2020届中考模拟江苏省镇江市中考数学模拟试卷(含参考答案)(Word版)

合集下载

2020年江苏省镇江市中考数学试题及参考答案(word解析版)

2020年江苏省镇江市中考数学试题及参考答案(word解析版)

2020年江苏省镇江市中考数学试题及参考答案与解析(满分:120分,考试时间:120分钟)一、选择题(本大题共6小题,每小题3分,共18分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.下列计算正确的是()A.a3+a3=a6B.(a3)2=a6C.a6÷a2=a3D.(ab)3=ab32.如图,将棱长为6的正方体截去一个棱长为3的正方体后,得到一个新的几何体,这个几何体的主视图是()A.B.C.D.3.一次函数y=kx+3(k≠0)的函数值y随x的增大而增大,它的图象不经过的象限是()A.第一B.第二C.第三D.第四4.如图,AB是半圆的直径,C、D是半圆上的两点,∠ADC=106°,则∠CAB等于()A.10°B.14°C.16°D.26°5.点P(m,n)在以y轴为对称轴的二次函数y=x2+ax+4的图象上.则m﹣n的最大值等于()A.B.4 C.﹣D.﹣6.如图①,AB=5,射线AM∥BN,点C在射线BN上,将△ABC沿AC所在直线翻折,点B的对应点D落在射线BN上,点P,Q分别在射线AM、BN上,PQ∥AB.设AP=x,QD=y.若y关于x的函数图象(如图②)经过点E(9,2),则cosB的值等于()A.B.C.D.二、填空题(本大题共12小题,每小题2分,共24分)7.的倒数等于.8.使有意义的x的取值范围是.9.分解因式:9x2﹣1=.10.2020年我国将完成脱贫攻坚目标任务.从2012年底到2019年底,我国贫困人口减少了93480000人,用科学记数法把93480000表示为.11.一元二次方程x2﹣2x=0的两根分别为.12.一只不透明的袋子中装有5个红球和1个黄球,这些球除颜色外都相同,搅匀后从中任意摸出1个球,摸出红球的概率等于.13.圆锥底面圆半径为5,母线长为6,则圆锥侧面积等于.14.点O是正五边形ABCDE的中心,分别以各边为直径向正五边形的外部作半圆,组成了一幅美丽的图案(如图).这个图案绕点O至少旋转°后能与原来的图案互相重合.15.根据数值转换机的示意图,输出的值为.16.如图,点P是正方形ABCD内位于对角线AC下方的一点,∠1=∠2,则∠BPC的度数为°.(第14题图)(第15题图)(第16题图)17.在从小到大排列的五个数x,3,6,8,12中再加入一个数,若这六个数的中位数、平均数与原来五个数的中位数、平均数分别相等,则x的值为.18.如图,在△ABC中,BC=3,将△ABC平移5个单位长度得到△A1B1C1,点P、Q分别是AB、A1C1的中点,PQ的最小值等于.三、解答题(本大题共10小题,共78分.解答时应写出必要的计算过程、推演步骤或文字说明)19.(8分)(1)计算:4sin60°﹣+(﹣1)0;(2)化简(x+1)÷(1+).20.(10分)(1)解方程:=+1;(2)解不等式组:21.(6分)如图,AC是四边形ABCD的对角线,∠1=∠B,点E、F分别在AB、BC上,BE=CD,BF=CA,连接EF.(1)求证:∠D=∠2;(2)若EF∥AC,∠D=78°,求∠BAC的度数.22.(6分)教育部发布的义务教育质量监测结果报告显示,我国八年级学生平均每天的睡眠时间达9小时及以上的比例为19.4%.某校数学社团成员采用简单随机抽样的方法,抽取了本校八年级50名学生,对他们一周内平均每天的睡眠时间t(单位:小时)进行了调查,将数据整理后绘制成下表:平均每天的睡5≤t<6 6≤t<7 7≤t<8 8≤t<9 9小时及以上眠时间分组频数 1 5 m 24 n 该样本中学生平均每天的睡眠时间达9小时及以上的比例高于全国的这项数据,达到了22%.(1)求表格中n的值;(2)该校八年级共400名学生,估计其中平均每天的睡眠时间在7≤t<8这个范围内的人数是多少.23.(6分)智慧的中国古代先民发明了抽象的符号来表达丰富的含义.例如,符号“”有刚毅的含义,符号“”有愉快的含义.