绝对值不等式解法问题—7大类型专题
七年级数学绝对值分类讨论重点题型

七年级数学的绝对值,是一种让很多同学感到头疼的数学概念。
在七年级数学课程中,涉及到绝对值的分类讨论也是一个重要的内容,影响着同学们对数学的理解和学习。
今天,我们就来深入探讨七年级数学中关于绝对值分类讨论的重点题型,帮助同学们更好地掌握这一知识点。
1. 绝对值概念的理解我们需要对绝对值的概念进行深入理解。
在七年级数学中,绝对值代表着一个数距离零点的距离,它是一个非负数。
具体地,对于任意实数a,其绝对值记作|a|,如果a大于等于0,则|a|等于a;如果a小于0,则|a|等于-a。
2. 绝对值分类讨论的基本原理在七年级数学中,针对绝对值的讨论通常涉及到正数、负数以及零的情况。
我们需要明确地理解在各种情况下绝对值的计算方法和特点,从而能够准确地解决问题。
3. 绝对值分类讨论的重点题型在七年级数学中,绝对值分类讨论的重点题型包括但不限于以下几种: - 绝对值不等式的求解- 绝对值方程的解法- 含绝对值的复合运算- 实际问题中的应用4. 绝对值不等式的求解对于绝对值不等式的求解,我们需要分情况讨论。
当|a|小于b时,a 和-b之间的数都满足不等式;当|a|大于b时,求解得到两个区间,分别讨论各区间内的情况。
这种分类讨论的方法在解决绝对值不等式时非常重要。
5. 绝对值方程的解法解决绝对值方程时,我们同样需要进行分类讨论。
针对|a|=b和|a|=-b 两种情况,分别求解得到不同的结果。
同学们需要注意分类讨论方法的灵活运用,才能准确地解决绝对值方程的问题。
6. 含绝对值的复合运算在七年级数学中,我们还会遇到含绝对值的复合运算题型,可能涉及加减乘除等多种运算符号。
这时,同学们需要将复合运算的每一步分类讨论,确保在每一种情况下都能准确地应用绝对值的概念和性质。
7. 实际问题中的应用绝对值的分类讨论在解决实际问题时也非常重要。
同学们需要理解绝对值在表示距离、温度差、误差等方面的应用,从而能够准确地将数学知识应用到实际生活中去。
绝对值不等式解法

(1)当a=-3时,求不等式f(x)≥3的解集; (2)若f(x)≤|x-4|的解集包含[1,2],求a的取值范围.
答案
(1){x|x≤1或x≥4} (2)[-3,0]
【练习】解下列不等式
(1)|2x-5|+x≤4
解(1) | |2x-5|+x≤4
(2)|2x+5|>7+x
-4+x ≤2x-5≤4-x 2x-5≤4-x 2x-5≥-4+x
1≤x≤3
|2x-5|≤4-x
所以解集为{x| 1≤x≤3 }
(2)
|2x+5|>7+x
2x+5>7+x或2x+5<-7-x x>2或x<-4
(2)形如|f(x)|<g(x),|f(x)|>g(x)型不等式(其 中g(x)可正也可负)
① |f(x)|<g(x)⇔-g(x)<f(x)<g(x),
②|f(x)|>g(x)⇔f(x)>g(x)或f(x)<-g(x)
若此类问题用分类讨论法来解决,就显得较复杂.
类型一:含一个绝对值不等式解法(一般用公式法)
所以|a-1|≥2,
从而a的取值范围为(-∞,-1]∪[3,+∞). 变式练2: 设函数f(x)=|x+2|-|x+3|≤m 对任 意x∈R恒成立,求m的取值范围.
小结:f(x)<a恒成立⇔f(x)max<a,f(x)>a恒
成立⇔f(x)min>a
作业
1. (2012· 新课标高考)已知函数f(x)=|x+a|+|x-2|.
3 2
类型三: 含参数的绝对值不等式恒成立问题
三角不等式
01绝对值不等式(含经典例题+答案)

绝对值不等式一、绝对值三角不等式1.定理1:如果a,b是实数,则|a+b|≤|a|+|b|,当且仅当ab≥0时,等号成立.2.定理2:如果a,b,c是实数,则|a-c|≤|a-b|+|b-c|,当且仅当(a-b)(b-c)≥0时,等号成立.二、绝对值不等式的解法(1)|a x+b|≤c⇔-c≤a x+b≤c ;(2)|a x+b|≥c⇔a x+b≥c或a x+b≤-c .3.|x-a|+|x-b|≥c(c>0)和|x-a|+|x-b|≤c(c>0)型不等式的解法方法一:利用绝对值不等式的几何意义求解,体现了数形结合的思想.方法二:利用“零点分段法”求解,体现了分类讨论的思想;方法三:通过构造函数,利用函数的图像求解,体现了函数与方程的思想.二、绝对值不等式的解法(1)|a x+b|≤c⇔-c≤ax+b≤c ;(2)|a x+b|≥c⇔ax+b≥c或ax+b≤-c .3.|x-a|+|x-b|≥c(c>0)和|x-a|+|x-b|≤c(c>0)型不等式的解法方法一:利用绝对值不等式的几何意义求解,体现了数形结合的思想.方法二:利用“零点分段法”求解,体现了分类讨论的思想;方法三:通过构造函数,利用函数的图像求解,体现了函数与方程的思想.1.不等式|a|-|b|≤|a+b|≤|a|+|b|,右侧“=”成立的条件是ab≥0,左侧“=”成立的条件是ab≤0且|a|≥|b|;不等式|a|-|b|≤|a-b|≤|a|+|b|,右侧“=”成立的条件是ab≤0,左侧“=”成立的条件是ab≥0且|a|≥|b|.2.|x-a|+|x-b|≥c表示到数轴上点A(a),B(b)距离之和大于或等于c的所有点,只要在数轴上确定出具有上述特点的点的位置,就可以得出不等式的解.例4:若不等式|x+1|+|x-2|≥a对任意x∈R恒成立,则a的取值范围是________.解:由于|x+1|+|x-2|≥|(x+1)-(x-2)|=3,所以只需a≤3即可.若本题条件变为“∃x∈R使不等式|x+1|+|x-2|<a成立为假命题”,求a的范围.解:由条件知其等价命题为对∀x∈R,|x+1|+|x-2|≥a恒成立,故a≤(|x+1|+|x-2|)min,又|x+1|+|x-2|≥|(x+1)-(x-2)|=3,∴a≤3.例5:不等式log3(|x-4|+|x+5|)>a对于一切x∈R恒成立,则实数a的取值范围是________.解:由绝对值的几何意义知:|x-4|+|x+5|≥9,则log3(|x-4|+|x+5|)≥2所以要使不等式log3(|x-4|+|x+5|)>a对于一切x∈R恒成立,则需a<2.例6:某地街道呈现东——西,南——北向的网络状,相邻街距都为1,两街道相交的点称为格点.若以相互垂直的两条街道为轴建立直角坐标系,现有下述格点(-2,2),(3,1),(3,4),(-2,3),(4,5),(6,6)为报刊零售点,请确定一个格点(除零售点外)________为发行站,使6个零售点沿街道到发行站之间的路程的和最短.