数形结合思想例题选讲

合集下载

数形结合,例题解析

数形结合,例题解析

利用数形结合思想解题,不但是一种重要的解题方法,更是一种重要的思维方法。

对于应用数形结合思想解题,大家并不陌生,但如何应用却是值得我们深究的问题。

数形结合的主要方法有:图像法、几何法,主要途径是转化,常见转化有:构造函数实现转化、构造图形实现转化。

一、构造函数,实现转化把研究数的问题转化为研究图像的问题,这类方法一般适用于解方程或不等式的问题。

例1:方程x+log2x=2和方程x+log3x=2的根分别是α、β,那么α、β的大小关系是()a.α<βb.α=βc.α>βd.无法确定■分析:由x+log2x=2得log2x=2-x,由x+log3x=2得log3x=2-x,分别构造函数y=log2x,y=log3x及y=2-x,并作出它们的图像,由图易得答案为a。

例2:方程■-|ax|=0(a∈r)解的个数是()a.4个b.2个c.0个d.与a的取值有关■分析:原方程可化为■=|ax|,分别作函数y=■与y=|ax|的图像,由图知,应选b。

二、构造几何图形,实现转化在解题时,我们常通过构造几何图形,实现问题转化,如把a转化为距离,把a2或ab 转化为面积,a2 +b2+ab转化为余弦定理,把sinα转化为直角三角形中边角关系等。

例3:若锐角α、β、γ满足cos2α+cos2β+cos2γ=1,求证tgαtgβtgγ≤2■。

分析:由已知条件可设α、β、γ为一长方形的一条对角线与过同一顶点的三条棱所成的角,从而命题容易得证。

■证明:如图,设长方形体abcd-a1b1c1d1的长、宽、高为a,b,c,∵cos2α+cos2β+cos2γ=1,∴可设∠d1ba=α,∠d1bc=β,∠d1bb1=γ,连结bd1,则tgα=■,同理tgβ=■,tgγ=■,tgαtgβtgγ=■·■·■≤■=2■,当且仅当a=b=c时取等号,故命题成立。

例4:设x>0,y>0,z>0,求证:■+■>■。

■分析:注意到■=■表示以x、y为两边,夹角为60°的三角形第三边,另两边也有同样意义。

中考数学总复习《数形结合问题》考点梳理及典例讲解课件

中考数学总复习《数形结合问题》考点梳理及典例讲解课件
∴S△ABO=12 ×1×1=12 .
(2)结合函数图象可得,当 y1>y2 时,x<1.
例 1:甲、乙两地之间是一条直路,在全民健身活 动中,赵明阳跑步从甲地往乙地,王浩月骑自行车从 乙地往甲地,两人同时出发,王浩月先到达目的地,
两人之间的距离 s(单位:km)与运动时间 t(单位:h)的
函数关系大致如图所示,下列说法中错误的是( )
A.两人出发 1 h 后相遇 B.赵明阳跑步的速度为 8 km/h C.王浩月到达目的地时两人相距 10 km D.王浩月比赵明阳提前 1.5 h 到目的地 答案:C
例 2:如图,AB,CD 是⊙O 的两条互相垂直的直 径,点 P 从点 O 出发,沿 O→C→B→O 的路线匀速运 动,设∠APD=y(单位:度),那么 y 与点 P 运动的时
间(单位:秒)的关系图是( )
A
B
C

D
答案:B
例 3:如下图,抛物线 y=-14 x2-x+2 的顶点为
A,与 y 轴交于点 B. (1)求点 A,点 B 的坐标; (2)若点P是 x 轴上任意一点,
n=(BC+CD+DE+EF+FA )÷2=(BC+DE+AB +AF)÷2=(8+6+6+8+6)÷2=17.
(3)解:由图 2 知,点 P 在 BC 上运动时,0≤t≤4, ∴S=12 ×6×2t=6t,即 S=6t(0≤t≤4); ∵由图 2 知,点 P 在 DE 上运动时,6≤t≤9, ∴S=12 ×6×(2t-4)=6t-12,即 S=6t-12 (6≤t≤9).
当点 P 在 x 轴上又异于 AB 的延长线与 x 轴的交点
时,
在点 P,A,B 构成的三角形中,PA -PB<AB. 综合上述,PA -PB≤AB.

数形结合(含解析)

数形结合(含解析)

数形结合Ⅰ、专题精讲:数学家华罗庚说得好:“数形结合百般好,隔离分家万事休,几何代数统一体,永远联系莫分离”.几何图形的形象直观,便于理解,代数方法的一般性,解题过程的机械化,可操作性强,便于把握,因此数形结合思想是数学中重要的思想方法.所谓数形结合就是根据数学问题的题设和结论之间的内在联系,既分析其数量关系,又揭示其几何意义使数量关系和几何图形巧妙地结合起来,并充分地利用这种结合,探求解决问题的思路,使问题得以解决的思考方法.Ⅱ、典型例题剖析【例1】某公司推销一种产品,设x(件)是推销产品的数量,y(元)是推销费,图3-3-1已表示了公司每月付给推销员推销费的两种方案,看图解答下列问题:(1)求y1与y2的函数解析式;(2)解释图中表示的两种方案是如何付推销费的?(3)果你是推销员,应如何选择付费方案?解:(1)y1=20x,y2=10x+300.(2)y1是不推销产品没有推销费,每推销10件产品得推销费200元,y2是保底工资300元,每推销10件产品再提成100元.(3)若业务能力强,平均每月保证推销多于30件时,就选择y1的付费方案;否则,选择y2的付费方案.点拨:图象在上方的说明它的函数值较大,反之较小,当然,两图象相交时,说明在交点处的函数值是相等的.【例2】某农场种植一种蔬菜,销售员张平根据往年的销售情况,对今年这种蔬菜的销售价格进行了预测,预测情况如图3-3-2,图中的抛物线(部分)表示这种蔬菜销售价与月份之间的关系,观察图象,你能得到关于这种蔬菜销售情况的哪些信息?答题要求:(1)请提供四条信息;(2)不必求函数的解析.解:(1)2月份每千克销售价是3.5元;7对月份每千克销售价是0.5元;(3)l月到7月的销售价逐月下降;(4)7月到12月的销售价逐月上升;(5)2月与7月的销售差价是每千克3元;(6)7月份销售价最低,1月份销售价最高;(7)6月与8月、5月与9月、4月与10 月、3月与11 月,2月与12 月的销售价分别相同.点拨:可以运用二次函数的性质:增减性、对称性.最大(小)值等,得出多个结论.【例3】某报社为了解读者对本社一种报纸四个版面的喜欢情况,对读者作了一次问卷调查,要求读者选出自己最喜欢的一个版面,将所得数据整理后绘制成了如图3l司所示的条形统计图:⑴请写出从条形统计图中获得的一条信息;⑵请根据条形统计图中的数据补全如图3-3-3所示的扇形统计图(要求:第二版与第三版相邻人并说明这两幅统计图各有什么特点?⑶请你根据上述数据,对该报社提出一条合理的建议。

数形结合思想例题选讲

数形结合思想例题选讲

数形结合思想例题选讲数形结合思想是“数”与“形”结合,相互渗透,把代数式的精确刻划与几何图形的直观描述相结合,使代数问题、几何问题相互转化,使抽象思维和形象思维有机结合。

应用数形结合的思想,应注意以下数与形的转化(1)集合的运算及韦恩图 (2)函数及其图象(3)数列通项及求和公式的函数特征及函数图象 (4)方程(多指二元方程)及方程的曲线以形助数常用的有 借助数轴;借助函数图象;借助单位圆;借助数式的结构特征;借助于解析几何方法;以数助形常用的有 借助于几何轨迹所遵循的数量关系;借助于运算结果与几何定理的结合。

