面积θθsin 21sin 11211=⨯⨯⨯=S , 由于△BCD 是正三角形,则△BCD 的面积S 2=34BD 2.在△ABD 中,由余弦定理可知θθcos 22cos 11211222-=⨯⨯⨯-+=BD , 于是四边形ABCD 的面积()θθcos 2243sin 21-+=S , 所以S =32+sin ⎪⎭⎫ ⎝⎛-3πθ,πθ<<0.(2)由S =32+sin ⎪⎭⎫ ⎝⎛-3πθ及πθ<<0,得3233ππθπ<-<-,当23ππθ=-,即65πθ=时,S 取得最大值1+32. 类型八:与正、余弦定理有关的综合题【例8】.(2019·全国卷Ⅰ)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .设()C B A C B sin sin sin sin sin 22-=-.①求A ;②若2a +b =2c ,求sin C.【解答】:①由已知得C B A C B sin sin sin sin sin 222=-+,故由正弦定理得bc a c b =-+222.由余弦定理得cos A =b 2+c 2-a 22bc =12. 因为1800<<A ,所以A =60°.②由①知C B -=120,由题设及正弦定理得2sin A +sin(120°-C)=2sin C , 即62+32cos C +12sin C =2sinC ,可得cos(C +60°)=-22. 由于1200<<C ,所以sin(C +60°)=22,故 ()6060sin sin -+=C C =sin(C +60°)cos 60°-cos(C +60°)sin 60°=6+24. (2017四川理)在△ABC 中,角A,B,C 所对的边分别是a,b,c,且cos cos sin A B Ca b c+=. (I )证明:sin sin sin A B C =; (II )若22265b c a bc +-=,求tan B . 【解答】:(I )根据正弦定理,可设 sin ,sinB,c sinC a k B b k k ===,(K>0), 代入cos cos sin A B Ca b c+=中,变形可得)sin(sin cos cos sin sin sin B A B A B A B A +=+=.(*) 在ABC ∆中,由A B C π++= ,有sin()sin()sin A B C C π+=-= 所以sin()sin A B C +=.(II )由已知,22265b c a bc +-=,根据余弦定理,有2223cos 25b c a A bc +-== 由(*)B A B A B A sin cos cos sin sin sin +=,所以443sin cos sin 555B B B =+ 故sin tan 4cos BB B==三、巩固练习1.(2017新课标Ⅲ文)在中,,BC 边上的高等于,则( )A.2. (2019·全国卷Ⅰ)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知C c B b A a sin 4sin sin =-, cos A =-14,则bc =( )A .6B .5C .4D .3 3. 在ABC ∆中,60A =, 1b =,ABC S ∆=,则sin sin sin a b cA B C++++等于 ().3A.3B .3C .D 4. 在△ABC 中,内角A ,B ,C 所对的边分别是a ,b ,c ,若c 2=(a -b)2+6,3π=C ,则△ABC 的面积是( )A.3B.239 C.233D.335.△ABC 中,三边a 、b 、c 与面积S 的关系式为)(41222c b a S -+=,则C=( ). A 、030 B 、045 C 、060 D 、090 6.边长为5,7,8的三角形的最大角与最小角的和是( )A.090B.0120C.0135D.01507.在△ABC 中,C B C B A sin sin sin sin sin 222-+≤,则A 的取值范围是( ).]6,0.(πA ),6.[ππB ]3,0.(πC ),3.[ππD8. (2019·全国卷Ⅱ)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c.若b =6,a =2c ,B =π3,则△ABC 的面积为____________.9. 已知锐角三角形的三边长分别为2,3,x ,则实数x 的取值范围是_______. 10. 已知ABC ∆1,面积为1sin 6C ,且sin sin A B C +=,则角C=_______. 11 .ABC ∆中三边分别为a,b,c,若2,sin cos a b B B ==+=则角A=________. 12.在△ABC 中,内角A ,B ,C 所对的边分别是a ,b ,c ,已知b -c =41a ,2sinB =3sinC ,则cosA 的值为 . ABC △π4B13BC sin A 31010531013.(2018四川高考文)已知A 、B 、C 为△ABC 的内角,A tan 、B tan 是关于方程()R p p px x ∈=+-+0132x 2+两个实根. (I). 求C 的大小(II). 若AB =1,AC =,求p 的值.14.