项目名称宽带无线通信中的多域多点协同传输理论研究项目完成人

项目名称宽带无线通信中的多域多点协同传输理论研究项目完成人

项目名称:

宽带无线通信中的多域多点协同传输理论研究

项目完成人:

杨绿溪,黄永明,金石,李春国,傅友华(南邮),刘陈(南邮),俞菲

项目完成单位:

东南大学,南京邮电大学

申报奖种:

自然科学奖

项目简介(1000字):

高速可靠的宽带无线通信是现代信息社会的基本需求,也是我国基础研究重大战略方向之一,但其面临着无线频谱资源日益紧缺以及能源消耗急速增长的瓶颈问题,为寻求突破,多域多点协作的新型宽带无线传输成为重要研究课题,它以多天线MIMO传输为基础,充分挖掘和协同利用空间、时间、频率、功率、终端和网络等多域与多点资源,大幅度提升系统的频谱效率与能量效率。

本项目在国家863计划、国家科技重大专项以及国家自然科学基金等重要课题的支持下,重点围绕宽带无线通信中的多用户MIMO协作、中继协作和多点协作网络场景,研究多域多点协作的新型宽带无线传输理论及系统架构,提出了适应复杂无线传播环境的高效能

分布式多域多点协作理论与关键技术,取得系列原创性成果,形成较为完整的多域多点协作传输理论体系。主要研究成果概括如下:

1. 针对多用户MIMO传输面临的信息理论问题、传输效率提升问题,提出了综合利用统计和瞬时信道信息的MIMO自适应传输理论方法,构造了分层结构码本和干扰码字伴随反馈方法,解决了多天线多用户协作信道环境自适应传输难题。

2. 针对多基站协作传输中由于协作节点增加引发的信道信息获取及交互的瓶颈问题,将多用户上下行链路对偶原理拓展至多基站协作 MIMO场景,并发展出能效域对偶理论,进而提出了高效能多基站分布式协作MIMO传输理论方法,大幅提升了多基站协作网络中的能量效率和频谱效率。

3. 突破了协作中继网络中涉及的系统性能分析、最优传输理论方法和高效实现技术,提出了分布式协作中继MIMO传输理论方法,解决了蜂窝网络下中继应用所涉及的实现复杂度、高效信道反馈和链路自适应难题。

本项目在IEEE等国际核心刊物发表论文32篇,获授权国家发明专利21项,授权美国发明专利5项。相关理论成果受到国际上的广泛关注和正面评价,被国际上一批著名学者引用。所发表的论文共被引用1234次,其中SCI他引361次。所提出的分层码本预编码方法在移动通信4G国际标准增强MIMO传输中得到应用;所提出的干扰码字伴随反馈方法已通过华为公司提交IEEE 802.16m国际标准提案并被采纳。通过所承担的国家科技重大专项等项目的实施,成果被广泛应用于华为公司IEEE 802.16m(WiMAX)产品,显著提升了系统性能,技术水平业界领先,产生了显著的经济效益,为提升我国宽带无线通信技术研发水平做出了重要贡献。

“新一代宽带无线移动通信网”国家科技重大专项XXXX年度课题

“新一代宽带无线移动通信网”国家科技重大专项2011年度课题申报指南 二○一○年五月

“新一代宽带无线移动通信网”国家科技重大专项2011年度网上公示的申报课题分属以下五个项目: 项目1:LTE及LTE-Advanced研发和产业化 项目2:移动互联网及业务应用研发 项目3:新型无线技术 项目4:宽带无线接入与短距离互联研发和产业化 项目5:物联网及泛在网 项目1 LTE及LTE-Advanced研发和产业化 项目目标: 本项目“十二五”期间的目标是:实现LTE产业化及规模应用;开展LTE-Advanced关键技术、标准化及整体产业链的研发和产业化。具体包括: 1) LTE研发和产业化:完成TD-LTE的多频多模芯片、终端、系统和仪表设备等产业链各环节的产业化,解决产品开发及实际应用中的关键技术,实现规模应用。 2)LTE-Advanced标准化、研发和产业化:积极参与3GPP LTE 增强型技术的标准化工作,拥有一定数量的基本专利,对关键技术进行研发,形成完整产业链,研制出具有国际竞争力的产品。建立技术试验环境,建设2~3个规模试验网。 3)TD-SCDMA及其增强型优化和提升:支持一致性测试仪表开发和完善、开发新的业务应用等。 2011年本项目主要考虑安排基带芯片、仪表等产业链薄弱环节

中还需支持的课题以及高铁等特殊环境下的研发课题。 课题1-1 TD-LTE面向商用多模终端基带芯片研发 课题说明:终端基带芯片是TD-LTE产业链最重要的环节,也是我国比较薄弱的环节。由于难度大、国际竞争压力大,时间紧迫,所以应立即启动,并确保足够投入。 研究目标:开发面向商用的支持TD-LTE和TD-SCDMA/GSM的多模终端基带芯片,TD-LTE能够满足3GPP R8、R9和国相关规的要求, TD-SCDMA支持3GPP R7版本。 考核指标:提供1000片面向商用的多模芯片给终端厂家,用于运营商牵头的规模试验。完成面向商用芯片的研发。所提供芯片应能够满足3GPP R7、R8、R9和国标准主要指标要求。向TD-LTE终端设备厂商提供面向商用的基带芯片。主要技术指标如下: –支持TD-LTE和TD-SCDMA/GSM多模; –下行支持2×2 MIMO方式; –下行支持单/双流波束赋形解调; –下行支持64QAM、16QAM、QPSK和BPSK调制方式; –支持可变速率带宽,包括5MHz, 10MHz, 15MHz和20MHz; –支持非对称时隙配置; –半导体工艺线宽:65nm及以下。 完成芯片优化工作,重点是芯片的性能、稳定性和功耗指标能达到面向商用要求。 申报单位须提供具体说明:与国际、国相关标准的符合程度;芯