例题选讲类型一:集合的运算及韦恩图利用数形结合的思想解决集合问题,常用的方法有数轴法、韦恩图法等。

当所给问题的数量关系比较复杂,且没有学容斥原理前,不好找线索时,用韦恩图法能达到事半功倍的效果。

例1.如图,I 是全集,M 、P 、S 是I 的3个子集,则阴影部分所表示的集合是( )().A M P S I I B 。

()M P S I U ().I C M P S I I ð ().I D M P S I U ð解:阴影部分是M 与P 的公共部分(转化为集合语言就是M P I ),且在S 的外部(转化为集合语言就是C I S ),故选C 。

通过上述例子,我们知道:当应用题中牵涉到集合的交集、并集、补集时,用韦恩图比用数轴法简便。

类型二:图表信息题此类题目都有图形(或图表)作为已知条件,须联系函数的性质分析求解,解决问题的关键是从已知图形(图表)中挖掘信息.例2.直角梯形ABCD 如图(1),动点P 从B 点出发,由AD C B →→→沿边运动,设点P 运动的路程为x ,∆)(x f y =的图象如图(2),则ABC ∆A .10 B .16 C .解:由)(x f y =图象可知,当04()0x f x →由时由变最大,说明,BC 4= 由4=x 及9=x 时)(x f 不变,说明P 点在DC 上,即CD=5. 所以AD=14-9=5,过D 作DG AB ⊥则DG=BC=43=∴AG ,由此可求出AB=3+5=8.16482121=⨯⨯=⋅=∆BC DB S ABC 选B 例3.在某种新型材料的研制中,实验人员获得了下列一组实验数据:现准备用下列四个函数中的一个近似地表示这些数据的规律,其中最接近的一个是A .y =2x -2 B.y =2(x 2-1) C.y =log 2xD.y =log 21x解:解法一:把表中x 的数值取整数代入下列函数中逐一计算,近A B C D P图图似估算,最接近y 值的一个函数为()2112y x =-.故选B. 解法二:把表中()y x ,近似描点连线,对照可得最接近的函数为()2112y x =-的图象.故选B. 类型三:解析几何中直线与曲线 例4.曲线y =1+24x - (–2≤x ≤2)与直线y =r (x –2)+4有两个交点时,实数r解析 方程y =1+24x -的曲线为半圆, y =r (x –2)+4为过(2,4)的直线答案 (43,125] 类型四:方程(多指二元方程)及方程的曲线交点问题例5.已知最小正周期为2的函数y=f(x),当x ∈[-1,1]时,f(x)=x 2,则函数y=f(x)(x ∈R )的图象与y=|log 5x|的图象交点个数为( )A.2B.3C.4D.5 解:.由图象可知,有5例6.设f (x )=x 2–2ax +2,当x ∈[–1,+∞)时,f (x )>a 恒成立,求a 的取值范围解法一 由f (x )>a ,在[–1,+∞)上恒成立⇔x 2–2ax +2–a >0在[–1,+∞)上恒成立考查函数g (x )=x 2–2ax +2–a 的图象在[–1,+∞]时位于x 轴x上方如图两种情况不等式的成立条件是(1)Δ=4a 2–4(2–a )<0⇒a ∈(–2,1)(2)⇒⎪⎩⎪⎨⎧>--<≥∆0)1(10g a a ∈(–3,–2],综上所述a ∈(–3,1)解法二 由f (x )>a ⇔x 2+2>a (2x +1)令y 1=x 2+2,y 2=a (2x +1),在同一坐标系中作出两个函数的图象如图满足条件的直线l 位于l 1与l 2之间,而直线l 1、l 2对应的a 值(即直线的斜率)分别为1,–3, 故直线l 对应的a ∈(–3,1)类型六:函数知识解应用题函数知解应用题的题型比较丰富,一般为中档题,其中对于建立的各种数学模型,要能够模型识别,充分利用数学方法加以解决,并能积累一定数量的典型的函数模型,这是顺利解决实际问题的重要资本.例7.某医药研究所开发一种新药.时间t )治疗疾病有效.则服药一次治疗该疾病有效的时间为( )A. 4小时B. 478 小时C. 41516小时 D. 5小时解:由已知图象可得, 01,()1(), 1.2t a kt t f x t -<≤⎧⎪=⎨->⎪⎩将点(1,4)代入可得4k =,3a =.∴34, 01,()1(), 1.2t t t f x t -<≤⎧⎪=⎨->⎪⎩令()0.25f x ≥可得40.25,11,0116t t t ≥⎧⇒≤≤⎨<≤⎩或31,151()0.25,2t t t ->⎧⎪⇒<≤⎨-≥⎪⎩, ∴1516t ≤≤, 从而得服药一次治疗该疾病有效的时间为1155-41616=,故应选C. 类型七:创新题例8.如图,三台机器人123,,M M M 和检测台M (M 与123,,M M M 均不能重合)位于一条直线上,三台机器人需把各自生产的零件送交M 处进行检测,送检程序设定:当1M 把零件送达M处时,2M 即刻自动出发送检,当2M 把零件送达M 处时,3M 即刻自动出发送检,设2M 的送检的速度为v ,且送检速度是1M 的2倍、3M 的3倍.(1)求三台机器人123,,M M M 把各自生产的零件送达检测台M 处的时间总和;••••••1M M2M 3M -2 -1 0 1 2 3(2)现要求三台机器人123,,M M M 送检时间总和必须最短,请你设计出检测台M 在该直线上的位置.解:(1)由已知得检测台M 的位置坐标为0,则机器人123,,M M M 与检测台M 的距离分别为2,1,3.又2M 的送检的速度为v , 则1M 的送检的速度为12v ,3M 的送检的速度为13v .故三台机器人123,,M M M 按程序把各自的生产零件送达检测台M处的时间总和为213141123y v v v v =++=. (2)设x 为检测台M 的位置坐标,则三台机器人123,,M M M 与检测台M 的距离分别为|(2)|,|1|,|3|x x x ----.于是三台机器人123,,M M M 按程序把各自的生产零件送达检测台M处的时间总和为|(2)||1||3|1(2|2||1|3|3|)1123x x x y x x x v v v v ----=++=++-+-. 只要求()2|2||1|3|3|f x x x x =++-+-的最小值.而66,(2),214,(21),()12,(13),66,(3),x x x x f x x x x -+<-⎧⎪-+-≤<⎪=⎨≤≤⎪⎪->⎩由分段函数图象得当[1,3]x ∈时,有min ()12f x =.即送检时间总和最短为12v. 又检测台M 与123,,M M M 均不能重合,故可将检测台M 设置在直线上机器人2M 和3M 之间的任何位置(不含23,M M 的位置),都能使各机器人123,,M M M的送检时间总和最短.。

高中数学数形结合思想经典例题(含解析)

高中数学数形结合思想经典例题(含解析)