(2017浙江理)在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c. 已知b+c=2a cos B. (I )证明:A=2B ;(II )若△ABC 的面积2=4a S ,求角A 的大小.15.在锐角ABC ∆中,角,,A B C 所对的边分别为,,a b c ,已知7,3,a b == 7sin sin 23B A +=(1)求角A 的大小; (2)求ABC ∆的面积.16.在如图所示的四边形ABCD 中,090,120,BAD BCD ∠=∠= 060,2,BAC AC ∠== 记BAC θ∠=(1)求用含θ 的代数式表示DC ; (2)求BCD ∆面积S 的最小值17. (2019·理1)ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,设22(sin sin )sin sin sin B C A B C -=-.(1)求A ;(2)若22a b c +=,求sin C .四、答案与解析361. 【解析】:设BC 边上的高线为AD ,则AD DC AD BC 2,3==,所以AD DC AD AC 522=+=,由正弦定理,知A BCB AC sin sin =,即A ADAD sin 3225=,解得10103sin =A ,故选D. 2.【解答】:因为C c B b A a sin 4sin sin =-,所以由正弦定理得a 2-b 2=4c 2,即a 2=4c 2+b 2. 由余弦定理得cos A =b 2+c 2-a 22bc =b 2+c 2-(4c 2+b 2)2bc =-3c 22bc =-14,所以b c =6.故选A. 3. 【解析】:因为60=A , b=1,3sin 21==∆A bc S ABC ,所以c=4 由余弦定理有13cos 2222=-+=A bc c b a ,所以13=a ,由正弦定理有3392sin 2==A a R ,且CcB b A a R sin sin sin 2===, 所以33922sin sin sin ==++++R C B A c b a .故选B.4.【解析】:由题意得,c 2=a 2+b 2-2ab +6,又由余弦定理可知,c 2=a 2+b 2-2abcosC =a 2+b 2-ab ,所以-2ab +6=-ab ,即ab =6. 所以S △ABC =233sin 21=C ab .故选C . 5.【解析】:因为S △ABC =()22241sin 21c b a C ab -+= ,所以2222sin ab C a b c =+-, 即C abc b a C cos 2sin 222=-+=,所以1tan =C ,故 45=C ,故选B. 6.【解析】:设中间角为θ,则,60,21852785cos 222 ==⨯⨯-+=θθ 12060180=-为所求.故选B. 7.【解析】:由已知得,bc c b a -+≤222,即212222≥-+bc a c b ,所以21cos ≥A , 因为π<<A 0,所以30π≤<A .故选C.8.【解答】:因为a =2c ,b =6,3π=B ,所以由余弦定理b 2=a 2+c 2-2accos B ,得()3cos2226222π⋅⋅⨯-+=c c c c ,得c =23,所以a =43,所以△ABC 的面积S =12acsin B =12×43×23×3sin π=6 3.或:a 2=b 2+c 2,所以2π=A ,所以△ABC 的面积S =12×23×6=6 3.9.【解析】:由题意,得⎪⎩⎪⎨⎧>+>+>+222222222233232x x x ,解得135<<x .10.【解析】:cb a C B A 2,sin 2sin sin =+∴=+因为12+=++c b a ,所以122+=+c c ,解得1=c ,所以2=+b a因为C C ab S sin 61sin 21==,所以31=ab , 所以()21222cos 22222=--+=-+=ab c ab b a ab c b a C ,所以3π=C . 11.【解析】:由2cos sin =+B B 可得1)4sin(=+πB ,所以4π=B ,由正弦定理得:21sin =A .又因为a<b,所以B A <,所以6π=A . 12.【解析】:在△ABC 中,因为b -c =41a ①,2sinB =3sinC ,所以2b =3c ②, 所以由①②可得a =2c ,b =23c. 再由余弦定理可得4134492cos 222222-=⋅-+=-+=c c c c c bc a c b A ,13.【解析】:(I)因为方程()R p p px x ∈=+-+0132的判别式△=(3p )2-4(-p +1)=3p 2+4p -4≥0所以p ≤-2或p ≥32, 由韦达定理,有tanA +tanB =-3p ,tanAtanB =1-p ,于是1-tanAtanB =1-(1-p )=p ≠0,从而tan(A +B)=33tan tan 1tan tan -=-=-+ppB A B A ,所以tanC =-tan(A +B)=3,所以C =60°.(II)由正弦定理,得sinB =22360sin 6sin == AB C AC .解得B =45°或B =135°(舍去), 于是A =180°-B -C =75°则tanA =tan75°=tan(45°+30°)=3233133130tan 45tan 130tan 45tan +=-+=-+. 