常用无线通信协议

常用无线通信协议 目前使用较广泛的近距无线通信技术有蓝牙(Bluetooth),无线局域网802.11(Wi-Fi)和红外线数据传输(IrDA).此外,还有一些具有发展潜力的近距无线技术标准,分别是ZigBee,超宽频,短距通信,WiMedia,GPS,DECT,无线1394和专用无线系统等。 蓝牙(Bluetooth)技术 蓝牙是一种支持设备短距离通信的无线电技术。它是一种无线数据与语音通信的开放性全球规范,它以低成本的短距离无线连接为基础,可为固定的或移动的终端设备提供廉价的接入服务。蓝牙技术的实质内容是为固定设备或移动设备之间的通信环境建立通用的近距无线接口,将通信技术与计算机技术进一步结合起来,使各种设备在没有电线或电缆相互连接的情况下,能在近距离范围内实现相互通信或操作。其传输频段为全球公众通用的2.4GHzISM频段,提供1Mbps的传输速率和10m 的传输距离。 优势:⑴全性高。蓝牙设备在通信时,工作的频率是不停地同步变化的,也就是跳频通信。双方的信息很难被抓获,防止被破解或恶意插入欺骗信息。⑵于使用。蓝牙技术是一项即时技术,不要求固定的基础设施,且易于安装和设置。 不足:⑴通信速度不高。蓝牙设备的通信速度较慢,有很多的应用需求不能得到满足。⑵传输距离短。蓝牙规范最初为近距离通信而设计,所以他的通信距离比较短,一般不超过10m。 Wi-Fi(无线高保真)技术 无线宽带是Wi-Fi的俗称。所谓Wi-Fi就是IEEE 802.11b的别称,它是一种短程无线传输技术,能够在数百英尺范围内支持互联网接入的无线电信号。Wi-Fi速率最高可达11Mb/s,电波的覆盖范围可达200m左右。 优势:⑴覆盖广。其无线电波的覆盖范围广,穿透力强。可以方便地为整栋大楼提供无线的宽带互联网的接入。⑵速度高。Wi-Fi技术的传输速度非常快,通信速度可达300Mb/s,能满足用户接入互联网,浏览和下载各类信息的要求。 不足:安全性不好。由于Wi-Fi设备在通信中没有使用跳频等技术,虽然使用了加密协议,但还是存在被破解的隐患。 IrDA(红外线数据协会)技术 IrDA是一种利用红外线进行点对点通信的技术,是第一个实现无线个人局域网(PAN)的技术。 IrDA 的主要优点是无需申请频率的使用权,因而红外通信成本低廉。并且还具有移动通信所需的体积小、功耗低、连接方便、简单易用的特点。此外,红外线发射角度较小,传输上安全性高。IrDA的不足在于它是一种视距传输,两个相互通信的设备之间必须对准,中间不能被其它物体阻隔,因而该技术只能用于 2 台(非多台)设备之间的连接。 优势:⑴无需申请频率的使用权,因此红外线通信成本低廉。⑵移动通信所需的体积小、功耗低、连接方便、简单易用。⑶外线发射角度较小,传输上安全性高。 不足:IrDA是一种视距传输,两个相互通信的设备之间必须对准,中间不能被其它物体阻隔,因而只用于两台设备之间连接。ZigBee(紫蜂)技术 ZigBee使用2.4 GHz 波段,采用跳频技术。它的基本速率是250kb/s,当降低到28kb/s 时,传输范围可扩大到134m,并获得更高的可靠性。另外,它可与254个节点联网。 优势:⑴功耗低。在低耗电待机模式下,两节普通5号干电池可使用6个月以上。⑵成本低。因ZigBee数据传输速率低,协议简单,所以成本很低。⑶网络容量大。每个ZigBee网络最多可支持255个设备。⑷作频段灵活。使用的频段分别为2.4GHz、868MHz(欧)及915MHz(美),均为免执照频段。 不足:⑴数据传输速率低。只有10kb/s~250kb/s,专注于低传输应用。⑵有效范围小。有效覆盖范围为10~75m之间,具体依据实际发射功率的大小和各种不同的应用模式而定,基本上能够覆盖普通的家庭或办公室环境。 UWB(超宽带)技术 UWB(Ultra Wideband)是一种无线载波通信技术,利用纳秒级的非正弦波窄脉冲传输数据,因此其所占的频谱范围很宽。UWB 有可能在10 m 范围内,支持高达110 Mb/s的数据传输率,不需要压缩数据,可以快速、简单、经济地完成视频数据处理。 特点:⑴系统复杂度低,发射信号功率谱密度低,对信道衰落不敏感,载货能力低。⑵定位精度高,相容性好,速度高。⑶成本低,功耗低,可穿透障碍物。近距离无线传输 NFC(近距离无线传输)技术 NFC采用了双向的识别和连接。在20cm 距离内工作于13.56MHz 频率范围。NFC现已发展成无线连接技术。它能快速自动地建立无线网络,为蜂窝设备、蓝牙设备、Wi-Fi 设备提供一个“虚拟连接”,使电子设备可以在短距离范围进行通讯。 特点:NFC的短距离交互大大简化了整个认证识别过程,使电子设备间互相访问更直接、更安全和更清楚,不用再听到各种电子杂音。NFC 通过在单一设备上组合所有的身份识别应用和服务,帮助解决记忆多个密码的麻烦,同时也保证了数据的安全保护。此外NFC 还可以将其它类型无线通讯(如Wi-Fi 和蓝牙)“加速”,实现更快和更远距离的数据传输。

2014宽带无线通信试题(答案)

2014宽带无线通信试题参考答案 做题人:近水云深1、 答: SISO信道容量: SIMO信道容量: MISO信道容量(发端未知信道状态信息): MISO信道容量(发端已知信道状态信息): 2、答:无线信道的特性由直射、反射、散射、绕射等物理现象决定的; 小尺度衰落包括平坦衰落、频率选择性衰落、时间选择性衰落(快衰落)、慢 衰落; 1——平坦慢衰落,2——平坦快衰落,3——频选慢衰落,4——频选快衰落。3、CDMA有直序扩频-CDMA(DS-CDMA)和跳频-CDMA两种主要方式; 对于DS-CDMA扩频方式主要通过自相关克服多径干扰,互相关克服多址干扰,具体如下: 自相关:

