七年级数学动点题型归纳
初中数学动点最值问题19大模型+例题详解,彻底解决压轴难题

动点最值问题永远都是中考最难的压轴类题目,很多同学都反应不知道该怎么下手寻找思路。
其实这类题目的题型有限,全部总结归纳就是这19种,希望同学们对每一种都能掌握技巧,再遇见类似的就能及时找到思路。
PS:可下载电子版打印高清版本,链接文末获取!
1、将军饮马模型(对称点模型)
2、利用三角形两边差求最值
3、手拉手全等取最值
4、手拉手相似取最值
5、平移构造平行四边形求最小
6、两点对称勺子型连接两端求最小
7、两点对称折线连两端求最小
8、时钟模型,中点两定边求最小值
9、时钟模型,相似两定边求最小值
10、转化构造两定边求最值
11、面积转化法求最值
12、相似转化法求最值
13、相似系数化一法求最值
14、三角函数化一求最值
15、轨迹最值
16、三动点的垂直三角形
17、旋转最值
18、隐圆最值-定角动弦
19、隐圆最值-动角定弦。
人教版七年级下册数学动点问题

人教版七年级下册数学动点问题1.题目描述:给定平面直角坐标系上两个点A、B的坐标,以及一辆汽车从原点出发沿x轴行驶,求汽车到达离A点最近、离B点最近和距离两点和最短的位置坐标。
解题思路:根据勾股定理,可以求出汽车到达任意位置与A、B两点的距离,进而判断哪个位置离A、B最近,哪个位置距离两点和最短。
最终画出图像,标出所求位置的坐标。
2.题目描述:给定平面直角坐标系上三个点A、C和O,满足一定条件,求动点P、Q在规定时间内的运动,以及点F、G、E在特定条件下的运动情况。
解题思路:根据题目所给条件,可以求出点A、C、O的坐标,以及三角形ODP、ODQ的面积。
然后根据P、Q的速度和时间,求出它们的运动轨迹。
对于点F、G、E,根据题目所给条件,可以求出它们的坐标,进而分析它们的运动情况。
3.题目描述:给定平面直角坐标系上一个长方形ABCD的两个顶点坐标,以及一个点P的坐标,求长方形的面积和点P 在一定条件下的伴随点坐标。
解题思路:根据题目所给条件,可以求出长方形ABCD 的面积。
对于点P的伴随点,可以根据题目所给公式求出其坐标,然后根据题目所要求的点的伴随点,反复使用公式求出所求点的坐标。
2.若点A1的坐标为(a,b),对于任意的正整数n,点An均在x轴上方,则a,b应满足的条件为:对于任意的正整数n,An在x轴上方,即An的纵坐标大于0.因此,对于任意的正整数n,有bn>0.而An是由A1向上移动n个单位得到的,因此有An的纵坐标为b+n。
所以对于任意的正整数n,有b+n>0,即b>-n。
综上所述,a和b的取值范围为a∈R,b>-n。
4.如图,在平面直角坐标中,A(0,1),B(2,0),C(2,1.5).1)求△XXX的面积:设AB向量为a,AC向量为b,则△ABC的面积为|a×b|/2,其中×表示向量的叉积。
因为AB向量为(-2,1),AC向量为(2,0.5),所以|a×b|=|-4-1|=5,因此△ABC的面积为5/2.2)如果在第二象限有一点P(a,0.5),试用a的式子表示四边形ABOP的面积:四边形ABOP的面积等于△ABP的面积加上△AOP的面积。
七年级数学数轴动点问题解题技巧

七年级数学数轴动点问题解题技巧一、数轴动点问题解题技巧。
1. 用字母表示动点。
- 在数轴上,设动点表示的数为x,如果已知动点的运动速度v和运动时间t,则经过t时间后,动点表示的数为初始位置加上运动的距离。
如果向左运动,距离为-vt;如果向右运动,距离为vt。
2. 表示两点间的距离。
- 数轴上两点A、B,若A表示的数为a,B表示的数为b,则AB=| a - b|。
3. 分析运动过程中的等量关系。