所以p =-31(t anA +tanB)=-31(2+3+1)=-1-3. 14.【解析】:(1)由正弦定理可得B A C B cos sin 2sin sin =+, 故B A B A B B A B B A sin cos cos sin sin )sin(sin cos sin 2++=++=, 所以)sin(sin B A B -=,又()π,0,∈B A ,故π<-<B A 0 ,所以()B A B --=π或B=A -B , 因此π=A (舍去) 或A=2B, 所以A=2B.(II )由42a S =得4sin 212a C ab ==,故有B B B C B cos sin 2sin 21sin sin ==,因sin 0B ≠,得sinC cos =B . 又()π,0,∈C B ,所以B C ±=2π.当2π=+C B 时,2π=A ; 当2π=-B C 时,4π=A .综上,2π=A 或4π=A .15.【解析】:(1)在ABC ∆中,由正弦定理,得BA sin 3sin 7= 即A B sin 3sin 7= 又因为32sin sin 7=+A B , 解得23sin =A , 因为ABC ∆为锐角三角形,所以3π=A .(2)在ABC ∆中,由余弦定理bc a c b A 2cos 222-+=, 得cc 679212-+=,即022=+-c c ,解得c=1 或c=2,当c=1时,因为01472cos 222<-=-+=ac b c a B ,所以角B 为钝角,不符合题意,舍去;当c=2时,因为01472cos 222>=-+=ac b c a B ,且b>c,b>a, 所以ABC ∆为锐角三角形,符合题意. 所以ABC ∆的面积233232321sin 21=⨯⨯⨯==A bc S . 16.【解答】:(1)在ADC ∆中,000036090120150ADC θθ∠=---=-,由正弦定理可得sin sin DC AC DAC ADC =∠∠ ,即002sin 30sin(150)DC θ=- , 于是:01.sin(150)DC θ=-(2)在ABC ∆中,由正弦定理得0,sin sin 60AC BCθ=即BC =由(1)知:01sin(150)DC θ=-所以 120sin 21⋅⋅=CD BC S =034sin sin(150)θθ-= 故075θ=,S取得最小值为6-.17.【详解】:(1)()2222sin sin sin 2sin sin sin sin sin sin B C B B C C A B C -=-+=- 即:222sin sin sin sin sin B C A B C +-= 由正弦定理可得:222b c a bc +-=所以2221cos 22b c a A bc +-∴==因为()0,A π∈ ,所以3A π∴=.(2)因为c b a 22=+sin 2sin A B C += 又()sin sin sin cos cos sin B A C A C A C =+=+,3A π=1cos sin 2sin 222C C C ++=⇒3sin C C =因为22sin cos 1C C += ,所以(()223sin 31sin C C ∴=-,解得:sin C =因为sin 2sin 2sin 02B C A C ==->所以sin 4C >,故sin 4C =(2)法二:因为c b a 22=+sin 2sin A B C += 又()sin sin sin cos cos sin B A C A C A C =+=+,3A π=1cos sin 2sin 222C C C ++=,整理可得:3sin C C -=,即3sin 6C C C π⎛⎫-=-= ⎪⎝⎭所以sin 62C π⎛⎫∴-= ⎪⎝⎭,由2(0,),(,)3662C C ππππ∈-∈-,所以,6446C C ππππ-==+sin sin()46C ππ=+=.。
正弦定理与余弦定理知识点与题型分类讲解

正弦定理与余弦定理知识点与题型分类讲解[归纳·知识整合]1.正弦定理和余弦定理[探究] 1.在三角形ABC中,“A>B”是“sin A>sin B”的什么条件?“A>B”是“cos A<cos B”的什么条件?提示:“A>B”是“sin A>sin B”的充要条件,“A>B”是“cos A<cos B”的充要条件.2.在△ABC中,已知a、b和A时,解的情况[探究] 2.如何利用余弦定理判定三角形的形状?(以角A为例)提示:∵cos A与b2+c2-a2同号,∴当b 2+c 2-a 2>0时,角A 为锐角,若可判定其他两角也为锐角,则三角形为锐角三角形;当b 2+c 2-a 2=0时,角A 为直角,三角形为直角三角形; 当b 2+c 2-a 2<0时,角A 为钝角,三角形为钝角三角形.[自测·牛刀小试]1.(教材习题改编)在△ABC 中,若a =2,c =4,B =60°,则b 等于( ) A .23 B .12 C .27D .28解析:选A 由余弦定理得b 2=a 2+c 2-2ac cos B , 即b 2=4+16-8=12,所以b =2 3.2.(教材习题改编)在△ABC 中,a =15,b =10,A =60°,则cos B 等于( ) A .