互相关: 对于所有的t,好的码字有和的关系成立 ——消除了多径干扰 ——消除了多址干扰 对于跳频-CDMA: 多径干扰通常已经消除; 多址干扰通过编码的方式来纠正。 4、CDMA的最佳接收机采用的是最大似然算法; 线性多用户检测算法有:解相关算法和最小均方差算法; I=I MAI+f*I MAI; I=f* I MAI; 最大容量因子=(1+f)/f=2.8 。 5、CDMA系统下行使用正交扩频码,上行使用非正交扩频码(下行需要区分多个用户,上行可以直接用扰码进行区分同一小区不同用户); CDMA系统用户容量定义:对于给定宽带的信道,能给多少用户提供服务;因为Wash-Hadamard码为正交码,所以系统用户容量为N。 K=3G/SIR+1;当SIR为10dB时,K=39;SIR为1dB时,K=385; 6、Orthogonal Frequency Division Multiplexing ; 收发结构框图:

物联网中的几种短距离无线传输技术电子教案

短距离无线通信场指的是100m 以内的通信,主要技术包括Wifi、紫蜂(Zigbee)、蓝牙技术(Bluetooth)、超宽带技术(Ultra-wideband ,UWB)、射频识别技术(Radio Frequency IDentification ,RFID)以及近场通信(Near Field Communication,NFC)等类型。低功耗、微型化是用户对当前无线通信产品尤其是便携产品的强烈要求,作为无线通信技术重要分支的短距离无线通信技术正逐步引起越来越广泛的关注。各国也相应地制定短距离通信技术标准,特别是RFID 和NFC 在物联网、移动支付和手机识别方面的应用标准,例如主要的RFID 相关规范有欧美的EPC 规范、日本的UID(Ubiquitous ID)规范和ISO 18000 系列标准。中国政府也高度重视短距离通信的发展,制定了一系列的政策来扶持短距离通信产业。例如科技部、工信部联合14 部委制订的《中国RFID 发展策略白皮书》等。此外,包括诺基亚、英特尔、IBM、东芝、华为、中兴和联想等众多企业也积极参与到短距离无线通信中各技术的研究中。 1、Wi-Fi技术 Wi-Fi(Wireless Fidelity,无线高保真)是一种无线通信协议(IEEE802.11b),Wi-Fi的传输速率最高可达11Mb/s,虽然在数据安全性方面比蓝牙技术要差一些,但在无线电波的覆盖范围方面却略胜一筹,可达100 m左右。 Wi-Fi是以太网的一种无线扩展,理论上只要用户位于一个接入点四周的一定区域内,就能以最高约11Mb/s的速率接入互联网。实际上,如果有多个用户同时通过一个点接入,带宽将被多个用户分享,Wi-Fi的连接速度会降低到只有几百kb/s,另外,Wi-Fi的信号一般不受墙壁阻隔的影响,但在建筑物内的有效传输距离要小于户外。 最初的IEEE802.11规范是在1997年提出的,称为802.11b,主要目的是提供WLAN接入,也是目前WLAN的主要技术标准,它的工作频率是2.4GHz,与无绳电话、蓝牙等许多不需频率使用许可证的无线设备共享同一频段。随着Wi-Fi协议新版本如802.11a和802.11g的先后推出,Wi-Fi的应用将越来越广泛。速度更快的802.11g使用与802.11b相同的正交频分多路复用调制技术,它也工作在2.4GHz频段,速率达54Mb/s。根据最新的发展趋势判断,802.11g 将有可能被大多数无线网络产品制造商选择作为产品标准。微软推出的桌面操作系统Windows XP和嵌入式操作系统Windows CE,都包含了对Wi-Fi的支持。 2、UWB技术 超宽带技术UWB(Ultra Wideband)是一种无线载波通信技术,它不采用正弦载波,而是利用纳秒级的非正弦波窄脉冲传输数据,因此其所占的频谱范围很宽。 UWB可在非常宽的带宽上传输信号,美国FCC对UWB的规定为:在3.1~10.6GHz频段中占用500MHz以上的带宽。由于UWB可以利用低功耗、低复

