实验五RC一阶电路的零输入响应和零状态响应

合集下载

rc一阶电路的响应测试完整带答案实验报告

rc一阶电路的响应测试完整带答案实验报告

rc一阶电路的响应测试完整带答案实验报告实验报告RC一阶电路的响应测试实验报告祝金华PB15050984实验题目:RC一阶电路的响应测试实验目的1. 测定RC一阶电路的零输入响应、零状态响应及完全响应。

2. 学习电路时间常数的测量方法。

3. 掌握有关微分电路和积分电路的概念。

4. 进一步学会用示波器观测波形。

实验原理1. 动态网络的过渡过程是十分短暂的单次变化过程。

要用普通示波器观察过渡过程和测量有关的参数,就必须使这种单次变化的过程重复出现。

为此,我们利用信号发生器输出的方波来模拟阶跃激励信号,即利用方波输出的上升沿作为零状态响应的正阶跃激励信号;利用方波的下降沿作为零输入响应的负阶跃激励信号。

只要选择方波的重复周期远大于电路的时间常数τ,那么电路在这样的方波序列脉冲信号的激励下,它的响应就和直流电接通与断开的过渡过程是基本相同的。

2.图1(b)所示的RC 一阶电路的零输入响应和零状态响应分别按指数规律衰减和增长,其变化的快慢决定于电路的时间常数τ。

3. 时间常数τ的测定方法:用示波器测量零输入响应的波形如图1(a)所示。

根据一阶微分方程的求解得知uc=Ume-t/RC=Ume-t/。

当t=τ时,Uc(τ)=0.368Um。

τ此时所对应的时间就等于τ。

亦可用零状态响应波形增加到0.632 Um所对应的时间测得,如图1(c)所示。

(a) 零输入响应(b) RC一阶电路(c) 零状态响应图14. 微分电路和积分电路是RC一阶电路中较典型的电路,它对电路元件参数和输入信号的周期有着特定的要求。

一个简单的RC 串联电路,在方波序列脉冲的重复激励下,当满足τ=RCT时(T为方波脉冲的重复周期),且由R两端的电压作为响应输2出,这就是一个微分电路。

因为此时电路的输出信号电压与输入信号电压的微分成正比。

如图2(a)所示。

利用微分电路可以将方波转变成尖脉冲。

(a) 微分电路(b) 积分电路图2若将图2(a)中的R与C位置调换一下,如图2(b)所示,由C两端的电压作为响应输出。

实验报告-RC一阶电路的响应测试

实验报告-RC一阶电路的响应测试

实验报告祝金华PB15050984实验题目:RC 一阶电路的响应测试 实验目的1. 测定RC 一阶电路的零输入响应、零状态响应及完全响应。

2. 学习电路时间常数的测量方法。

3. 掌握有关微分电路和积分电路的概念。

4. 进一步学会用示波器观测波形。

实验原理1. 动态网络的过渡过程是十分短暂的单次变化过程。

要用普通示波器观察过渡过程和测量有关的参数,就必须使这种单次变化的过程重复出现。

为此,我们利用信号发生器输出的方波来模拟阶跃激励信号,即利用方波输出的上升沿作为零状态响应的正阶跃激励信号;利用方波的下降沿作为零输入响应的负阶跃激励信号。

只要选择方波的重复周期远大于电路的时间常数τ,那么电路在这样的方波序列脉冲信号的激励下,它的响应就和直流电接通与断开的过渡过程是基本相同的。

2.图1(b)所示的 RC 一阶电路的零输入响应和零状态响应分别按指数规律衰减和增长,其变化的快慢决定于电路的时间常数τ。

3. 时间常数τ的测定方法:用示波器测量零输入响应的波形如图1(a)所示。

根据一阶微分方程的求解得知u c =U m e -t/RC =U m e -t/τ。

当t =τ时,Uc(τ)=0.368U m 。

此时所对应的时间就等于τ。

亦可用零状态响应波形增加到0.632 U m 所对应的时间测得,如图1(c)所示。

(a) 零输入响应 (b) RC 一阶电路 (c) 零状态响应图 14. 微分电路和积分电路是RC 一阶电路中较典型的电路, 它对电路元件参数和输入信号的周期有着特定的要求。

一个简单的 RC 串联电路, 在方波序列脉冲的重复激励下,当满足τ=RC<<2T时(T 为方波脉冲的重复周期),且由R 两端的电压作为响应输出,这就是一个微分电路。