-223B.223 C .-63D.63解析:选D ∵a sin A =b sin B ,∴15sin 60°=10sin B ,∴sin B =23×32=33.又∵a >b ,A =60°, ∴B <60°,∴cos B =1-sin 2B =63. 3.△ABC 中,a =5,b =3,sin B =22,则符合条件的三角形有( ) A .1个 B .2个 C .3个D .0个解析:选B ∵a sin B =102,∴a sin B <b =3<a =5, ∴符合条件的三角形有2个.4.在△ABC 中,a =32,b =23,cos C =13,则△ABC 的面积为________.解析:∵cos C =13,∴sin C =223,∴S △ABC =12ab sin C =12×32×23×223=4 3.答案:4 35.在△ABC 中,角A 、B 、C 所对的边分别是a 、b 、c .若b =2a sin B ,则角A 的大小为________.解析:由正弦定理得sin B =2sin A sin B ,∵sin B ≠0, ∴sin A =12,∴A =30°或A =150°.答案:30°或150°[例1] (2012·浙江高考)在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,且b sin A =3a cos B .(1)求角B 的大小;(2)若b =3,sin C =2sin A ,求a ,c 的值. [自主解答] (1)由b sin A =3a cos B 及正弦定理 a sin A =bsin B,得sin B =3cos B , 所以tan B =3,所以B =π3.(2)由sin C =2sin A 及a sin A =csin C ,得c =2a .由b =3及余弦定理b 2=a 2+c 2-2ac cos B , 得9=a 2+c 2-ac . 所以a =3,c =2 3. ———————————————————正、余弦定理的选用原则解三角形时,有时可用正弦定理,也可用余弦定理,应注意用哪一个定理更方便、简捷.在解题时,还要根据所给的条件,利用正弦定理或余弦定理合理地实施边和角的相互转化.1.在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,已知cos A -2cos C cos B =2c -a b .(1)求sin Csin A的值; (2)若cos B =14,△ABC 的周长为5,求b 的长.解:(1)由正弦定理,设a sin A =b sin B =c sin C=k ,则2c -a b =2k sin C -k sin A k sin B =2sin C -sin Asin B, 所以cos A -2cos C cos B =2sin C -sin A sin B,即(cos A -2cos C )sin B =(2sin C -sin A )cos B , 化简可得sin(A +B )=2sin(B +C ). 又因为A +B +C =π,所以sin C =2sin A . 因此sin Csin A =2.(2)由sin Csin A=2得c =2a . 由余弦定理及cos B =14得b 2=a 2+c 2-2ac cos B =a 2+4a 2-4a 2×14=4a 2.所以b =2a .又a +b +c =5,从而a =1.因此b =2.[例2] 在△ABC 中,若(a 2+b 2)sin(A -B )=(a 2-b 2)·sin(A +B ),试判断△ABC 的形状. [自主解答] ∵(a 2+b 2)sin(A -B )=(a 2-b 2)sin(A +B ), ∴b 2[sin(A +B )+sin(A -B )]= a 2[sin(A +B )-sin(A -B )], ∴2sin A cos B ·b 2=2cos A sin B ·a 2, 即a 2cos A sin B =b 2sin A cos B .法一:由正弦定理知a =2R sin A ,b =2R sin B , ∴sin 2A cos A sin B =sin 2B sin A cos B , 又sin A ·sin B ≠0,∴sin A cos A =sin B cos B , ∴sin 2A =sin 2B .在△ABC 中,0<2A <2π,0<2B <2π, ∴2A =2B 或2A =π-2B ,∴A =B 或A +B =π2.∴△ABC 为等腰或直角三角形. 法二:由正弦定理、余弦定理得: a 2b b 2+c 2-a 22bc =b 2a a 2+c 2-b 22ac,∴a 2(b 2+c 2-a 2)=b 2(a 2+c 2-b 2),∴(a 2-b 2)(a 2+b 2-c 2)=0, ∴a 2-b 2=0或a 2+b 2-c 2=0. 即a =b 或a 2+b 2=c 2.∴△ABC 为等腰或直角三角形.若将条件改为“sin B =cos A sin C ”,试判断△ABC 的形状. 解:∵sin B =cos A ·sin C , ∴b =b 2+c 2-a 22bc ·c ,即b 2+a 2=c 2,∴△ABC 为直角三角形.———————————————————1.三角形形状的判断思路判断三角形的形状,就是利用正、余弦定理等进行代换、转化,寻求边与边或角与角之间的数量关系,从而作出正确判断.