高中数学数形结合思想经典例题一、选择题1.已知函数f (x )=⎩⎪⎨⎪⎧3x ,x≤0,log 2x ,x>0,下列结论正确的是( )A .函数f (x )为奇函数B .f (f (14))=19C .函数f (x )的图象关于直线y =x 对称D .函数f (x )在R 上是增函数2.已知二次函数f (x )=ax 2-(a +2)x +1(a ∈Z ),且函数f (x )在(-2,-1)上恰有一个零点,则不等式f (x )>1的解集为( ) A .(-∞,-1)∪(0,+∞) B .(-∞,0)∪(1,+∞) C .(-1,0)D .(0,1)3.函数f (x )=ln|x +cos x |的图象为( )4.设奇函数f (x )在(0,+∞)上为增函数,且f (2)=0,则不等式f (x )-f (-x )x <0的解集为( )A .(-2,0)∩(2,+∞)B .(-∞,-2)∪(0,2)C .(-∞,-2)∪(2,+∞)D .(-2,0)∪(0,2)5.实数x ,y 满足不等式组⎩⎪⎨⎪⎧x -y +2≥0,2x -y -5≤0,x +y -4≥0,则z =|x +2y -4|的最大值为( )A.2155B .21C .20D .256.已知函数f (x )=|x -2|+1,g (x )=kx .若方程f (x )=g (x )有两个不相等的实根, 则实数k 的取值范围是( ) A .(0,12)B .(12,1)C .(1,2)D .(2,+∞)7.若实数x ,y 满足|x -3|≤y ≤1,则z =2x +yx +y 的最小值为( )A.53 B .2 C.35D.128.设方程10x =|lg(-x )|的两个根分别为x 1,x 2,则( ) A .x 1x 2<0 B .x 1x 2=1 C .x 1x 2>1D .0<x 1x 2<19.已知函数y =f (x )在(0,1)内的一段图象是如图所示的一段曲线,若0<x 1<x 2<1,则( )A.f (x 1)x 1<f (x 2)x 2B.f (x 1)x 1=f (x 2)x 2C.f (x 1)x 1>f (x 2)x 2D .不能确定10.设关于x ,y 的不等式组⎩⎪⎨⎪⎧2x -y +2>0,x +m<0,y -m>0表示的平面区域内存在点P (x 0,y 0),满足x 0-2y 0=2,求m 的取值范围是( ) A .(-∞,43)B .(-∞,13)C .(-∞,-23)D .(-∞,-53)11.在△AB C 中,|AB →+AC →|=|AB →-AC →|,AB =2,AC =1,E ,F 为BC 的三等分点,则AE →·AF →=( ) A.89 B.109 C.259D.26912.设函数f (x )=(x -a )2+(ln x 2-2a )2,其中x >0,a ∈R ,存在x 0使得f (x 0)≤45成立,则实数a的值为( )A.15B.25C.12D .113.已知抛物线C :y 2=8x 的焦点为F ,准线为l ,P 是l 上一点,Q 是直线PF 与C 的一个交点,若FP →=4FQ →,则|QF |=( ) A.72 B.52 C .3D .214.已知双曲线C :x 2a 2-4y 2=1(a >0)的右顶点到其一条渐近线的距离等于34,抛物线E :y 2=2px 的焦点与双曲线C 的右焦点重合,则抛物线E 上的动点M 到直线l 1:4x -3y +6=0和l 2:x =-1的距离之和的最小值为( ) A .1 B .2 C .3 D .4二、填空题15.已知函数y =|x 2-1|x -1的图象与函数y =kx -2的图象恰有两个交点,则实数k 的取值范围是__________.16.已知f (x )是定义域为R 的偶函数,当x ≥0时,f (x )=x 2-4x .那么,不等式f (x +2)<5的解集是________.17.已知变量x ,y 满足约束条件⎩⎪⎨⎪⎧x +2y -3≤0,x +3y -3≥0,y -1≤0,则F (x ,y )=log 2(y +1)+log 12(x +1)的最小值为________.18.已知直线y =x -2与圆x 2+y 2-4x +3=0及抛物线y 2=8x 的四个交点从上面依次为A ,B ,C ,D 四点,则|AB |+|CD |=________.19.已知函数f (x )=⎩⎪⎨⎪⎧-x 2+2x ,x≤0,ln (x +1),x>0.若|f (x )|≥ax ,则a 的取值范围是______.20.已知函数f (x )=⎩⎪⎨⎪⎧|x|,x≤m ,x 2-2mx +4m ,x>m ,其中m >0.若存在实数b ,使得关于x 的方程f (x )=b有三个不同的根,则m 的取值范围是________.高中数学数形结合思想经典例题解析一、选择题1.已知函数f (x )=⎩⎪⎨⎪⎧3x ,x≤0,log 2x ,x>0,下列结论正确的是( )A .函数f (x )为奇函数B .f (f (14))=19C .函数f (x )的图象关于直线y =x 对称D .函数f (x )在R 上是增函数【答案】 B【解析】 作出函数f (x )的图象,如图所示,可知A ,C ,D 均错.f (f (14))=3log 214=3-2=19,故B 正确.2.已知二次函数f (x )=ax 2-(a +2)x +1(a ∈Z ),且函数f (x )在(-2,-1)上恰有一个零点,则不等式f (x )>1的解集为( ) A .(-∞,-1)∪(0,+∞) B .(-∞,0)∪(1,+∞) C .(-1,0) D .(0,1)【答案】 C【解析】 ∵f (x )=ax 2-(a +2)x +1,Δ=(a +2)2-4a =a 2+4>0, ∴函数f (x )=ax 2-(a +2)x +1必有两个不同的零点. 又∵f (x )在(-2,-1)上有一个零点,则f (-2)f (-1)<0, ∴(6a +5)(2a +3)<0,解得-32<a <-56.又∵a ∈Z ,∴a =-1.不等式f (x )>1,即-x 2-x >0.解得-1<x <0. 3.函数f (x )=ln|x +cos x |的图象为( )【答案】 A【解析】 因为f (0)=ln|cos0|=0,故排除C ,D ;又f (1)=ln|1+cos1|>ln 1=0,故排 除B ,选A.4.设奇函数f (x )在(0,+∞)上为增函数,且f (2)=0,则不等式f (x )-f (-x )x <0的解集为( )A .(-2,0)∩(2,+∞)B .(-∞,-2)∪(0,2)C .(-∞,-2)∪(2,+∞)D .(-2,0)∪(0,2)【答案】 D【解析】 由已知条件可以画出函数f (x )的草图,如图所示.由函数f (x )为奇函数可化简不等式f (x )-f (-x )x <0为2f (x )x <0.若x >0,则需有f (x )<0,结合图象可知0<x <2;若x <0,则需有f (x )>0,结合图象可知-2<x <0.综上可知,不等式的解集为(-2,0)∪(0,2).5.实数x ,y 满足不等式组⎩⎪⎨⎪⎧x -y +2≥0,2x -y -5≤0,x +y -4≥0,则z =|x +2y -4|的最大值为( )A.2155B .21C .20D .25【答案】 B【解析】 作出不等式组表示的平面区域,如下图中阴影部分所示.z =|x +2y -4|=|x +2y -4|5·5,即其几何含义为阴影区域内的点到直线x +2y -4=0的距离的5倍.由⎩⎪⎨⎪⎧x -y +2=0,2x -y -5=0,得B 点坐标为(7,9),显然点B 到直线x +2y -4=0的距离最大,此时z max=21.6.已知函数f (x )=|x -2|+1,g (x )=kx .若方程f (x )=g (x )有两个不相等的实根, 则实数k 的取值范围是( ) A .(0,12)B .(12,1)C .(1,2)D .(2,+∞)【答案】 B【解析】 在同一坐标系中分别画出函数f (x ),g (x )的图象如图所示,方程f (x )=g (x )有两个不相等的实根等价于两个函数的图象有两个不同的交点,结合图象可知,当直线y =kx 的斜率大于坐标原点与点(2,1)连线的斜率且小于直线y =x -1的斜率时符合题意,故12<k <1.7.若实数x ,y 满足|x -3|≤y ≤1,则z =2x +yx +y 的最小值为( )A.53 B .2 C.35D.12【答案】 A【解析】 依题意,得实数x ,y 满足⎩⎪⎨⎪⎧x +y -3≥0,x -y -3≤0,0≤y≤1,画出可行域如图阴影部分所示,其中A (3,0),C (2,1),z =2+yx 1+y x =1+11+y x ∈[53,2],故选A.8.设方程10x =|lg(-x )|的两个根分别为x 1,x 2,则( ) A .x 1x 2<0 B .x 1x 2=1 C .x 1x 2>1 D .0<x 1x 2<1【答案】 D【解析】 本题考查函数的性质.在同一坐标系下,画出函数y =10x 与y =|lg(-x )|的图象,结合图象不难看出,它们的两个交点中,其中一个交点横坐标属于(-∞,-1),另一个交点横坐标属于(-1,0),即在x 1,x 2中,其中一个属于(-∞,-1),另一个属于(-1,0),不妨设x 1∈(-∞,-1),x 2∈(-1,0),则有10x 1=|lg(-x 1)|=lg(-x 1),10x 2=|lg(-x 2)|=-lg(-x 2),10x 1-10x 2=lg(-x 1)+lg(-x 2)=lg(x 1x 2)<0,0<x 1x 2<1,故选D. 9.已知函数y =f (x )在(0,1)内的一段图象是如图所示的一段曲线,若0<x 1<x 2<1,则( )A.f (x 1)x 1<f (x 2)x 2B.f (x 1)x 1=f (x 2)x 2C.f (x 1)x 1>f (x 2)x 2D .不能确定【答案】 C【解析】 如图,设曲线上两点P 1(x 1,f (x 1)),P 2(x 2,f (x 2)),kOP 1=f (x 1)-0x 1-0=f (x 1)x 1,kOP 2=f (x 2)-0x 2-0=f (x 2)x 2,由于0<x 1<x 2<1,根据斜率与倾斜角之间的关系,显然有kOP 1>kOP 2,即f (x 1)x 1>f (x 2)x 2,故选C. 10.设关于x ,y 的不等式组⎩⎪⎨⎪⎧2x -y +2>0,x +m<0,y -m>0表示的平面区域内存在点P (x 0,y 0),满足x 0-2y 0=2,求m 的取值范围是( ) A .(-∞,43)B .(-∞,13)C .(-∞,-23)D .(-∞,-53)【答案】 C【解析】 作出不等式组所表示的平面区域,根据题设条件分析求解. 当m ≥0时,若平面区域存在,则平面区域内的点在第二象限,平面区域内不可能存在点P (x 0,y 0)满足x 0-2y 0=2,因此m <0. 如图所示的阴影部分为不等式组表示的平面区域.要使可行域内包含y =12x -1上的点,只需可行域边界点(-m ,m )在直线y =12x -1的下方即可,即m <-12m -1,解得m <-23. 11.在△AB C 中,|AB →+AC →|=|AB →-AC →|,AB =2,AC =1,E ,F 为BC 的三等分点,则AE →·AF→=( ) A.89 B.109 C.259 D.269【答案】 B【解析】 由|AB →+AC →|=|AB →-AC →|,化简得AB →·AC →=0,又因为AB 和AC 为三角形的两条边,不可能为0,所以AB →与AC →垂直,所以△ABC 为直角三角形.以AC 为x 轴,以AB 为y 轴建立平面直角坐标系,如图所示,则A (0,0),B (0,2),C (1,0),由E ,F 为BC 的三等分点知E (23,23),F (13,43),所以AE →=(23,23),AF →=(13,43),所以AE →·AF →=23×13+23×43=109. 12.设函数f (x )=(x -a )2+(ln x 2-2a )2,其中x >0,a ∈R ,存在x 0使得f (x 0)≤45成立,则实数a的值为( ) A.15 B.25 C.12D .1 【答案】 A【解析】 (x -a )2+(ln x 2-2a )2表示点P (x ,ln x 2)与点Q (a ,2a )距离的平方. 而点P 在曲线g (x )=2ln x 上,点Q (a ,2a )在直线y =2x 上.因为g ′(x )=2x ,且y =2x 表示斜率为2的直线,所以由2x=2,解得x =1.从而曲线g (x )=2ln x 在x =1处的切线方程为y =2(x -1),又直线y =2(x -1)与直线y =2x 平行,且它们间的距离为222+(-1)2=255,如图所示.故|PQ |的最小值为255,即f (x )=(x -a )2+(ln x 2-2a )2的最小值为(255)2=45,当|PQ |最小时,P 点的坐标为(1,0),所以2a -0a -1×2=-1,解得a =15.13.已知抛物线C :y 2=8x 的焦点为F ,准线为l ,P 是l 上一点,Q 是直线PF 与C 的一个交点,若FP →=4FQ →,则|QF |=( ) A.72 B.52 C .3 D .2【答案】 C【解析】 利用FP →=4FQ →转化长度关系,再利用抛物线定义求解. ∵FP →=4FQ →, ∴|FP →|=4|FQ →|. ∴|PQ||PF|=34.如图,过Q 作QQ ′⊥l ,垂足为Q ′,设l 与x 轴的交点为A ,则|AF |=4. ∴|PQ||PF|=|QQ′||AF|=34.∴|QQ ′|=3. 根据抛物线定义可知|QQ ′|=|QF |=3,故选C.14.已知双曲线C :x 2a 2-4y 2=1(a >0)的右顶点到其一条渐近线的距离等于34,抛物线E :y 2=2px 的焦点与双曲线C 的右焦点重合,则抛物线E 上的动点M 到直线l 1:4x -3y +6=0和l 2:x =-1的距离之和的最小值为( ) A .1 B .2 C .3 D .4【答案】 B【解析】 x 2a 2-4y 2=1的右顶点坐标为(a ,0),一条渐近线为x -2ay =0.由点到直线的距离公式得d =|a|12+4a 2=34,解得a =32或a =-32(舍去),故双曲线的方程为4x 23-4y 2=1.因为c =34+14=1,故双曲线的右焦点为(1,0),即抛物线的焦点为(1,0),所以p =2,x =-1是抛物线的准线,如图,作MA ⊥l 1于点A ,MB ⊥l 2于点B ,设抛物线的焦点为F ,连接MF ,则由抛物线的定义知|MB |=|MF |,当M ,A ,F 三点共线时,距离之和最小,其最小值是点F 到l 1的距离,由点到直线的距离公式可得d 1=|4+6|(-3)2+42=105=2,即距离之和的最小值为2,选B.二、填空题15.已知函数y =|x 2-1|x -1的图象与函数y =kx -2的图象恰有两个交点,则实数k 的取值范围是__________.【答案】 (0,1)∪(1,4) 【解析】 根据绝对值的意义,y =|x 2-1|x -1=⎩⎪⎨⎪⎧x +1,x>1或x<-1,-x -1,-1≤x<1.在直角坐标系中作出该函数的图象,如下图中实线所示.根据图象可知,当0<k <1或1<k <4时有两个交点.16.已知f (x )是定义域为R 的偶函数,当x ≥0时,f (x )=x 2-4x .那么,不等式f (x +2)<5的解集是________. 【答案】 (-7,3)【解析】 当x ≥0时,f (x )=x 2-4x <5的解集为[0,5),又f (x )为偶函数,所以f (x )<5的解集为(-5,5).所以f (x +2)<5的解集为(-7,3).17.已知变量x ,y 满足约束条件⎩⎪⎨⎪⎧x +2y -3≤0,x +3y -3≥0,y -1≤0,则F (x ,y )=log 2(y +1)+log 12(x +1)的最小值为________. 【答案】 -2【解析】 F (x ,y )=log 2(y +1)+log 12(x +1)=log 2(y +1)-log 2(x +1)=log 2y +1x +1,令k =y +1x +1=y -(-1)x -(-1),则k 表示可行域内(如图所示)的点与P (-1,-1)所在直线的斜率.18.已知直线y =x -2与圆x 2+y 2-4x +3=0及抛物线y 2=8x 的四个交点从上面依次为A ,B ,。

