中国矿业大学高等数学下册考试题
大学高等数学下考试题库附答案新编

大学高等数学下考试题库附答案新编Last updated on the afternoon of January 3, 2021《高等数学》试卷1(下)一.选择题(3分⨯10)1.点1M ()1,3,2到点()4,7,22M 的距离=21M M ()..4 C 向量j i b k j i a +=++-=2,2,则有().A.a ∥bB.a ⊥b 3,π=b a .4,π=b a 3.函数1122222-++--=y x y x y 的定义域是().(){}21,22≤+≤y xy x .(){}21,22<+<y x y x (){}21,22≤+<y x y x (){}21,22<+≤y x y x4.两个向量a 与b 垂直的充要条件是().0=⋅b a 0 =⨯b a 0 =-b a 0 =+b a 函数xy y x z 333-+=的极小值是(). 2-1-设y x z sin =,则⎪⎭⎫ ⎝⎛∂∂4,1πy z =(). 2222-22-若p 级数∑∞=11n p n 收敛,则(). p 1<1≤p 1>p 1≥p 幂级数∑∞=1n nnx 的收敛域为().[]1,1-()1,1-[)1,1-(]1,1-幂级数nn x ∑∞=⎪⎭⎫ ⎝⎛02在收敛域内的和函数是().x -11x -22x -12x-21微分方程0ln =-'y y y x 的通解为(). x ce y =x e y =x cxe y =cx e y =二.填空题(4分⨯5) 1.一平面过点()3,0,0A 且垂直于直线AB ,其中点()1,1,2-B ,则此平面方程为______________________.2.函数()xy z sin =的全微分是______________________________.3.设13323+--=xy xy y x z ,则=∂∂∂y x z 2_____________________________. 4.x+21的麦克劳林级数是___________________________. 5.微分方程044=+'+''y y y 的通解为_________________________________.三.计算题(5分⨯6)1.设v e z u sin =,而y x v xy u +==,,求.,yz x z ∂∂∂∂ 2.已知隐函数()y x z z ,=由方程05242222=-+-+-z x z y x 确定,求.,y z x z ∂∂∂∂ 3.计算σd y x D⎰⎰+22sin ,其中22224:ππ≤+≤y x D .4.如图,求两个半径相等的直交圆柱面所围成的立体的体积(R 为半径).5.求微分方程x e y y 23=-'在00==x y条件下的特解.四.应用题(10分⨯2)1.要用铁板做一个体积为23m 的有盖长方体水箱,问长、宽、高各取怎样的尺寸时,才能使用料最省?2..曲线()x f y =上任何一点的切线斜率等于自原点到该切点的连线斜率的2倍,且曲线过点⎪⎭⎫ ⎝⎛31,1,求此曲线方程 .试卷1参考答案一.选择题CBCADACCBD二.填空题1.0622=+--z y x .2.()()xdy ydx xy +cos .3.19622--y y x .4.()n n n nx ∑∞=+-0121.5.()xe x C C y 221-+=.三.计算题 1.()()[]y x y x y e x zxy +++=∂∂cos sin ,()()[]y x y x x e y zxy +++=∂∂cos sin . 2.12,12+=∂∂+-=∂∂z yy z z xx z.3.⎰⎰=⋅πππρρρϕ202sin d d 26π-. 4.3316R .5.x x e e y 23-=.四.应用题1.长、宽、高均为m 32时,用料最省.2..312x y =《高数》试卷2(下)一.选择题(3分⨯10)1.点()1,3,41M ,()2,1,72M 的距离=21M M (). 12131415设两平面方程分别为0122=++-z y x 和05=++-y x ,则两平面的夹角为().6π4π3π2π函数()22arcsin y x z +=的定义域为().(){}10,22≤+≤y x y x .(){}10,22<+<y x y x()⎭⎬⎫⎩⎨⎧≤+≤20,22πy x y x .()⎭⎬⎫⎩⎨⎧<+<20,22πy x y x4.点()1,2,1--P 到平面0522=--+z y x 的距离为()..4 C 函数22232y x xy z --=的极大值为()..1 C 1-21设223y xy x z ++=,则()=∂∂2,1xz ()..7 C 若几何级数∑∞=0n n ar 是收敛的,则().1≤r 1≥r 1<r 1≤r 幂级数()n n x n ∑∞=+01的收敛域为().[]1,1-[)1,1-(]1,1-()1,1-级数∑∞=14sinn nna 是(). A.条件收敛B.绝对收敛C.