- 例如相遇问题,两个动点运动的路程之和等于两点间的初始距离;追及问题,快的动点比慢的动点多运动的路程等于两点间的初始距离。
二、题目及解析。
1. 已知数轴上A点表示的数为-5,B点表示的数为3,点P从A点出发,以每秒2个单位长度的速度沿数轴向右运动,同时点Q从B点出发,以每秒1个单位长度的速度沿数轴向左运动,设运动时间为t秒。
- 求t秒后点P表示的数。
- 解:点P从A点出发,A点表示的数为-5,向右运动速度为每秒2个单位长度,经过t秒后,运动的距离为2t,所以点P表示的数为-5 + 2t。
- 求t秒后点Q表示的数。
- 解:点Q从B点出发,B点表示的数为3,向左运动速度为每秒1个单位长度,经过t秒后,运动的距离为-t,所以点Q表示的数为3-t。
- 求t秒后PQ的距离。
- 解:t秒后点P表示的数为-5 + 2t,点Q表示的数为3 - t,则PQ=|(-5 +2t)-(3 - t)|=|-5 + 2t - 3+t|=|3t - 8|。
2. 数轴上点A表示的数为1,点B表示的数为-3,点C在点A右侧,且AC = 5。
点M从A点出发,以每秒1个单位长度的速度沿数轴向右运动,点N从B点出发,以每秒2个单位长度的速度沿数轴向右运动,设运动时间为t秒。
- 求点C表示的数。
- 解:因为点A表示的数为1,AC = 5,且C在A右侧,所以点C表示的数为1+5 = 6。
- 求t秒后点M表示的数。
- 解:点M从A点出发,A点表示的数为1,向右运动速度为每秒1个单位长度,经过t秒后,运动的距离为t,所以点M表示的数为1+t。
七年级数学上册动点问题万能公式

七年级数学上册动点问题万能公式一、概述动点问题是数学中的一个重要概念,它在七年级数学上册中占据着重要的地位。
在学习动点问题时,学生需要掌握一些基本的公式和方法,以便能够正确地解决各种动点问题。
本文将介绍七年级数学上册动点问题中常用的万能公式,帮助学生更好地理解和应用这一知识点。
二、动点问题的基本概念动点问题是指在空间中移动的点的问题,它涉及到时间、速度、距离等概念。
在解决动点问题时,需要通过建立坐标系、列方程等方法来求解。
而在实际应用中,动点问题往往涉及到多个变量,需要进行复杂的计算和推导。
学生需要掌握一些基本的万能公式和方法,以便能够正确地解决各种动点问题。
三、动点问题万能公式1. 速度的定义在动点问题中,速度是一个非常重要的概念。
速度的定义为:速度=位移/时间。
在解决动点问题时,可以利用速度的定义来建立方程,求解未知数。
2. 平均速度公式平均速度的计算公式为:平均速度=总路程/总时间。
在动点问题中,当需要求解动点的平均速度时,可以利用平均速度公式进行计算。
3. 匀速直线运动的位移公式在匀速直线运动中,位移与速度、时间之间存在着一定的关系。
位移公式为:位移=速度×时间。
当动点进行匀速直线运动时,可以利用位移公式来求解未知数。
4. 加速度恒定的运动在加速度恒定的运动中,位移与初速度、末速度、加速度之间存在着一定的关系。
位移公式为:位移=初速度×时间+1/2×加速度×时间的平方。
在解决加速度恒定的动点问题时,可以利用位移公式进行计算。
5. 两点间距离公式在动点问题中,当需要求解两个动点之间的距离时,可以利用两点间距离公式进行计算。
两点间距离公式为:距离=√((x₂-x₁)²+(y₂-y₁)²)。
其中(x₁, y₁)和(x₂, y₂)分别表示两点的坐标,可以通过坐标求解两点之间的距离。
四、动点问题的解题方法在解决动点问题时,需要遵循一定的方法和步骤,以便能够正确地求解问题。
完整版)七年级上册数学期末动点问题专题

完整版)七年级上册数学期末动点问题专题七年级上期末动点问题专题1.数轴上的动点问题已知数轴上两点A、B对应的数分别为-1和3,数轴上一动点P对应的数为x。