符号中的“”表示“阴”,“”表示“阳”,类似这样自上而下排成的三行符号还有其他的含义.所有这些三行符号中,每一行只有一个阴或一个阳,且出现阴、阳的可能性相同.(1)所有这些三行符号共有种;(2)若随机画一个这样的三行符号,求“画出含有一个阴和两个阳的三行符号”的概率.24.(6分)如图,点E与树AB的根部点A、建筑物CD的底部点C在一条直线上,AC=10m.小明站在点E处观测树顶B的仰角为30°,他从点E出发沿EC方向前进6m到点G时,观测树顶B的仰角为45°,此时恰好看不到建筑物CD的顶部D(H、B、D三点在一条直线上).已知小明的眼睛离地面1.6m,求建筑物CD的高度(结果精确到0.1m).(参考数据:≈1.41,≈1.73.)25.(6分)如图,正比例函数y=kx(k≠0)的图象与反比例函数y=﹣的图象交于点A(n,2)和点B.(1)n=,k=;(2)点C在y轴正半轴上.∠ACB=90°,求点C的坐标;(3)点P(m,0)在x轴上,∠APB为锐角,直接写出m的取值范围.26.(8分)如图,▱ABCD中,∠ABC的平分线BO交边AD于点O,OD=4,以点O为圆心,OD 长为半径作⊙O,分别交边DA、DC于点M、N.点E在边BC上,OE交⊙O于点G,G为的中点.(1)求证:四边形ABEO为菱形;(2)已知cos∠ABC=,连接AE,当AE与⊙O相切时,求AB的长.27.(11分)【算一算】如图①,点A、B、C在数轴上,B为AC的中点,点A表示﹣3,点B表示1,则点C表示的数为,AC长等于;【找一找】如图②,点M、N、P、Q中的一点是数轴的原点,点A、B分别表示实数﹣1、+1,Q是AB的中点,则点N是这个数轴的原点;【画一画】如图③,点A、B分别表示实数c﹣n、c+n,在这个数轴上作出表示实数n的点E(要求:尺规作图,不写作法,保留作图痕迹);【用一用】学校设置了若干个测温通道,学生进校都应测量体温,已知每个测温通道每分钟可检测a个学生.凌老师提出了这样的问题:假设现在校门口有m个学生,每分钟又有b个学生到达校门口.如果开放3个通道,那么用4分钟可使校门口的学生全部进校;如果开放4个通道,那么用2分钟可使校门口的学生全部进校.在这些条件下,a、m、b会有怎样的数量关系呢?爱思考的小华想到了数轴,如图④,他将4分钟内需要进校的人数m+4b记作+(m+4b),用点A表示;将2分钟内由4个开放通道检测后进校的人数,即校门口减少的人数8a记作﹣8a,用点B表示.①用圆规在小华画的数轴上分别画出表示+(m+2b)、﹣12a的点F、G,并写出+(m+2b)的实际意义;②写出a、m的数量关系:.28.(11分)如图①,直线l经过点(4,0)且平行于y轴,二次函数y=ax2﹣2ax+c(a、c是常数,a<0)的图象经过点M(﹣1,1),交直线l于点N,图象的顶点为D,它的对称轴与x轴交于点C,直线DM、DN分别与x轴相交于A、B两点.(1)当a=﹣1时,求点N的坐标及的值;(2)随着a的变化,的值是否发生变化?请说明理由;(3)如图②,E是x轴上位于点B右侧的点,BC=2BE,DE交抛物线于点F.若FB=FE,求此时的二次函数表达式.答案与解析一、选择题(本大题共6小题,每小题3分,共18分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.下列计算正确的是()A.a3+a3=a6B.(a3)2=a6C.a6÷a2=a3D.(ab)3=ab3【知识考点】合并同类项;幂的乘方与积的乘方;同底数幂的除法.【思路分析】根据同底数幂的乘除法、幂的乘方的计算法则进行计算即可.【解题过程】解:a3+a3=2a3,因此选项A不正确;(a3)2=a3×2=a6,因此选项B正确;a6÷a2=a6﹣2=a4,因此选项C不正确;(ab)3=a3b3,因此选项D不正确;故选:B.【总结归纳】本题考查同底数幂的乘除法、幂的乘方的计算方法,掌握计算方法是正确计算的前提.2.如图,将棱长为6的正方体截去一个棱长为3的正方体后,得到一个新的几何体,这个几何体的主视图是()A.B.C.D.【知识考点】截一个几何体;简单组合体的三视图.【思路分析】根据从正面看得到的视图是主视图,可得答案.