发散D.不能确定10.微分方程0ln =-'y y y x 的通解为().cx e y =x ce y =x e y =x cxe y =二.填空题(4分⨯5)1.直线l 过点()1,2,2-A 且与直线⎪⎩⎪⎨⎧-==+=t z t y t x 213平行,则直线l 的方程为__________________________.2.函数xy e z =的全微分为___________________________.3.曲面2242y x z -=在点()4,1,2处的切平面方程为_____________________________________.4.211x +的麦克劳林级数是______________________. 5.微分方程03=-ydx xdy 在11==x y 条件下的特解为______________________________.三.计算题(5分⨯6)1.设k j b k j i a 32,2+=-+=,求.b a ⨯2.设22uv v u z -=,而y x v y x u sin ,cos ==,求.,yz x z ∂∂∂∂3.已知隐函数()y x z z ,=由233=+xyz x 确定,求.,yz x z ∂∂∂∂ 4.如图,求球面22224a z y x =++与圆柱面ax y x 222=+(0>a )所围的几何体的体积.5.求微分方程023=+'+''y y y 的通解.四.应用题(10分⨯2)1.试用二重积分计算由x y x y 2,==和4=x 所围图形的面积.2.如图,以初速度0v 将质点铅直上抛,不计阻力,求质点的运动规律().t x x =(提示:g dt x d -=22.当0=t 时,有0x x =,0v dt dx=)试卷2参考答案一.选择题CBABACCDBA.二.填空题 1.211212+=-=-z y x .2.()xdy ydx e xy +.3.488=--z y x .4.()∑∞=-021n n n x .5.3x y =.三.计算题1.k j i 238+-.2.()()()y y x y y y y x y z y y y y x x z 3333223cos sin cos sin cos sin ,sin cos cos sin +++-=∂∂-=∂∂. 3.22,z xy xz y z z xy yz x z +-=∂∂+-=∂∂. 4.⎪⎭⎫ ⎝⎛-3223323πa . 5.x x e C e C y --+=221.四.应用题 1.316. 2.00221x t v gt x ++-=. 《高等数学》试卷3(下)一、选择题(本题共10小题,每题3分,共30分)1、二阶行列式2-3的值为()45A 、10B 、20C 、24D 、222、设a=i+2j-k,b=2j+3k ,则a 与b 的向量积为()A 、i-j+2kB 、8i-j+2kC 、8i-3j+2kD 、8i-3i+k3、点P (-1、-2、1)到平面x+2y-2z-5=0的距离为()A 、2B 、3C 、4D 、54、函数z=xsiny 在点(1,4π)处的两个偏导数分别为() A 、,22,22B 、,2222-C 、22-22-D 、22-,225、设x 2+y 2+z 2=2Rx ,则y z x z ∂∂∂∂,分别为() A 、z y z R x --,B 、z y z R x ---,C 、z y z R x ,--D 、zy z R x ,- 6、设圆心在原点,半径为R ,面密度为22y x +=μ的薄板的质量为()(面积A=2R π)A 、R 2AB 、2R 2AC 、3R 2AD 、A R 221 7、级数∑∞=-1)1(n nnn x 的收敛半径为() A 、2B 、21C 、1D 、3 8、cosx 的麦克劳林级数为()A 、∑∞=-0)1(n n)!2(2n x n B 、∑∞=-1)1(n n )!2(2n x n C 、∑∞=-0)1(n n )!2(2n x n D 、∑∞=-0)1(n n )!12(12--n x n 9、微分方程(y``)4+(y`)5+y`+2=0的阶数是()A 、一阶B 、二阶C 、三阶D 、四阶10、微分方程y``+3y`+2y=0的特征根为()A 、-2,-1B 、2,1C 、-2,1D 、1,-2二、填空题(本题共5小题,每题4分,共20分)1、直线L 1:x=y=z 与直线L 2:的夹角为z y x =-+=-1321___________。
高数下册试题及答案

高数下册试题及答案一、选择题(每题5分,共20分)1. 已知函数f(x) = x^3 - 3x,求f'(x)。
A. 3x^2 - 3B. x^2 - 3xC. 3x^2 + 3D. 3x^2 - 3x答案:A2. 设函数f(x) = sin(x) + cos(x),则f'(x)等于:A. cos(x) - sin(x)B. cos(x) + sin(x)C. -sin(x) - cos(x)D. -sin(x) + cos(x)答案:B3. 求极限lim(x→0) (sin(x)/x)的值。