数形结合思想(例题赏析)课件

数形结合思想(例题赏析)课件

(一)与集合、不等式有关的问题
1、盛夏,有10个同学去冷饮店,向服务员交出需要的冷饮数
统计表:有6个人要可可,有5个人要咖啡,有5个人要果汁,有 3人既要可可又要咖啡;有2人既要咖啡又要果汁;有一人三样 都要,问 人没有吃冷饮。 2、已知集合A={x||x-a|≤1},B={x|x2-5x+4≥0}.若A∩B=∅, 则实数a的取值范围是 . 3、在“家电下乡”活动中,某厂要将 100台洗衣机运往邻近的乡 镇,现有4辆甲型货车和8辆乙型货车可供使用。每辆甲型货车 运输费用400元,可装洗衣机20台;每辆乙型货车运输费用300 元,可装洗衣机10台。若每辆车至多只运一次,则该厂所花的 最少运输费用为( ) A.2000元 B.2200元 C.2400元 D.2800元
AB 2 y1 y2
3 而 MQ AB 2
b m 3 1 4b (2)
6 2
联立(1),(2)得:
2m 2 8m 5 0, 解得m=2
6 6 存在M (0, 2 )或M (0, 2+ ), 使△MAB为正三角形 2 2
课堂小结
1 MN AN AM (a, 0, a 2) MN 2 (a 2 2 1 ) (0 a 2) 2 2
(2)由 MN ( 3 ) a
MNA

(a
2 2 1 ) 2 2
得a
2 2 , MN min 2 2
z C D M B y
, 所 以
cos n1 ,n2
1 1 3 3 3
E N
A(O)
10、 斜率为 1 的直线 l 与抛物线 y x 交于 A,B 两

高中数学数形结合思想经典例题(含解析)

高中数学数形结合思想经典例题(含解析)

