自控原理第四章书后习题答案

合集下载

自动控制原理参考答案-第4章

自动控制原理参考答案-第4章

d) 与虚轴交点:
特征方程: s3 + 2s2 + (2 + Kg )s + 3Kg = 0
s3
1
2+ Kg
s2
2
3Kg
s1 2 − 0.5Kg
s0
3Kg
当 Kg = 4 时, 2s2 +12 = 0 ⇒ s = ±2.45 j
e) 出射角: βsc = ±180(1+ 2n) − ∑ β + ∑α
s3
1
7
s2
2
Kg −10
s1 12 − 0.5Kg
s0 Kg −10
当 Kg = 24 时, 2s2 +14 = 0 ⇒ s1,2 = ±2.65 j
劳斯表的 s0 行为正 ⇒ Kg > 10 ,即10 < Kg < 24 根轨迹如下图:
题 4-6:已知负反馈控制系统的开环传递函数为
G(s)H(s)
b) 根轨迹趋向: n − m≥ 2 ,则极点-5,-10 之间的根轨迹向右渐进.
c)
渐近线: ⎧⎪⎨ϕk
=
±180(1 + 2
2n)
=
±90o
⎪⎩−σ k = −6.5
d) 分离点与会合点:令 ∂Kg = 0 ∂s
即: 2s3 + 21s2 + 60s +100 = 0 ⇒ s1 = −7.34 ; s2,3 = −1.5794 ± 2.0776j (舍去) 根轨迹如下图:
(4) 稳态速度误差系数是多少?
(5) 系统指标比该点的二阶指标大还是小?如果要求系统有该点二阶指标
的超调量,能否通过改变阻尼线而获得?是增大阻尼比还是减小它?

自动控制原理课后习题第四章答案

自动控制原理课后习题第四章答案

G(s)H(s)=
Kr s(s+1)(s+3)
σ根 s=3-K+ω轨r4-3-迹+p4s132ω1-3的+~3ω32分p===s2-离+001K点.p-3r=3:KK~0θrr===012+ωω6021,o=3,=0+±1810.7o
8

1.7
s1
A(s)B'系(s)统=根A'轨(s迹)B(s)
s3 p3
s=sK2±r没=j24有.8.6位×于2K.r根6=×4轨80.迹6=上7,. 舍去。
2
第四章习题课 (4-9)
4-9 已知系统的开环传递函数,(1) 试绘制出
根轨迹图。
G(s)H与(s虚)=轴s交(0点.01s+1K)(系0.统02根s+轨1迹)

70.7
解: GKK(rr=s=)10H5(0s)=ωω2s1,(3=s=0+±17000K.7)r(s+50)
s1
A(s)B'(系s)统=A根'(轨s)迹B(s)
s3 p3
p2
p1
-4
-2
0
((24))ζ阻=尼03.振5s2荡+1响2应s+s的81==K-r0值0.7范+围j1.2
s=s-s10=3=.-80-56.8+50K.7r×=20=s.82-=54×-.631..1155×3.15=3.1
-2.8
450
1080
360


第四章习题课 (4-2)
4-2 已知开环传递函数,试用解析法绘制出系
统的根轨迹,并判断点(-2+j0),(0+j1),

国防《自动控制原理》教学资料包 课后习题答案 第四章

国防《自动控制原理》教学资料包 课后习题答案 第四章

第4章课后习题参考答案4-1(a)(b)(c)(d)4-2(1)(2)4-3(1)(2)(j 24.20 ),K=10.14 4-4 (1)(2)(3)4-5(1)0>K (2)2>K 4-6(1)(2) 闭环极点(j 7.597.0±-),K=34.77 4-7 (1)110222-=+++s s s a(2)130202-=+ss a4-8正反馈 负反馈表明K>0对于正反馈系统不稳定,负反馈系统稳定。