A. 0B. 1C. 2D. 3答案:B4. 若函数f(x) = e^x,则f'(x)等于:A. e^xB. e^(-x)C. x * e^xD. 1答案:A二、填空题(每题5分,共20分)1. 已知曲线y = x^2 + 2x + 1,求该曲线在x = 1处的切线斜率。
答案:42. 设函数f(x) = ln(x),则f'(x) = ________。
答案:1/x3. 求定积分∫(0,1) x^2 dx的值。
答案:1/34. 若函数f(x) = x^3 - 6x^2 + 9x + 15,求f'(x)。
答案:3x^2 - 12x + 9三、解答题(每题10分,共60分)1. 求函数f(x) = x^3 - 6x^2 + 11x - 6的极值。
答案:首先求导数f'(x) = 3x^2 - 12x + 11。
令f'(x) = 0,解得x = 1 和 x = 11/3。
计算f''(x) = 6x - 12,可以判断x = 1处为极大值点,x = 11/3处为极小值点。
极大值为f(1) = 0,极小值为f(11/3) = -2/27。
2. 计算定积分∫(0,2) (3x^2 - 2x + 1) dx。
答案:首先求原函数F(x) = x^3 - x^2 + x。
大学高等数学下考试题库(附答案)

大学高等数学下考试题库(附答案)一、填空题(每题2分,共20分)1. 设函数f(x)在区间I上单调递增,若a < b,则必有__________。
【答案】f(a) < f(b)2. 函数y = e^x在区间(-∞,+∞)上的最小值为__________。
【答案】03. 设函数f(x) = x^3 - 6x + 9,则f'(x) =__________。
【答案】3x^2 - 64. 设矩阵A = [a_{ij}],则矩阵A的行列式det(A) = __________。
【答案】a_{11}a_{22}...a_{nn} -a_{11}a_{23}...a_{n2} + a_{12}a_{21}...a_{n3} - ... + (-1)^(n+1)a_{1n}a_{21}...a_{n1}5. 向量组α = (α1, α2, α3)和β = (β1, β2, β3)垂直的条件是__________。
【答案】α1β1 + α2β2 + α3β3 = 06. 设线性方程组Ax = b的解集为N,则N是__________。
【答案】向量空间7. 若函数f(x)在区间(a,b)上连续,且f(a) = f(b),则函数f(x)在区间(a,b)上必有零点,此结论称为__________。
【答案】零点定理8. 设函数f(x)在区间I上单调递减,若a < b,则必有__________。
【答案】f(a) > f(b)9. 设函数f(x) = ln(x),则f''(x) =__________。
【答案】1/x10. 设矩阵A = [a_{ij}],则矩阵A的逆矩阵A^-1 = __________。
【答案】(1/det(A))[c_{ij}],其中c_{ij} = (-1)^(i+j)det(A)/a_{ii}a_{jj}二、选择题(每题2分,共20分)1. 下列函数在区间(0,1)上单调递增的是__________。
高等数学下册试题题库及参考答案

高等数学下册试题库一、选择题(每题4分,共20分)1. 已知A (1,0,2), B (1,2,1)是空间两点,向量AB 的模是:( A )A )5B ) 3C ) 6D )9解 AB ={1-1,2-0,1-2}={0,2,-1},||=5)1(20222=-++.2. 设a ={1,-1,3}, b ={2,-1,2},求c =3a -2b 是:( B )A ){-1,1,5}.B ) {-1,-1,5}.C ) {1,-1,5}.D ){-1,-1,6}.解 (1) c =3a -2b =3{1,-1,3}-2{2,-1,2}={3-4,-3+2,9-4}={-1,-1,5}.3. 设a ={1,-1,3}, b ={2, 1, -2},求用标准基i , j , k 表示向量c=a-b ; ( A ) A )-i -2j +5k B )-i -j +3k C )-i -j +5k D )-2i -j +5k解c ={-1,-2,5}=-i -2j +5k .4. 求两平面032=--+z y x 和52=+++z y x 的夹角是:(C )A )2πB )4π C )3π D )π 解 由公式(6-21)有21112)1(211)1(1221c o s 2222222121=++⋅-++⨯-+⨯+⨯=⋅⋅=n n n n α,因此,所求夹角321arccos πα==.5. 求平行于z 轴,且过点)1,0,1(1M 和)1,1,2(2-M 的平面方程.是:(D ) A )2x+3y=5=0 B )x-y+1=0 C )x+y+1=0 D )01=-+y x .解 由于平面平行于z轴,因此可设这平面的方程为因为平面过1M 、2M 两点,所以有解得D B D A -=-=,,以此代入所设方程并约去)0(≠D D ,便得到所求的平面方程6.微分方程()043='-'+''y y y x y xy 的阶数是( D )。