解:设格点(x,y)(其中x,y∈Z)为发行站,使6个零售点沿街道到发行站之间的路程的和最短,即使(|x+2|+|y-2|+(|x-3|+|y-1|)+(|x-3|+|y-4|)+(|x+2|+|y-3|)+(|x-4|+|y-5|)+(|x-6|+|y-6|)=[(|x+2|+|x-6|)+(|x+2|+|x-4|)+2|x-3|]+[|y-1|+|y-2|+|y-3|+|y-4|+|y-5|+|y-6|]取得最小值的格点(x,y)(其中x,y∈Z).注意到[(|x+2|+|x-6|)+(|x+2|+|x-4|) +2|x-3|]≥|(x+2)-(x-6)|+|(x+2)-(x-4)|+0=14,当且仅当x=3取等号;|y-1|+|y-2|+|y-3|+|y-4|+|y-5|+|y-6|=(|y-1|+|y-6|)+(|y-2|+|y-5|+(|y-3|+|y-4|)≥|(y-1)-(y-6)|+|(y-2)-(y-5)|+|(y-3)-(y-4)|=9,当且仅当y=3或y=4时取等号.因此,应确定格点(3,3)或(3,4)为发行站.又所求格点不能是零售点,所以应确定格点(3,3)为发行站.1.对绝对值三角不等式定理|a|-|b|≤|a±b|≤|a|+|b|中等号成立的条件要深刻理解,特别是用此定理求函数的最值时.2.该定理可以强化为:||a|-|b||≤|a±b|≤|a|+|b|,它经常用于证明含绝对值的不等式.3.对于求y=|x-a|+|x-b|或y=|x+a|-|x-b|型的最值问题利用绝对值三角不等式更简洁、方便.例7:设函数f(x)=|x-a|+3x,其中a>0.(1)当a=1时,求不等式f(x)≥3x+2的解集;(2)若不等式f(x)≤0的例9:已知关于x的不等式|2x+1|+|x-3|>2a-32恒成立,求实数a的取值范围.y =⎩⎪⎨⎪⎧ -3x +2,x <-12,x +4,-12≤x <3,3x -2,x ≥3,∴当x =-12时,y =|2x +1|+|x -3|取最小值72,∴72>2a -32,即得a <52. 例10:已知f (x )=1+x 2,a ≠b ,求证:|f (a )-f (b )|<|a -b |.解:∵|f (a )-f (b )|=|1+a 2-1+b 2|=|a 2-b 2|1+a 2+1+b 2=|a -b ||a +b |1+a 2+1+b 2, 又|a +b |≤|a |+|b |=a 2+b 2<1+a 2+1+b 2,∴|a +b |1+a 2+1+b 2<1.∵a ≠b ,∴|a -b |>0.∴|f (a )-f (b )|<|a -b |.例11:已知a ,b ∈R 且a ≠0,求证:|a |2|a |≥|a |2-|b |2. 证明:①若|a |>|b |,则左边=|a +b |·|a -b |2|a |=|a +b |·|a -b ||a +b +a -b |≥|a +b |·|a -b ||a +b |+|a -b |=11|a +b |+1|a -b |. ∵1|a +b |≤1|a |-|b |,1|a -b |≤1|a |-|b |,∴1|a +b |+1|a -b |≤2|a |-|b |.∴左边≥|a |-|b |2=右边,∴原不等式成立. ②若|a|=|b|,则a 2=b 2,左边=0=右边,∴原不等式成立.③若|a|<|b|,则左边>0,右边<0,原不等式显然成立.综上可知原不等式成立.证明:|f(x)-f(a)|=|x 2-x +43-a 2+a -43|=|(x -a)(x +a -1)|=|x -a|·|x +a -1|.∵|x -a|<1, ∴|x|-|a|≤|x -a|<1.∴|x|<|a|+1.∴|f(x)-f(a)|=|x -a|·|x +a -1|<|x +a -1|≤|x|+|a|+1<2(|a|+1). 例13:已知函数f (x )=log 2(|x -1|+|x -5|-a ).(1)当a =2时,求函数f (x )的最小值;(2)当函数f (x )的定义域为R 时,求实数a 的取值范围.解:函数的定义域满足|x -1|+|x -5|-a >0,即|x -1|+|x -5|>a .(1)当a =2时,f (x )=log 2(|x -1|+|x -5|-2),设g (x )=|x -1|+|x -5|,则g (x )=|x -1|+|x -5|=⎩⎪⎨⎪⎧ 2x -6,x ≥5,4,1<x <5,6-2x ,x ≤1,g (x )min =4,f (x )min =log 2(4-2)=1.(2)由(1)知,g (x )=|x -1|+|x -5|的最小值为4,|x -1|+|x -5|-a >0,∴a <4.∴a 的取值范围是(-∞,4). x -4|-|x -2|>1.解:(1)f (x )=⎩⎪⎨⎪⎧ -2, x >4,-2x +6, 2≤x ≤4,2, x <2.则函数y =f (x )的图像如图所示.(2)由函数y =f (x )的图像容易求得不等式|x -4|-|x -2|>1的解集为5,2⎛⎫-∞ ⎪⎝⎭。
7年级含有绝对值、参数的不等式的解法例题

一、含有参数的不等式的解法例题当在一个不等式中含有了字母,则称这一不等式为含参数的不等式,那么此时的参数可以从以下两个方面来影响不等式的求解,首先是对不等式的类型(即是那一种不等式)的影响,其次是字母对这个不等式的解的大小的影响。
我们必须通过分类讨论才可解决上述两个问题,同时还要注意是参数的选取确定了不等式的解,而不是不等式的解来区分参数的讨论。
解参数不等式一直是高考所考查的重点内容,也是同学们在学习中经常遇到但又难以顺利解决的问题。
下面举例说明,以供同学们学习。
一、含参数的一元二次不等式的解法:例1:解关于的x 不等式2(1)410()m x x m R +-+≤∈分析:当m+1=0时,它是一个关于x 的一元一次不等式;当m+11时,还需对m+1>0≠及m+1<0来分类讨论,并结合判别式及图象的开口方向进行分类讨论:⑴当m<-1时,⊿=4(3-m )>0,图象开口向下,与x 轴有两个不同交点,不等式的解集取两边。
⑵当-1<m<3时,⊿=4(3-m )>0, 图象开口向上,与x 轴有两个不同交点,不等式的解集取中间。