(1)边与边的关系主要看是否有等边,是否符合勾股定理等; (2)角与角的关系主要是看是否有等角,有无直角或钝角等. 2.判定三角形形状的两种常用途径①通过正弦定理和余弦定理,化边为角,利用三角变换得出三角形内角之间的关系进行判断;②利用正弦定理、余弦定理,化角为边,通过代数恒等变换,求出三条边之间的关系进行判断.2.在△ABC 中,a ,b ,c 分别为内角A ,B ,C 的对边,且2a sin A =(2b -c )sin B +(2c -b )sin C .(1)求角A 的大小;(2)若sin B +sin C =3,试判断△ABC 的形状. 解:∵2a sin A =(2b -c )sin B +(2c -b )sin C , 得2a 2=(2b -c )b +(2c -b )c ,即bc =b 2+c 2-a 2, ∴cos A =b 2+c 2-a 22bc =12,∴A =60°.(2)∵A +B +C =180°, ∴B +C =180°-60°=120°.由sin B +sin C =3,得sin B +sin(120°-B )=3,∴sin B +sin 120°cos B -cos 120°sin B = 3. ∴32sin B +32cos B =3,即sin(B +30°)=1. 又∵0°<B <120°,30°<B +30°<150°, ∴B +30°=90°,即B =60°.∴A =B =C =60°,∴△ABC 为正三角形.[例3] (2012·山东高考)在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,已知sin B (tan A +tan C )=tan A tan C .(1)求证:a ,b ,c 成等比数列; (2)若a =1,c =2,求△ABC 的面积S .[自主解答] (1)证明:在△ABC 中,由于sin B (tan A +tan C )=tan A tan C , 所以sin B ⎝⎛⎭⎫sin A cos A +sin C cos C =sin A cos A ·sin C cos C , 因此sin B (sin A cos C +cos A sin C )=sin A sin C , 所以sin B sin(A +C )=sin A sin C . 又A +B +C =π,所以sin(A +C )=sin B ,因此sin 2B =sin A sin C . 由正弦定理得b 2=ac , 即a ,b ,c 成等比数列.(2)因为a =1,c =2,所以b =2,由余弦定理得cos B =a 2+c 2-b 22ac =12+22-22×1×2=34,因为0<B <π,所以sin B =1-cos 2B =74, 故△ABC 的面积S =12ac sin B =12×1×2×74=74.———————————————————三角形面积公式的应用原则(1)对于面积公式S =12ab sin C =12ac sin B =12bc sin A ,一般是已知哪一个角就使用哪一个公式.(2)与面积有关的问题,一般要用到正弦定理或余弦定理进行边和角的转化.3.(2012·新课标全国卷)已知a ,b ,c 分别为△ABC 三个内角A ,B ,C 的对边,a cos C +3a sin C -b -c =0.(1)求A ;(2)若a =2,△ABC 的面积为3,求b ,c .解:(1)由a cos C +3a sin C -b -c =0及正弦定理得 sin A cos C +3sin A sin C -sin B -sin C =0. 因为B =π-A -C ,所以3sin A sin C -cos A sin C -sin C =0. 由于sin C ≠0,所以sin ⎝⎛⎭⎫A -π6=12. 又0<A <π,故A =π3.(2)△ABC 的面积S =12bc sin A =3,故bc =4.而a 2=b 2+c 2-2bc cos A ,故b 2+c 2=8. 解得b =c =2.1条规律——三角形中的边角关系在三角形中,大角对大边,大边对大角;大角的正弦值也较大,正弦值较大的角也较大,即在△ABC 中,A >B ⇔a >b ⇔sin A >sin B .2个原则——选用正弦定理或余弦定理的原则在解有关三角形的题目时,要有意识地考虑用哪个定理更适合,或是两个定理都要用,要抓住能够利用某个定理的信息.一般地,如果式子中含有角的余弦或边的二次式,要考虑用余弦定理;如果遇到的式子中含有角的正弦或边的一次式时,则考虑用正弦定理;以上特征都不明显时,则要考虑两个定理都有可能用到.2种途径——判断三角形形状的途径根据所给条件确定三角形的形状,主要有两种途径:(1)化边为角;(2)化角为边,并常用正弦(余弦)定理实施边、角转换. 2个防范——解三角形应注意的问题(1)在利用正弦定理解已知三角形的两边和其中一边的对角求另一边的对角,进而求出其他的边和角时,有时可能出现一解、两解或无解,所以要进行分类讨论.(2)在判断三角形形状时,等式两边一般不要约去公因式,应移项提取公因式,以免漏解.答题模板——利用正、余弦定理解三角形[典例] (2012·江西高考)(本小题满分12分)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c .