因为此时电路的输出信号电压与输入信号电压的微分成正比。

如图2(a)所示。

利用微分电路可以将方波转变成尖脉冲。

(a) 微分电路 (b) 积分电路图2若将图2(a )中的R 与C 位置调换一下,如图2(b )所示,由 C 两端的电压作为响应输出。

实验报告-RC一阶电路的响应测试

实验报告-RC一阶电路的响应测试

实验报告祝金华PB15050984实验题目:RC 一阶电路的响应测试 实验目的1. 测定RC 一阶电路的零输入响应、零状态响应及完全响应。

2. 学习电路时间常数的测量方法。

3. 掌握有关微分电路和积分电路的概念。

4. 进一步学会用示波器观测波形。

实验原理1. 动态网络的过渡过程是十分短暂的单次变化过程。

要用普通示波器观察过渡过程和测量有关的参数,就必须使这种单次变化的过程重复出现。

为此,我们利用信号发生器输出的方波来模拟阶跃激励信号,即利用方波输出的上升沿作为零状态响应的正阶跃激励信号;利用方波的下降沿作为零输入响应的负阶跃激励信号。

只要选择方波的重复周期远大于电路的时间常数τ,那么电路在这样的方波序列脉冲信号的激励下,它的响应就和直流电接通与断开的过渡过程是基本相同的。

2.图1(b)所示的 RC 一阶电路的零输入响应和零状态响应分别按指数规律衰减和增长,其变化的快慢决定于电路的时间常数τ。

3. 时间常数τ的测定方法:用示波器测量零输入响应的波形如图1(a)所示。

根据一阶微分方程的求解得知u c =U m e -t/RC =U m e -t/τ。

当t =τ时,Uc(τ)=0.368U m 。

此时所对应的时间就等于τ。

亦可用零状态响应波形增加到0.632 U m 所对应的时间测得,如图1(c)所示。

(a) 零输入响应 (b) RC 一阶电路 (c) 零状态响应图 14. 微分电路和积分电路是RC 一阶电路中较典型的电路, 它对电路元件参数和输入信号的周期有着特定的要求。

一个简单的 RC 串联电路, 在方波序列脉冲的重复激励下,当满足τ=RC<<2T时(T 为方波脉冲的重复周期),且由R 两端的电压作为响应输出,这就是一个微分电路。

因为此时电路的输出信号电压与输入信号电压的微分成正比。

如图2(a)所示。

利用微分电路可以将方波转变成尖脉冲。

(a) 微分电路 (b) 积分电路图2若将图2(a )中的R 与C 位置调换一下,如图2(b )所示,由 C 两端的电压作为响应输出。

实验五 一阶RC串联电路的测试(改)09

实验五 一阶RC串联电路的测试(改)09

实验五一阶RC串联电路的测试一、实验目的:1、学会脉冲源参数的设置方法2、学会使用仿真分析功能对电路进行瞬态分析3、通过实验进一步了解RC一阶电路的动态特性二.预习要求1.复习一阶RC串联电路动态特性的有关知识2.了解零输入响应与零状态响应的有关知识3.了解RC串联电路换路后电容电压、电阻电压、电容电流、电阻电流的变化规律。

三、实验原理1、RC电路的零输入响应仅仅是由动态元件的初始条件引起的的响应,称为零输入响应。

换路前电路如图(a)所示,开关原来连接在1端,电路达到稳态,此时电容电压等于U0。

在t=0时开关迅速由1端转换到2端,得到换路后的电路,如图(b)所示。

图1换路后, 电路的初始条件: u c (0+)=u c (0-) =U 0 当达到新的稳态时: u c (∞)=0 电路的时间常数: τ=RC由三要素法,可求得图 (b)电路的零输入响应为:从上面式子可知,各电压电流变化的快慢取决于时间常数τ =RC 。

下图为零输入响应的波形;2、 RC 电路的零状态响应图2 RC 电路零输入响应的波形曲线0()(0)t RCc u t U et -=≥0()(0)tRCR u t U et -=≥0()(0)tC RCc du U i t C et dt R-==->0()()(0)tRCR C U i t i t et R-=-=>零状态响应:初始状态为零,仅仅由独立电源(称为激励或输入)引起的响应,称为零状态响应。