高中数学数形结合思想经典例题一、选择题1.已知函数f (x )=⎩⎪⎨⎪⎧3x ,x≤0,log 2x ,x>0,下列结论正确的是( )A .函数f (x )为奇函数B .f (f (14))=19C .函数f (x )的图象关于直线y =x 对称D .函数f (x )在R 上是增函数2.已知二次函数f (x )=ax 2-(a +2)x +1(a ∈Z ),且函数f (x )在(-2,-1)上恰有一个零点,则不等式f (x )>1的解集为( ) A .(-∞,-1)∪(0,+∞) B .(-∞,0)∪(1,+∞) C .(-1,0)D .(0,1)3.函数f (x )=ln|x +cos x |的图象为( )4.设奇函数f (x )在(0,+∞)上为增函数,且f (2)=0,则不等式f (x )-f (-x )x <0的解集为( )A .(-2,0)∩(2,+∞)B .(-∞,-2)∪(0,2)C .(-∞,-2)∪(2,+∞)D .(-2,0)∪(0,2)5.实数x ,y 满足不等式组⎩⎪⎨⎪⎧x -y +2≥0,2x -y -5≤0,x +y -4≥0,则z =|x +2y -4|的最大值为( )A.2155B .21C .20D .256.已知函数f (x )=|x -2|+1,g (x )=kx .若方程f (x )=g (x )有两个不相等的实根, 则实数k 的取值范围是( ) A .(0,12)B .(12,1)C .(1,2)D .(2,+∞)7.若实数x ,y 满足|x -3|≤y ≤1,则z =2x +yx +y 的最小值为( )A.53 B .2 C.35D.128.设方程10x =|lg(-x )|的两个根分别为x 1,x 2,则( ) A .x 1x 2<0 B .x 1x 2=1 C .x 1x 2>1D .0<x 1x 2<19.已知函数y =f (x )在(0,1)内的一段图象是如图所示的一段曲线,若0<x 1<x 2<1,则( )A.f (x 1)x 1<f (x 2)x 2B.f (x 1)x 1=f (x 2)x 2C.f (x 1)x 1>f (x 2)x 2D .不能确定10.设关于x ,y 的不等式组⎩⎪⎨⎪⎧2x -y +2>0,x +m<0,y -m>0表示的平面区域内存在点P (x 0,y 0),满足x 0-2y 0=2,求m 的取值范围是( ) A .(-∞,43)B .(-∞,13)C .(-∞,-23)D .(-∞,-53)11.在△AB C 中,|AB →+AC →|=|AB →-AC →|,AB =2,AC =1,E ,F 为BC 的三等分点,则AE →·AF →=( ) A.89 B.109 C.259D.26912.设函数f (x )=(x -a )2+(ln x 2-2a )2,其中x >0,a ∈R ,存在x 0使得f (x 0)≤45成立,则实数a的值为( )A.15B.25C.12D .113.已知抛物线C :y 2=8x 的焦点为F ,准线为l ,P 是l 上一点,Q 是直线PF 与C 的一个交点,若FP →=4FQ →,则|QF |=( ) A.72 B.52 C .3D .214.已知双曲线C :x 2a 2-4y 2=1(a >0)的右顶点到其一条渐近线的距离等于34,抛物线E :y 2=2px 的焦点与双曲线C 的右焦点重合,则抛物线E 上的动点M 到直线l 1:4x -3y +6=0和l 2:x =-1的距离之和的最小值为( ) A .1 B .2 C .3 D .4二、填空题15.已知函数y =|x 2-1|x -1的图象与函数y =kx -2的图象恰有两个交点,则实数k 的取值范围是__________.16.已知f (x )是定义域为R 的偶函数,当x ≥0时,f (x )=x 2-4x .那么,不等式f (x +2)<5的解集是________.17.已知变量x ,y 满足约束条件⎩⎪⎨⎪⎧x +2y -3≤0,x +3y -3≥0,y -1≤0,则F (x ,y )=log 2(y +1)+log 12(x +1)的最小值为________.18.已知直线y =x -2与圆x 2+y 2-4x +3=0及抛物线y 2=8x 的四个交点从上面依次为A ,B ,C ,D 四点,则|AB |+|CD |=________.19.已知函数f (x )=⎩⎪⎨⎪⎧-x 2+2x ,x≤0,ln (x +1),x>0.若|f (x )|≥ax ,则a 的取值范围是______.20.已知函数f (x )=⎩⎪⎨⎪⎧|x|,x≤m ,x 2-2mx +4m ,x>m ,其中m >0.若存在实数b ,使得关于x 的方程f (x )=b有三个不同的根,则m 的取值范围是________.高中数学数形结合思想经典例题解析一、选择题1.已知函数f (x )=⎩⎪⎨⎪⎧3x ,x≤0,log 2x ,x>0,下列结论正确的是( )A .函数f (x )为奇函数B .f (f (14))=19C .函数f (x )的图象关于直线y =x 对称D .函数f (x )在R 上是增函数【答案】 B【解析】 作出函数f (x )的图象,如图所示,可知A ,C ,D 均错.f (f (14))=3log 214=3-2=19,故B 正确.2.已知二次函数f (x )=ax 2-(a +2)x +1(a ∈Z ),且函数f (x )在(-2,-1)上恰有一个零点,则不等式f (x )>1的解集为( ) A .(-∞,-1)∪(0,+∞) B .(-∞,0)∪(1,+∞) C .(-1,0) D .(0,1)【答案】 C【解析】 ∵f (x )=ax 2-(a +2)x +1,Δ=(a +2)2-4a =a 2+4>0, ∴函数f (x )=ax 2-(a +2)x +1必有两个不同的零点. 又∵f (x )在(-2,-1)上有一个零点,则f (-2)f (-1)<0, ∴(6a +5)(2a +3)<0,解得-32<a <-56.又∵a ∈Z ,∴a =-1.不等式f (x )>1,即-x 2-x >0.解得-1<x <0. 3.函数f (x )=ln|x +cos x |的图象为( )【答案】 A【解析】 因为f (0)=ln|cos0|=0,故排除C ,D ;又f (1)=ln|1+cos1|>ln 1=0,故排 除B ,选A.4.设奇函数f (x )在(0,+∞)上为增函数,且f (2)=0,则不等式f (x )-f (-x )x <0的解集为( )A .(-2,0)∩(2,+∞)B .(-∞,-2)∪(0,2)C .(-∞,-2)∪(2,+∞)D .(-2,0)∪(0,2)【答案】 D【解析】 由已知条件可以画出函数f (x )的草图,如图所示.由函数f (x )为奇函数可化简不等式f (x )-f (-x )x <0为2f (x )x <0.若x >0,则需有f (x )<0,结合图象可知0<x <2;若x <0,则需有f (x )>0,结合图象可知-2<x <0.综上可知,不等式的解集为(-2,0)∪(0,2).5.实数x ,y 满足不等式组⎩⎪⎨⎪⎧x -y +2≥0,2x -y -5≤0,x +y -4≥0,则z =|x +2y -4|的最大值为( )A.2155B .21C .20D .25【答案】 B【解析】 作出不等式组表示的平面区域,如下图中阴影部分所示.z =|x +2y -4|=|x +2y -4|5·5,即其几何含义为阴影区域内的点到直线x +2y -4=0的距离的5倍.由⎩⎪⎨⎪⎧x -y +2=0,2x -y -5=0,得B 点坐标为(7,9),显然点B 到直线x +2y -4=0的距离最大,此时z max=21.6.已知函数f (x )=|x -2|+1,g (x )=kx .若方程f (x )=g (x )有两个不相等的实根, 则实数k 的取值范围是( ) A .(0,12)B .(12,1)C .(1,2)D .(2,+∞)【答案】 B【解析】 在同一坐标系中分别画出函数f (x ),g (x )的图象如图所示,方程f (x )=g (x )有两个不相等的实根等价于两个函数的图象有两个不同的交点,结合图象可知,当直线y =kx 的斜率大于坐标原点与点(2,1)连线的斜率且小于直线y =x -1的斜率时符合题意,故12<k <1.7.