1) 若点P到点A和点B的距离相等,求点P对应的数。
解:由题意得,PA=PB,即 |x-(-1)|=|x-3|,解得x=1.2) 当点P以每分钟1个单位长度的速度从O点向左运动时,点A以每分钟5个单位长度的速度向左运动,点B以每分钟20个单位长度的速度向左运动,问几分钟时点P到点A 和点B的距离相等。
解:设P点向左运动t分钟后到达距离O点x的位置,则A点和B点向左运动5t和20t个单位长度后,分别到达距离O 点-5t和3-20t的位置。
由于PA=PB,因此有:x-(-1+1t)|=|x-3-17t|解得t=2,代入得到x=-1+2t=-3.2.射线上的动点问题如图,在射线OM上有三点A、B、C,满足OA=20cm,AB=60cm,BC=10cm,点P从点O出发,沿OM方向以1cm/s的速度匀速运动,点Q从点C出发在线段CO上向点O 匀速运动(点Q运动到点O时停止运动),两点同时出发。
1) 当PA=2PB时,点Q运动到的位置恰好是线段AB的三等分点,求点Q的运动速度。
解:设Q点向左运动t秒后到达距离O点x的位置,则有:OC-x|=|OP+t|OB-2x|=2|PA-OP-t|AB-3x|=3|PA-OP-t|解得x=10,t=10,因此Q点的运动速度为3cm/s。
2) 若点Q运动速度为3cm/s,经过多长时间P、Q两点相距70cm。
解:设P点向右运动t秒后到达距离O点y的位置,则有:y|=|x+t-20|y|=|60-x-t|解得t=25,因此P、Q两点相距70cm时,P点向右运动了25秒,Q点向左运动了25秒。
3) 当点P运动到线段AB上时,分别取OP和AB的中点E、F,求OB-AP/EF的值。
解:设P点向右运动t秒后到达线段AB上的点E,则有:OE|=|20+t/2|由于AE=40,因此有AP=AE-PE=40-(20+t/2)=60-t/2.又因为OF=FB=30,因此有:OB-AP/EF=2OB/AB-AP/AF=2(20+t)-60/(2OF)=t+1.3.相向而行的动点问题甲、乙物体分别从相距70米的两处同时相向运动。
七年级数学上册线段上动点问题的四种常见类型专题讲解

线段MN的长度不发生变化,其值为5.
分下面两种情况:
①当点P在A,B两点之间运动时(如图甲),
MN=MP+NP= AP+ BP= AB=5;
1
1
1
2
2
2
②当点P在点A的左侧运动时(如图乙),
MN=NP-MP= 1 BP- 1 AP= 1 AB=5. 综上所述,线段M2N的长度2 不发生2变化,其值为5.
4.知识是用来为人类服务的,我们应该把它们用于 有意义的方面.下面就两个情景作出评判.
情景一:如图①,从教学楼到图书馆,总有少数 同学不走人行道而横穿草坪,这是为什么呢?试 用所学数学知识来说明这个问题.
两点之间,线段最短.
情景二:如图②,A,B是河流l两旁的两个村庄, 现要在河边修一个抽水站向两村供水,问抽水站 修在什么地方才能使所需的管道最短?请在图中 表示出抽水站点P的位置,并说明你的理由:
返回
类型 3 线段和差倍分关系中的动点问题
3.如图,线段AB=24,动点P从A出发,以2个单位 长度/s的速度沿射线AB运动,M为AP的中点.
(1)出发多少秒后,PB=2AM?
解:设出发t s后,PB=2AM, 则PA=2t,PB=24-2t,AM=t. 所以24-2t=2t,解得t=6. 即出发6 s后,PB=2AM.
设运动时间为y s. 因为PA=2y,AM=PM=y,
PB=2y-24,PN= 1 PB=y-12, 所以①MN=PM-PN2=y-(y-12)=12,
即MN的长度不变,为定值; ②MA+PN=y+y-12=2y-12, 所以MA+PN的值是变化的. 综上所述,①正确,且MN的长度为12.