换路前电路如图 (a)所示,此时电容电压u C (0-)=0。

假设在t =0时开关闭合,则RC 串联电路与直流电压源连接,电压源通过电阻对电容充电。

换路后电路的初始条件: u C (0+)= u C (0-)=0 电路达到新的稳态时: u c (∞)=U S 电路的时间常数: τ=RC 由三要素法可求得电路的零状态响应为:响应波形如下图所示:)e1()(S C RCtU t u --= C S S τR C d ()()e e(0)d t tRC u U U i t i t C t t R R--====> R S ()()et RCR u t Ri t U -==u C (t) i C (t)t <0 的电路t >0 的电路图 3从上图可见,电容电压由零开始以指数规律上升到U S,经过一个时间常数变化到(1-0.368)U S=0.632U S,经过(4~5)τ时间后电容电压实际上达到U S。

实验五RC一阶电路的零输入响应和零状态响应ppt

实验五RC一阶电路的零输入响应和零状态响应ppt
2. 将电流表和电压表接入电路,并调整到合适的量程。
实验操作流程
3. 打开电源,使电路正常工作,观察并记录电压表和电流表的读数,直到电容充电完毕。
4. 关闭电源,记录关闭时刻的电流和电压值,作为零输入响应的起始状态。
实验操作流程
零状态响应 1. 将电容放电至零电荷状态,确保电容两端的电压为零。
2. 将电源、电阻按照正确的极性连接在实验线路板上,确保连接牢固。
实验设备介绍
电阻
阻值为已知的定值 电阻,用于构成RC 电路。
电流表和电压表
用于测量电路中的 电流和电压。
电源
提供稳定的直流电 源,用于给RC电路 供电。
电容
已知容值的电解电 容,用于RC电路。
实验线路板
提供电路连接的接 口和固定装置。
实验操作流程
零输入响应
1. 将电源、电阻、电容按照正确的极性连接在实验线路板上,确保连接 牢固。
在RC一阶电路中,当电路的初始状态为零 时,输入信号引起的响应被称为零状态响应。 通过给电路施加不同频率和幅值的正弦波信 号,我们观察到随着频率的增加,响应的幅 值减小,相位滞后增大。这一结果表明, RC电路对于不同频率的输入信号具有不同 的响应特性。
结论总结
RC一阶电路的零输入响应表现 为电容的放电过程,电压随时间
03
在数字电路中,RC一阶 电路可以用于时钟信号 的生成和整形。
04
在控制系统中,RC一阶 电路可以用于控制系统 的稳定性分析和设计。
入信 号时,电路中由于储能元件(如电感 或电容)的能量交换所产生的响应。
在RC一阶电路中,零输入响应表现为 电容上的电压或电流的衰减过程。
RC电路在电子工程、电路分析 和控制系统等领域有广泛应用。

RC一阶电路的响应测试实验报告

RC一阶电路的响应测试实验报告

实验七RC 一阶电路的响应测试一、实验目的1. 测定RC 一阶电路的零输入响应、零状态响应及完全响应。

2. 学习电路时间常数的测量方法。

3. 掌握有关微分电路和积分电路的概念。

4. 进一步学会用示波器观测波形。

二、原理说明1. 动态网络的过渡过程是十分短暂的单次变化过程。

要用普通示波器观察过渡过程和测量有关的参数,就必须使这种单次变化的过程重复出现。

为此,我们利用信号发生器输出的方波来模拟阶跃激励信号,即利用方波输出的上升沿作为零状态响应的正阶跃激励信号;利用方波的下降沿作为零输入响应的负阶跃激励信号。

只要选择方波的重复周期远大于电路的时间常数τ,那么电路在这样的方波序列脉冲信号的激励下,它的响应就和直流电接通与断开的过渡过程是基本相同的。

2.图7-1(b )所示的RC 一阶电路的零输入响应和零状态响应分别按指数规律衰减和增长,其变化的快慢决定于电路的时间常数τ。

3. 时间常数τ的测定方法: 用示波器测量零输入响应的波形如图7-1(a)所示。

根据一阶微分方程的求解得知u c =U m e-t/RC=U m e-t/τ。

当t =τ时,Uc(τ)=0.368U m 。

此时所对应的时间就等于τ。

亦可用零状态响应波形增加到0.632U m 所对应的时间测得,如图13-1(c)所示。

a) 零输入响应(b) RC 一阶电路(c) 零状态响应图7-14. 微分电路和积分电路是RC 一阶电路中较典型的电路,它对电路元件参数和输入信号的周期有着特定的要求。

一个简单的RC 串联电路,在方波序列脉冲的重复激励下,当满足τ=RC<<2T 时(T 为方波脉冲的重复周期),且由R 两端的电压作为响应输出,则该电路就是一个微分电路。