⑶当m=3时,⊿=4(3-m )=0,图象开口向上,与x 轴只有一个公共点,不等式的解为方程的根。
⑷当m>3时,⊿=4(3-m )<0,图象开口向上全部在x 24410x x -+=轴的上方,不等式的解集为。
∅解:11,|;4m x x ⎧⎫=-≥⎨⎬⎩⎭当时原不等式的解集为⎭⎬⎫⎩⎨⎧+-+≤≤+--<<-⎭⎫⎩⎨⎧+-+≤+--≥-<∆=+-+-≠132132|,31132132|1);34014)1(12m m x m m x m m m x m m x x m m x x m m 原不等式的解集为时当或时,原不等式的解集为则当-(=的判别式时,当当m=3时,原不等式的解集为;⎭⎫⎩⎨⎧=21|x x 当m>3时, 原不等式的解集为。
高考数学破题36大招

目录目录 (1)第1关:极值点偏移问题--对数不等式法 (2)第2关:参数范围问题—常见解题6法 (6)第3关:数列求和问题—解题策略8法 (9)第4关:绝对值不等式解法问题—7大类型 (13)第5关:三角函数最值问题—解题9法 (19)第6关:求轨迹方程问题—6大常用方法 (24)第7关:参数方程与极坐标问题—“考点”面面看 (37)第8关:均值不等式问题—拼凑8法 (43)第9关:不等式恒成立问题—8种解法探析 (49)第10关:圆锥曲线最值问题—5大方面 (55)第11关:排列组合应用问题—解题21法 (59)第12关:几何概型问题—5类重要题型 (66)第13关:直线中的对称问题—4类对称题型 (69)第14关:利用导数证明不等式问题—4大解题技巧 (71)第15关:函数中易混问题—11对 (76)第16关:三项展开式问题—破解“四法” (82)第17关:由递推关系求数列通项问题—“不动点”法 (83)第18关:类比推理问题—高考命题新亮点 (87)第19关:函数定义域问题—知识大盘点 (93)第20关:求函数值域问题—7类题型16种方法 (100)第21关:求函数解析式问题—7种求法 (121)第22关:解答立体几何问题—5大数学思想方法 (124)第23关:数列通项公式—常见9种求法 (129)第24关:导数应用问题—9种错解剖析 (141)第25关:三角函数与平面向量综合问题—6种类型 (144)第26关:概率题错解分类剖析—7大类型 (150)第27关:抽象函数问题—分类解析 (153)第28关:三次函数专题—全解全析 (157)第29关:二次函数在闭区间上的最值问题—大盘点 (169)第30关:解析几何与向量综合问题—知识点大扫描 (178)第31关:平面向量与三角形四心知识的交汇 (179)第32关:数学解题的“灵魂变奏曲”—转化思想 (183)第33关:函数零点问题—求解策略 (194)第34关:求离心率取值范围—常见6法 (199)第35关:高考数学选择题—解题策略 (202)第36关:高考数学填空题—解题策略 (211)第1关:极值点偏移问题--对数不等式法我们熟知平均值不等式:即“调和平均数”小于等于“几何平均数”小于等于“算术平均值”小于等于“平方平均值”等号成立的条件是.我们还可以引入另一个平均值:对数平均值:那么上述平均值不等式可变为:对数平均值不等式,以下简单给出证明:不妨设,设,则原不等式变为:以下只要证明上述函数不等式即可.以下我们来看看对数不等式的作用.题目1:(2015长春四模题)已知函数有两个零点,则下列说法错误的是A. B. C. D.有极小值点,且【答案】C【解析】函数导函数:有极值点,而极值,,A正确.有两个零点:,,即:①②①-②得:根据对数平均值不等式:,而,B正确,C错误而①+②得:,即D成立.题目2:(2011辽宁理)已知函数.若函数的图像与轴交于两点,线段中点的横坐标为,证明:【解析】原题目有3问,其中第二问为第三问的解答提供帮助,现在我们利用不等式直接去证明第三问:设,,,则,①②①-②得:,化简得:③而根据对数平均值不等式:③等式代换到上述不等式④根据:(由③得出)∴④式变为:∵,∴,∴在函数单减区间中,即:题目3:(2010天津理)已知函数.如果,且.证明:.【解析】原题目有3问,其中第二问为第三问的解答提供帮助,现在我们利用不等式直接去证明第三问:设,则,,两边取对数①②①-②得:根据对数平均值不等式题目4:(2014江苏南通市二模)设函数,其图象与轴交于两点,且.证明:(为函数的导函数).【解析】根据题意:,移项取对数得:①②①-②得:,即:根据对数平均值不等式:,①+②得:根据均值不等式:∵函数在单调递减∴题目5:已知函数与直线交于两点. 求证:【解析】由,,可得:①,②①-②得:③①+②得:④根据对数平均值不等式利用③④式可得:由题于与交于不同两点,易得出则∴上式简化为:∴第2关:参数范围问题—常见解题6法求解参数的取值范围是一类常见题型.近年来在各地的模拟试题以及高考试题中更是屡屡出现.学生遇到这类问题,较难找到解题的切入点和突破口,下面介绍几种解决这类问题的策略和方法.一、确定“主元”思想常量与变量是相对的,一般地,可把已知范围的那个看作自变量,另一个看作常量.例1.对于满足0的一切实数,不等式x2+px>4x+p-3恒成立,求x的取值范围.分析:习惯上把x当作自变量,记函数y= x2+(p-4)x+3-p,于是问题转化为当p时y>0恒成立,求x的范围.解决这个问题需要应用二次函数以及二次方程实根分布原理,这是相当复杂的.若把x与p两个量互换一下角色,即p视为变量,x为常量,则上述问题可转化为在[0,4]内关于p的一次函数大于0恒成立的问题.解:设f(p)=(x-1)p+x2-4x+3,当x=1时显然不满足题意.由题设知当0时f(p)>0恒成立,∴f(0)>0,f(4)>0即x2-4x+3>0且x2-1>0,解得x>3或x<-1.∴x的取值范围为x>3或x<-1.二、分离变量对于一些含参数的不等式问题,如果能够将不等式进行同解变形,将不等式中的变量和参数进行分离,即使变量和参数分别位于不等式的左、右两边,然后通过求函数的值域的方法将问题化归为解关于参数的不等式的问题。
带绝对值的不等式解法

带绝对值的不等式解法带绝对值的不等式在数学中是一个常见的问题,它具有一定的挑战性和复杂性。
解决这类问题需要我们掌握一些特定的解法和技巧。
1. 引言带绝对值的不等式是一个重要的数学概念,它出现在许多实际问题中。
了解如何解决这类问题对我们在数学上的学习和解决实际问题上都有很大帮助。
2. 简单的绝对值不等式解法在简单的情况下,我们可以通过将带绝对值的不等式拆分成两个不等式来解决。