4-90.707ξ=,系统开环传递函数为)4(8)(+=s s s G ,系统的单位阶跃响应为)(t h =)452sin(5.012 +--t e t4-10σωj 007.17-93.2-5-10-(1) K=5;(2)不含有衰减振荡分量的K 值范围为86.00<<K 或29>K 。

4-11 系统的开环极点为0和-p ,开环零点为-z 。

由根轨迹的幅角条件, 得π)12()()(+=+∠-∠-+∠q p s s z s 。

将ωσj s +=代入,整理有pz++︒=-+---σωσωσω111tan 180tan tan取上述方程两端的正切,并利用下列关系yx yx y x tan tan 1tan tan )tan( ±=±有p z z +=++-σωωσσω2)(,则zp z z -=++222)(ωσ,这是一个圆的方程,圆心位于(-z ,j 0)处,而半径等于zp z -2(注意,圆心位于开环传递函数的零点上)。

证毕。

4-12(1)分离点-0.465,对应K=0.88;虚轴的交点j 2± (2)88.00<<K ,阶跃响应不出现超调。

4-13(1)(2)70MAX K =4-14负反馈稳定K 值范围为0<K<73.8,正反馈稳定K 值范围为0<K<35,所以确定根轨迹增益K 的范围为0<K<35。

自动控制原理第二版第四章课后答案

自动控制原理第二版第四章课后答案

自动控制原理第二版第四章课后答案【篇一:《自动控制原理》第四章习题答案】4-1 系统的开环传递函数为g(s)h(s)?k*(s?1)(s?2)(s?4) 试证明点s1??1?j3在根轨迹上,并求出相应的根轨迹增益k*和开环增益k。

解若点s1在根轨迹上,则点s1应满足相角条件?g(s)h(s)??(2k?1)?,如图解4-1所示。

对于s1= -1+j3,由相角条件?g(s1)h(s1)?0??(?1?j3?1)??(?1?j3?2)??(?1?j3?4)? 0??2??3??6???满足相角条件,因此s1= -1+j3在根轨迹上。

将s1代入幅值条件: g(s1)h(s1?k*?1?1?j3?1??1?j3?2??1?j3?4k8*解出: k=12 ,k=*?324-2 已知开环零、极点如图4-2 所示,试绘制相应的根轨迹。

解根轨如图解4-2所示:4-3 单位反馈系统的开环传递函数如下,试概略绘出系统根轨迹。

⑴ g(s)?ks(0.2s?1)(0.5s?1)k(s?5)s(s?2)(s?3)* ⑵ g(s)?⑶ g(s)?k(s?1)s(2s?1)解⑴ g(s)?ks(0.2s?1)(0.5s?1)=10ks(s?5)(s?2)系统有三个开环极点:p1?0,p2= -2,p3 = -5①实轴上的根轨迹:???,?5?, ??2,0?0?2?57?????a??33②渐近线: ????(2k?1)????,?a?33?③分离点:1d?1d?5?1d?2?0解之得:d1??0.88,d2?3.7863(舍去)。

④与虚轴的交点:特征方程为 d(s)=s3?7s2?10s?10k?0?re[d(j?)]??7?2?10k?0令 ? 3im[d(j?)]????10??0?解得?????k?7。

根轨迹如图解4-3(a)所j)与虚轴的交点(0,?示。

⑵根轨迹绘制如下:①实轴上的根轨迹:??5,?3?, ??2,0?0?2?3?(?5)????0a??2②渐近线: ????(2k?1)????a?22?③分离点: 1d?1d?2?1d?3?1d?5用试探法可得 d??0.886。

