初中数学解题模型专题讲解11---“将军饮马”三种模型详解
将军饮马问题的11个模型及例题

将军饮马问题的11个模型及例题将军饮马问题是一个经典的逻辑问题,涉及到将军如何用有限数量的马和酒到达目的地。
本文将介绍将军饮马问题的11个模型及相应的例题。
1. 直线模型将军与目的地之间没有障碍物,可以直线前进。
此时,将军只需将马拉到目的地即可。
例题1:将军与目的地之间距离为10公里,马的速度为每小时5公里,将军能否在2小时内到达目的地?2. 单个障碍物模型在将军与目的地之间存在一个障碍物,将军可以绕过该障碍物。
例题2:将军与目的地之间距离为15公里,马的速度为每小时4公里,障碍物位于距离将军起点5公里处,将军能否在3小时内到达目的地?3. 多个障碍物模型在将军与目的地之间存在多个障碍物,将军需要逐一绕过这些障碍物。
例题3:将军与目的地之间距离为20公里,马的速度为每小时6公里,障碍物位于距离将军起点分别为5公里、10公里和15公里的位置,将军能否在4小时内到达目的地?4. 跳跃模型将军可以让马跳过障碍物,从而直接到达目的地。
例题4:将军与目的地之间距离为12公里,马的速度为每小时8公里,将军在距离起点6公里处设置一个障碍物,将军能否在2小时内到达目的地?5. 限时模型将军需要在规定的时间内到达目的地。
例题5:将军与目的地之间距离为30公里,马的速度为每小时10公里,将军需要在3小时内到达目的地,是否可能?6. 守备模型目标地点有守备军,将军需要巧妙规避守备军。
例题6:将军与目的地之间距离为25公里,马的速度为每小时7公里,目的地有一支守备军位于距离目标地点10公里处,将军能否在4小时内到达目的地?7. 短平快模型将军不借助马匹,直接徒步走到目的地。
例题7:将军与目的地之间距离为8公里,将军的步行速度为每小时2公里,将军能否在4小时内到达目的地?8. 时间窗模型将军只能在规定时间范围内到达目的地。
例题8:将军与目的地之间距离为18公里,马的速度为每小时6公里,将军需要在3小时到4小时之间到达目的地,是否可能?9. 兵变模型将军需要利用敌军马匹达到目的地。
中考数学必会几何模型:将军饮马模型

将军饮马模型“将军饮马”问题主要利用构造对称图形解决求两条线段和差、三角形周长、四边形周长等一类最值问题,会与直线、角、三角形、四边形、圆、抛物线等图形结合,在近年的中考和竞赛中经常出现,而且大多以压轴题的形式出现. 模型1:直线与两定点模型作法结论lB A当两定点A 、B 在直线l 异侧时,在直线l 上找一点P ,使P A +PB 最小.lPAB连接AB 交直线l 于点P ,点P即为所求作的点.P A +PB 的最小值为ABl AB当两定点A 、B 在直线l 同侧时,在直线l 上找一点P ,使得P A +PB 最小.lPB'AB作点B 关于直线l 的对称点B ', 连接AB '交直线l 于点P ,点P 即为所求作的点.P A +PB 的最小值为AB 'l AB当两定点A 、B 在直线l 同侧时,在直线l 上找一点P ,使得PA PB -最大.lPAB连接AB 并延长交直线l 于点P ,点P 即为所求作的点.PA PB -的最大值为ABlAB当两定点A 、B 在直线l 异侧时,在直线l 上找一点P ,使得PA PB -最大.l B'AB P作点B 关于直线I 的对称点B ',连接AB '并延长交直线l 于点P ,点P 即为所求作的点.PA PB -的最大值为AB 'l AB当两定点A 、B 在直线l 同侧时,在直线l 上找一点P ,使得PA PB -最小.l PAB连接AB ,作AB 的垂直平分线交直线l 于点P ,点P 即为所求作的点.PA PB -的最小值为0模型实例例1:如图,正方形ABCD 的面积是12,△ABE 是等边三角形,点E 在正方形ABCD 内,在对角线AC 上有一点P ,则PD +PE 最小值是 .EBC ADP解答:如图所示,∵点B 与点D 关于AC 对称,∴当点P 为BE 与AC 的交点时,PD +PE 最小,且线段BE 的长. ∵正方形ABCD 的面积为12,∴其边长为23∵△ABE 为等边三角形,∴BE =AB =23PD +PE 的最小值为3例2:如图,已知△ABC 为等腰直角三角形,AC =BC =4,∠BCD =15°,P 为CD 上的动点,则PA PB -的最大值是多少?DPPA'B解答:如图所示,作点A 关于CD 的对称点A ′,连接A ′C ,连接A ′B 并延长交CD 于点P ,则点P 就是PA PB -的值最大时的点,PA PB -=A ′B .∵△ABC 为等腰直角三角形,AC =BC 等于4,∴∠ACB =90°. ∵∠BCD =15°,∴∠ACD =75°.∵点A 、A ′关于CD 对称,∴AA ′⊥CD ,AC =CA ′, ∵∠ACD =∠DCA ′=75°,∴∠BCA ′=60°.∵CA ′=AC =BC =4,∴△A ′BC 是等边三角形,∴A ′B =BC =4.∴PA PB -的最大值为4. 练习1.如图,在△ABC 中,AC =BC =2,∠ACB =90°,D 是BC 边的中点,E 是AB 边上一动点,则EC +ED 的最小值是 .DACB E解:解:过点C 作CO ⊥AB 于O ,延长CO 到C ',使O C '=OC ,连接D C ',交AB 于E ,连接C 'B ,此时DE+CE=DE+E C '=D C '的值最小.