因为此时电路的输出信号电压与输入信号电压的微分成正比。

如图0.368ttRCtt0.632+cu uU mcu cu uuU mU mU m7-2(a)所示。

利用微分电路可以将方波转变成尖脉冲。

实验五--一阶RC电路的过渡过程实验

实验五--一阶RC电路的过渡过程实验

实验五一阶RC电路的过渡过程实验一、实验目的1、研究RC串联电路的过渡过程。

2、研究元件参数的改变对电路过渡过程的影响。

二、实验原理电路在一定条件下有一定的稳定状态,当条件改变,就要过渡到新的稳定状态。

从一种稳定状态转到另一种新的稳定状态往往不能跃变,而是需要一定的过渡过程(时间)的,这个物理过程就称为电路的过渡过程。

电路的过渡过程往往为时短暂,所以电路在过渡过程中的工作状态成为暂态,因而过渡过程又称为暂态过程。

1、RC电路的零状态响应(电容C充电)在图5-1 (a)所示RC串联电路,开关S在未合上之前电容元件未充电,在t = 0时将开关S合上,电路既与一恒定电压为U的电源接通,对电容元件开始充电。

此时电路的响应叫零状态响应,也就是电容充电的过程。

(a) (b)图5-1 RC电路的零状态响应电路及u C、u R、i 随时间变化曲线根据基尔霍夫电压定律,列出t 0时电路的微分方程为电容元件两端电压为其随时间的变化曲线如图5-1 (b) 所示。

电压u c按指数规律随时间增长而趋于稳定值。

电路中的电流为电阻上的电压为其随时间的变化曲线如图5-1 (b) 所示。

2、RC电路的零输入响应(电容C放电)在图5-2(a)所示, RC串联电路。

开关S在位置2时电容已充电,电容上的电压u C= U0,电路处于稳定状态。

在t = 0时将开关从位置2转换到位置1,使电路脱离电源,输入信号为零。

此时电容元件经过电阻R开始放电。

此时电路的响应叫零输入响应,也就是电容放电的过程。

(a) (b)图5-2RC电路的零输入响应电路及u C、u R、i随时间变化曲线根据基尔霍夫电压定律,列出t >0时的电路微分方程为电容两端电压为其随时间变化曲线如图5-2 (b)所示。

它的初始值为U0,按指数规律衰减而趋于零。

τ=R C式中τ = RC,叫时间常数,它所反映了电路过渡过程时间的长短,τ越大过渡时间就越长。

电路中的电流为电阻上电压为其随时间变化曲线如图5-2 (b)所示。

电路仿真实验报告——RC一阶电路的响应测试

电路仿真实验报告——RC一阶电路的响应测试

RC 一阶电路的响应测试一.实验目的1.测定RC一阶电路的零输入相应,零状态响应及完全响应2.学习电路时间常数的测定方法3.掌握有关微分电路和积分电路的概念4.进一步学会用示波器测绘图形二.原理说明动态网络的过渡过程是身份短暂的单次变化过程,对时间常数较大的电路,可以用扫描长的余辉示波器观察光点的移动轨迹。

然而能用一般的双踪示波器观察过渡过程和测有段数据的,必须使用这种单次变化的过程重复出现。

为此,我们利用信号发生器来模拟阶跃激励信号,即令方波输出的上升沿作为零状态响应的正阶阶跃信号;方波的下降沿作为零输入响应的负阶阶跃信号。

RC一阶电路的零输入响应和零状态响应分别按指数规律衰减和增长,其变化的快慢取决于电路的时间常数。

微分电路和积分电路是RC一阶电路中较典型的电路,它对电路元件参数和输出信号的周期有着一定得要求。

一个简单的RC串联电路,在方波序列脉冲的重复激励下,且由R端作为响应作为输入。

三.实验仪器函数信号发生器*1;双踪示波器*1.四.实验内容及步骤1.按照实验内容在仿真软件上建立好如下电路图:2.设置信号发生器的参数为U=3V,f=1KHz,点击运行,示波器显示如下:3.将示波器接在电阻两端,观察示波器如下:4.令R=10KΏ,C=3300PF,重复上述步骤,示波器显示如下:5.令C=3300PF,R=30KΏ,重复上述测量,示波器显示如下:五.实验总结1,仿真实验与真实实验的差别。