自动控制原理第4章课后习题答案

自动控制原理第4章课后习题答案

第4章4-1 已知系统的开环传函如下,试绘制系统参数K 从0→∞时系统的根轨迹图,对特殊点要加以简单说明. (1) ()()(4)(1)(2)K s G s H s s s s +=++ (2) ()()2(4)(420)KG s H s s s s s =+++ 解:(1)有3个开环几点,1个开环零点,固有3条根轨迹分别始于0,-1,-2; 1条根轨迹终于-4,另外2条根轨迹趋于无穷远处 实轴上的根轨迹分布在-1~0之间及-4~-2之间 渐近线条数为n-m=3-1=2 渐进线的交点12041312σ++-=-=-渐近线的倾角90θ︒=±分离点22[()()]02152480d G s H s s s s ds =⇒+++= 解得: 12s =- 其它舍去求与虚轴交点:令s j ω=代入特征方程(1)(2)(4)0s s s K s ++++=中得(1)(2)(4)0j j j K j ωωωω++++= 令上式两边实部和虚部分别相等,有226430(2)0 2.83K K K ωωωω⎧=⎧-=⎪⎪⇒⎨⎨+-==±=±⎪⎪⎩⎩绘制系统根轨迹,如图4-1(1)(2)有4个开环几点,无开环零点,有4条根轨迹,分别起始于0,-4, 24j -±终于无穷远处 实轴上的根轨迹分布在-4~0之间; 渐近线条数为n-m=4-0=4 渐进线的交点04242424j j σ++++-=-=-渐近线的倾角45,135θ︒︒=±±分离点22[()()]042472800d G s H s s s s ds=⇒+++=解得: 2s =-由()()1G s H s =得21224(2)4220K=--+--⨯+, K=64绘制系统根轨迹,如图4-1(2)图4-1(1)图4-1(2)4-2 已知系统的开环传函为(2)(3)()()(1)K s s G s H s s s ++=+(1) 试绘制系统参数K 从0→∞时系统的根轨迹图,求取分离点和会和点 (2) 试证明系统的轨迹为圆的一部分解:有2个开环极点,2个开环零点,有2条根轨迹,分别起始于0,-1; 终于-2,-3;实轴上的根轨迹分布在-3~-2之间及-1~0之间分离会和点2221,2,321[()()]02401,12123(2)()()()[()()]0[2(6)4]0203602,18()()[()()]00020,d G s H s s ds KK K s G s H s s s a d G s H s s s a s a dsa a a a s KG s H s sd G s H s s ds a s s =⇒+===-+⨯-++=+=⇒+++=⇒-+≥⇒≤≥===⇒=≤≤=23s ==解得:当10.634s =-时 由()()1G s H s =得(0.6342)(0.6343)10.070.6340.6341K K -+-+=⇒=-⨯-+当2 2.366s =-时 同理 K=13.9 绘制系统根轨迹 如图4-2证明:如果用s j αβ=+代入特征方程1()()0G s H s +=中,并经整理可得到以下方程式:2233()24αβ++=(注:实部虚部相等后消K 可得)显然,这是个圆的方程式,其圆心坐标为3(,0)2-,半径为2图4-24-3 已知系统的开环传函()()(1)(3)KG s H s s s =++(1) 试绘制系统参数K 从0→∞时系统的根轨迹图(2) 为了使系统的阶跃响应呈现衰减振荡形式,试确定K 的范围 解:有2个开环极点,无开环零点,有2条根轨迹,分别起始于-1,-3; 终于无穷远处;实轴上的根轨迹分布-3~-1之间; 渐近线条数2; 渐近线的交点13022σ+-=-=- 渐近线的倾角90θ︒=± 分离会和点[()()]0240d G s H s s ds=⇒+=解:S=-2由()()1G s H s =得1,12123KK ==-+⨯-+绘制系统根轨迹图4-3由图知 当1<K<+∞时系统的响应呈现衰减振荡形式4-4 设负反馈控制系统的开环传函为2(2)()()()K s G s H s s s a +=+试分别确定使系统根轨迹有一个,两个和三个实数分离点的a 值,分别画出图形 解:求分离点2[()()]0[2(6)4]0d G s H s s s a s a ds=⇒+++=解得s=0,或分离点为实数2203602a a a ⇒-+≥⇒≤或18a ≥当a=18时 实数分离点只有s=0 如图4-4(1)当a>18时 实数分离点有三个,分别为1,2,3(6)0,4a s -+=如图4-4(2)当a=2时2()()K G s H s s =分离点[()()]00d G s H s s ds=⇒= 即分离点只有一个s=0 如图4-4(3) 当02a ≤≤分离点有一个s=0 如图4-4(4) 当a<0时 分离点有1230,s s s ===(舍去)如图4-4(5)综上所述:当a=18,0≤a ≤2时,系统有一个分离点 当a >18时,系统有三个实数分离点 当a <0时,系统有两个分离点a=18图4-4(1) a=2图4-4(2)图4-4(3) a=1图4-4(4)图4-4(5)4-65 已知系统的开环传递函数为3(1)(3)()()K S S G S H S S++=(1)绘制系统的根轨迹。