连接B C ',由对称性可知∠C 'BE=∠CBE=45°,∴∠CB C '=90°,∴B C '⊥BC , ∠BC C '=∠B C 'C=45°,∴BC=B C '=2,∵D 是BC 边的中点,∴BD=1, 根据勾股定理可得:D C '=5,故EC+ED 的最小值是5. 2.如图,点C 的坐标为(3,y ),当△ABC 的周长最短时,求y 的值.xyB (2,0)A (0,3)O解:解:(1)作A 关于x=3的对称点A′,连接A′B 交直线x=3与点C . ∵点A 与点A′关于x=3对称,∴AC=A′C .∴AC+BC=A′C+BC .当点B 、C 、A′在同一条直线上时,A′C+BC 有最小值,即△ABC 的周长有最小值. ∵点A 与点A′关于x=3对称,∴点A′的坐标为(6,3).设直线BA′的解析式y=kx+b,将点B和点A′的坐标代入得:k=34,b=−32.∴y=34x-32.将x=3代入函数的解析式,∴y的值为3 43.如图,正方形ABCD中,AB=7,M是DC上的一点,且DM=3,N是AC上的一动点,求|DN-MN|的最小值与最大值.C解:解:当ND=NM时,即N点DM的垂直平分线与AC的交点,|DN-MN|=0,因为|DN-MN|≤DM,当点N运动到C点时取等号,此时|DN-MN|=DM=3,所以|DN-MN|的最小值为0,最大值为3于D ,点C 、点D 即为所求.PB OAQ点P 、Q 在∠AOB 内部,在OB 边上找点D ,OA 边上找点C ,使得四边形PQDC 周长最小.分别作点P 、Q 关于OA 、OB 的对称点P ′、Q ′,连接P ′Q ′,分别交OA 、OB 于点C 、D ,点C 、D 即为所求.PC +CD +DQ 的最小值为P ′Q ′,所以四边形PQDC 周长的最小值为PQ +P ′Q ′模型实例如图,∠AOB=30°,∠AOB 内有一定点P ,且10OP =.在OA 上有一点Q ,OB 上 一点R .若立△PQR 周长最小,则最小周长是多少?解答如图,作点P 分别关于OA 、OB 的对称点E 、F ,连接EF ,分别交OA 、OB 于点Q 、R ,连接OE 、OF 、PE 、PF .EQ OP =,FR RP =.△PQR 的周长的最小值为EF 的长.由对称性可得∠EOQ=∠POQ ,∠FOR=∠POR , ∠EOF=2∠AOB=60°. △EOF 是正三角形.10EF OE OP ===.即△PQR 周长最小值为10.模型2/角与定点1.已知,40MON °?,P 为MON Ð内一定点,A 为OM 上的点,B 为ON 上的点,当△PAB 的周长取最小值时:OBAP(1)找到A 、B 点,保留作图痕迹;(2)求此时APB Ð等于多少度.如果∠MON =θ,∠APB 又等于多少度?ON1.解答(1)做点P 分别关于OM ON 、的对称点E F 、,连接EF 分别交OM ON 、于点A B 、.点A B 、即为所求,此时△PAB 的周长最小.(2)∵点E 与点P 关于直线OM 对称,点F 与点P 关于ON 对称, ∴∠E =∠APE ,∠F =∠BPF ,∠CPD =180°-∠MON =140°. ∴在△EFP 中,∠E +∠F =180°-140°=40°, ∴∠CPA +∠BPD =40°.∴∠APB =100°.如果∠MON =θ, ∴∠CPD =180°-θ,∠E +∠F =θ. 又∵∠PAB =2∠E ,∠PBA =2∠F ∴∠PAB +∠PBA =2(∠E +∠F )=2θ ∴∠APB =180°-2θ.ONE2.如图,四边形中ABCD ,110BAD °?,90B D °??,在BC 、CD 上分别找 一点M 、N ,使△AMN 周长最小,并求此时+AMN ANM ∠∠的度数.A DBMN2.解答如图,作点A关于BC的对称点A',关于CD的对称点A'',连接A A'''与BC、CD的交点即为所求的点M、N.此时△AMN周长最小.∵∠BAD=110°,∴∠A'+∠A''=180°-110°=70°.由轴对称的性质得:∠A'=∠A AM',∠A''=∠A AN'',∴∠AMN+∠ANM=2(∠A'+∠A'')=2×70°=140°.3.如图,在x轴上找一点C,在y轴上找一点D,使AD CD BC++最小,并求直线CD的解析式及点C、D的坐标.yxOB(3,1)A(1,3)3.解答作点A关于y轴的对称点A',点B关于x轴的对称点B',连接A B''分别交x轴、y轴于点C、D,此时AD CD BC++最小.由对称性可知A'(-1,3),B'(3,-1).易求得直线A B''的解析式为2y x=-+,即直线CD的解析式2y x=-+.当0y=时,2x=,∴点C坐标为(2,0).当0x=时,2y=,∴点D坐标为(0,2).xy (1,3)(3,1)OB 'BA 'AD C4.如图,20MON°?,A 、B 占分别为射线OM 、ON 上两定点,且2OA =,4OB =,点P 、Q 分别为射线OM 、ON 上两动点,当P 、Q 运动时,线段AQ PQ PB ++ 的最小值是多少?ONMAB4.解答作A 点关于ON 的对称点A ',点B 关于OM 的对称点B ',连接A B '',分别交OM ON 、于点P Q 、,连接OA '、OB '.