高等数学下册试题(题库)及参考答案

高等数学下册试题库一、选择题(每题4分,共20分)1. 已知A (1,0,2), B (1,2,1)是空间两点,向量 AB 的模是:( A ) A )5 B ) 3 C ) 6 D )9…解 AB ={1-1,2-0,1-2}={0,2,-1},|AB |=5)1(20222=-++.2. 设a ={1,-1,3}, b ={2,-1,2},求c =3a -2b 是:( B )A ){-1,1,5}.B ) {-1,-1,5}.C ) {1,-1,5}.D ){-1,-1,6}.解 (1) c =3a -2b =3{1,-1,3}-2{2,-1,2}={3-4,-3+2,9-4}={-1,-1,5}.3. 设a ={1,-1,3}, b ={2, 1, -2},求用标准基i , j , k 表示向量c=a-b ; ( A ) A )-i -2j +5k B )-i -j +3k C )-i -j +5k D )-2i -j +5k解c ={-1,-2,5}=-i -2j +5k .—4. 求两平面032=--+z y x 和052=+++z y x 的夹角是:(C )A )2πB )4π C )3π D )π 解 由公式(6-21)有21112)1(211)1(1221cos 2222222121=++⋅-++⨯-+⨯+⨯=⋅⋅=n n n n α,因此,所求夹角321arccos πα==.5. 求平行于z 轴,且过点)1,0,1(1M 和)1,1,2(2-M 的平面方程.是:(D ) A )2x+3y=5=0 B )x-y+1=0 C )x+y+1=0 D )01=-+y x . 【解 由于平面平行于z 轴,因此可设这平面的方程为0=++D By Ax 因为平面过1M 、2M 两点,所以有⎩⎨⎧=+-=+020D B A D A解得D B D A -=-=,,以此代入所设方程并约去)0(≠D D ,便得到所求的平面方程01=-+y x6.微分方程()043='-'+''y y y x y xy 的阶数是( D )。
大一高数下考试题及答案

大一高数下考试题及答案一、选择题(每题4分,共20分)1. 极限的定义中,当x趋近于a时,f(x)的极限为L,是指对于任意给定的正数ε,存在正数δ,使得当0<|x-a|<δ时,|f(x)-L|<ε。
这个定义描述的是()。
A. 函数在某点的连续性B. 函数在某点的可导性C. 函数在某点的极限D. 函数在某点的间断性答案:C2. 以下哪个函数是偶函数?()A. f(x) = x^2 + xB. f(x) = x^3 - xC. f(x) = cos(x)D. f(x) = sin(x)答案:C3. 以下哪个积分是收敛的?()A. ∫(1/x)dx 从1到∞B. ∫(1/x^2)dx 从1到∞C. ∫(1/x^3)dx 从1到∞D. ∫(1/x)dx 从0到1答案:B4. 以下哪个级数是发散的?()A. 1 + 1/2 + 1/4 + 1/8 + ...B. 1 - 1/2 + 1/3 - 1/4 + ...C. 1 + 1/2^2 + 1/3^2 + 1/4^2 + ...D. 1 + 1/2 + 1/3 + 1/4 + ...答案:D5. 以下哪个是二阶导数?()A. f''(x) = 2xB. f'(x) = 2xC. f(x) = x^2D. f'(x) = 2答案:A二、填空题(每题4分,共20分)1. 函数f(x) = x^3 - 3x在x=0处的导数是________。
答案:02. 函数f(x) = e^x的不定积分是________。
答案:e^x + C3. 函数f(x) = sin(x)的不定积分是________。
答案:-cos(x) + C4. 函数f(x) = x^2在区间[0,1]上的定积分是________。
答案:1/35. 函数f(x) = x^2 + 2x + 1的极值点是________。
答案:x = -1三、计算题(每题10分,共30分)1. 计算极限:lim(x→0) [(x^2 + 1) / (x^2 - 1)]。
高等数学下册试题及答案解析.docx

高等数学(下册)试卷(一)一、填空题(每小题 3 分,共计24 分)1、z =log a ( x2y 2 )( a 0) 的定义域为D=。
2、二重积分ln( x2y 2 )dxdy 的符号为。
|x| |y| 13 、由曲线y ln x 及直线x y e 1 , y 1 所围图形的面积用二重积分表示为,其值为。
4L 的参数方程表示为x(t)(x),则弧长元素ds。
、设曲线y(t)5 、设曲面∑为x2y 29 介于z0 及 z 3 间的部分的外侧,则(x2y21)ds。
6、微分方程dyy tany的通解为。
dx x x7、方程y( 4) 4 y0 的通解为。