自动控制原理课后习题第四章答案

自动控制原理课后习题第四章答案
解析2
然后,根据闭环传递函数的定义,闭环传递函数F(s)=G(s)/(1+G(s)H(s))。
解析3
将G(s)H(s)代入闭环传递函数的定义中,得到F(s)=100/((s+1)^2+3)/(1+100/((s+1)^2+4)((s+1)^2+3))。
解析4
化简得到F(s)=100/((s+1)^2+3)(4((s+1)^2+3))=400/(4(s^2+2s+3))。
1)(s + 2)/(s^2 + 3s + 2)。
04
题目四答案
题目内容
• 题目四:已知系统的开环传递函数为 G(s)H(s)=K/(s^2+2s+2),其中K>0,试 求系统的闭环极点和稳定性。
答案解析
闭环极点
根据开环传递函数,我们可以求出闭环传递函数为 G(s)H(s)/(1+G(s)H(s)),然后求出闭环极点。由于开环传递函 数为K/(s^2+2s+2),所以闭环极点为-1±√2i。
标准形式,即 G(s)H(s) = (s + 1)(s + 2)/(s^2 + 3s + 2)。
02
解析二
根据开环传递函数的分子和分母,可以得出系统的开环传递函数为
G(s)H(s) = (s + 1)(s + 2)/(s^2 + 3s + 2)。
03
解析三
根据开环传递函数,可以求出系统的闭环传递函数为 G(s)H(s) = (s +
自动控制原理课后习题第四章 答案

自动控制原理第四章习题解答

自动控制原理第四章习题解答

4-1 设单位反馈控制系统的开环传递函数 1)(+=∗s K s G试用解析法绘出∗K 从零变到无穷时的闭环根轨迹图,并判断下列点是否在根轨迹上: (-2+j0), (0+j1), (-3+j2) 解:有一个极点:(-1+j0),没有零点。

根轨迹如图中红线所示。

(-2+j0)点在根轨迹上,而(0+j1), (-3+j2)点不在根轨迹上。

4-2 设单位反馈控制系统的开环传递函数 )12()13()(++=s s s K s G 试用解析法绘出开环增益K 从零增加到无穷时的闭环根轨迹图。

解:系统开环传递函数为)2/1()3/1()2/1()3/1(2/3)(++=++=s s s K s s s K s g G 有两个极点:(0+j0),(-1/2+j0),有一个零点(-1/3,j0)。

根轨迹如图中红线所示。

4-3 已知开环零、极点分布如图4-28所示,试概略绘出相应的闭环根轨迹图。

图4-28 开环零、极点分布图4-4 设单位反馈控制系统开环传递函数如下,试概略绘出相应的闭环根轨迹图(要求确定分离点坐标d):  (1) )15.0)(12.0()(++=s s s Ks G解:系统开环传递函数为)2)(5()2)(5(10)(++=++=s s s K s s s Ks g G 有三个极点:(0+j0),(-2+j0),(-5+j0)没有零点。