已知A =π4,b sin ⎝⎛⎭⎫π4+C -c sin ⎝⎛⎭⎫π4+B =a . (1)求证:B -C =π2;(2)若a =2,求△ABC 的面积.[快速规范审题]第(1)问1.审条件,挖解题信息观察条件:A =π4,b sin ⎝⎛⎭⎫π4+C -c sin ⎝⎛⎭⎫π4+B =a ――――――――→数式中既有边又有角,应统一sin B sin ⎝⎛⎭⎫π4+C -sin C sin ⎝⎛⎭⎫π4+B =sin A . 2.审结论,明确解题方向 观察所求结论:求证:B -C =π2――――――――――→应求角B -C 的某一个三角函数值sin(B -C )=1或cos(B -C )=0.3.建联系,找解题突破口考虑到所求的结论只含有B ,C ,因此应消掉sin B ·sin ⎝⎛⎭⎫π4+C -sin C sin ⎝⎛⎭⎫π4+B =sin A 中的角A =4π借助−−−−→A sin B sin ⎝⎛⎭⎫π4+C -sin C sin ⎝⎛⎭⎫π4+B =22――――――――――→利用两角和与差的三角函数公式sin(B -C )=1―――――――――――→要求角的值,还应确定角的取值范围由0<B ,C <3π4,解得B -C =π2. 第(2)问1.审条件,挖解题信息观察条件:a =2,A =π4,B -C =π2―――――――→可求B ,C 的值 B =5π8,C =π8. 2.审结论,明确解题方向观察所求结论:求△ABC 的面积――――――→应具有两边及其夹角由a sin A =b sin B =c sin C ,得b =2sin 5π8,c =2sin π8.3.建联系,找解题突破口△ABC 的边角都具备―――――→利用面积公式求结论S =12bc sin A = 2sin 5π8sin π8=2cos π8sin π8=12. [准确规范答题](1)证明:由b sin ⎝⎛⎭⎫π4+C -c sin ⎝⎛⎭⎫π4+B =a ,应用正弦定理,得sin B sin ⎝⎛⎭⎫π4+C -sin C sin ⎝⎛⎭⎫π4+B =sin A ,sin B ⎝⎛⎭⎫22sin C +22cos C -sin C 22sin B +22cos B =22,⇨(3分) 整理得sin B cos C -cos B sin C =1, 即sin(B -C )=1,⇨(5分) 由于0<B ,C <34π,从而B -C =π2.⇨(6分)(2)B +C =π-A =3π4,因此B =5π8,C =π8.⇨(8分)由a =2,A =π4,得b =a sin B sin A =2sin 5π8,c =a sin C sin A =2sin π8,⇨(10分)所以△ABC 的面积S =12bc sin A =2sin 5π8sin π8=2cos π8sin π8=12.⇨(12分)[答题模板速成]解决解三角形问题一般可用以下几步解答:⇒⇒一、选择题(本大题共6小题,每小题5分,共30分)1.(2012·上海高考)在△ABC 中,若sin 2A +sin 2B <sin 2C ,则△ABC 的形状是( ) A .钝角三角形 B .直角三角形 C .锐角三角形D .不能确定解析:选A 由正弦定理得a 2+b 2<c 2,故cos C =a 2+b 2-c 22ab<0,所以C 为钝角.2.(2012·广东高考)在△ABC 中,若∠A =60°,∠B =45°,BC =32,则AC =( ) A .4 3 B .2 3 C. 3D.32解析:选B 由正弦定理得:BC sin A =AC sin B ,即32sin 60°=AC sin 45°,所以AC =3232×22=2 3.3.在△ABC 中,AC =7,BC =2,B =60°,则BC 边上的高等于( ) A.32 B.332 C.3+62D.3+394解析:选B 由余弦定理得:(7)2=22+AB 2-2×2AB ·cos 60°,即AB 2-2AB -3=0,得AB =3,故BC 边上的高是AB sin 60°=332. 4.在△ABC 中 ,角A ,B ,C 所对边的长分别为a ,b ,c ,若a 2+b 2=2c 2,则cos C 的最小值为( )A.32B.22C.12 D .-12解析:选C 由余弦定理得a 2+b 2-c 2=2ab cos C ,又c 2=12(a 2+b 2),得2ab cos C =12(a 2+b 2),即cos C =a 2+b 24ab ≥2ab 4ab =12.5.在△ABC 中,内角A ,B ,C 所对的边分别是a ,b ,c ,已知8b =5c ,C =2B ,则cos C =( )A.725 B .-725C .±725D.2425解析:选A 由C =2B 得sin C =sin 2B =2sin B cos B ,由正弦定理及8b =5c 得cos B =sin C 2 sin B =c 2b =45,所以cos C =cos 2B =2cos 2 B -1=2×⎝⎛⎭⎫452-1=725. 6.在△ABC 中,AB =3,AC =1,B =30°,则△ABC 的面积等于( ) A.32B.34C.32或 3 D.32或34解析:选D 依题意与正弦定理得AB sin C =AC sin B ,sin C =AB ·sin B AC =32,C =60°或C =120°.