常用无线网络通信技术解析

常用无线网络通信技术解析 发表时间:2017-10-19T10:33:32.157Z 来源:《基层建设》2017年第17期作者:陶庆东 [导读] 摘要:随着我国信息技术不断发展,促进了无线网络通信技术的不断进步,出现了GPS检测、挖掘机器人设计等相关技术,在实际应用过程中,发挥了至关重要的作用,因此本文主要探讨了常用无线网络通信技术,旨在为相关工作者提供借鉴。 广东省电信工程有限公司广东东莞 523000 摘要:随着我国信息技术不断发展,促进了无线网络通信技术的不断进步,出现了GPS检测、挖掘机器人设计等相关技术,在实际应用过程中,发挥了至关重要的作用,因此本文主要探讨了常用无线网络通信技术,旨在为相关工作者提供借鉴。 关键词:无线网络;通信技术;分析 无线网络随着局域网的发展而不断发展,无线网络不需要进行布线,就可以实现信息传输,为人们的通信提供了较大的便利。无线网络不仅具有质量高的优点,同时还可以降低通信成本,所以在许多的领域中,都可以应用无线网络通信,以此提高各领域的工作效率,充分发挥无限网络的的应用优势。目前我国无线网络通信技术有很多种,与人们的生活也息息相关,所以应常用网线网络技术的深入的分析,以此不断提高无线网络通信技术水平。 1 无线广域网 无线广域网不仅可以实现与私人网络进行无线连接,同时还可以与遥远的观众进行无限连接。在无限广域网中,常使用的通信技术,主要有以下几种,GPS、GSM、以及3G,下面就针对这三种技术进行探讨。 1.1 GPS GPS是一项重要的定位技术,其主要基础为子午仪卫星导航系统,它可以在海陆空进行三维导航,同时还具有较强的定位能力,美国在1994年全面建成。GPS系统主要由GPS卫星星座、地面监控系统以及GPS信号接收机三部分组成,GPS系统的卫星共有24颗,它们在轨道平面上均匀分布,其主要负责两方面工作,其一是对卫星进行监控,其二计算卫星星历;对于GPS用户设备主要由两部分组成,一部分为GPS信号接收机硬件,另一部分为GPS信号接收机处理软件。GPS在工作过程中,通常利用GPS信号接收机,对GPS卫星信号进行接收,并对信号进行相应的处理,进行确定相关的信息,包括用户位置以及速度等等,以此实现GPS定位以及导航的目的。GPS系统具有一定的特点,包括操作简便、高效率以及多功能等,最初,在军事领域中应用GPS,随着GPS系统的不断发展,GPS应用范围越来越广,在民用领域中应用力度逐渐加大,特别是在工程测量中,可以实现全天候的准确监测,大大提高了工程测量的精度,促进工程测量的行业的不断发展。 1.2 GSM GSM是全球移动通信系统的简称,是蜂窝系统之一。GSM发展的较为迅速,在欧洲和亚洲,已经将GSM作为标准,目前在世界上许多的国家,都建立的GSM系统,这主要是因为GSM系统具有一定的优势,如稳定性强、通话质量高、以及网络容量等等,这主要是因为GSM系统在工作中,可以实现多组通话在同一射频进行,GSM系统一般主要有包括三个频段,即1800MHZ、900MHz以及1900MHz。 1.3 GPRS GPRS是指通用分组无线业务,它是一种新的分组传输技术,在应用过程中,GPRS具有较多的优点,包括广域的无线IP连接、接口传输速率块等等。在GPRS系统运行过程中,通过分组交换技术,一方面可以实现多个无线信号共一个移动用户使用,另一方面可以实现一个无线信道共多个移动用户使用。信道资源会在移动用户进行无数据传输过程中让出来,这样可以实现无线频带资源利用率的提升。 2 无线局域网 无线局域网主要指的网络传输主要通过无线媒介,包括无线电波以及红外线等。对于无线局域网通信技术覆盖范围,一般情况下,在半径100m左右,目前IEEE制订的无线局域网标准,主要采用的是IEEE802.11系列标准,对于网络的物理层,作出的主要规定,同时还规定了媒质访问控制层。该系列的标准有很多种,包括IEEE802.11、IEEE802.11a、IEEE802.11b等等,对此进行简单的介绍。 2.1 IEEE802.11 对于无线局域网络,最早的网络规定为IEEE802.11,2.4GHZ的ISM工作频段是其工作的主要频段,物理层主要采用技术主要有两项,即红外线技术、跳频扩频技术等等,主要能够解决两项问题,一种为办公室局域网问题,另一种为校园网络用户终端无线接入问题。IEEE802.11数据传输速率可以达到2Mbps,随着我国网络技术的发展,IEEE802.11也得到了研究和发展,陆续推出了IEEE802.11b和IEEE802.11a,其中陆续推出了IEEE802.11b的数据传输速率可以达到11Mbps,IEEE802.11a的数据传输速率可以达到54Mbps,以此满足不断发展的高带宽带网络应用的需要、 2.2 IEEE802.11b 在现实生活使用中,我们可以将IEEE802.11b称作为Wi-Fi,2.4GHz频带是IEEE802.11b工作主要的频带之一,物理层主要由支持两个速率,即5.5Mbps和11Mbps,IEEE802.11b传输速率会受许多因素的影响,包括环境干扰和传输距离等,传输速率可以进行相应的切换。直接序列扩频DSSS技术是IEEE802.11b主要采用的技术。对于IEEE802.11b,可以将其工作模式可以分为两种,一种为点对点模式,另一种为基本模式,其中点对点模式是指两个无线网卡计算机之间的相互通信;基本模式还包括两种通信方式,一种为无线网络的扩充的时的通信方式,另一种指的是有线网络并存时的通信方式。 2.3IEEE802.11a 在美国,IEEE802.11a主要有三个频段范围,即5.15-5.25GHz、5.725-5.825GHz,物理层和传输层的速率可以达到54Mbps和 25Mbps,正交频分复用的独特扩频技术是IEEE802.11a主要采用的技术,通过该技术,可以实现传输范围的扩大,同时对于数据加密,可以达到152位的WEP。 3 无线个域网 在网络架构的底层,设置无线个域网WPAN,一般点对点的短距离连接使用无线个域网。对于无线个域网,使用的通信技术包括红外、蓝牙以及UWB等等,对此下面进行详细的介绍和分析。 3.1 蓝牙 蓝牙作为一种短距离无线通信技术,主要应用小范围的无线连接。蓝牙技术的传输速率为1Mbps,有效的通信范围在10m-100m范围,2.4GHz频段是蓝牙运行的频段,传输速率可以通过GFSK调制技术来实现,同时通过FHSS扩频技术还可以将信道分成若个的时隙,

2014宽带无线通信试题

西安电子科技大学 研究生课程考试试题 考试科目:宽带无线通信(Z08TE1007/X17TE1241X1/X17TE0229)考试日期:2015年1月12日考试时间:120分考试方式:(闭卷)任课教师: 学生姓名:学号: 注:所有学生请将试题与答卷同时交回。请务必填写是选修课还是必修课,以及是博士生和硕士生。 必修/选修:博士/硕士: 1.令h表示归一化信道增益,ρ表示在单个天线上信噪比,N表示天线数,请给出SISO信道,SIMO信道,MISO信道(包括发端已知信道状态信息和发端未知信道状态信息)的信道容量表达式(8分)。 2.无线信道的特性由哪些物理现象决定的(4分);小尺度衰落有哪四种(4分);令T s为符号周期,T c为相干时间,T m为时延扩展,请给出下图的四个区域分别对应的信道类型(4分)。 T s 12 T m 34 T c T s 3.CDMA有哪两种主要的方式(2分);分别说明这两种方式如何克服多径干扰和多址干扰(8分)。 4.CDMA的最佳用户接收机采用什么算法(2分);给出两种线性多用户检测的算法(2分);如果忽略背景噪声,令I MAI表示系统同小区用户的多址干扰,f是其他小区的多址干扰与同小区的多址干扰的比率,问一个没有多用户检测的系统中的全部干扰如何表示(2分);若采用多用户联合检测,此时的干扰如何表示(2分);若f为0.55,则有多用户检测的系统的最大容量增益因子为多少(2分)。 5.扩频码分为正交扩频码和非正交扩频码,CDMA系统的下行使用哪种扩频码,上行使用哪种扩频码(2分);CDMA系统用户容量的定义(2分);如果一个正交CDMA系统采用N×N维Wash-Hadamard码,该系统的用户容量为多少(2分);