分离点坐标计算如下:051211=++++d d d 3解方程的010142=++d d 7863.31−=d ,d 88.02−=取分离点为88.0−=d根轨迹如图中红线所示。

(2) )12()1()(++=s s s K s G解:系统开环传递函数为)5.0()1()5.0()1(2/)(++=++=s s s K s s s K s g G有两个极点:(0+j0),(-0.5+j0),有一个零点(-1+j0)。

分离点坐标计算如下:115.011+=++d d d 解方程的05.022=++d d 7.11−=d ,d 29.02−=取分离点为7.11−=d ,29.02−=d 根轨迹如图中红线所示。

自动控制原理简明教程 第四章 根轨迹法 习题答案

自动控制原理简明教程 第四章 根轨迹法 习题答案

方程求得。
k* 2 3 3
2
1
2 3 2 2 3 1
解得: k* 3(3 3)
1 3
特征根s=0处对应的 k * 值也利用模值方程求得:
k* 3 2 2 1
1
k*
4 3
满足稳定性时,k* 4 要使系统的三个根均为负
实根,则:
3
k* 4 3
0 k* 3(3 3) 1 3
0 k*
另一个闭环极点为 S3 ,则
(S S3 )(S 1)2 S (S 3)2 4
则解得:
(S S3 )(S 1)2 S (S 1)2 4(S 1)2 (S 4)(S 1)2
则 (S S3) S 4 S3 4 (另外一个闭环极点) 临界阻尼时的闭环传递函数为
(S)
(S
4(S 1) 4)(S 1)2
(2
j) (2 3
j)
4 3
渐近线与实轴正方向夹角
a
(2k 1)
nm
,
3
分离点: 1 1 1 0
d d 2 j d 2 j
整理得:3d 2 8d 5 0
解得:d1,2
8 6
2
d1 1 d2 1.67
分离角
l
180 l
180 2
900
把 S j 代入特征方程:
1
k*
n
m
a
i 1
Pi Zi
i 1
nm
(3) (3) 3
2
渐近线与实轴正方向夹角:
a
(2k 1)
nm
, ,
33
分离点: 1 1 1 0
d d 3 d 3
解得:d 1, a S (S 3)2 (1) 4 4
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

4-1 绘制具有下列开环传递函数的负反馈系统的根轨迹1、()()()()54*++=s s s K s H s G解:(1)3个开环极点为:p 1=0,p 2=-4,p 3=-5。

(2)实轴上的根轨迹(-4,0),(-∞,-5)(3)303054011-=----=--=∑∑==mn zp n i mj jiσ()() ,,331212ππππϕ±±=+=-+=k mn k a(4) 分离点:1110d 45d d ++=++ d=-1.47, d=-4.53(舍) (5)与虚轴的交点:在交点处,s=j ω,同时也是闭环系统的特征根,必然符合闭环特征方程,于是有:()020********=++--=+++*=*K j j K s s sj s ωωωω整理得: 0203=-ωω;092=-*ωK 解得01=ω;203,2±=ω;18092==*ωK 最后,根据以上数据精确地画出根轨迹。

2、()()()()11.02*++=s s s K s H s G 解:(1)开环极点有3个,分别为:p 1=p 2=-0,p 3=-1,开环零点为z=-0.1 (2)实轴上的根轨迹为:[-1 -0.1] (3) 渐进线有两条,45.0131.010011-=-+--=--=∑∑==mn zp n i mj jiσ()() ,23,2131212ππππϕ±±=-+=-+=k mn k a (4) 分离点:1111d 10.1d d d ++=++ d=0, d=--0.4(舍), d=0.25(舍)分离角:()() ,23,221212ππππϕ±±=+=+=k lk d 最后,精确地画出根轨迹。

4-3 已知系统的开环传递函数为()()()2*1+=s s K s H s G ① 绘制系统的根轨迹图;② 确定实轴上的分离点及K *的值; ③ 确定使系统稳定的K *值范围。