8、级数1的和为。
n1n(n1)二、选择题(每小题 2 分,共计16 分)1、二元函数z f ( x, y) 在 ( x0 , y0 ) 处可微的充分条件是()(A)f ( x, y)在(x0, y0)处连续;(B)f x( x, y),f y( x, y)在( x0, y0)的某邻域内存在;( C)z f x (x0 , y0 )x f y ( x0 , y0 ) y 当( x) 2(y) 20 时,是无穷小;( D)lim z f x ( x0 , y0 ) x f y ( x0 , y0 ) y0。
22x0(x)( y) y02、设u yf ( x)xf (y), 其中 f 具有二阶连续导数,则x2u y 2 u等于()y x x 2y 2(A)x y ;( B)x;(C) y;(D)0。
3、设: x 2y 2z21, z0, 则三重积分I zdV 等于()( A ) 4 2d2 d1 3sin cos dr ;r 02 dd 1 dr ;( B )r 2 sin0 022 d13sin cos dr ;( C )dr0 02d 13sin cos dr 。
( D )dr0 04、球面 x 2 y 2z 2 4a 2 与柱面 x 2 y 22ax 所围成的立体体积 V=()(A ) 4 2d2 a cos 4a2r 2dr ;(B ) 4 2d2 a cos r 4a2r 2dr ;(C ) 8 2d2 a cos r 4a2r 2dr ;(D )2d2a cos r 4a2r 2dr 。
高等数学下考试题库(附答案)

高等数学下考试题库(附答案) 高等数学》试卷1(下)一、选择题(3分×10)1.点M1(2,3,1)到点M2(2,7,4)的距离M1M2=().A.3B.4C.5D.62.向量a=-i+2j+k,b=2i+j,则有().A.a∥bB.a⊥bC.a,b=D.a,b=3.函数y=2-x^2-y^2+1/x+y-12/2+y^2的定义域是().A.{(x,y)|1<x<2,1≤x^2+y^2≤2}B.{(x,y)|x,y<0}C.{(x,y)|1<x≤2,2+y^2<2}D.{(x,y)|2+y^2<x}4.两个向量a与b垂直的充要条件是().A.a·b=0B.a×b=0C.a-b=0D.a+b=05.函数z=x+y-3xy的极小值是().A.2B.-2C.1D.-16.设z=xsiny,则∂z/∂y|(π/4,3/4)=().A.2/√2B.-2/√2C.2D.-27.若p级数∑n=1∞pn收敛,则().A.p1 D.p≥18.幂级数∑n=1∞xn/n的收敛域为().A.[-1,1]B.(-1,1)C.[-1,1)D.(-1,1]9.幂级数∑n=2∞x^n/(n-1)在收敛域内的和函数是().A.1/(1-x)B.2/(1-x)^2C.2/(1+x)D.1/(1+x)10.微分方程xy'-ylny=0的通解为().A.y=cxB.y=e^xC.y=cxe^xD.y=ex二、填空题(4分×5)1.一平面过点A(1,2,3)且垂直于直线AB,其中点B(2,-1,1),则此平面方程为______________________.2.函数z=sin(xy)的全微分是______________________________.3.设z=xy-3xy^2+1,则(∂^2z)/(∂x∂y)|3/2=-___________________________.三、计算题(5分×6)4.1.设z=esinv,而u=xy,v=x+y,求u∂z/∂x-∂z/∂y.2.已知隐函数z=z(x,y)由方程x^2+y^2+z^2=1确定,求∂z/∂x.3.设f(x,y)=x^2y-xy^2,求f在点(1,1)处的方向导数沿向量i+j的值.4.设z=f(x^2+y^2),其中f(u)在u=1处可导,求∂z/∂x|P,其中P为曲线x^2+y^2=1,z=1上的点.5.设z=ln(x+y)cos(x-y),求∂^2z/∂x^2-2∂^2z/∂x∂y+∂^2z/∂y^2.6.设f(x,y)在点(0,0)处可微,且f(0,0)=0,证明:∂f/∂x和∂f/∂y在点(0,0)处连续.1.已知函数f(x)在区间[0,1]上连续,且f(0)=0,f(1)=1,则方程f(x)=0在区间(0,1)内至少有()个实根。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