无线网络技术导论第二版课后答案

】 第一章绪论 填空 1. 局域网城域网广域网 2. LAN MAN WAN 3. ARPAnet 4. 数据链路层网络层 5. ALOHANET 6. 可以让人们摆脱有线的束缚跟便捷更自由地进行沟通 7. 协议分层 8. 协议 — 9. 应用程序、表示层、会话层、传输层、网络层、链路层 10. 应用层、传输层、网络互连层、主机至网络层 11. MAC协议 单选1-3 D A C 多选 1 AC 2 ABC 判断1-4 T F F F 名词解析: 1、无线体域网是由依附于身体的各种传感器构成的网络 2、无线穿戴网是指基于短距离无线通信技术与可穿戴式计算机技术、穿戴在人体上、具有智能收集人体和周围环境信息的一种新型个域网 3、TCP/IP:P12,即传输控制协议/因特网互联协议又名网络通讯协议是Internet最基本的 、 协议、Internet国际互联网络的基础由网络层的IP协议和传输层的TCP协议组成 4、OSI RM:即开放系统互连参考模型。 简答题: 1、答计算机网络发展过程可分为四个阶段。 第一阶段诞生阶段第二阶段形成阶段第三阶段互联互通阶段第四阶段高速网络技术阶段。如果想加具体事例查p1-2 2、答无线网络从覆盖范围可分为如下三类。第一类系统内部互连/无线个域网比如蓝牙技术红外无线传输技术第二类无线局域网比如基本服务区BSA移动Ad Hoc网络第三类无线城域网/广域网比如蜂窝系统等。 …

3、答从无线网络的应用角度看可以划分出 ①无线传感器网络例如能实时监测、感知和采集各种环境或监测对象的信息并通过无线方式发送到用户终端②无线Mesh网络例如Internet中发送E-mail③无线穿戴网络例如能穿戴在人体上并能智能收集人体和周围环境信息④无线体域网例如远程健康监护中有效地收集信息。 4、答P5不确定WLAN,GPRS,CDMA 5、答P9第一段第三句协议是指通信双方关于如何进行通信的一种约定。举例准确地说它是在同等层之间的实体通信时有关通信规则和约定的集合就是该层协议例如物理层协议、传输层协议、应用层协议。 6、答主要有国际电信标准国际ISO标准Internet标准 1.美国国际标准化协会AN SI 2.电气电子工程师协会(IEEE) 3.国际通信联盟 ITU 4.国际标准化组织ISO ¥ 协会(ISOC)和相关的Internt工程任务组IETF 6.电子工业联合会(EIA)和 相关的通信工业联合会TIA 7、答p13无线网络的协议模型显然也是基于分层体系结构的但是对于不同类型的无线网络说重点关注的协议层次是不一样的。 第二章无线传输基础 填空 1、电磁波 2、FCC 3、全向的 4、天线 5、定向 6、地波 7、衍射 8、快速或慢速平面的 9、Christian Doppler 10、数据 11、信号 | 12、传输 13、模拟 14、ASK FSK PSK 15、扩频技术 16、大于 17、DSSS FHSS THSS 单选 1-5 A C C C D 6-7 A B 多选 1 ACD 2 ABCD 3 BCD 4 ABC 5 AB 6 ABC 判断 1-5 F T T T T 6-10 F T T T F 10-14 F T T T 名词解析: 1、微波波长介于红外线和特高频之间的射频电磁波

物联网中的几种短距离无线传输技术

短距离无线通信场指的是 100m 以内的通信,主要技术包括 Wifi、紫蜂(Zigbee)、蓝牙技术(Bluetooth)、超宽带技术(Ultra-wideband ,UWB)、射频识别技术(Radio Frequency IDentification ,RFID)以及近场通信(Near Field Communication,NFC)等类型。低功耗、微型化是用户对当前无线通信产品尤其是便携产品的强烈要求,作为无线通信技术重要分支的短距离无线通信技术正逐步引起越来越广泛的关注。各国也相应地制定短距离通信技术标准,特别是RFID 和 NFC 在物联网、移动支付和手机识别方面的应用标准,例如主要的RFID 相关规范有欧美的 EPC 规范、日本的 UID(Ubiquitous ID)规范和 ISO 18000 系列标准。中国政府也高度重视短距离通信的发展,制定了一系列的政策来扶持短距离通信产业。例如科技部、工信部联合 14 部委制订的《中国 RFID 发展策略白皮书》等。此外,包括诺基亚、英特尔、IBM、东芝、华为、中兴和联想等众多企业也积极参与到短距离无线通信中各技术的研究中。 1、Wi-Fi技术 Wi-Fi(Wireless Fidelity,无线高保真)是一种无线通信协议(),Wi-Fi的传输速率最高可达11Mb/s,虽然在数据安全性方面比蓝牙技术要差一些,但在无线电波的覆盖范围方面却略胜一筹,可达100 m左右。 Wi-Fi是以太网的一种无线扩展,理论上只要用户位于一个接入点四周的一定区域内,就能以最高约11Mb/s的速率接入互联网。实际上,如果有多个用户同时通过一个点接入,带宽将被多个用户分享,Wi-Fi的连接速度会降低到只有几百kb/s,另外,Wi-Fi的信号一般不受墙壁阻隔的影响,但在建筑物内的有效传输距离要小于户外。 最初的规范是在1997年提出的,称为,主要目的是提供WLAN接入,也是目前WLAN的主要技术标准,它的工作频率是,与无绳电话、蓝牙等许多不需频率使用许可证的无线设备共享同一频段。随着Wi-Fi协议新版本如和的先后推出,Wi-Fi的应用将越来越广泛。速度更快的使用与相同的正交频分多路复用调制技术,它也工作在频段,速率达54Mb/s。根据最新的发展趋势判断,将有可能被大多数无线网络产品制造商选择作为产品标准。微软推出的桌面操作系统Windows XP和嵌入式操作系统Windows CE,都包含了对Wi-Fi的支持。 2、UWB技术 超宽带技术UWB(Ultra Wideband)是一种无线载波通信技术,它不采用正弦载波,而是利用纳秒级的非正弦波窄脉冲传输数据,因此其所占的频谱范围很宽。 UWB可在非常宽的带宽上传输信号,美国FCC对UWB的规定为:在~频段中占用500MHz以上的带宽。由于UWB可以利用低功耗、低复杂度发射/接收机实现高速数据传输,在近年来得到了迅速发展。它在非常宽的频谱范围内采用低功率