仿真实验是利用计算机编制程序来模拟实验进程的行为。

要进行仿真实验需要大量的参数,还要一个符合真实情况运行的程序。

仿真实验的参数都是通过前人大量的实验得到的。

仿真实验的目的就是节省原料,同时仿真实验的结果和真实实验的结果对照,可以检验各种从实验中归纳出来的定理定律是否正确。

同时实验室做实验的时候存在实验环境的限制,大多数时候的出来的数据与理论存在一定的偏差,因此会对实验结论的得出有一定的影响,在直观性上远不及仿真实验。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
+
US
C UC
-
0
输入方波信号
1/2T
T
t
相位差
输入
输出
US F R C U
(V)
测计
1
2
3
输入信号
U
U
0 T/2
T
t0
T/2
T
t
U U
0
T/2
T
t
U 0 T/2
输出信号 0
T/2
T
t
U
相位差
T
t
U
0 T/2
T
t
U
0 T/2
T
t0
T/2
T
t
注意: -、改变电阻或电容参数时数值应Байду номын сангаас大些 二、电容应用专用仪器测得其容量后再计算 三、要正确操作示波波器,注意选取电压的测
Uco 0.632Uco
t

一阶电路的响应曲线
电路的过渡过程是
U 输入信号 输出信号
十分短暂的变化过程。
用一般示波器观察过渡
过程,必须使之重复出
现。为此,用方波来模
拟阶跃激励信号,方波 0 T/2 T
t
的上升沿作为零状态响应的正阶跃激励信号; 方波下降沿作为零输入响应的负阶跃激励信号, 只要选择方波的重复周期远大于电路的时间常 数。
欢迎同学们
到 电子电工实验中心实验
实验五 RC一阶电路的零输入响应和零 状态响应(指p91、辅p27)
实验内容: 该实验通过改变电路中RC的参数,观察:
一、RC电路过渡过程及时间常数的变化; 二、微分电路和应具备的条件 三、积分电路和应具备的条件
一、时间常数 ‫ح‬的测定方法
㈠、过渡(放电)过程:(模拟电路)
T
t
二、微分电路的测试(输出电压是输入电压的微分)
由R=100Ω、C=0.01uF 组成微分电路,在示波器 上观察变化曲线,观察其响应曲线。逐步增大R之值, 观察曲线变化。
微分电路必须满足的两个条件:一是RC《T∕2、
二是必须在电阻“R”两端输出。
て《T/2 C
U 输入信号 输出信号
+
US -
T/2
0.368
R UR 0
t
T/2 T
输入方波信号
三、积分电路的测试:输出信号电压与输入电压的积分成正比。
由R=10KΩ,C=0.47uF组成积分电路,在示波器 上观察变化曲线,继续增大“C”之值,观察曲线的变 化。
积分电路必须满足的两个条件:一是RC》T∕2、 二是必须在电容“C”两端输出。
U
て》T/2 R
+ 开
US
US
332 474 10uf 100uf
-
-
充放电路、积分电路
100 1K 10K 100K
微分电路
-
谢 谢!
㈡、过渡(充电)过程: (模拟电路)
一阶网络中,动态元件的初始储能为零时,由施 加于网络的输入信号产生的响应即为一阶网络的零状 态响应。
输入信号最简单的形式是恒定的成阶跃的电压或 电流。我们亦可用零状态响应波形来测定时间常数。
稳压电源
K
t=0 +
Us
-
RC串联
R +
Uc(t) -
零状态的一阶电路
Uc
量功能 四、在不同电阻参数的电路中其时间常数“て”
要用示波器测量和理、 论计算 五、积分电路因为是积分信号输出,其时间常
数“て”不用测量 六、各种特性图要分别用坐标纸绘制并作出比较 七、科学、合理、实用地制定一个综合数据表格
实验五 RC一阶电路的零输入响应 和零状态响应电路板电路
+ 10K

+ 0.01uf
RC一阶电路的零输入响应和零状态响应分别按指数规律
衰减和增长,其变化的快慢决定于电路的时间常数 。一阶网
络在没有输入信号作用时,由电路中动态元件的初始贮能所产 生的响应,就是零输入响应。
稳压电源
t=0
+
K RC并联
Us + Uc R -
-
零输入的一阶电路
Uc
Uco
0.368Uco
t
て 一阶电路的响应曲线
电路在这样的方波信号的激励下,是和直
流电路接通与断开的过渡过程是基本相同的。
一、RC过渡电路的测试 选择R=10KΩ,
C=3300(332)pF,组成 RC充放电电路,在示波 器上观察变化曲线。
U 输入信号
输入方波电压US=4V 频率F=1KHz
0
T/2 T
t
U
输出信号
+ Us
-
R
C+
-
0 T/2
相关文档
最新文档