则AQ PQ PB A Q PQ PB A B ''''++=++=,此时AQ PQ PB ++最小. 由对称可知,PB PB '=,AQ A Q '=,2OA OA '==,4OB OB '==,20MOB NOA MON ''∠=∠=∠=︒. 60A OB ''∠=︒.作A D '⊥OB '于点D , 在Rt △ODA '中,∴1OD =,3A D '= ∴413B D '=-=,23A B ''= ∴AQ PQ PB ++的最小值是23.模型作法结论如图,在直线l上找M、N两点(M在左),使得AM+MN+NB最小,且MN=d.将A向右平移d个单位到A′,作A′关于l的对称点A",连接A"B与直线l交于点N,将点N向左平移d个单位即为M,点M,N即为所求.AM+MN+NB的最小值为A"B+d如图,l1∥l2,l1、l2间距离为d,在l1、l2分别找M、N两点,使得MN⊥l1,且AM+MN+NB最小.将A向下平移d个单位到A,连接A′B交直线l2于点N,过点N作MN⊥l1,连接AM.点M、N即为所求.AM+MN+NB的最小值为A'B+d.例题:在平面直角坐标系中,矩形OABC如图所示,点A在x轴正半轴上,点C在y轴正半轴上,且OA=6,OC=4,D为OC中点,点E、F在线段OA上,点E在点F左侧,EF=2.当四边形BDEF的周长最小时,求点E的坐标.解答:如图,将点D向右平移2个单位得到D'(2,2),作D'关于x轴的对称点D"(2,-2),连接BD"交x轴于点F,将点F向左平移2个单位到点E,此时点E和点F为所求作的点,且四边形BDEF周长最小.理由:∵四边形BDEF的周长为BD+DE+EF+BF,BD与EF是定值.∴BF+DE最小时,四边形BDEF周长最小,∵BF+ED=BF+FD'=BF+FD"=BD"ABl2l1A′NMABl2l1BAlM NA′A"BAld设直线BD "的解析式为y =kx +b ,把B (6,4),D "(2,-2)代入,得6k +b =4,2k +b =-2,解得k =32,b =-5,∴直线BD "的解析式为y =32x -5.令y =0,得x =103,∴点F 坐标为(103,0).∴点E 坐标为(43,0).练习1.在平面直角坐标系中,矩形OACB 的顶点O 在坐标原点,顶点A 、B 分别在x 轴、y 轴的正半轴上,A (3,0),B (0,4),D 为边OB 的中点. (1)若E 为边OA 上的一个动点,求△CDE 的周长最小值;(2)若E 、F 为边OA 上的两个动点,且EF =1,当四边形CDEF 的周长最小时,求点E 、F 的坐标.解答:(1)如图,作点D 关于x 轴的对称点D ',连接CD '与x 轴交于点E ,连接DE ,由模型可知△CDE 的周长最小.∵在矩形OACB 中,OA =3,OB =4,D 为OB 的中点, ∴D (0,2),C (3,4),D '(0,-2).设直线CD '为y =kx +b ,把C (3,4),D '(0,-2)代入, 得3k +b =4,b =-2,解得k =2,b =-2, ∴直线CD '为y =2x -2. 令y =0,得x =1, ∴点E 的坐标为(1,0). ∴OE =1,AE =2.利用勾股定理得CD =13,DE =5,CE =25, ∴△CDE 周长的最小值为13+35.(2)如图,将点D 向右平移1个单位得到D '(1,2),作D '关于x 轴的对称点D ″(1,-2),连接CD ″交x 轴于点F ,将点F 向左平移1个单位到点E ,此时点E 和点F 为所求作的点,且四边形CDEF 周长最小.理由:∵四边形CDEF 的周长为CD +DE +EF +CF ,CD 与EF 是定值,∴DE +CF 最小时,四边形BDEF 周长最小,∴DE +CF =D 'F +CF =FD ″+CF =CD ″, 设直线CD ″的解析式为y =kx +b ,把C (3,4),D (1,-2)代入,得3k +b =4,k +b =-2,解得k =3,b =-5.∴直线CD ″的解析式为y =3x -5, 令y =0,得x =53,∴点F 坐标为(53,0),∴点E 坐标为(23,0).112.村庄A 和村庄B 位于一条小河的两侧,若河岸彼此平行,要架设一座与河岸垂直的桥,桥址应如何选择,才使A 与B 之间的距离最短?解答:设l 1和l 2为河岸,作BD ⊥l 2,取BB '等于河宽,连接AB '交l 1于C 1,作C 1C 2⊥l 2于C 2, 则A →C 1→C 2→B 为最短路线,即A 与B 之间的距离最短.AB l 2l 1。
中考数学专题《将军饮马模型》

是OC上的一点,当△ADE的周长最小时,点E的坐标是( B )
A.(0,4 ) B.(0,5 ) C.(0,2) D.(0,10 )
3
3
3
河边
y
A
C
E E
Bห้องสมุดไป่ตู้
DO
D´ x
针对训练
将军饮马---两定一动
知识点二
如图:已知⊙O的直径CD为2,︵AC的度数为60º,点B是A︵C的中点,在直
径CD上作出点P,使BP+AP的值最小,则BP+AP的最小值为__2___
图形特征:两定一动;适用模型:将军饮马 ;
基本策略:同侧化异侧、折线化直线;
基本方法:N个动点N条河,N次对称跑不脱;
基本原理:两点之间线段最短;
P
A´ PA+PB=_P_A_´_+_P_B_=_A_´_B_.