无线局域网是无线通信专业技术与网络专业技术相结合产物

无线局域网是无线通信技术与网络技术相结合的产物。从专业角度讲,无线局域网就是通过无线信道来实现网络设备之间的通信,并实现通信的移动化、个性化和宽带化。通俗地讲,无线局域网就是在不采用网线的情况下,提供以太网互联功能。 无线局域网概述 无线网络的历史起源可以追溯到50年前第二次世界大战期间。当时,美国陆军研发出了一套无线电传输技术,采用无线电信号进行资料的传输。这项技术令许多学者产生了灵感。1971年,夏威夷大学的研究员创建了第一个无线电通讯网络,称作ALOHNET。这个网络包含7台计算机,采用双向星型拓扑连接,横跨夏威夷的四座岛屿,中心计算机放置在瓦胡岛上。从此,无线网络正式诞生。 1.无线局域网的优点 (1)灵活性和移动性。在有线网络中,网络设备的安放位置受网络位置的限制,而无线局域网在无线信号覆盖区域内的任何一个位置都可以接入网络。无线局域网另一个最大的优点在于其移动性,连接到无线局域网的用户可以移动且能同时与网络保持连接。 (2)安装便捷。无线局域网可以免去或最大程度地减少网络布线的工作量,一般只要安装一个或多个接入点设备,就可建立覆盖整个区域的局域网络。 (3)易于进行网络规划和调整。对于有线网络来说,办公地点或网络拓扑的改变通常意味着重新建网。重新布线是一个昂贵、费时、浪费和琐碎的过程,无线局域网可以避免或减少以上情况的发生。 (4)故障定位容易。有线网络一旦出现物理故障,尤其是由于线路连接不良而造成的网络中断,往往很难查明,而且检修线路需要付出很大的代价。无线网络则很容易定位故障,只需更换故障设备即可恢复网络连接。

(5)易于扩展。无线局域网有多种配置方式,可以很快从只有几个用户的小型局域网扩展到上千用户的大型网络,并且能够提供节点间"漫游"等有线网络无法实现的特性。 由于无线局域网有以上诸多优点,因此其发展十分迅速。最近几年,无线局域网已经在企业、医院、商店、工厂和学校等场合得到了广泛的应用。 2.无线局域网的理论基础 目前,无线局域网采用的传输媒体主要有两种,即红外线和无线电波。按照不同的调制方式,采用无线电波作为传输媒体的无线局域网又可分为扩频方式与窄带调制方式。 (1)红外线(Infrared Rays,IR)局域网 采用红外线通信方式与无线电波方式相比,可以提供极高的数据速率,有较高的安全性,且设备相对便宜而且简单。但由于红外线对障碍物的透射和绕射能力很差,使得传输距离和覆盖范围都受到很大限制,通常IR局域网的覆盖范围只限制在一间房屋内。 (2)扩频(Spread Spectrum,SS)局域网 如果使用扩频技术,网络可以在ISM(工业、科学和医疗)频段内运行。其理论依据是,通过扩频方式以宽带传输信息来换取信噪比的提高。扩频通信具有抗干扰能力和隐蔽性强、保密性好、多址通信能力强的特点。扩频技术主要分为跳频技术(FHSS)和直接序列扩频(DSSS)两种方式。

无线通信的发展历程

无线通信系统的发展历程与趋势 现代无线通信系统中最重要的两项基础是多址接入(Multiple Access)和双工(Multiplexing)。从1G到4G的无线通信系统演进史基本上就是在这两项技术上进行不断改进。 多址接入技术为不同的用户同时接入无线通信网提供了可能性。给出了三种最典型的多址接入技术:FDMA、TDMA和CDMA的比较。 双工技术为用户同时接收和发送数据提供了可能性。两种最典型的双工技术:FDD模式和TDD模式。 中国无线通信科技发展史和未来走向范文 当今,全球无线通信产业的两个突出特点体现在:一是公众移动通信保持增长态势,一些国家和地区增势强劲,但存在发展不均衡的现象;二是宽带无线通信技术热点不断,研究和应用十分活跃。 1 无线通信技术的发展历程 随着国民经济和社会发展的信息化,人们要通信息化开创新的工作方式、管理方式、商贸方式、金融方式、思想交流方式、文化教育方式、医疗保健方式以及消费与生活方式。无线通信也从固定方式发展为移动方式,移动通信发展至今大约经历了五个阶段:第一阶段为20年代初至50年代初,主要用于舰船及军有,采用短

波频及电子管技术,至该阶段末期才出现150MHZ VHF单工汽车公用移动电话系统MTS。 第二阶段为50年代到60年代,此时频段扩展至UHF450MHZ,器件技术已向半导体过渡,大都为移动环境中的专用系统,并解决了移动电话与公用电话网的接续问题。 第三阶段为70年代初至80年代初频段扩展至800MHZ,美国Bell研究所提出了蜂窝系统概念并于70年代末进行了AMPS试验。 第四阶段为80年代初至90年代中,为第二代数字移动通信兴起与大发展阶段,并逐步向个人通信业务方向迈进;此时出现了D-AMPS、TACS、ETACS、GSM/DCS、cdmaOne、PDC、PHS、DECT、PACS、PCS等各类系统与业务运行。 第五阶段为90年代中至今,随着数据通信与多媒体业务需求的发展,适应移动数据、移动计算及移动多媒体运作需要的第三代移动通信开始兴起,其全球标准化及相应融合工作与样机研制和现场试验工作在快速推进,包括从第二代至第三代移动通信的平滑过渡问题在内。 2 第一代无线通信系统 采用频分多址(Frequency Division Multiple Access)技术组建的模拟蜂窝网也被称为第一代(First Generation,下称1G)无线通信系统。这些系统中,话务是主要的通信方式。由于采用模拟调制,这些