若实数x ,y 满足|x -3|≤y ≤1,则z =2x +yx +y 的最小值为( )A.53 B .2 C.35D.12【答案】 A【解析】 依题意,得实数x ,y 满足⎩⎪⎨⎪⎧x +y -3≥0,x -y -3≤0,0≤y≤1,画出可行域如图阴影部分所示,其中A (3,0),C (2,1),z =2+yx 1+y x =1+11+y x ∈[53,2],故选A.8.设方程10x =|lg(-x )|的两个根分别为x 1,x 2,则( ) A .x 1x 2<0 B .x 1x 2=1 C .x 1x 2>1 D .0<x 1x 2<1【答案】 D【解析】 本题考查函数的性质.在同一坐标系下,画出函数y =10x 与y =|lg(-x )|的图象,结合图象不难看出,它们的两个交点中,其中一个交点横坐标属于(-∞,-1),另一个交点横坐标属于(-1,0),即在x 1,x 2中,其中一个属于(-∞,-1),另一个属于(-1,0),不妨设x 1∈(-∞,-1),x 2∈(-1,0),则有10x 1=|lg(-x 1)|=lg(-x 1),10x 2=|lg(-x 2)|=-lg(-x 2),10x 1-10x 2=lg(-x 1)+lg(-x 2)=lg(x 1x 2)<0,0<x 1x 2<1,故选D. 9.已知函数y =f (x )在(0,1)内的一段图象是如图所示的一段曲线,若0<x 1<x 2<1,则( )A.f (x 1)x 1<f (x 2)x 2B.f (x 1)x 1=f (x 2)x 2C.f (x 1)x 1>f (x 2)x 2D .不能确定【答案】 C【解析】 如图,设曲线上两点P 1(x 1,f (x 1)),P 2(x 2,f (x 2)),kOP 1=f (x 1)-0x 1-0=f (x 1)x 1,kOP 2=f (x 2)-0x 2-0=f (x 2)x 2,由于0<x 1<x 2<1,根据斜率与倾斜角之间的关系,显然有kOP 1>kOP 2,即f (x 1)x 1>f (x 2)x 2,故选C. 10.设关于x ,y 的不等式组⎩⎪⎨⎪⎧2x -y +2>0,x +m<0,y -m>0表示的平面区域内存在点P (x 0,y 0),满足x 0-2y 0=2,求m 的取值范围是( ) A .(-∞,43)B .(-∞,13)C .(-∞,-23)D .(-∞,-53)【答案】 C【解析】 作出不等式组所表示的平面区域,根据题设条件分析求解. 当m ≥0时,若平面区域存在,则平面区域内的点在第二象限,平面区域内不可能存在点P (x 0,y 0)满足x 0-2y 0=2,因此m <0. 如图所示的阴影部分为不等式组表示的平面区域.要使可行域内包含y =12x -1上的点,只需可行域边界点(-m ,m )在直线y =12x -1的下方即可,即m <-12m -1,解得m <-23. 11.在△AB C 中,|AB →+AC →|=|AB →-AC →|,AB =2,AC =1,E ,F 为BC 的三等分点,则AE →·AF→=( ) A.89 B.109 C.259 D.269【答案】 B【解析】 由|AB →+AC →|=|AB →-AC →|,化简得AB →·AC →=0,又因为AB 和AC 为三角形的两条边,不可能为0,所以AB →与AC →垂直,所以△ABC 为直角三角形.以AC 为x 轴,以AB 为y 轴建立平面直角坐标系,如图所示,则A (0,0),B (0,2),C (1,0),由E ,F 为BC 的三等分点知E (23,23),F (13,43),所以AE →=(23,23),AF →=(13,43),所以AE →·AF →=23×13+23×43=109. 12.设函数f (x )=(x -a )2+(ln x 2-2a )2,其中x >0,a ∈R ,存在x 0使得f (x 0)≤45成立,则实数a的值为( ) A.15 B.25 C.12D .1 【答案】 A【解析】 (x -a )2+(ln x 2-2a )2表示点P (x ,ln x 2)与点Q (a ,2a )距离的平方. 而点P 在曲线g (x )=2ln x 上,点Q (a ,2a )在直线y =2x 上.因为g ′(x )=2x ,且y =2x 表示斜率为2的直线,所以由2x=2,解得x =1.从而曲线g (x )=2ln x 在x =1处的切线方程为y =2(x -1),又直线y =2(x -1)与直线y =2x 平行,且它们间的距离为222+(-1)2=255,如图所示.故|PQ |的最小值为255,即f (x )=(x -a )2+(ln x 2-2a )2的最小值为(255)2=45,当|PQ |最小时,P 点的坐标为(1,0),所以2a -0a -1×2=-1,解得a =15.13.已知抛物线C :y 2=8x 的焦点为F ,准线为l ,P 是l 上一点,Q 是直线PF 与C 的一个交点,若FP →=4FQ →,则|QF |=( ) A.72 B.52 C .3 D .2【答案】 C【解析】 利用FP →=4FQ →转化长度关系,再利用抛物线定义求解. ∵FP →=4FQ →, ∴|FP →|=4|FQ →|. ∴|PQ||PF|=34.如图,过Q 作QQ ′⊥l ,垂足为Q ′,设l 与x 轴的交点为A ,则|AF |=4. ∴|PQ||PF|=|QQ′||AF|=34.∴|QQ ′|=3. 根据抛物线定义可知|QQ ′|=|QF |=3,故选C.14.已知双曲线C :x 2a 2-4y 2=1(a >0)的右顶点到其一条渐近线的距离等于34,抛物线E :y 2=2px 的焦点与双曲线C 的右焦点重合,则抛物线E 上的动点M 到直线l 1:4x -3y +6=0和l 2:x =-1的距离之和的最小值为( ) A .1 B .2 C .3 D .4【答案】 B【解析】 x 2a 2-4y 2=1的右顶点坐标为(a ,0),一条渐近线为x -2ay =0.由点到直线的距离公式得d =|a|12+4a 2=34,解得a =32或a =-32(舍去),故双曲线的方程为4x 23-4y 2=1.因为c =34+14=1,故双曲线的右焦点为(1,0),即抛物线的焦点为(1,0),所以p =2,x =-1是抛物线的准线,如图,作MA ⊥l 1于点A ,MB ⊥l 2于点B ,设抛物线的焦点为F ,连接MF ,则由抛物线的定义知|MB |=|MF |,当M ,A ,F 三点共线时,距离之和最小,其最小值是点F 到l 1的距离,由点到直线的距离公式可得d 1=|4+6|(-3)2+42=105=2,即距离之和的最小值为2,选B.二、填空题15.已知函数y =|x 2-1|x -1的图象与函数y =kx -2的图象恰有两个交点,则实数k 的取值范围是__________.【答案】 (0,1)∪(1,4) 【解析】 根据绝对值的意义,y =|x 2-1|x -1=⎩⎪⎨⎪⎧x +1,x>1或x<-1,-x -1,-1≤x<1.在直角坐标系中作出该函数的图象,如下图中实线所示.根据图象可知,当0<k <1或1<k <4时有两个交点.16.已知f (x )是定义域为R 的偶函数,当x ≥0时,f (x )=x 2-4x .那么,不等式f (x +2)<5的解集是________. 【答案】 (-7,3)【解析】 当x ≥0时,f (x )=x 2-4x <5的解集为[0,5),又f (x )为偶函数,所以f (x )<5的解集为(-5,5).所以f (x +2)<5的解集为(-7,3).17.已知变量x ,y 满足约束条件⎩⎪⎨⎪⎧x +2y -3≤0,x +3y -3≥0,y -1≤0,则F (x ,y )=log 2(y +1)+log 12(x +1)的最小值为________. 【答案】 -2【解析】 F (x ,y )=log 2(y +1)+log 12(x +1)=log 2(y +1)-log 2(x +1)=log 2y +1x +1,令k =y +1x +1=y -(-1)x -(-1),则k 表示可行域内(如图所示)的点与P (-1,-1)所在直线的斜率.18.已知直线y =x -2与圆x 2+y 2-4x +3=0及抛物线y 2=8x 的四个交点从上面依次为A ,B ,。