对于不等式|2x - 3| > 5,我们可以分别解得2x - 3 > 5和2x - 3 < -5的解。
3. 绝对值函数的图像和性质为了更好地理解带绝对值的不等式,我们需要对绝对值函数有一定的了解。
绝对值函数的图像是一个以原点为对称中心的V形曲线,它的性质包括非负性和不等式性质。
4. 绝对值不等式的绝对值定义法当我们遇到更复杂的带绝对值的不等式时,可以使用绝对值的定义进行求解。
对于不等式|3x - 2| < 10,我们可以通过将绝对值展开为两个不等式,并结合这些不等式的解来得到原不等式的解。
5. 绝对值不等式的符号法在某些情况下,我们可以使用符号法来解决带绝对值的不等式。
符号法通过考虑绝对值的正负性和相对大小来进行推导和求解。
对于不等式|2x - 1| < |3x + 2|,我们可以通过考虑两个绝对值的正负情况,得到不等式的解集。
6. 绝对值不等式的绝对值最大最小法在解决带绝对值的不等式时,绝对值最大最小法可以帮助我们找到不等式的解集。
该方法通过求解不等式中绝对值的最大值和最小值来确定不等式的解集。
对于不等式|5x - 3| + 2 > 7,我们可以通过找到绝对值的最大值和最小值来得到不等式的解。
7. 深入理解带绝对值的不等式通过上述的解法和技巧,我们可以更深入地理解和解决带绝对值的不等式。
我们也可以应用这些思想和方法来解决更复杂的实际问题,例如在经济学、物理学和工程学等领域。
8. 总结带绝对值的不等式是数学中一个重要的概念,它在理论和实际问题中都有广泛的应用。
绝对值不等式考点与题型归纳

绝对值不等式考点与题型归纳一、基础知识1.绝对值三角不等式定理1:如果a,b是实数,则|a+b|≤|a|+|b|,当且仅当ab≥0时,等号成立.定理2:如果a,b,c是实数,那么|a-c|≤|a-b|+|b-c|,当且仅当(a-b)(b-c)≥0时,等号成立.↓|a|-|b|≤|a-b|≤|a|+|b|,当且仅当|a|≥|b|且ab≥0时,左边等号成立,当且仅当ab≤0时,右边等号成立.2.绝对值不等式的解法(1)|x|<a与|x|>a型不等式的解法(2)|ax+b|≤c(c>0)和|ax+b|≥c(c>0)型不等式的解法:①|ax+b|≤c⇔-c≤ax+b≤c;②|ax+b|≥c⇔ax+b≥c或ax+b≤-c.|x-a|+|x-b|≥c和|x-a|+|x-b|≤c型不等式的解法及体现数学思想①利用绝对值不等式的几何意义求解,体现了数形结合的思想;②利用“零点分段法”求解,体现了分类讨论的思想;③通过构造函数,利用函数的图象求解,体现了函数与方程的思想.考点一绝对值不等式的解法[典例] (2016·全国卷Ⅰ)已知函数f (x )=|x +1|-|2x -3|.(1)画出y =f (x )的图象; (2)求不等式|f (x )|>1的解集.[解] (1)由题意得f (x )=⎩⎨⎧x -4,x ≤-1,3x -2,-1<x ≤32,-x +4,x >32,故y =f (x )的图象如图所示.(2)由f (x )的函数表达式及图象可知, 当f (x )=1时,可得x =1或x =3;当f (x )=-1时,可得x =13或x =5.故f (x )>1的解集为{x |1<x <3},f (x )<-1的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪x <13或x >5. 所以|f (x )|>1的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪x <13或1<x <3或x >5.[题组训练]1.解不等式|x +1|+|x -1|≤2. 解:当x <-1时,原不等式可化为-x -1+1-x ≤2, 解得x ≥-1,又因为x <-1,故无解; 当-1≤x ≤1时,原不等式可化为x +1+1-x =2≤2,恒成立; 当x >1时,原不等式可化为x +1+x -1≤2, 解得x ≤1,又因为x >1,故无解;综上,不等式|x +1|+|x -1|≤2的解集为[-1,1]. 2.(2019·沈阳质检)已知函数f (x )=|x -a |+3x ,其中a ∈R . (1)当a =1时,求不等式f (x )≥3x +|2x +1|的解集; (2)若不等式f (x )≤0的解集为{x |x ≤-1},求a 的值. 解:(1)当a =1时,f (x )=|x -1|+3x .法一:由f (x )≥3x +|2x +1|,得|x -1|-|2x +1|≥0, 当x >1时,x -1-(2x +1)≥0,得x ≤-2,无解; 当-12≤x ≤1时,1-x -(2x +1)≥0,得-12≤x ≤0;当x <-12时,1-x -(-2x -1)≥0,得-2≤x <-12.∴不等式的解集为{x |-2≤x ≤0}.法二:由f (x )≥3x +|2x +1|,得|x -1|≥|2x +1|, 两边平方,化简整理得x 2+2x ≤0, 解得-2≤x ≤0,∴不等式的解集为{x |-2≤x ≤0}.(2)由|x -a |+3x ≤0,可得⎩⎪⎨⎪⎧ x ≥a ,4x -a ≤0或⎩⎪⎨⎪⎧x <a ,2x +a ≤0,即⎩⎪⎨⎪⎧ x ≥a ,x ≤a 4或⎩⎪⎨⎪⎧x <a ,x ≤-a 2.当a >0时,不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪x ≤-a 2. 由-a2=-1,得a =2.当a =0时,不等式的解集为{x |x ≤0},不合题意.当a <0时,不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪x ≤a 4. 由a4=-1,得a =-4. 综上,a =2或a =-4.考点二 绝对值不等式性质的应用[典例] (2019·湖北五校联考)已知函数f (x )=|2x -1|,x ∈R . (1)解不等式f (x )<|x |+1;(2)若对x ,y ∈R ,有|x -y -1|≤13,|2y +1|≤16,求证:f (x )<1.[解] (1)∵f (x )<|x |+1,∴|2x -1|<|x |+1,即⎩⎪⎨⎪⎧ x ≥12,2x -1<x +1或⎩⎪⎨⎪⎧0<x <12,1-2x <x +1或⎩⎪⎨⎪⎧x ≤0,1-2x <-x +1,得12≤x <2或0<x <12或无解. 