典例精讲
将军饮马---两定一动
知识点二
【例2】如图,矩形ABOC的顶点A的坐标为(-4,5),D是OB的中点,E
O 河流 C
N
A2
将军沿A-B-C-A走路程最短
典例精讲
将军遛马---两定两动
知识点三
【例3-1】如图,点A(a,3)B(b,1)都在双曲线 y = 3 上,点C,D分别 x
是x轴,y轴上的动点,则四边形ABCD周长的最小值为( B )
A.5 2 B.6 2 C.2 10 +2 2 D.8 2
河边
A' y A
D
B
D
草地
O CC
x
B'
典例精讲
将军遛马---两定两动
知识点二
【例3-2】如图,∠AOB=45º,点P是∠AOB内一点且OP= 2 ,若点M、N
将军饮马(最完整讲义)

第1讲将军饮马模型➢知识点睛“将军饮马”问题主要利用构造对称图形解决两条线段和差、三角形周长、四边形周长等一类问题,会与直线、角、三角形、四边形、圆、抛物线等图形结合,在近年的中考和竞赛中经常出现,而且大多以压轴题的形式出现。
一、定直线与两定点模型作法结论A、在直线l异侧当两定点B时,在直线l上找上点P,使PA+最小.PBA、在直线l同侧当两定点B时,在直线l上找上点P,使PA+最小.PBA、在直线l同侧当两定点B时,在直线l上找上点P,使PA-最大.PBA、在直线l异侧当两定点B时,在直线l上找上点P,使PA-最大.PBA、在直线l同侧当两定点B时,在直线l上找上点P,使PA-最小.PB二、角到定点模型作法结论点P 在AOB ∠的内部,在OA 上找一点M ,在OB 上找一点N ,使得PCD ∆周长最小.点P 在AOB ∠的内部,在OA 上找一点M ,在OB 上找一点N ,使得MN PN +最小.点Q P 、在AOB ∠的内部,在OA 上找一点M ,在OB 上找一点N ,使得四边形PMNQ 周长最小.点M 在AOB ∠的外部,在射线OA 上找一点P ,使PM 与点P 到射线OB 的距离和最小.点M 在AOB ∠的内部,在射线OA 上找一点P ,使PM 与点P 到射线OB 的距离和最小.点Q P 、分别在AOB ∠的边OB OA 、是,在OA 上找一点M ,在OB 上找一点N ,使得MQ MN PN ++最小.二、两定点一定长模型作法结论如图在直线l 上找上两点N M 、(M 在左),使NB MN AM ++最小,且d MN =.如图,21//l l ,21l l 、之间的距离为d ,在21l l 、上分别找N M 、两点,使1l MN ⊥,且NB MN AM ++最小.如图,21//l l ,43//l l ,21l l 、之间的距离为1d ,43//l l 之间的距离为2d ,在21l l 、上分别找N M 、两点,使1l MN ⊥,在43l l 、上分别找Q P 、两点,使3l PQ ⊥且QB PQ NP MN AM ++++最小.如图,在⊙O 上找一点N ,在直线l 找一点M ,使得MN AM +最小.➢ 精讲精练例1:如图,点P 是∠AOB 内任意一点,∠AOB =30°,OP =8,点M 和点N 分别是射线OA 和射线OB 上的动点,则△PMN 周长的最小值.P OBAMN例2:如图,正方形ABCD 的边长是4,M 在DC 上,且DM =1, N 是AC 边上的一动点,则△DMN 周长的最小值.例3:如图,在Rt △ABO 中,∠OBA =90°,A (4,4),点C 在边AB 上,且AC :CB =1:3,点D 为OB 的中点,点P 为边OA 上的动点,当点P 在OA 上移动时,使四边形PDBC 周长最小的点P 的坐标为( )A .(2,2)B .5(2,5)2C .8(3,8)3D .(3,3)第3题图 第4题图 第5题图例4:如图,在△ABC 中,AC =BC ,∠ACB =90°,点D 在BC 上,BD =3,DC =1,点P 是AB 上的动点,则PC +PD 的最小值为( ) A .4B .5C .6D .7例5:如图,在等边△ABC 中,AB =6, N 为AB 上一点且BN =2AN , BC 的高线AD 交BC 于点D ,M 是AD 上的动点,连结BM ,MN ,则BM +MN 的最小值是___________. PDCBAA BCDMNNMDCBA例6:如图,在Rt △ABD 中,AB =6,∠BAD =30°,∠D =90°,N 为AB 上一点且BN =2AN , M 是AD 上的动点,连结BM ,MN ,则BM +MN 的最小值.例7:如图,在Rt △ABC 中,∠ACB =90°,AC =6.AB =12,AD 平分∠CAB ,点F 是AC 的中点,点E 是AD 上的动点,则CE +EF 的最小值为( ) A .3 B .4 C . D .