返回
七年级动点问题大全

七年级动点问题大全(一)例1:如图,在数轴上A点表示数a,B点表示数b,AB表示A点和B点之间的距离,且a、b满足|a+2|+(b+3a)2=0(1)求A、B两点之间的距离;(2)若在数轴上存在一点C,且AC=2BC,求C点表示的数;(3)若在原点O处放一挡板,一小球甲从点A处以1个单位/秒的速度向左运动;同时另一小球乙从点B处以2个单位/秒的速度也向左运动,在碰到挡板后(忽略球的大小,可看作一点)以原来的速度向相反的方向运动,设运动的时间为t(秒),①分别表示甲、乙两小球到原点的距离(用t表示);①求甲、乙两小球到原点的距离相等时经历的时间.例2:如图,有一数轴原点为O,点A所对应的数是-12,点A沿数轴匀速平移经过原点到达点B.(1)如果OA=OB,那么点B所对应的数是什么?(2)从点A到达点B所用时间是3秒,求该点的运动速度.(3)在(2)的条件下,从点A沿数轴匀速平移经过点K到达点C,所用时间是9秒,且KC=KA,分别求点K和点C所对应的数。
例3动点A从原点出发向数轴负方向运动,同时,动点B也从原点出发向数轴正方向运动,3秒后,两点相距15个单位长度.已知动点A、B的速度比是1:4.(速度单位:单位长度/秒)(1)求出两个动点运动的速度,并在数轴上标出A、B两点从原点出发运动3秒时的位置;(2)若A、B两点从(1)中的位置同时向数轴负方向运动,几秒后原点恰好处在两个动点正中间;(3)在(2)中A、B两点继续同时向数轴负方向运动时,另一动点C同时从B点位置出发向A运动,当遇到A后,立即返回向B点运动,遇到B点后立即返回向A点运动,如此往返,直到B追上A时,C立即停止运动.若点C一直以20单位长度/秒的速度匀速运动,那么点C从开始到停止运动,运动的路程是多少单位长度.例4:已知数轴上两点A、B对应的数分别为-1、3,点P为数轴上一动点,其对应的数为x.(1)若点P到点A,点B的距离相等,求点P对应的数;(2)数轴上是否存在点P,使点P到点A、点B的距离之和为6?若存在,请求出x的值;若不存在,说明理由;(3)点A、点B分别以2个单位长度/分、1个单位长度/分的速度向右运动,同时点P以6个单位长度/分的速度从O点向左运动.当遇到A时,点P立即以同样的速度向右运动,并不停地往返于点A与点B之间,求当点A与点B重合时,点P所经过的总路程是多少?例5数轴上两个质点A、B所对应的数为-8、4,A、B两点各自以一定的速度在上运动,且A点的运动速度为2个单位/秒.(1)点A、B两点同时出发相向而行,在原点处相遇,求B点的运动速度;(2)A、B两点以(1)中的速度同时出发,向数轴正方向运动,几秒钟时两者相距6个单位长度;(3)A、B两点以(1)中的速度同时出发,向数轴负方向运动,与此同时,C点从原点出发作同方向的运动,且在运动过程中,始终有CB:CA=1:2,若干秒钟后,C停留在-10处,求此时B点的位置?例6:在数轴上,点A表示的数是-30,点B表示的数是170.(1)求A、B中点所表示的数.(2)一只电子青蛙m,从点B出发,以4个单位每秒的速度向左运动,同时另一只电子青蛙n,从A点出发以6个单位每秒的速度向右运动,假设它们在C点处相遇,求C点所表示的数.(3)两只电子青蛙在C点处相遇后,继续向原来运动的方向运动,当电子青蛙m处在A 点处时,问电子青蛙n处在什么位置?(4)如果电子青蛙m从B点处出发向右运动的同时,电子青蛙n也向右运动,假设它们在D点处相遇,求D点所表示的数例7、已知数轴上有A、B、C三点,分别代表- 24,- 10,10,两只电子蚂蚁甲、乙分别从A、C两点同时相向而行,甲的速度为4个单位/秒。
七年级数学数轴动点题型总结

七年级数学数轴动点题型总结一、知识点梳理1. 数轴的定义:规定了原点、正方向和单位长度的直线叫做数轴。
2. 数轴上的点:表示数对的点叫做坐标点,每个坐标点既对应一个数值。
3. 数轴上的区间:用数轴上的点表示数,可以分为正半轴、负半轴、原点、正半轴区间和负半轴区间。
4. 动点的定义:在某一个变化过程中,存在一些变量,其中每两个一个随另一个的变化而变化,且它们两个变量之间的关系是任意的,那么我们称其中一个变量为另一个变量的动点。
二、题型总结1. 直线外一点到直线上各点的所有线段中,垂线段最短。