故不等式f (x )<|x |+1的解集为{x |0<x <2}.(2)证明:f (x )=|2x -1|=|2(x -y -1)+(2y +1)|≤|2(x -y -1)|+|2y +1|=2|x -y -1|+|2y +1|≤2×13+16=56<1.故不等式f (x )<1得证.[解题技法] 绝对值不等式性质的应用利用不等式|a +b |≤|a |+|b |(a ,b ∈R )和|a -b |≤|a -c |+|c -b |(a ,b ∈R),通过确定适当的a ,b ,利用整体思想或使函数、不等式中不含变量,可以求最值或证明不等式.[题组训练]1.求函数f (x )=|x +2 019|-|x -2 018|的最大值.解:因为f (x )=|x +2 019|-|x -2 018|≤|x +2 019-x +2 018|=4 037, 所以函数f (x )=|x +2 019|-|x -2 018|的最大值为4 037. 2.若x ∈[-1,1],|y |≤16,|z |≤19,求证:|x +2y -3z |≤53.证明:因为x ∈[-1,1],|y |≤16,|z |≤19,所以|x +2y -3z |≤|x |+2|y |+3|z |≤1+2×16+3×19=53,所以|x +2y -3z |≤53成立.考点三 绝对值不等式的综合应用[典例] (2018·合肥质检)已知函数f (x )=|2x -1|. (1)解关于x 的不等式f (x )-f (x +1)≤1;(2)若关于x 的不等式f (x )<m -f (x +1)的解集不是空集,求m 的取值范围. [解] (1)f (x )-f (x +1)≤1⇔|2x -1|-|2x +1|≤1,则⎩⎪⎨⎪⎧ x ≥12,2x -1-2x -1≤1或⎩⎪⎨⎪⎧ -12<x <12,1-2x -2x -1≤1或⎩⎪⎨⎪⎧x ≤-12,1-2x +2x +1≤1, 解得x ≥12或-14≤x <12,即x ≥-14,所以原不等式的解集为⎣⎡⎭⎫-14,+∞. (2)由条件知,不等式|2x -1|+|2x +1|<m 有解, 则m >(|2x -1|+|2x +1|)min 即可.由于|2x -1|+|2x +1|=|1-2x |+|2x +1|≥|1-2x +(2x +1)|=2,当且仅当(1-2x )(2x +1)≥0,即x ∈⎣⎡⎦⎤-12,12时等号成立,故m >2.所以m 的取值范围是(2,+∞). [解题技法] 两招解不等式问题中的含参问题 (1)转化①把存在性问题转化为求最值问题;②不等式的解集为R 是指不等式的恒成立问题;③不等式的解集为∅的对立面也是不等式的恒成立问题,此类问题都可转化为最值问题,即f (x )<a 恒成立⇔a >f (x )max ,f (x )>a 恒成立⇔a <f (x )min .(2)求最值求含绝对值的函数最值时,常用的方法有三种: ①利用绝对值的几何意义;②利用绝对值三角不等式,即|a |+|b |≥|a ±b |≥||a |-|b ||; ③利用零点分区间法. [题组训练]1.(2018·全国卷Ⅱ)设函数f (x )=5-|x +a |-|x -2|. (1)当a =1时,求不等式f (x )≥0的解集; (2)若f (x )≤1,求a 的取值范围.解:(1)当a =1时,f (x )=⎩⎪⎨⎪⎧2x +4,x <-1,2,-1≤x ≤2,-2x +6,x >2.当x <-1时,由2x +4≥0,解得-2≤x <-1, 当-1≤x ≤2时,显然满足题意, 当x >2时,由-2x +6≥0,解得2<x ≤3, 故f (x )≥0的解集为{x |-2≤x ≤3}. (2)f (x )≤1等价于|x +a |+|x -2|≥4.而|x +a |+|x -2|≥|a +2|,且当x =2时等号成立. 故f (x )≤1等价于|a +2|≥4. 由|a +2|≥4可得a ≤-6或a ≥2.所以a 的取值范围是(-∞,-6]∪[2,+∞).2.(2018·广东珠海二中期中)已知函数f (x )=|x +m |+|2x -1|(m ∈R ),若关于x 的不等式f (x )≤|2x +1|的解集为A ,且⎣⎡⎦⎤34,2⊆A ,求实数m 的取值范围.解:∵⎣⎡⎦⎤34,2⊆A ,∴当x ∈⎣⎡⎦⎤34,2时,不等式f (x )≤|2x +1|恒成立, 即|x +m |+|2x -1|≤|2x +1|在x ∈⎣⎡⎦⎤34,2上恒成立, ∴|x +m |+2x -1≤2x +1,即|x +m |≤2在x ∈⎣⎡⎦⎤34,2上恒成立, ∴-2≤x +m ≤2,∴-x -2≤m ≤-x +2在x ∈⎣⎡⎦⎤34,2上恒成立, ∴(-x -2)max ≤m ≤(-x +2)min ,∴-114≤m ≤0,故实数m 的取值范围是⎣⎡⎦⎤-114,0. [课时跟踪检测]1.求不等式|2x -1|+|2x +1|≤6的解集.解:原不等式可化为⎩⎪⎨⎪⎧ x <-12,1-2x -2x -1≤6或⎩⎪⎨⎪⎧-12≤x ≤12,1-2x +2x +1≤6或⎩⎪⎨⎪⎧x >12,2x -1+2x +1≤6. 解得-32≤x ≤32,即原不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪-32≤x ≤32. 2.已知函数f (x )=|x -4|+|x -a |(a ∈R )的最小值为a . (1)求实数a 的值; (2)解不等式f (x )≤5.解:(1)f (x )=|x -4|+|x -a |≥|a -4|=a , 从而解得a =2.(2)由(1)知,f (x )=|x -4|+|x -2|=⎩⎪⎨⎪⎧-2x +6,x ≤2,2,2<x ≤4,2x -6,x >4.故当x ≤2时,由-2x +6≤5,得12≤x ≤2;当2<x ≤4时,显然不等式成立; 当x >4时,由2x -6≤5,得4<x ≤112,故不等式f (x )≤5的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪12≤x ≤112. 3.(2018·全国卷Ⅰ)已知f (x )=|x +1|-|ax -1|. (1)当a =1时,求不等式f (x )>1的解集;(2)若x ∈(0,1)时不等式f (x )>x 成立,求a 的取值范围. 