解:①,首先,由开环环函数可知,n=3,m=0;p 1=0,p 2=p 3=-1。

其次,一连几天实轴上的根轨迹与根轨迹草图。

根据根轨迹草图,需计算闭环根轨迹的渐近线与汇合点,以及与虚轴的交点。

渐近线为:320311011-=---=--=∑∑==mn zp ni mj ji σ ()() ππππϕ±±=-+=-+=,331212k mn k a②汇合点为:()1=s N ,()()()s s s s s s s D ++=++=23211 ()0'=s N ;()()()113143'2++=++=s s s s s D()()()()()()01131432''=++=++=-s s s s s N s D s N s D3/11-=s ;12-=s (不合题意舍去)[s ]与虚轴的交点首先,写出闭环系统的牲方程,02*23=+++K s s s ,然后,令s =j ω,并代入特征方程得:⎪⎩⎪⎨⎧=-=+-0202*3ωωωK j j 解得:01=ω,12=ω,1±=ω;21222*=⨯==ωK所绘根轨迹如下图所示。

4-5 设负反馈系统的开环传递函数为()()(0.011)(0.021)KG s H s s s s =++,① 作出系统准确的根轨迹;②确定使系统临界稳定的开环增益c K ; ③ 确定与系统临界阻尼比相应的开环增益K 。

解:(1)作出系统准确的根轨迹:10050()()(100)(50)K G s H s s s s ⨯⨯=++;*10050K K =⨯⨯1). 开环极点:1230;100;50P P P ==-=- 2). 实轴上根轨迹 [0,-50],[-100,-∞]3)渐进线:a σ=(-150)/3=-50 a ϕ=(2k+1)* 1800/3=±600,1800 4)分离点:111010050d d d ++=++ 21233005000021.1378.82d d d d ++==-=-(舍去)5)与虚轴交点:D(s)= 0.0002s 3+0.03s 2+s+K=0图4-5s 3 0.0002 1 s 2 0.03 K s 1 1-K/150 0 s 0 K 根据劳斯判据:1150K->0, K>0 ∴0<K<150 作根轨迹如图4-5所示。

(2)临界稳定的K c =150与虚轴交点由辅助方程20.031500s += 求得170.71s j =±(3)将分离点121.13s =-代入幅值条件:1*1()1()mjj nii s Z K s P ==-=--∏∏*1111|||||50||100|10050i i K s P s s s K =∴=-=++=⨯⨯∏求出临界阻尼比相应的开环增益:21.1328.8778.879.6250100K ⨯⨯==⨯4-6 单位负反馈系统的开环传递函数为*2()()(10)(20)K s z G s s s s +=++,试绘制系统的根轨迹图,并确定产生纯虚根1j ±时的z 值和*K 值。

解:系统特征方程2*(10)(20)()0s s s K s z ++++=以1s j =±代入*19930()j K j z --++ ⇒ 6.63z = *19930()j K j z -++-+ *30K =下面作根轨迹:(1)开环极点和零点123410,0,10,20, 6.63P P P P Z ===-=-=- 实轴上的根轨迹:(-10,-6.63),(-∞,-20)(2)渐进线有3条:a σ=(-30+6.63)/(4-1)=-7.79 a ϕ=(2k+1)* 1800/3=±600,1800 作根轨迹如图4-6所示。

4—7设控制系统的开环传递函数如下,试画出参数b 从零变副无穷时的根轨迹图。

图4-6① ()()()()b s s s H s G ++=420 ② ()()()()1030++=s s b s s H s G 。

解:①,首先,写出闭环系统的特征方程,即:()()020442042=++++=+++b bs s s b s s然后,写出以参数K *形式的等效开环传递函数,方法是适当地提取公因式。