当C =60°时,A =90°,△ABC 的面积等于12AB ·AC =32;当C =120°时,A =30°,△ABC 的面积等于12AB ·AC ·sin A =34.因此,△ABC 的面积等于32或34.二、填空题(本大题共3小题,每小题5分,共15分)7.(2012·福建高考)已知△ABC 的三边长成公比为2的等比数列,则其最大角的余弦值为________.解析:依题意得,△ABC 的三边长分别为a ,2a,2a (a >0),则最大边2a 所对的角的余弦值为a 2+(2a )2-(2a )22a ·2a=-24.答案:-248.(2013·佛山模拟)设△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,且cos A =35,cosB =513,b =3,则c =________.解析:由题意知sin A =45,sin B =1213,则sin C =sin(A +B )=sin A cos B +cos A sin B =5665,所以c =b sin C sin B =145.答案:1459.在△ABC 中,D 为边BC 的中点,AB =2,AC =1,∠BAD =30°,则AD 的长度为________.解析:延长AD 到M ,使得DM =AD ,连接BM 、MC ,则四边形ABMC 是平行四边形.在△ABM 中,由余弦定理得BM 2=AB 2+AM 2-2AB ·AM ·cos ∠BAM ,即12=22+AM 2-2·2·AM ·cos 30°,解得AM =3,所以AD =32. 答案:32三、解答题(本大题共3小题,每小题12分,共36分)10.△ABC 的内角A 、B 、C 的对边分别为a 、b 、c ,已知cos(A -C )+cos B =1,a =2c ,求C .解:由B =π-(A +C ),得cos B =-cos(A +C ).于是cos(A -C )+cos B =cos(A -C )-cos(A +C )=2sin A sin C , 由已知得sin A sin C =12.①由a =2c 及正弦定理得sin A =2sin C .② 由①②得sin 2C =14,于是sin C =-12(舍去),或sin C =12.又a =2c ,所以C =π6.11.(2012·江苏高考)在△ABC 中,已知AB ·AC =3BA ·BC . (1)求证:tan B =3tan A ; (2)若cos C =55,求A 的值. 解:(1)因为AB ·AC =3BA ·BC ,所以AB ·AC ·cos A =3BA ·BC ·cos B ,即AC ·cos A =3BC ·cos B ,由正弦定理知AC sin B =BCsin A,从而sin B cos A =3sin A cos B ,又因为0<A +B <π,所以cos A >0,cos B >0, 所以tan B =3tan A . (2)因为cos C =55,0<C <π, 所以sin C =1-cos 2C =255,从而tan C =2,于是tan[π-(A +B )]=2, 即tan(A +B )=-2,亦即tan A +tan B 1-tan A tan B =-2.由(1)得4tan A 1-3tan 2A =-2,解得tan A =1或-13,因为cos A >0,故tan A =1,所以A =π4.12.(2012·浙江高考)在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c .已知cos A =23,sin B =5cos C .(1)求tan C 的值;(2)若a =2,求△ABC 的面积.解:(1)因为0<A <π,cos A =23,得sin A =1-cos 2A =53.又5cos C =sin B =sin (A +C ) =sin A cos C +cos A sin C =53cos C +23sin C . 所以tan C = 5.(2)由tan C =5,得sin C =56,cos C =16. 于是sin B =5cos C =56. 由a =2及正弦定理a sin A =csin C ,得c = 3.设△ABC 的面积为S ,则S =12ac sin B =52.1.若△ABC 的内角A 、B 、C 所对的边a 、b 、c 满足(a +b )2-c 2=4,且C =60°,则ab 的值为( )A.43 B .8-4 3 C .1D.23解析:选A 由(a +b )2-c 2=4, 得a 2+b 2-c 2+2ab =4.① 由余弦定理得a 2+b 2-c 2=2ab cos C =2ab cos 60°=ab ,② 将②代入①得ab +2ab =4,即ab =43.2.若△ABC 的内角A ,B ,C 满足6sin A =4sin B =3sin C ,则cos B =( ) A.154B.34C.31516D.1116 解析:选D 依题意,结合正弦定理得6a =4b =3c ,设3c =12k (k >0),则有a =2k ,b =3k ,c =4k ,由余弦定理得cos B =a 2+c 2-b 22ac =(2k )2+(4k )2-(3k )22×2k ×4k=1116.3.在△ABC 中,sin 2A ≤sin 2B +sin 2C -sin B ·sin C ,则A 的取值范围是( )A.