解:(1)当a =1时,f (x )=|x +1|-|x -1|, 即f (x )=⎩⎪⎨⎪⎧-2,x ≤-1,2x ,-1<x <1,2,x ≥1.故不等式f (x )>1的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪x >12.(2)当x ∈(0,1)时|x +1|-|ax -1|>x 成立等价于当x ∈(0,1)时|ax -1|<1成立. 若a ≤0,则当x ∈(0,1)时,|ax -1|≥1;若a >0,则|ax -1|<1的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪0<x <2a , 所以2a ≥1,故0<a ≤2.综上,a 的取值范围为(0,2]. 4.设函数f (x )=|3x -1|+ax +3. (1)若a =1,解不等式f (x )≤4;(2)若f (x )有最小值,求实数a 的取值范围. 解:(1)当a =1时,f (x )=|3x -1|+x +3≤4,即|3x -1|≤1-x ,x -1≤3x -1≤1-x ,解得0≤x ≤12,所以f (x )≤4的解集为⎣⎡⎦⎤0,12. (2)因为f (x )=⎩⎨⎧(3+a )x +2,x ≥13,(a -3)x +4,x <13,所以f (x )有最小值的充要条件为⎩⎪⎨⎪⎧a +3≥0,a -3≤0,解得-3≤a ≤3,即实数a 的取值范围是[-3,3].5.(2019·贵阳适应性考试)已知函数f (x )=|x -2|-|x +1|. (1)解不等式f (x )>-x ;(2)若关于x 的不等式f (x )≤a 2-2a 的解集为R ,求实数a 的取值范围. 解:(1)原不等式等价于f (x )+x >0,不等式f (x )+x >0可化为|x -2|+x >|x +1|, 当x <-1时,-(x -2)+x >-(x +1),解得x >-3,即-3<x <-1; 当-1≤x ≤2时,-(x -2)+x >x +1,解得x <1,即-1≤x <1; 当x >2时,x -2+x >x +1,解得x >3,即x >3,综上所述,不等式f (x )+x >0的解集为{x |-3<x <1或x >3}. (2)由不等式f (x )≤a 2-2a 可得|x -2|-|x +1|≤a 2-2a ,∵|x -2|-|x +1|≤|x -2-x -1|=3,当且仅当x ∈(-∞,-1]时等号成立, ∴a 2-2a ≥3,即a 2-2a -3≥0,解得a ≤-1或a ≥3. ∴实数a 的取值范围为(-∞,-1]∪[3,+∞). 6.已知函数f (x )=|x -a |+|x +1|.(1)若a =2,求不等式f (x )>x +2的解集;(2)如果关于x 的不等式f (x )<2的解集不是空集,求实数a 的取值范围. 解:(1)当a =2时,f (x )=⎩⎪⎨⎪⎧-2x +1,x <-1,3,-1≤x <2,2x -1,x ≥2,不等式f (x )>x +2等价于⎩⎪⎨⎪⎧ x <-1,-2x +1>x +2或⎩⎪⎨⎪⎧ -1≤x <2,3>x +2或⎩⎪⎨⎪⎧x ≥2,2x -1>x +2,解得x <1或x >3,故原不等式的解集为{x |x <1或x >3}.(2)∵f (x )=|x -a |+|x +1|≥|(x -a )-(x +1)|=|a +1|,当(x -a )(x +1)≤0时取等号. ∴若关于x 的不等式f (x )<2的解集不是空集,只需|a +1|<2, 解得-3<a <1,即实数a 的取值范围是(-3,1). 7.已知函数f (x )=|2x -a |+a .(1)当a =2时,求不等式f (x )≤6的解集;(2)设函数g (x )=|2x -1|.当x ∈R 时,f (x )+g (x )≥3,求a 的取值范围. 解:(1)当a =2时,f (x )=|2x -2|+2. 解不等式|2x -2|+2≤6,得-1≤x ≤3. 因此f (x )≤6的解集为{x |-1≤x ≤3}.(2)当x ∈R 时,f (x )+g (x )=|2x -a |+a +|1-2x |≥3, 即⎪⎪⎪⎪x -a 2+⎪⎪⎪⎪12-x ≥3-a 2. 又⎝⎛⎭⎫⎪⎪⎪⎪x -a 2+⎪⎪⎪⎪12-x min =⎪⎪⎪⎪12-a 2, 所以⎪⎪⎪⎪12-a 2≥3-a 2,解得a ≥2.所以a 的取值范围是[2,+∞).8.(2018·福州质检)设函数f (x )=|x -1|,x ∈R . (1)求不等式f (x )≤3-f (x -1)的解集;(2)已知关于x 的不等式f (x )≤f (x +1)-|x -a |的解集为M ,若⎝⎛⎭⎫1,32⊆M ,求实数a 的取值范围.解:(1)因为f (x )≤3-f (x -1),所以|x -1|≤3-|x -2|⇔|x -1|+|x -2|≤3⇔⎩⎪⎨⎪⎧x <1,3-2x ≤3或⎩⎨⎧1≤x ≤2,1≤3或⎩⎪⎨⎪⎧x >2,2x -3≤3, 解得0≤x <1或1≤x ≤2或2<x ≤3,所以0≤x ≤3,故不等式f (x )≤3-f (x -1)的解集为[0,3].(2)因为⎝⎛⎭⎫1,32⊆M , 所以当x ∈⎝⎛⎭⎫1,32时,f (x )≤f (x +1)-|x -a |恒成立, 而f (x )≤f (x +1)-|x -a |⇔|x -1|-|x |+|x -a |≤0⇔|x -a |≤|x |-|x -1|,因为x ∈⎝⎛⎭⎫1,32,所以|x -a |≤1,即x -1≤a ≤x +1, 由题意,知x -1≤a ≤x +1对于任意的x ∈⎝⎛⎭⎫1,32恒成立, 所以12≤a ≤2,故实数a 的取值范围为⎣⎡⎦⎤12,2.。
绝对值不等式的解法专题讲解

③构造函数法
解法3 构造函数y x 1 x 2 5 2 x 6, y -2, 2x-4 , 作出图象 解集为 , 3 2, x -2 -2 x-3 1 x 1
O
y
2 x -2
(2) x a x b c和 x a x b c 型不等式的解法
数学
选修4-5
绝对值不等式的解法专题讲解
看历届高考:
11年(文科)
11年(理科)
看历届高考:
12年(文科)
12年(理科)
看历届高考:
13年(文科)
13年(理科)
看历届高考:
14年(文科)
密切关注中……
14年(理科) 同上
看历届高考:
15年(文科) 15年(理科)
期待中……
一、绝对值不等式
0<x<2
练习:|3x-1|>x+3.