第7题图 第8题图 第9题图例8:如图,在锐角三角形ABC 中,BC =4,∠ABC =60°, BD 平分∠ABC ,交AC 于点D ,M 、N 分别是BD ,BC 上的动点,则CM +MN 的最小值是( ) A B .2 C .D .4例9:如图,在菱形ABCD 中,AC =BD =6,E 是BC 的中点,P 、M 分别是AC 、AB 上的动点,连接PE 、PM ,则PE +PM 的最小值是( ) A .6B .C .D .4.5NMDBA E AFCDBNM DCBAEPDCBAM例10:如图,矩形ABOC 的顶点A 的坐标为(-4,5),D 是OB 的中点,E 是OC 上的一点,当△ADE 的周长最小时,点E 的坐标是( ) A .4(0,)3B .5(0,)3C .(0,2)D .10(0,)3第10题图 第11题图 第12题图例11:如图,在矩形ABCD 中,AB =6,AD =3,动点P 满足13PAB ABCD S S ∆=矩形,则点P 到A 、B 两点距离之和PA +PB 的最小值为( ) A .B .C .D 例12:如图,矩形ABCD 中,AB =10,BC =5,点E 、F 、G 、H 分别在矩形ABCD 各边上,且AE =CG ,BF =DH ,则四边形EFGH 周长的最小值为( )A .B .C .D .例13:如图,∠AOB =60°,点P 是∠AOB 内的定点且OP M 、N 分别是射线OA 、OB 上异于点O 的动点,则△PMN 周长的最小值是( )A B C .6D .3第13题图 第14题图 CBH FGEDCB AA BMOPN例14:如图,∠AOB 的边OB 与x 轴正半轴重合,点P 是OA 上的一动点,点N (3,0)是OB 上的一定点,点M 是ON 的中点,∠AOB =30°,要使PM +PN 最小,则点P 的坐标为 .例15:如图,已知正比例函数y =kx (k >0)的图像与x 轴相交所成的锐角为70°,定点A 的坐标为(0,4),P 为y 轴上的一个动点,M 、N 为函数y =kx (k >0)的图像上的两个动点,则AM +MP +PN 的最小值为___________.第15题图例16:如图,在平面直角坐标系中,矩形ABCD 的顶点B 在原点,点A 、C 在坐标轴上,点D 的坐标为(6,4),E 为CD 的中点,点P 、Q 为BC 边上两个动点,且PQ =2,要使四边形APQE 的周长最小,则点P 的坐示应为______________.例17:如图,矩形ABCD 中,AD =2,AB =4,AC 为对角线,E 、F 分别为边AB 、CD 上的动点,且EF ⊥AC 于点M ,连接AF 、CE ,求AF +CE 的最小值.AB CD EFMx例18:如图,正方形ABCD 的面积是12,△ABE 是等边三角形,点E 在正方形ABCD 内,在对角线AC 上有一点P ,求PD+PE 的最小值。
专题02 最值模型之将军饮马(遛马、过桥)模型(解析版)

专题02 最值模型之将军饮马(遛马、过桥)模型将军遛马模型和将军过桥(造桥)模型是将军饮马的姊妹篇,它是在将军饮马的基础上加入了平移的思想,主要还是考查转化与化归等的数学思想。
在各类考试中都以中高档题为主,本专题就将军遛马模型和将军过桥(造桥)模型进行梳理及对应试题分析,方便掌握。
在解决将军遛马和将军过桥(造桥),不管是横向还是纵向的线段长度(定长),只要将线段按照长度方向平移即可,即可以跨越长度转化为标准的将军饮马模型,再依据同侧做对称点变异侧,异侧直接连线即可。
利用数学的转化思想,将复杂模型变成基本模型就简单容易多了,从此将军遛马和将军过桥(造桥)再也不是问题!模型1.将军遛马模型【核心思路】去除定量,组合变量(通过几何变换将若干段原本彼此分类的线段组合到一起)。
【模型解读】已知A 、B 是两个定点,P 、Q 是直线m 上的两个动点,P 在Q 的左侧,且PQ 间长度恒定,在直线m 上要求P 、Q 两点,使得PA +PQ +QB 的值最小。
(原理用平移知识解)(1)点A 、B 在直线m 两侧:(2)点A 、B 在直线m 同侧:如图1 如图2(1)如图1,过A 点作AC ∥m ,且AC 长等于PQ 长,连接BC ,交直线m 于Q ,Q 向左平移PQ 长,即为P 点,此时P 、Q 即为所求的点。
(2)如图2,过A 点作AE ∥m ,且AE 长等于PQ 长,作B 关于m 的对称点B ’,连接B ’E ,交直线m 于Q ,Q 向左平移PQ 长,即为P 点,此时P 、Q 即为所求的点。
【最值原理】两点之间线段最短。