⎝⎛⎦⎤0,π6B.⎣⎡⎭⎫π6,π C.⎝⎛⎦⎤0,π3 D.⎣⎡⎭⎫π3,π解析:选C 由已知及正弦定理,有a 2≤b 2+c 2-bc .而由余弦定理可知,a 2=b 2+c 2-2bc cos A ,于是b 2+c 2-2bc cos A ≤b 2+c 2-bc ,可得cos A ≥12.注意到在△ABC 中,0<A <π,故A ∈⎝⎛⎦⎤0,π3. 4.已知A 、B 、C 为△ABC 的三个内角,其所对的边分别为a 、b 、c ,且2cos 2A2+cos A=0.(1)求角A 的值;(2)若a =23,b +c =4,求△ABC 的面积.解:(1)由2cos 2A2+cos A =0,得1+cos A +cos A =0,即cos A =-12,∵0<A <π,∴A =2π3.(2)由余弦定理得,a 2=b 2+c 2-2bc cos A ,A =2π3,则a 2=(b +c )2-bc ,又a =23,b +c =4, 有12=42-bc ,则bc =4, 故S △ABC =12bc sin A = 3.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
正余弦定理知识点总结及高考考试题型
正余弦定理是初中数学中不可避免的知识点之一,也是高中数
学中必须掌握的内容之一。
在实际应用中,正余弦定理有着广泛
的应用,因此掌握正余弦定理在数学学习中是非常重要的。
本文
将介绍正余弦定理的知识点及在高考考试中的应用。
一、正余弦定理的概念
正余弦定理也叫余弦定理,是解题方法中的三角函数法。
它适
用于求三角形的任意一边或角,无论是锐角三角形、直角三角形、钝角三角形都可以应用。
正余弦定理是指在一个三角形中,任意
一边的平方等于另外两边的平方和与这两边对应的角的余弦值的
积的两倍之差。
二、正余弦定理的公式
设三角形ABC中,a、b、c是三角形的三边,A、B、C是三角形的三个内角,则正余弦定理的公式如下:
①cosA=(b²+c²-a²)/2bc
②cosB=(a²+c²-b²)/2ac
③cosC=(a²+b²-c²)/2ab
其中,a表示边BC对应的角,b表示边AC对应的角,c表示边AB对应的角。
三、正余弦定理的应用
1、求任意三角形的边长
求三角形的边长是初学者需要掌握的基本应用之一。
那么设一个三角形,已知除一边外的两边及夹角,用正余弦定理求另一边的长度。
例如:已知三角形ABC中,a=9,b=12,∠C=120°,求c。
解:根据正余弦定理中的公式③cosC=(a²+b²-c²)/2ab,可以推导出c²=a²+b²-2abcosC,
代入数值:c²=9²+12²-2×9×12×cos120°。
cos120°=-0.5,所以
c²=169,c=13。
因此,三角形ABC的边长c=13。
2、求三角形内的角度
求出三角形的内角度量也是三角形解题的基本应用之一。
用正
余弦定理解题时,需要掌握反三角函数的概念及应用。
例如:已知三角形ABC中,a=8,b=10,c=12,求∠A、∠B、∠C。
解:设三角形ABC中,∠A、∠B、∠C对应的边长分别为a、b、c。
根据正余弦定理的公式,可以得到:
cosA=(b²+c²-a²)/2bc=7/10,∠A=cos⁻¹(7/10)=45.58°;
cosB=(a²+c²-b²)/2ac=1/5,∠B=cos⁻¹(1/5)=78.46°;
cosC=(a²+b²-c²)/2ab=3/5,∠C=cos⁻¹(3/5)=53.13°。
因此,三角形ABC的内角分别为∠A=45.58°,∠B=78.46°,
∠C=53.13°。
四、高考考试题型分析
在高考数学考试中,正余弦定理是必考的重点之一。
下面对可
能出现的考试题型进行简要分析。
1、填空题
填空题一般考查正余弦定理的公式应用。
例如:已知∠A=30°,∠B=60°,c=4,a=√3,求b的值。
解:根据正余弦定理的公式②cosB=(a²+c²-b²)/2ac,可得:
cos60°=(√3)²+4²-b²/2×√3×4,
化简后可得b=2√3。
2、计算题
计算题是需要适当转化公式,最后进行计算得出答案。
例如:
对一三角形有b=sqrt(3),c=3,∠B=60°,求边a的值及三角形的面积。
解:根据正余弦定理的公式①cosA=(b²+c²-a²)/2bc,代入数值可得:
cosA=1/2,∠A=60°。
因此,a=(b²+c²-a²)/2bc=3/2,三角形的面积是1.5*sqrt(3)。
3、证明题
证明题涉及正余弦定理的公式证明及应用。
例如:已知在三角
形ABC中,设c^2=a^2+b^2-2abcosC,证明:正弦定理。
解:根据正余弦定理的公式
c²=a²+b²-2abcosC,移项得:
cosC=(a²+b²-c²)/2ab,
两边乘上ab,得到:
abcosC=a²b+b²a-c²ab。
再利用正弦定理sinC=c/2R,其中,R表示三角形的外接圆半径,则可得:
2RsinC=c,
代入上式,得到:
2RsinC=abcosC+a²b+b²a-c²ab,
移项得:
2RsinC=c²/a+c²/b-c²sinC/ab,
整理后可得:
sinC/a=sinB/c,
即正弦定理。
总之,正弦余弦定理在三角函数知识点中占有重要的地位,应掌握其应用和在三角形解题中的使用方法,同时在高考数学考试中的应用更是需要熟练掌握。