高考数学复习----《数形结合》典型例题讲解

高考数学复习----《数形结合》典型例题讲解

高考数学复习----《数形结合》典型例题讲解【典型例题】例1、(2023·全国·高三专题练习)已知函数()2x f x x =+,2()log g x x x =+,()2sin h x x x =+的零点分别为a ,b ,c 则a ,b ,c 的大小顺序为( )A .a b c >>B .b a c >>C .c a b >>D .b c a >>【答案】D【解析】由()2sin 0h x x x =+=得0x =,0c ∴=,由()0f x =得2x x =−,由()0g x =得2log x x =−.在同一平面直角坐标系中画出2x y =、2log y x =、y x =−的图像, 由图像知a<0,0b >,a c b ∴<<.故选:D例2、(2023·江苏·高三专题练习)已知正实数a ,b ,c 满足2e e e e c a a c −−+=+,28log 3log 6b =+,2log 2c c +=,则a ,b ,c 的大小关系为( )A .a b c <<B .a c b <<C .c a b <<D .c b a <<【答案】B【解析】22e e e e e e e e c a a c c c a a −−−−⇒+=+−=−,故令()e e x x f x −=−,则()e e c c f c −=−,()e e a a f a −=−.易知1e ex x y −=−=−和e x y =均为()0,+∞上的增函数,故()f x 在()0,+∞为增函数. ∵2e e a a −−<,故由题可知,2e e e e e e c c a a a a −−−−=−>−,即()()f c f a >,则0c a >>.易知222log 3log log 2b =+>,2log 2c c =−,作出函数2log y x =与函数2y x =−的图像,如图所示,则两图像交点横坐标在()1,2内,即12c <<,c b ∴<,a cb ∴<<.故选:B .例3、(2023·全国·高三专题练习)已知e ππe e ,π,a b c ===,则这三个数的大小关系为( )A .c b a <<B .b c a <<C .b a c <<D .c a b <<【答案】A【解析】令()()ln ,0x f x x x =>,则()()21ln ,0x f x x x −'=>, 由()0f x ¢>,解得0e x <<,由()0f x '<,解得e x >,所以()()ln ,0x f x x x=>在()0,e 上单调递增,在()e,+∞上单调递减; 因为πe >,所以()()πe f f <,即ln πln e πe<, 所以eln ππln e <,所以e πln πln e <,又ln y x =递增,所以e ππe <,即b a <;ee ππ=⎡⎤⎢⎥⎣⎦, 在同一坐标系中作出xy =与y x =的图像,如图:由图像可知在()2,4中恒有x x >, 又2π4<<,所以ππ>, 又e y x =在()0,∞+上单调递增,且ππ>所以e πe πe π=⎡⎤>⎢⎥⎣⎦,即b c >;综上可知:c b a <<,故选:A例3、(2022春·四川内江·高三校考阶段练习)最近公布的2021年网络新词,我们非常熟悉的有“yyds ”、“内卷”、“躺平”等.定义方程()()f x f x '=的实数根x 叫做函数()f x 的“躺平点”.若函数()lng x x =,()31h x x =−的“躺平点”分别为α,β,则α,β的大小关系为( )A .αβ≥B .αβ>C .αβ≤D .αβ<【答案】D【解析】∵()ln g x x =,则()1g x x'=, 由题意可得:1ln a α=, 令()1ln G x x x=−,则α为()G x 的零点, 可知()G x 在定义域()0,∞+内单调递增,且()()1110,e 10eG G =-<=->, ∴()1,e α∈;又∵()31h x x =−,则()23h x x '=, 由题意可得:3213ββ−=,令()3231H x x x =−−,则β为()H x 的零点,()()23632H x x x x x '=−=−,令()0H x '>,则0x <或2x >,∴()H x 在(),0∞−,()2,+∞内单调递增,在()0,2内单调递减,当(),2x ∈−∞时,()()010H x H ≤=−<,则()H x 在(),2−∞内无零点, 当[)2,x ∞∈+时,()()310,4150H H =−<=>,则()3,4β∈, 综上所述:()3,4β∈;故αβ<.故选:D.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数形结合思想例题选讲
数形结合思想是“数”与“形”结合,相互渗透,把代数式的精确刻划与几何图形的直观描述相结合,使代数问题、几何问题相互转化,使抽象思维和形象思维有机结合。