例1.(2023·黑龙江·九年级校考期中)问题背景(1)如图(1),在公路l 的一侧有A ,B 两个工厂,A ,B 到公路的垂直距离分别为1km 和3km ,A ,B 之间的水平距离为3km .现需把A 厂的产品先运送到公路上然后再转送到B 厂,则最短路线的长是_____km .问题探究(2)如图(2),ACB △和DEF V 是腰长为2的两个全等的等腰直角三角形,90ACB DEF Ð=Ð=°,点A ,D 重合,点B ,F 重合,将ACB △沿直线AB 平移,得到A C B ¢¢¢△,连接QQ P【答案】(1)5km (2)存在,最小值为25(3)最短路线长为15km【分析】(1)根据最短路径的作法,找出最短路径A B ¢,再利用矩形的性质,求出BE 和A E ¢利用勾股定理即可求出最短路径;(2)根据平移的性质可知四边形CQEC ¢和AQEA ¢均为平行四边形,再利用最短路径作法得出则 AQ A Q ¢=,AQ BQ A Q ¢=\+\ 当点Q 与点P 重合时, AQ 连接AA ¢, 交l 于点C , 过点由平移知CC AB ¢∥,CC QE ¢\∥.又 CQ EC ¢∥,\四边形 CQEC ¢是平行四边形,CC QE \¢=,CQ EC =¢由平移知CC AA ¢¢=,AA QE\¢=又n AB ∥,\四边形 AQEA ¢是平行四边形,AQ A E \=¢1A E C E AQ CQ QA CQ \+=+=+³¢¢\当点Q 与点P 重合时, A E C E ¢+¢过点C 作 1CG A A ^交 1A A 的延长线于点2AC AE ==Q ,2CG \=,13A G =例3.(2022·四川自贡·中考真题)如图,矩形ABCD 中,42AB BC ==,,G 是AD 的中点,线段EF 在边AB 上左右滑动;若1EF =,则GE CF +的最小值为____________.【答案】【分析】如图,作G关于AB的对称点G',在CD上截取CH=1,然后连接HG'交AB于E,在EB上截取EF=1,此时GE+CF的值最小,可得四边形EFCH是平行四边形,从而得到G'H=EG'+EH=EG+CF,再由勾股定理求出HG'的长,即可求解.【详解】解:如图,作G关于AB的对称点G',在CD上截取CH=1,然后连接HG'交AB于E,在EB上截取EF=1,此时GE+CF的值最小,∴G'E=GE,AG=AG',∵四边形ABCD是矩形,∴AB∥CD,AD=BC=2∴CH∥EF,∵CH=EF=1,∴四边形EFCH是平行四边形,∴EH=CF,∴G'H=EG'+EH=EG+CF,∵AB=4,BC=AD=2,G为边AD的中点,∴AG=AG'=1 ∴DG′=AD+AG'=2+1=3,DH=4-1=3,+的最小值为∴HG¢===GE CF【点睛】此题主要考查了利用轴对称求最短路径问题,矩形的性质,勾股定理等知识,确定GE+CF最小时E,F位置是解题关键.【答案】35【分析】连接BD与AC交于点O,延长Q四边形ABCD是菱形,AC\\=+=,由平移性质知,246OM\+=FM FD\=,DF DE AF当点A、F、M三点共线时,\+的最小值为:AMDF DE模型2.将军过桥(造桥)模型【核心思路】去除定量,组合变量(通过几何变换将若干段原本彼此分类的线段组合到一起)。
初中数学常见模型之将军饮马

详细描述
假设有一个图形,我们需要将其放置在直线 l上,使得其面积最大。这个问题的解决方
法是利用将军饮马模型,通过轴对称找到对 称点,然后利用相似三角形的性质求出最大
面积。
练习题三:求最小成本
总结词
这道题目要求我们利用将军饮马模型求出某工程的最 小成本。
详细描述
假设有一个工程需要在直线l上完成,我们需要选择合 适的点作为工程地点,使得成本最小。这个问题的解 决方法是利用将军饮马模型,通过轴对称找到对称点 ,然后利用最小成本原理求出最小成本。
THANKS FOR WATCHING
感谢您的观看
解决实际问题
将军饮马模型也可以用于 解决一些实际问题,如求 物体的重心、平衡点等。
模型的重要性
培养数学思维
通过学习将军饮马模型, 学生可以培养数学思维, 提高解决数学问题的能力 。
拓展数学知识
将军饮马模型是初中数学 中的重要内容,对于拓展 学生的数学知识具有重要 意义。
提高解题效率
掌握将军饮马模型可以帮 助学生更快地解决数学问 题,提高解题效率。
04 将军饮马模型的常见题型
最短路径问题
总结词
在几何图形中,求两点之间的最短距 离是常见的问题。
详细描述
将军饮马模型常用于解决这类问题, 通过构建对称点,将两点之间的距离 转化为两点与对称点之间的距离和的 最小值。
最大面积问题
总结词
在给定条件下,求几何图形的最大面积也是常见的将军饮马模型应用。
三角形不等式
三角形不等式是指在任何三角形中,任意一边的长度都小 于另外两边之和。这个原理在解决最优化问题时非常有用 ,例如在寻找两个点之间的最短路径时。
在将军饮马模型中,三角形不等式常常被用来确定最短路 径的长度。例如,当一个将军要从一个地方走到另一个地 方时,他可以选择走直线,也可以选择绕弯。利用三角形 不等式,我们可以确定哪种路径更短。
中考必会几何模型:将军饮马模型