1 { x | x 或x 2} 2
第二课
3x 4 1 解 : 原不等式等价于下列不 等式组 3x 4 6 5 x 1或x 3 x 4 1或 3 x 4 1 3 即 6 3 x 4 6 10 x 2 3 3 10 5 2 解得 x 或1 x 3 3 3 2 10 5 故原不等式的解集为 3 , 3 1, 3 .
(1, )
2 10 5 ( 1, ] [ , ) 3 3 3
基础练习: 解下列不等式:
(1)|2x-1|<5Hale Waihona Puke (2)|2x2-x|<1
{ x | 2 x 3}
1 { x | x 1} 2 { x | x 1}
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
绝对值不等式解法问题—7大类型类型一:形如型不等式解法:根据的符号,准确的去掉绝对值符号,再进一步求解.这也是其他类型的解题基础.1、当时,或2、当,无解使的解集3、当时,,无解使成立的的解集.例1不等式的解集为()A. B.C. D.解:因为,所以.即,解得:,所以,故选A.类型二:形如型不等式解法:将原不等式转化为以下不等式进行求解:或需要提醒一点的是,该类型的不等式容易错解为:例2 不等式的解集为()A. B.C. D.解:或或,故选D类型三:形如,型不等式,这类不等式如果用分类讨论的方法求解,显得比较繁琐,其简洁解法如下解法:把看成一个大于零的常数进行求解,即:,或例3设函数,若,则的取值范围是解:,故填:.类型四:形如型不等式解法:可以利用两边平方,通过移项,使其转化为:“两式和”与“两式差”的积的方法进行,即:例4不等式的解集为解:所以原不等式的解集为类型五:形如型不等式解法:先利用绝对值的定义进行判断,再进一步求解,即:,无解例5解关于的不等式解:(1)当时,原不等式等价于:(2)当时,原不等式等价于:(3)当时,原不等式等价于:或或综上所述(1)当时,原不等式的解集为:(2)当时,原不等式的解集为:(3)当时,原不等式的解集为:类型六:形如使恒成立型不等式. 解法:利用和差关系式:,结合极端性原理即可解得,即:;;例6不等式对任意的实数恒成立,则实数a 的取值范围是()A. B.C. D.解:设函数所以而不等式对任意的实数恒成立故,故选择A类型七:形如,,1、解法:对于解含有多个绝对值项的不等式,常采用零点分段法,根据绝对值的定义分段去掉绝对值号,最后把各种情况综合得出答案,其步骤是:找出零点,确定分段区间;分段求解,确定各段解集;综合取并,去掉所求解集,亦可集合图像进行求解.例7解不等式分析:找出零点:确定分段区间:解:(1)当时,原不等式可化为:解得:因为,所以不存在(2)当时,原不等式可化为:解得:又因为,所以(3)当时,原不等式可化为:,解得:又,所以综上所述,原不等式的解集为:2、特别地,对于形如,型不等式的解法,除了可用零点分段法外,更可转化为以下不等式,即:或例8设函数(1)若,解不等式(2)如果求的范围解:(1)当由得:即:或解得:,即:或故不等式的解集为:(2)由得:即:或即:或因为恒成立,来自QQ群339444963所以成立,解得:或故的取值范围为:绝对值不等式一直是高中教学中的一个难点,我们通过化归思想将其进行等价变换,从而避免了繁琐的讨论,减小了运算量,以上所介绍的七种类型的含有绝对值的不等式总体上囊括了近几年高考中有关的题目,当然方法可能并不为一,在解决此类问题的时候很多人也比较喜欢使用数形结合的方法来处理,这其实也体现了数学形式多样化的统一美.方法是多种多样的,只是无论多么优秀的方法最终也是用来解题的工具,如果我们仅仅是停留在最求方法的多样化而忽略了数学的本质——思想,那么就有点得不偿失了.数列是高中代数的重要内容,又是学习高等数学的基础,在高考和数学竞赛中都占有十分重要的地位,数列求和问题是数列的基本内容之一,也是高考命题的热点和重点。
由于数列求和问题题型多样,技巧性也较强,以致成为数列的一个难点。
鉴于此,下面就数列求和问题的常见解题策略作一归纳,供广大师生参考。
1、公式法求和若所给数列的通项是关于n的多项式,此时可采用公式法求和,利用下列常用求和公式求和是数列求和的最基本最重要的方法之一。
常用求和公式列举如下:等差数列求和公式:,等比数列求和公式:自然数的方幂和:k3=13+23+33++n3= n2 (n+1)2,k=1+2+3+ +n= n(n+1),k2=12+22+32++n2= n(n+1)(2 n+ 1)例1已知数列,其中,记数列的前项和为,数列的前项和为,求。
解:由题意,是首项为,公差为的等差数列前项和,2、错位相减法求和若数列的通项公式为,其中,中有一个是等差数列,另一个是等比数列,求和时一般在已知和式的两边都乘以组成这个数列的等比数列的公比q,然后再将得到的新和式和原和式相减,转化为同倍数的等比数列求和,这种方法就是错位相减法。
它在推导等比数列的前n项和公式时曾用到的方法。
例2已知当时,求数列的前n项和;解:当时,.由题可知,{}的通项是等差数列{}的通项与等比数列{}的通项之积,这时数列的前项和.①①式两边同乘以,得②①式减去②式,得若,,若,3、反序相加法求和将一个数列倒过来排列(反序),再把它与原数列相加,就可以得到n个,S n表示从第一项依次到第n项的和,然后又将S n 表示成第n项依次反序到第一项的和,将所得两式相加,由此得到S n的一种求和方法。