应用数形结合的思想,应注意以下数与形的转化
(1)集合的运算及韦恩图 (2)函数及其图象
(3)数列通项及求和公式的函数特征及函数图象 (4)方程(多指二元方程)及方程的曲线
以形助数常用的有 借助数轴;借助函数图象;借助单位圆;借助数式的结构特征;借助于解析几何方
法;
以数助形常用的有 借助于几何轨迹所遵循的数量关系;借助于运算结果与几何定理的结合。

例题选讲
类型一:集合的运算及韦恩图
利用数形结合的思想解决集合问题,常用的方法有数轴法、韦恩图法等。

当所给问题的数量关系比较复杂,且没有学容斥原理前,不好找线索时,用韦恩图法能达到事半功倍的效果。

例1.如图,I 是全集,M 、P 、S 是I 的3个子集,则阴影部分所表示的集合是( ) ().A M P S B 。

()M P S ().I C M P S ð ().I D M P S ð 解:阴影部分是M 与P 的公共部分(转化为集合语言就是M P ),且在
S 的外部(转化为集合语言就是C I S ),故选C 。

通过上述例子,我们知道:当应用题中牵
涉到集合的交集、并集、补集时,用韦恩图比用数轴法简便。

类型二:图表信息题
此类题目都有图形(或图表)作为已知条件,须联系函数的性质分析求解,解
决问题的关键是从已知图形(图表)中挖掘信息.
例2.直角梯形ABCD 如图(1),动点P 从B 点出发,由A D C B →→→沿边运动,设点P 运动的路
程为x ,ABP ∆的面积为
)(x f .如果函数)(x f y =的图象如图(2),则ABC ∆的面积为( )
A .10
B .16
C .
解:由)(x f y =
图象可知,当04()0x f x →由时由由4=x
及9=x 时)(x f 不变,说明P 点在DC 上,即所以AD=14-9=5,过D 作DG AB ⊥
则DG=BC=4
3=∴AG ,由此可求出AB=3+5=8.
16482
1
21=⨯⨯=⋅=∆BC DB S ABC 选B
例3.在某种新型材料的研制中,实验人员获得了下列一组实验数据:
现准备用下列四个函数中的一个近似地表示这些数据的规律,其中最接近的一个是
A .y =2x -2 B.y =
21(x 2
-1) C.y =log 2x D.y =log 2
1x A B C
D P
图(1)
解:解法一:把表中x 的数值取整数代入下列函数中逐一计算,近似估算,最接近y 值的一个函数为
()2
112
y x =
-.故选B. 解法二:把表中()y x ,近似描点连线,对照可得最接近的函数为
()2
112
y x =
-的图象.故选B. 类型三:解析几何中直线与曲线
例4.曲线y =1+24x - (–2≤x ≤2)与直线y =r (x –2)+4有两个交点时,实数r 的取值范围
解析 方程y =1+
24x -的曲线为半圆,
y =r (x –2)+4为过(2,4)的直线
答案 (
4
3,125] 类型四:方程(多指二元方程)及方
程的曲线交点问题
例5.已知最小正周期为2的函数y=f(x),当x ∈[-1,1]时,f(x)=x 2,则函数y=f(x)(x ∈R )的图象
与y=|log 5x|的图象交点个数为( )
A.2
B.3
C.4
D.5
解:本题考查周期函数的图象和性质,对数函数的图象和性质及含有绝对的函数的图象的画法,本题考
查数形结合思想.
例6.设f (x )=x
恒成立,求
a 的取值范围 解法一 由f (x )⇔x 2–2ax +2–a 考查函数g (x )=x 2轴上方
如图两种情况
不等式的成立条件是
(1)Δ=4a 2–4(2–a )<0⇒a ∈(–2,1)
(2)⇒⎪⎩

⎨⎧>--<≥∆0)1(1
0g a a ∈(–3,–2], 综上所述a ∈(–3,1)
解法二 由f (x )>a ⇔x 2+2>a (2x +1)
令y 1=x 2+2,y 2=a (2x +1),在同一坐标系中作出两个函数的图象
如图满足条件的直线l 位于l 1与l 2之间,而直线l 1、l 2对应的a 的斜率)
分别为1,–3,
故直线l 对应的a ∈(–3,1)
类型六:函数知识解应用题
函数知解应用题的题型比较丰富,一般为中档题,其中对于建立的各种数学模型,要能够模型识别,充分利用数学方法加以解决,并能积累一定数量的典型的函数模型,这是顺利解决实际问题的重要资本.
例7.某医药研究所开发一种新药.如果成年人按规定的剂量服用,据检测,服药后每毫升血液中的含药
量y (毫克)与
时间t (小时)之间的函数关系近似满足如图所示曲线. 据进一步测定,每毫升血液中含药量不少于0.25毫克时,
x
x
治疗疾病有效.则服药一次治疗该疾病有效的时间为( )
A. 4小时
B. 47
8 小时
C. 415
16
小时 D. 5小时
解:由已知图象可得, 01,()1(), 1.2t a kt t f x t -<≤⎧⎪
=⎨->⎪⎩将点(1,4)代入可得4k =,3a =.
∴34, 01,
()1(), 1.2
t t t f x t -<≤⎧⎪
=⎨->⎪⎩
令()0.25f x ≥可得40.25,11,0116t t t ≥⎧⇒≤≤⎨<≤⎩或3
1,
151()0.25,2
t t t ->⎧⎪
⇒<≤⎨-≥⎪⎩, ∴
1516t ≤≤, 从而得服药一次治疗该疾病有效的时间为115
5-41616=,故应选C. 类型七:创新题
例8.如图,三台机器人123,,M M M 和检测台M (M 与123,,M M M 均不能重合)位于一条直线上,
三台机器人需把各自生产的零件送交M 处进行检测,送检程序设定:当1M 把零件送达M处时,2M 即刻自动出发送检,当2M 把零件送达M 处时,3M 即刻自动出发送检,设2M 的送检的速度为v ,且送检速度是
1M 的2倍、3M 的3倍.
(1)求三台机器人123,,M M M 把各自生产的零件送达检测台M 处的时间总和;
(2)现要求三台机器人123,,M M M 送检时间总和必须最短,请你设计出检测台M 在该直线上的位置. 解:(1)由已知得检测台M 的位置坐标为0,则机器人123,,M M M 与检测台M 的距离分别为2,1,3.又
2M 的送检的速度为v ,
则1M 的送检的速度为
12v ,3M 的送检的速度为1
3
v . 故三台机器人123,,M M M 按程序把各自的生产零件送达检测台M处的时间总和为


∙∙∙∙1M M
2M 3
M -2 -1 0 1 2 3
213141123
y v v v v =
++=. (2)设x 为检测台M 的位置坐标,则三台机器人123,,M M M 与检测台M 的距离分别为
|(2)|,|1|,|3|x x x ----.
于是三台机器人123,,M M M 按程序把各自的生产零件送达检测台M处的时间总和为
|(2)||1||3|1
(2|2||1|3|3|)1123
x x x y x x x v v v v ----=
++=++-+-.
只要求()2|2||1|3|3|f x x x x =++-+-的最小值.
而66,(2),214,(21),()12,(13),66,(3),
x x x x f x x x x -+<-⎧⎪-+-≤<⎪
=⎨≤≤⎪⎪->⎩由分段函数图象得当[1,3]x ∈时,有min ()12f x =.
即送检时间总和最短为12
v
.
又检测台M 与123,,M M M 均不能重合,故可将检测台M 设置在直线上机器人2M 和
3M 之间的任何位置(不含23,M M 的位置),都能使各机器人123,,M M M 的送检时间总和最短.。

相关文档
最新文档