将军饮马模型讲解【模型1】如图,定点A,B分布在定直线l的两侧,在直线l上找一点P,使得PA+PB的值最小.【作法】如图,连接AB,与直线l的交点即为所求点P.【模型2】如图,定点A,B分布在定直线的同侧,在直线l上找一点P,使得PA+PB的值最小.【作法】如图,作点B关于直线l的对称点B',连接AB',与直线l的交点即为所求点P.【模型3】如图,点P为角内一点,在射线l1,l2上分别找点M,N,使得△PMN的周长最小.【作法】如图,分别作点P关于两直线l1,l2的对称点P'和P",连接P' P",与两射线的交点即为所求点M,N.【模型4】如图,P,Q为角内的两个定点,在射线l1,l2上分别找点M,N,使得四边形PQMN的周长最小.【作法】如图,分别作点Q,P关于直线l1,l2的对称点Q'和P',连接Q'P',与两射线的交点即为所求点M,N.【模型5】如图,直线m∥n,A,B分别为m上方和n下方的定点(直线AB不与m垂直),在m,n上分别求点M,N,使得MN⊥m,且AM+MN+BN的值最小.【作法】如图,将点A向下平移,使AA'=MN,连接A'B,交n于点N,过点N作MN⊥m于点M,则点M和点N即为所求.【模型6】如图,定点A,B分布在直线l的同侧,长度为a(a为定值)的线段MN在l上移动(点M在点N的左边),在直线l上求两点M,N(点M在左),使得MN=a,并使得AM+MN+NB的值最小.【作法】如图,将点A向右平移a个单位长度得到点A',作点A'关于l的对称点A",连接A"B,交直线l于点N,将点N向左平移a个单位长度得到点M,则点M和点N即为所求.典型例题典例1如图,∠AOB=30",OC为∠AOB内部的一条射线,P为射线OC上一点,OP=4,点M,N分别为OA,OB边上的动点,则△PMN周).长的最小值为( ).A.2B.4C.8D.4√3典例2如图,BD平分∠ABC,E,F分别为线段BC,BD上的动点,AB=8,△ABC的面积为20,求EF+CF的最小值.典例3四边形ABCD中,∠BAD=130°,∠B=∠D=90°,在BC,CD上分别找一点M,N,使△AMN的周长最小,则∠AMN+∠ANM的度数为( ).A.80°B.90°C.100°D.130°初露锋芒1.如图,直线L是一条河,P,Q是两个村庄.欲在L上的某处修建一个水泵站,向P,Q两地供水,现有如下四种铺设方案,图中实线表示铺设的管道,则所需管道最短的是( ).2.如图,在等腰△ABC 中,AB=AC ,D,E 分别是BC ,AC 的中点,点P 是线段AD 上的一个动点.当△PCE 的周长最小时,点P 的位置是( ).A.AD 与BE 的交点处B.AD 的中点处C.A 点处D.D 点处3.如图,∠AOB=60°,点P 是∠AOB 内的定点,且OP= √3,点M ,N 分别是射线OA ,OB 上异于点O 的动点,则△PMN 周长的最小值是( ).A.3√62B. 3√32C.6D.34. 如图所示,在边长为2的正三角形ABC 中,E 、F 、G 分别为AB 、AC 、BC 的中点,点P 线段EF 上一个动点,连接BP 、GP ,则△BPG 周长的最小值是________.感受中考1.(2016江苏苏州中考真题)矩形OABC 在平面直角坐标系中的位置如图所示,点B 的坐标为(3,4),D 是OA 的中点,点E 在AB 上,当△CDE 的周长最小时,点E 的坐标为( ).A.(3,1)B.(3,43) c.(3,53) D.(3,2)2.(2020贵州毕节中考模拟)如图,正方形ABCD 的边长为4,点E 是AB 的中点,点P 是边BC 上的动点,点Q 是对角线AC 上的动点(包括端点A ,C ),则EP+PQ 的最小值是__________.参考答案典例1【答案】B【解析】如图,作点P关于OA的对称点P1,作点P关于OB的对称点P2,连接P1 P2,与OA的交点为点M,与OB的交点为点N,则PM=P1M,PN=P2N.此时,△PMN的周长最小,为PM+MN+PN=P1M +MN+P2N=P1P2.连接OP1,OP2,则OP1=OP2=OP=4.又∵∠P1OP2=2∠AOB=60°,∴△OP1P2是等边三角形,∴P1P2=OP1=4.∴△PMN周长的最小值是4.故选B.典例2【答案】5【解析】如图,作E关于BD对称交于点E',则EF= E'F∴EF+CF= E'F+ CF∴当C E'⊥AB时,EF+CF最小.∵S△ABC= 12×AB×C E'=12×8×C E' =20C E'=5∴EF+CF的最小值为5.典例3【答案】C【解析】如图,延长线段AB到点A'使得BA'=AB,延长线段AD到点A"使得DA"=AD,连接A'A",与BC.CD分别交于点M,N,此时△AMN的周长最小.∴点A,A'关于直线BC对称,点A,A"关于直线CD对称.∵BA=BA',MB⊥AB. ∴MA=MA'.同理,NA=NA",∴∠A'=∠MAB,∠A"=∠NAD.∵∠AMN=∠A'+∠MAB=2∠A', ∠ANM=∠A"+∠NAD=2∠A",∴∠AMN+∠ANM=2(∠A'+∠A").又∵∠BAD=130°, ∴∠A'+∠A"=180°-∠BAD=50°,∴∠AMN+∠ANM=100°.