也称倒写相加法,这是在推导等差数列的前n项和公式时曾用到的方法.例3设,利用课本中推导等差数列的前项和的公式的方法,可求得的值为:解:因为f(x)=,∴f(1-x)=∴f(x)+f(1-x)=.设S=f(-5)+f(-4)+…+f(6),则S=f(6)+f(5)+…+f(-5)∴2S=(f(6)+f(-5))+(f(5)+f(-4))+…+(f(-5)+…f (6))=6∴S=f(-5)+f(-4)+…+f(0)+…+f(6)=3.4、拆项重组求和.有一类数列,既不是等差数列,也不是等比数列,若将这类数列适当拆开,能分为几个等差、等比或常见的数列的和、差,则对拆开后的数列分别求和,再将其合并即可求出原数列的和.也称分组求和法.例4求数列{n(n+1)(2n+1)}的前n项和.解:设∴=将其每一项拆开再重新组合得:S n====5、裂项相消法求和有些数列求和的问题,可以对相应的数列的通项公式加以变形,将其写成两项的差,这样整个数列求和的各加数都按同样的方法裂成两项之差,其中每项的被减数一定是后面某项的减数,从而经过逐项相互抵消仅剩下有限项,可得出前项和公式.这是分解与组合思想在数列求和中的具体应用,也称为分裂通项法。
它适用于型(其中{}是各项不为0的等差数列,c为常数)、部分无理数列、含阶乘的数列等。
常见拆项公式有:;;;;;;;等例5设数列的前项的和,,令,,求解:由题意得:(其中n为正整数)所以:。
6、并项求和针对一些特殊的数列,将某些项合并在一起就具有某种特殊的性质,因此,在求数列的和时,可将这些项放在一起先求和,然后再求和。
例6设数列的首项为,前项和满足关系式:设数列的公比为,作数列使,求和:b1b2-b2b3+b3b4-b4b5…+b2nb2n-b2n b2n+1.-1解:由题意知为等比数列,得,故=,故:b n=,可知{b2n-1}和{b2n}是首项分别为1和,公差均为的等差数列。
于是b1b2-b2b3+b3b4-b4b5+…+b2n-1b2n-b2n b2n+1=b2(b1-b3)+b4(b3-b5)+b6(b5-b7)+…+b2n(b2n-1+b2n+1)=-(b2+b4+…+b2n)=-=-(2n2+3n)7、累加法给出数列{}的递推式和初始值,若递推式可以巧妙地转化为型,可以考虑利用累加法求和,此法也叫叠加法。
例7数列的前项和为,已知,求解:由得:,即,,对成立。
由,,…,累加得:,又,所以,当时,也成立8多法并取求和根据数列的结构及特征进行分析,找出数列的通项及其特征,然后再利用数列的通项揭示的规律来求数列的前n项和,它通常集分组、裂项、公式求和于一体,是一个解决综合性数列求和的重要途径.例8已知数列{a n}:的值.解:∵==∴==求解参数的取值范围是一类常见题型.近年来在各地的模拟试题以及高考试题中更是屡屡出现.学生遇到这类问题,较难找到解题的切入点和突破口,下面介绍几种解决这类问题的策略和方法.一、确定“主元”思想常量与变量是相对的,一般地,可把已知范围的那个看作自变量,另一个看作常量.例1.对于满足0的一切实数,不等式x2+px>4x+p-3恒成立,求x的取值范围.分析:习惯上把x当作自变量,记函数y= x2+(p-4)x+3-p,于是问题转化为当p时y>0恒成立,求x的范围.解决这个问题需要应用二次函数以及二次方程实根分布原理,这是相当复杂的.若把x 与p两个量互换一下角色,即p视为变量,x为常量,则上述问题可转化为在[0,4]内关于p的一次函数大于0恒成立的问题.解:设f(p)=(x-1)p+x2-4x+3,当x=1时显然不满足题意.由题设知当0时f(p)>0恒成立,∴f(0)>0,f(4)>0即x2-4x+3>0且x2-1>0,解得x>3或x<-1.∴x的取值范围为x>3或x<-1.二、分离变量对于一些含参数的不等式问题,如果能够将不等式进行同解变形,将不等式中的变量和参数进行分离,即使变量和参数分别位于不等式的左、右两边,然后通过求函数的值域的方法将问题化归为解关于参数的不等式的问题。
例2.若对于任意角总有成立,求的范围.分析与解:此式是可分离变量型,由原不等式得,又,则原不等式等价变形为恒成立.根据边界原理知,必须小于的最小值,这样问题化归为怎样求的最小值.因为即时,有最小值为0,故.评析:一般地,分离变量后有下列几种情形:①f(x)≥g(k) [f(x)]min≥g(k)②f(x)> g(k) g(k) < [f(x)] min③f(x)≤g(k) [f(x)] max≤g(k)④f(x)<g(k) [f(x)] max < g(k)三、数形结合对于含参数的不等式问题,当不等式两边的函数图象形状明显,我们可以作出它们的图象,来达到解决问题的目的.例3.设,若不等式恒成立,求a的取值范围.分析与解:若设函数,则,其图象为上半圆.设函数,其图象为直线.在同一坐标系内作出函数图象如图,依题意要使半圆恒在直线下方,只有圆心到直线的距离且时成立,即a的取值范围为.四、分类讨论当不等式中左、右两边的函数具有某些不确定因素时,应用分类讨论的方法来处理,分类讨论可使原问题中的不确定因素变成确定因素,为问题的解决提供新的条件。
例4.当时,不等式恒成立,求a的取值范围.解:(1)当时,由题设知恒成立,即,而∴解得(2)当时,由题设知恒成立,即,而∴解得.∴a的取值范围是.五、利用判别式当问题可化为一元二次不等式在实数集上恒成立的问题,可用判别式来求解.例5.不等式,对一切恒成立,求实数的取值范围.解:∵在R上恒成立,∴,R∴,解得故实数的取值范围是.一般地二次函数f(x)=ax2+bx+c恒正,f(x)=ax2+bx+c恒负.六、构造函数构造出函数,通过对函数性质的研究,来达到解决问题的目的.例6.已知不等式对于一切大于1的自然数都成立,求实数的取值范围.分析:注意到不等式仅仅左边是与有关的式子,从函数的观点看,左边是关于的函数,要使原不等式成立,即要求这个函数的最小值大于右式.如何求这个函数的最小值呢?这又是一个非常规问题,应该从研究此函数的单调性入手.解:设,N∴是关于N的递增函数,则=.∴要使不等式成立,只须,解之得.∴实数的取值范围是.以上介绍了求参数的取值范围问题的处理方法,在具体解题中可能要用到两种或两种以上的方法,应灵活处理.数列是高中代数的重要内容,又是学习高等数学的基础,在高考和数学竞赛中都占有十分重要的地位,数列求和问题是数列的基本内容之一,也是高考命题的热点和重点。