如:()()0204412042044222=⎪⎭⎫ ⎝⎛++++++=++++s s s b s s b bs s s等效开环传递函数为:()()()()()()4242420442j s j s s b s s s b s H s G -++++=+++=其中, n=2,m=1;p 1=-2+j 4,p 2=2-j 4;z =-4,n-m=1。

其次,画实轴上的根轨迹与根轨迹草图。

根据根轨迹草图,需计算闭环根轨迹的渐近线与汇合点,以及与虚轴的交点。

渐近线为:01244242011=-++---=--=∑∑==j j mn zp n i mj ji σ()() πππϕ±=-+=-+=121212k mn k a汇合点为:()()4+=s s N ,()2042++=s s s D ()1'=s N ;()42'+=s s D()()()()()()()()2042042044422''=++-+=---++=-s s s s s s s N s D s N s D0.4721=s (不合题意舍去);8.4722-=s出射角:()()()()()()153.4359063.4351808 j 4 j 2180j4 2j4 24j4 2180180211111=-+=+∠-++∠+=+++-∠-++-∠+=-∠--∠+=∑∑≠==ni i i m j j p p p z p θ()()()()()()153.4359063.4351808 j 4 j 2180j4 2j4 24j4 2180180212122-=+--=-∠--+∠+=-+--∠-+--∠+=-∠--∠+=∑∑≠==ni i i m j j p p p z p θ4-11已知非最小相位负反馈系统的开环传递函数为(105)()()(1)K s G s H s s s *-=+,试绘制该系统的根轨迹图。

解:将开环传递函数化为零极点形式(2)()()2(1)K s G s H s s s *--=+由于有负号提出,因此按正反馈系统画根轨迹: 1)开环极点:p 1=0,p 2=-1, 开环零点:Z 1=2 2) 实轴上根轨迹[2,∞];[-1,0] 3) 根轨迹与实轴交点11121d d d =+-+ 整理得2420d d --=120.45, 4.45d d ∴=-=4)根轨迹与虚轴交点:用s j ω→代入特征方程*(1)(10.5)0j j K j ωωω++-=得到 *2*010.50K K ω⎧-=⎪⎨-=⎪⎩ 求得 *22K ω⎧=⎪⎨=±⎪⎩ 可知S平面上根轨迹为:圆心+2,半径2.45的圆,根轨迹如图4-11所示。

4-13 负反馈控制系统的开环传递函数为(5)()()(1)(3)K s G s H s s s *+=++,证明系统的根轨迹含有圆弧的分支。

解:1) 开环极点p 1=-1,p 2=-3, 开环零点:Z 1=-52) 实轴上根轨迹:[-3,-1];[-5,-∞]3)与实轴交点111135d d d +=+++ 整理得 210170d d ++= 122.172,7.828d d ∴=-=-证明:特征方程为:*(s)=(s+1)(s+3)+k (5)0D s +=图4-11图4-13s j σω→+代入上式,有:*3)(5)0k σωσωσω+++=(+j +1)(+j +j22***435(24)0k k k j σωσσω-+++++++=整理得:()由 ()Im )0D σω=(+j 得:*24k σ=--。

将其带入Re())0D σω=(+j 中,得到: 2210170σσω+++=,即222522σω++=()()上式为圆方程:圆心为(-5,0),半径22R =R =2 证明根轨迹含有圆弧分支, 根轨迹如图4-13所示。

4-15 设负反馈系统的开环传递函数为()()(3)(2)K G s H s s s *=++,试绘制系统根轨迹的大致图形。

若系统:①增加一个z =-5的零点;②增加一个z =-2.5的零点; ③增加一个z =-0.5的零点。

试绘制增加零点后系统的根轨迹,并分析增加开环零点后根轨迹的变化规律和对系统性能的影响。

解:1.原系统根轨迹:从开环极点p 1=-2,p 2=-3出发在 2.5s =-处汇合后分离沿与虚轴平行趋向±∞,根轨迹如图4-15(a)所示。

相关文档
最新文档