中国矿业大学高等数学下册试题库一、填空题1. 平面01=+++kz y x 与直线112z y x =-=平行的直线方程是___________2. 过点)0,1,4(-M 且与向量)1,2,1(=a 平行的直线方程是________________3. 设k i b k j i a λ+=-+=2,4,且b a ⊥,则=λ__________4. 设1)(,2||,3||-===a b b a ,则=∧),(b a ____________5. 设平面0=+++D z By Ax 通过原点,且与平面0526=+-z x 平行,则__________________,_______,===D B A6. 设直线)1(221-=+=-z y mx λ与平面025363=+++-z y x 垂直,则___________________,==λm7. 直线⎩⎨⎧==01y x ,绕z 轴旋转一周所形成的旋转曲面的方程是_______________8. 过点)1,0,2(-M 且平行于向量)1,1,2(-=a 及)4,0,3(b 的平面方程是__________ 9. 曲面222y x z+=与平面5=z 的交线在xoy 面上的投影方程为__________10. 幂级数12nnn n x ∞=∑的收敛半径是____________11. 过直线1 3222x z y --=+=-且平行于直线 1 1 3 023x y z +-+==的平面方程是_________________ 12. 设),2ln(),(xy x y x f +=则__________)0,1('=y f13. 设),arctan(xy z =则____________,__________=∂∂=∂∂yz xz14. 设,),(22y x y x xy f +=+则=),('y x f x ____________________15. 设,yx z =则=dz _____________16. 设,),(32y x y x f =则=-)2,1(|dz ______________17. 曲线t t z t y t x c o s s i n ,s i n ,c o s +===,在对应的0=t 处的切线与平面0=-+z By x 平行,则=B __________18. 曲面22y x z +=在点)2,1,1(处的法线与平面01=+++z By Ax 垂直,则==B A ________,______________19. 设}2,0,1{-=a ,}1,1,3{-=b ,则b a ⋅=________, b a ⨯=____________ 20. 求通过点)4,1,2(0-M 和z 轴的平面方程为________________21. 求过点)0,1,0(0M 且垂直于平面023=+-y x 的直线方程为_______________22. 向量d 垂直于向量]1,3,2[-=a 和]3,2,1[-=b ,且与]1,1,2[-=c的数量积为6-,则向量d=___________________23. 向量b a 57-分别与b a 27-垂直于向量b a 3+与b a4-,则向量a 与b 的夹角为_______________24. 球面9222=++z y x 与平面1=+z x 的交线在x O y 面上投影的方程为______________25. 点)1,`1,2(0-M 到直线l :⎩⎨⎧=+-+=-+-032012z y x z y x 的距离d 是_________________26. 一直线l 过点)0,2,1(0M 且平行于平面π:042=-+-z y x ,又与直线l :122112-=-=-x y x 相交,则直线l 的方程是__________________27. 设____________b 3a 2则,3πb a 2,b 5,a =-=⎪⎪⎭⎫ ⎝⎛⋅==∧28. 设知量b ,a 满足{}1,11,b a 3,b a -=⨯=⋅,则____________b ,a =⎪⎪⎭⎫ ⎝⎛∧29. 已知两直线方程13z 02y 11x :L 1--=-=-,1z 11y 22x L :2=-=+,则过1L 且平行2L 的平面方程是__________________ 30. 若2=b a ,π()2= a ,b ,则=⨯b a 2 ,=⋅b a ____________31. =∂∂=xz ,x z y 则______________.yz ∂∂=_________________32. 设 ()()()____________2,1z ,x y x,sin x 11y z x 32='++-=则33. 设 ()1ylnx xlny y x,u -+= 则 ______________________du = 34. 由方程2zy x xyz 222=+++确定()y x,z z =在点()1,0,1-全微分=dz ______35. ()222y x f y z -+= ,其中()u f 可微,则 ___________yz xz y=∂∂+∂∂36. 曲线⎩⎨⎧=+=1,222z y x z 在xOy 平面上的投影曲线方程为 _________________37. 过原点且垂直于平面022=+-z y 的直线为__________________ 38. 过点)2,1,3(--和)5,0,3(且平行于x 轴的平面方程为 _________________ 39. 与平面062=-+-z y x 垂直的单位向量为______________40. )yx (x z 2ϕ=,(u)ϕ可微,则 ____________yz yxz 2=∂∂+∂∂41. 