故选C.初露锋芒1. 【答案】D .【解析】根据两点之间,线段最短,作点P 关于直线L 的对称点P ',连接QP '交直线L 于点M 即可.故选D.2. 【答案】A【解析】∵EC 的长度固定,∴△PCE 的周长大小与PE+PC 的值有关, ∴当PE+PC 的值最小时,△PCE 的周长最小. 连接BE ,交AD 于点P ',如图,此时BP '+P 'E 的值最小,即BP+PE 的值最小. ∵点C 关于直线AD 的对称点为点B. ∴此时PE+PC 的值最小,∴当点P 在BE 与AD 的交点处时,△PCE 的周长最小. 故选A.3. 【答案】D.【解析】如图,分别作点P 关于射线OA. OB 的对称点C ,D ,连接CD 分别交OA ,OB 于点M ,N ,连接OC ,OD , 则MP=MC ,NP=ND ,OC=OD=OP=√3, ∠BOP=∠BOD.∠AOP=∠AOC,∴PN+PM+MN=ND+MC+MN=DC.∠COD=∠BOP +∠BOD+∠AOP+∠AOC=2∠AOB=120°,∴∠OCD=∠ODC=30°.作OH ⊥CD 于点H ,则CH=DH.∵∠OCH=30°. ∴OH= 12 0C= √32, ∴CH=√3OH= 32,∴CD=2CH=3, 即△PAMN 周长的最小值是3.故选D.4. 【答案】3.【解析】要使△PBG 的周长最小,而BG=1一定,只要使BP+PG 最短即可,如图:连接AG 交EF 于M ,因为等边△ABC ,E 、F 、G 分别为AB 、AC 、BC 的中点,所以AG ⊥BC,EF ∥BC,则AG ⊥EF ,AM=MG,A 、G 关于EF 对称,即当P 和E 重合时,此时BP+PG 最小,即△PBG 的周长最小,AP =PG ,BP=BE ,最小值是:PB+ PG+ BG= AE+BE+ BG=AB+BG=2+1=3感受中考1.【答案】B【解析】如图,作点D 关于直线AB 的对称点H ,连接CH 交AB 于点E ,此时△CDE 的周长最小.∵B(3,4),四边形OABC 是矩形,∴A(3,0),C(0,4).∵D 是OA 的中点,∴D( 32,0),H( 92,0). 设直线CH 的解析式为y=kx + b ,把C(0,4).H( 92,0)代人y= kx + b , 得{4=b 0= 92k + b 解得{k =−89b =4 ∴直线CH 的解析式为y=−89x+4, 当x=3时;y= 43, ∴点E 的坐标为(3,43). 故选B.2. 【答案】3√2【解析】如图,作点B关于BC的对称点E',作E'Q'⊥AC于点Q',交BC于点P.∴PE=PE'.∴PQ+PE=PE'+PQ.分析知,当Q与Q'重合时,PE+PQ的值最小(垂线段最短),∵四边形ABCD是正方形,∴∠E'AQ'=45°.∵AE'=6,∴E'Q'=3√2∴PE+PQ的最小值为3√。
将军饮马模型原理

将军饮马模型原理解析背景介绍将军饮马模型(也称为“Generals and the Drinking Horse”)是一个经典的分布式系统问题,用于解释在分布式系统中的一致性问题。
这个问题最早由莱斯利·兰伯特(Leslie Lamport)在1982年提出,并被广泛应用于分布式计算和共识算法研究中。
问题描述将军饮马模型是一个由多个将军组成的系统,这些将军通过发送消息来达成共识。
每个将军都可以选择发动进攻或撤退,而他们的目标是要么全体进攻,要么全体撤退。
然而,由于通信不可靠,将军之间可能无法完全互相了解对方的行动意图。
具体来说,每个将军可以发送三种类型的消息给其他将军: 1. ATTACK:表示该将军希望进攻。
2. RETREAT:表示该将军希望撤退。
3. ACKNOWLEDGE:表示该将军已经收到了另一位将军发送的消息。
所有的消息都会通过信使传递给其他的将军。
然而,由于信使可能被敌方拦截或延迟送达,所以将军无法得知他们的消息是否已经被其他将军收到。
此外,每个将军还有一个重要的限制条件:如果将军A收到了一条进攻消息,那么他必须向其他所有将军发送一条进攻或撤退的消息。
同样地,如果将军A收到了一条撤退消息,那么他也必须向其他所有将军发送一条进攻或撤退的消息。
问题是如何设计一种算法来确保所有的将军在没有完全互相了解对方行动意图的情况下达成共识。
基本原理为了解释将军饮马模型中的基本原理,我们可以使用著名的“Byzantine Generals Problem”作为一个更具体和形象化的例子。
Byzantine Generals Problem是一个扩展和推广了将军饮马模型的问题,在其中有多个叛徒(即“拜占庭将军”)可能会向其他人发送虚假信息。
在这个问题中,我们假设有n个拜占庭将军,并且至多有m个叛徒。
每个拜占庭将军都需要向其他人发送一个确定性的值(例如进攻或撤退),并且希望建立一个共识来确保他们中大多数人都达成相同的值。