无线通信网络基本知识详解

无线网络基本知识 一、基本概念 1、什么是无线局域网 无线局域网络(Wireless Local Area Networks;WLAN) 是利用射频(Radio Frequency;RF)的技术,取代旧式碍手碍脚的双绞铜线(Coaxial)所构成的局域网络,WLAN利用电磁波在空气中发送和接受数据,而无需线缆介质。WLAN的数据传输速率现在已经能够达到11Mbps(802.11b),最高速率可达54Mbps(802.11a),传输距离可远至20km以上。它是对有线连网方式的一种补充和扩展,使网上的计算机具有可移动性,能快速方便地解决使用有线方式不易实现的网络连通问题。使得无线局域网络能利用简单的存取架构让用户透过它,达到“信息随身化、便利走天下”的理想境界。 2、为什么使用无线局域网络 通常计算机组网的传输媒介主要依赖铜缆或光缆,构成有线局域网。但有线网络在某些场合要受到布线的限制:布线、改线工程量大,线路容易损坏,网中的各节点不可移动。特别是要把相离较远的节点联接起来时,敷设专用通信线路的布线施工难度大、费用高、耗时长,对正在迅速扩大的连网需求形成了严重的瓶颈阻塞。并且,对于局域网络管理主要工作之一,是铺设电缆或是检查电缆是否断线这种耗时的工作,很容易令人烦躁,也不容易在短时间内找出断线所在。再者,由于配合企业及应用环境不断的更新与发展,原有的企业网络必须配合重新布局,需要重新安装网络线路,虽然电缆本身并不贵,可是请技术人员来配线的成本很高,尤其是老旧的大楼,配线工程费用就更高了。因此,WLAN就是解决有线网络存在以上问题而出现的,架设无线局域网络就成为最佳解决方案。 3、什么情形需要无线局域网络 无线局域网络绝不是用来取代有线局域网络,而是用来弥补有线局域网络之不足,以达到网络延伸之目的,下列情形可能须要无线局域网络: a.无固定工作场所的使用者 b.有线局域网络架设受环境限制 c.作为有线局域网络的备用系统 4、无线局域网络的优点 a.安装便捷 一般在网络建设中,施工周期最长、对周边环境影响最大的,就是网络布线施工工程。在施工过程中,往往需要破墙掘地、穿线架管。而WLAN最大的优势就是免去或减少了网络布线的工作量,一般只要安装一个或多个接入点(Access Point) 设备,就可建立覆盖整个建筑或地区的局域网络。 b.使用灵活 在有线网络中,网络设备的安放位置受网络信息点位置的限制。而一旦WLAN建成后,在无线网的信号覆盖区域内任何一个位置都可以接入网络。 c.经济节约 由于有线网络缺少灵活性,这就要求网络规划者尽可能地考虑未来发展的需要,这就往往导致预设大量利用率较低的信息点。而一旦网络的发展超出了设计规划,又要花费较多费用进行网络改造。而WLAN可以避免或减少以上情况的发生。 d.易于扩展 WLAN有多种配置方式,能够根据需要灵活选择。这样,WLAN就能胜任从只有几个用户的小型局域网到上千用户的大型网络,并且能够提供像“漫游(Roaming)”等有线网络

无线网络技术及应用

邮电大学工程硕士研究生堂下考试答卷 2016学年第二学期 考试科目无线网络技术及应用 姓名 年级 专业 2016年 6月28日

D2D终端直通技术研究 摘要:D2D(device-to-device)通信是一种在蜂窝系统的控制下,允许终端用户通过共享小区资源进行直接通信的新技术,通过提高空间利用率从而提高频谱利用率,在某些场景下使移动通信变得更加直接和高效,缓解基站压力,提高用户体验。本文首先给出了D2D通信系统的基本概念、技术特点,重点关注干扰管理、模式选择、资源分配和功率控制。最后对D2D通信技术在下一代网络中的应用提出了一些构想。 关键词:D2D通信技术;蜂窝网络;资源分配;下一代网络 一、D2D的概念及技术特点 D2D(Device-to-Device)通信,也称为邻近服务(Proximity Service,Pro Se),是由3GPP组织提出的一种点到点的无线通信技术,它可以在蜂窝通信系统的控制下允许LTE终端之间利用小区无线资源直接进行通信,而不经过蜂窝网络中转。作为面向5G的关键候选技术,D2D技术能够提升通信系统的频谱效率,减轻系统负荷,在一定程度上解决无线通信系统频谱资源匮乏的问题。同时,由于降低了通信距离,D2D技术还可以降低移动终端发射功率,减少电池消耗,提高终端续航时间。LTE-D2D 有以下几个技术特点。 (1)工作在许可频段 基于LTE技术的D2D工作在许可频段,作为LTE通信技术的一种补充,它使用的是蜂窝系统的频段,通过基站对无线资源的控制使得对小区其他用户的干扰控制在可接受围,因此可以给用户提供干扰可控的环境和较高质量的通信服务。并且利用网络中广泛分布的用户终端以及D2D通信链路短距离的特点,可以实现频谱资源的有效利用,获得资源空分复用增益。而蓝牙、Wi-Fi Direct、Flash Lin Q等技术,工作在免许可频段,存在严重干扰,通信QoS无法得到保障。 (2)网络参与D2D通信流程

几种无线通信技术的比较.

几种无线通信技术的比较 摘要:随着电子技术、计算机技术的发展,近年来无线通信技术蓬勃发展,出现了各种标准的无线数据传输标准,它们各有其优缺点和不同的应用场合,本文将目前应用的、无线通信方式进行了分析对比,并总结和预见了它们今后的发展方向。 关键词:Zigbee Bluetooth UWB Wi-Fi NFC Several Wireless Communications Technology Comparison Abstract:As the development of electronic technology,computer technology, wireless communication technology have a rapid development in recent years,emerged wireless data transmission standard,they have their advantages and disadvantages,and different applications,the application of various wireless communication were analyzed and compared,and summarized and foresee their future development. 一.几种无线通讯技术 (一)ZigBee 1.简介: Zigbee是基于IEEE802.15.4标准的低功耗个域网协议。根据这个协议规定的技术是一种短距离、低功耗的无线通信技术。其特点是近距离、低复杂度、自组织、低功耗、低数据速率、低成本。主要适合用于自动控制和远程控制领域,可以嵌入各种设备。 ZigBee是一种高可靠的无线数传网络,类似于CDMA和GSM网络。ZigBee数传模块类似于移动网络基站。通讯距离从标准的75m到几百米、几公里,并且支持无限扩展。ZigBee是一个由可多到65000个无线数传模块组成的一个无线数传网络平台,在整个网络范围内,每一个ZigBee网络数传模块之间可以相互通信,每个网络节点间的距离可以从标准的75m无限扩展。与移动通信的CDMA网或GSM网不同的是,ZigBee网络主要是为工业现场自动化控制数据传输而建立,因而,它必须具有简单,使用方便,工作可靠,价格低的特点。而移动通信网主要是为语音通信而建立,每个基站价值一般都在百万元人民币以上,而每个ZigBee―基站‖却不到1000元人民币。每个ZigBee网络节点不仅本身可以作为监控对象,例如其所连接的传感器直接进行数据采集和监控,还可以自动中转别的网络节点传过来的数据资料。除此之外,每一个Zigbee网络节点(FFD)还可在自己信号覆盖的范围内,和多个不承担网络信息中转任务的孤立的子节点(RFD)无线连接。