已知22ln yx z +=,则在点)1,2(处的全微分_________________=dz42. 曲面32=+-xy e z z在点)0,2,1(处的切平面方程为___________________43. 设()y x z z .=由方程02=+--zxye z e,求xz ∂∂=________________44. 设()()xy x g y x f z,2+-=,其中()t f 二阶可导,()v u g ,具有二阶连续偏导数 有yx z 2∂∂∂=___________________45. 已知方程yz lnzx = 定义了()y x z z.=,求22xz ∂∂=_____________46. 设()z y x f u..=,()0..2=Φz e x y,x y sin =,其中f ,Φ都具有一阶连续偏导数,且0z≠∂∂ϕ,求dxdz =______________________47. 交换积分次序=⎰⎰-2210),(y ydx y x f dy_______________________________48. 交换积分次序dx y x f dy dx y x f dy yy⎰⎰⎰⎰-+2120100),(),(=___________________49. _________==⎰⎰dxdy xeI Dxy其中}10,10),({≤≤≤≤=y x y x D50. =I________)23(=+⎰⎰dxdyy x D,其中D 是由两坐标轴及直线2=+y x 所围51. =I ________1122=++⎰⎰dxdy yx D,其中D 是由422≤+yx 所确定的圆域52. =I ___________222=--⎰⎰dxdy y x a D,其中D :222a yx≤+53. =I________)6(=+⎰⎰dxdyy x D,其中D 是由1,5,===x x y x y 所围成的区域54. ⎰⎰-222xydy edx = _____________________55. ___________)(221221=+⎰⎰-xxdy y x dx56. 设L 为922=+y x ,则→→→-+-=j x x i y xy F )4()22(2按L 的逆时针方向运动一周所作的功为.___________57. 曲线()⎩⎨⎧+==1,2,7y3x z 2x y 22在点处切线方程为______________________58. 曲面22y 2xz +=在(2,1,3)处的法线方程为_____________________59. ∑∞=11n pn,当p 满足条件 时收敛60. 级数()∑∞=---1221n nn n 的敛散性是__________61. nn n x a ∑∞=1在x=-3时收敛,则nn n x a ∑∞=1在3<x 时62. 若()∑∞=1ln n na 收敛,则a 的取值范围是_________63. 级数)21)1(1(1nn n n -+∑∞=的和为64. 求出级数的和()()∑∞=+-112121n n n =___________65. 级数∑∞=02)3(ln n nn的和为 _____66. 已知级数∑∞=1n n u 的前n 项和1+=n n s n ,则该级数为____________67. 幂级数nn nx n∑∞=12的收敛区间为68. ∑∞=--11212n n n x的收敛区间为 ,和函数)(x s 为69. 幂级数∑∞=≤<0)10(n pn p nx 的收敛区间为70. 级数∑∞=+011n na当a 满足条件 时收敛71. 级数()2124nnn x n ∞=-∑的收敛域为 ______72. 设幂级数0nn n a x ∞=∑的收敛半径为3,则幂级数11(1)n n n na x ∞+=-∑的收敛区间为 _____73. 231)(2++=x x x f 展开成x+4的幂级数为 ,收敛域为74. 设函数)21ln()(2x x x f --=关于x 的幂级数展开式为 __________,该幂级数的收敛区间为 ________75. 已知 1ln ln ln =++x z z y y x ,则=∂∂⋅∂∂⋅∂∂zyy x x z ______ 76. 设xy y x z )1(22++= y,那么=∂∂xz _____________,=∂∂yz _____________77. 设D 是由2=xy 及3=+y x 所围成的闭区域,则=⎰⎰Ddxdy _______________78. 设D 是由1||=+y x 及1||=-y x 所围成的闭区域,则=⎰⎰Ddxdy _______________79. =+⎰Cds y x )(22________________,其中C为圆周)20(s i n ,co s π≤≤==t t a y t a x80. =-⎰Ldx y x )(22________________,其中L 是抛物线2x y =上从点()0,0到点()4,2的一段弧。