例:在数轴上有点A、B、C,点A表示的数为-2,B、C分别表示数为6和-3,则数轴上一点D表示的数是______(用不等式表示)。
分析:当点D在线段AB外时,根据垂线段最短可得到点D到AB两点的距离之和最小;当点D在线段AB内时,则根据数轴的性质得到D在B、C两点之间即可。
解:设点D表示数为x,则当D在线段AB外时,有$|x - ( -2)| \geqslant |x - 6| + |x + 3|$;当D在线段AB内时,有$|x - ( - 2)| \leqslant |x - 6| + |x + 3|$。
故答案为:$- 5 \leqslant x < - 2$或$- 2 < x \leqslant5$。
2. 动点的坐标问题:此类问题主要是通过数轴,考查学生对绝对值、解一元一次不等式组等知识的掌握情况。
关键是分清题目中的动点是在数轴上运动还是在线段上运动,再根据数轴的性质进行解答。
例:在数轴上有三个点A、B、C,分别表示-4、0、3,一只蚂蚁从点A出发沿数轴向右移动,请画出蚂蚁移动的路径图(用箭头表示),并求出蚂蚁移动的最短距离。
分析:由于点A表示-4,所以在A点的右侧有向线段移动的最短距离为B点到A点的距离减去A点到终点C的距离。
解:由题意可知:A点的坐标为-4,则向右移动的距离为B点到A 点的距离减去A点到终点C的距离。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
七年级数学动点题型归纳
一、直线运动
1.速度与时间的关系
2.当物体做直线运动时,速度是一个重要的概念。
通常用v表示速度,t表示
时间。
在匀速直线运动中,速度是一个常数,不随时间改变。
但在变速运动中,速度会随时间变化。
速度与时间的关系可以用以下方程表示:v = v0 + at,其中v0是初速度,a是加速度。
3.距离与时间的关系
4.在直线运动中,距离是另一个重要的概念。
通常用s表示距离,t表示时间。
距离是速度和时间的乘积。
在匀速直线运动中,距离与时间的关系可以用以下方程表示:s = v0t + 1/2at^2。
5.追及问题
6.追及问题是直线运动中的一类常见问题。
两个物体在同一时间出发,沿同
一直线运动,一个在前,一个在后。
后一个物体要追上前一个物体,求所需时间。
这类问题通常用速度和距离的关系来解决。
二、圆周运动
1.速度与角度的关系
2.在圆周运动中,速度与角度的关系是一个重要的概念。
通常用v表示速度,
θ表示角度。
在匀速圆周运动中,速度是一个常数,不随角度改变。
但在变速圆周运动中,速度会随角度变化。
速度与角度的关系可以用以下方程表示:v = rω = r2π/T,其中r是半径,ω是角速度,T是周期。
3.半径与角度的关系
4.在圆周运动中,半径与角度的关系也是一个重要的概念。
通常用r表示半径,
θ表示角度。
在匀速圆周运动中,半径和角度的关系可以用以下方程表示:θ = ωt = 2πt/T,其中ω是角速度,t是时间,T是周期。
5.圆内运动问题在圆内做圆周运动的物体需要满足向心力的条件才能保持做
圆周运动。
向心力是由半径和速度的平方之间的比例关系决定的:F=mv2/r,其中F是向心力,m是物体的质量,v是速度,r是半径。
如果物体的速度过大或者半径过小,向心力不足,物体就会做离心运动;如果物体的速度过小或者半径过大,向心力过大,物体就会做向心运动。
在求解这类问题时需要注意对应物体的质量、速度和半径之间关系的考虑。
三、坐标几何
1.点坐标的确定
2.在坐标几何中,点坐标是一个基本概念。
通常用(x,y)表示一个点的坐标。
在平面直角坐标系中,x轴和y轴分别表示横坐标和纵坐标。
点坐标的确定需要用到一些几何定理和方程求解方法。
3.直线方程的应用
4.直线方程是坐标几何中的一个重要概念,用方程来表示直线的位置和形状。
在平面直角坐标系中,直线方程通常用y=kx+b表示,其中k和b是常数,k称为直线的斜率,b称为截距。
直线方程的应用主要涉及到直线的平行、垂直、交点等问题。
5.面积的计算
6.面积是平面图形的一个重要属性,用A表示。
在坐标几何中,面积的计算
需要用到一些数学方法和公式。
例如,对于矩形、三角形等规则图形,可以通过长度、宽度、底和高等参数来计算面积;对于不规则图形,通常需要用到微积分等高级数学方法来求解。