超宽带无线通信技术解析

超宽带无线通信技术 摘要:超宽带(UWB)具有传输速率高、通信距离短、平均发射功率低等特点,非常适合于短距离高速无线通信。文章对UWB的发送接收技术和信道建模方式进行了讨论,指出UWB将定位于各种消费类电子设备和终端间的高速无线连接。对于IEEE的UWB标准,文章认为由于目前形成了脉冲无线电和多频带正交频分复用(OFDM)两大方案,因此最终采用哪种方案还需等待。 关键词:超宽带;脉冲无线电;无线个域网 无线技术在通信发展进程中一直扮演着重要角色。伴随着移动通信十几年来的蓬勃发展以及3G、B3G等概念的日益普及,无线家族中的另一成员——短距离宽带无线接入技术近年来异军突起。从蓝牙、HomeRF到IEEE 802.11(即Wi-Fi)系列,越来越多的人开始感受到了短距离无线通信技术所带来的诸多便捷,甚至有人认为短距离无线通信技术具有与3G抗衡之势。 超宽带(UWB)技术是目前备受关注的一种新型短距离高速无线通信技术。多年来,这项技术一直在军事领域中使用。UWB在民用领域开放后,有望凭借其超高的传输速度和低功率、低成本等优势给短距离无线接入市场注入新的活力。 1 UWB的特点 应用于无线通信领域的UWB是一种低功率的无线电技术。按照2002年美国联邦通信委员会(FCC)在向民用领域开放UWB时的定义,超宽带技术指的是信号相对带宽(即信号带宽与中心频率之比)不小于0.2或绝对带宽不小于500 MHz,并使用指定的3.1 GHz~10.6 GHz频段的通信方式。与其他传统的无线通信技术相比较,UWB的技术特点主要有: (1)传输速率高 UWB系统使用上千兆赫兹的超宽频带,所以即使把发送信号功率谱密度控制得很低,也可以实现高达100 Mb/s~500 Mb/s的信息速率。根据仙农信道容量公式,如使用7 GHz带宽,那么即使信噪比低至-10 dB,理论信道容量也能达到1 Gb/s[1],因此实际中实现100 Mb/s以上的速率是完全可能的。 (2)通信距离短 由于随着传播距离的增加高频信号强度衰减太快,因此使用超宽频带的系统更适合于进行短距离通信。理论分析表明,当收发机之间的距离大于12 m时,UWB的信道容量低于传统的窄带系统。 (3)平均发射功率低 在短距离应用中,UWB发射机的发射功率通常可做到低于1 mW,这是通过牺牲带宽换取的。

最新无线通信技术基础知识(1)

无线通信技术 1.传输介质 传输介质是连接通信设备,为通信设备之间提供信息传输的物理通道;是信息传输的实际载体。有线通信与无线通信中的信号传输,都是电磁波在不同介质中的传播过程,在这一过程中对电磁波频谱的使用从根本上决定了通信过程的信息传输能力。 传输介质可以分为三大类:①有线通信,②无线通信,③光纤通信。 对于不同的传输介质,适宜使用不同的频率。具体情况可见下表。 不同传输媒介可提供不同的通信的带宽。带宽即是可供使用的频谱宽度,高带宽传输介质可以承载较高的比特率。 2无线信道简介 信道又指“通路”,两点之间用于收发的单向或双向通路。可分为有线、无线两大类。

无线信道相对于有线信道通信质量差很多。有限信道典型的信噪比约为46dB,(信号电平比噪声电平高4万倍)。无限信道信噪比波动通常不超过2dB,同时有多重因素会导致信号衰落(骤然降低)。引起衰落的因素有环境有关。 2.1无线信道的传播机制 无线信道基本传播机制如下: ①直射:即无线信号在自由空间中的传播; ②反射:当电磁波遇到比波长大得多的物体时,发生反射,反射一般在地球表面,建筑物、墙壁表面发生; ③绕射:当接收机和发射机之间的无线路径被尖锐的物体边缘阻挡时发生绕射; ④散射:当无线路径中存在小于波长的物体并且单位体积内这种障碍物体的数量较多的时候发生散射。散射发生在粗糙表面、小物体或其它不规则物体上,一般树叶、灯柱等会引起散射。 2.2无线信道的指标 (1)传播损耗:包括以下三类。 ①路径损耗:电波弥散特性造成,反映在公里量级空间距离内,接收信号电平的衰减(也称为大尺度衰落); ②阴影衰落:即慢衰落,是接收信号的场强在长时间内的缓慢变化,一般由于电波在传播路径上遇到由于障碍物的电磁场阴影区所引起的; ③多径衰落:即快衰落,是接收信号场强在整个波长内迅速的随机变化,一般主要由于多径效应引起的。 (2)传播时延:包括传播时延的平均值、传播时延的最大值和传播时延的统计特性等; (3)时延扩展:信号通过不同的路径沿不同的方向到达接收端会引起时延扩展,时延扩展是对信道色散效应的描述; (4)多普勒扩展:是一种由于多普勒频移现象引起的衰落过程的频率扩散,又称时间选择性衰落,是对信道时变效应的描述; (5)干扰:包括干扰的性质以及干扰的强度。 2.3无线信道模型 无线信道模型一般可分为室内传播模型和室外传播模型,后者又可以分为宏蜂窝模型和微蜂窝模型。 (1)室内传播模型:室内传播模型的主要特点是覆盖范围小、环境变动较大、不受气候影响,但受建筑材料影响大。典型模型包括:对数距离路径损耗模型、Ericsson多重断点模型等; (2)室外宏蜂窝模型:当基站天线架设较高、覆盖范围较大时所使用的一类模型。实际使用中一般是几种宏蜂窝模型结合使用来完成网络规划; (3)室外微蜂窝模型:当基站天线的架设高度在3~6m时,多使用室外微蜂窝模型;其描述的损耗可分为视距损耗与非视距损耗。

相关文档
最新文档