【解题过程】解:从正面看是一个正方形,正方形的右上角是一个小正方形,故选:A.【总结归纳】本题考查了简单组合体的三视图,从正面看得到的视图是主视图.3.一次函数y=kx+3(k≠0)的函数值y随x的增大而增大,它的图象不经过的象限是()A.第一B.第二C.第三D.第四【知识考点】一次函数的性质.【思路分析】根据一次函数y=kx+3(k≠0)的函数值y随x的增大而增大,可以得到k>0,与y轴的交点为(0,3),然后根据一次函数的性质,即可得到该函数图象经过哪几个象限,不经过哪个象限,从而可以解答本题.【解题过程】解:∵一次函数y=kx+3(k≠0)的函数值y随x的增大而增大,∴k>0,该函数过点(0,3),∴该函数的图象经过第一、二、三象限,不经过第四象限,故选:D.【总结归纳】本题考查一次函数的性质,解答本题的关键是明确题意,利用一次函数的性质解答.4.如图,AB是半圆的直径,C、D是半圆上的两点,∠ADC=106°,则∠CAB等于()A.10°B.14°C.16°D.26°【知识考点】圆周角定理.【思路分析】连接BD,如图,根据圆周角定理得到∠ADB=90°,则可计算出∠BDC=16°,然后根据圆周角定理得到∠CAB的度数.【解题过程】解:连接BD,如图,∵AB是半圆的直径,∴∠ADB=90°,∴∠BDC=∠ADC﹣∠ADB=106°﹣90°=16°,∴∠CAB=∠BDC=16°.故选:C.【总结归纳】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.5.点P(m,n)在以y轴为对称轴的二次函数y=x2+ax+4的图象上.则m﹣n的最大值等于()A.B.4 C.﹣D.﹣【知识考点】二次函数的性质;二次函数图象上点的坐标特征.【思路分析】根据题意,可以得到a的值,m和n的关系,然后将m、n作差,利用二次函数的性质,即可得到m﹣n的最大值,本题得以解决.【解题过程】解:∵点P(m,n)在以y轴为对称轴的二次函数y=x2+ax+4的图象上,∴a=0,∴n=m2+4,∴m﹣n=m﹣(m2+4)=﹣m2+m﹣4=﹣(m﹣)2﹣,∴当m=时,m﹣n取得最大值,此时m﹣n=﹣,故选:C.【总结归纳】本题考查二次函数的性质、二次函数图象上点的坐标特征,解答本题的关键是明确题意,利用二次函数的性质解答.6.如图①,AB=5,射线AM∥BN,点C在射线BN上,将△ABC沿AC所在直线翻折,点B的对应点D落在射线BN上,点P,Q分别在射线AM、BN上,PQ∥AB.设AP=x,QD=y.若y关于x的函数图象(如图②)经过点E(9,2),则cosB的值等于()A.B.C.D.【知识考点】动点问题的函数图象.【思路分析】由题意可得四边形ABQP是平行四边形,可得AP=BQ=x,由图象②可得当x=9时,y=2,此时点Q在点D下方,且BQ=x=9时,y=2,如图①所示,可求BD=7,由折叠的性质可求BC的长,由锐角三角函数可求解.【解题过程】解:∵AM∥BN,PQ∥AB,∴四边形ABQP是平行四边形,∴AP=BQ=x,由图②可得当x=9时,y=2,此时点Q在点D下方,且BQ=x=9时,y=2,如图①所示,∴BD=BQ﹣QD=x﹣y=7,∵将△ABC沿AC所在直线翻折,点B的对应点D落在射线BN上,∴BC=CD=BD=,AC⊥BD,∴cosB===,故选:D.【总结归纳】本题考查了动点问题的函数图象,平行四边形的判定和性质,折叠的性质,锐角三角函数等知识,理解函数图象上的点的具体含义是本题的关键.二、填空题(本大题共12小题,每小题2分,共24分)7.的倒数等于.【知识考点】倒数.【思路分析】根据倒数的意义求解即可.【解题过程】解:∵×=1,∴的倒数是,故答案为:.【总结归纳】本题考查倒数的意义,理解乘积为1的两个数是互为倒数是正确求解的关键.8.使有意义的x的取值范围是.【知识考点】二次根式有意义的条件.【思路分析】当被开方数x﹣2为非负数时,二次根式才有意义,列不等式求解.【解题过程】解:根据二次根式的意义,得x﹣2≥0,解得x≥2.【总结归纳】主要考查了二次根式的意义和性质.概念:式子(a≥0)叫二次根式.性质:二次根式中的被开方数必须是非负数,否则二次根式无意义.9.分解因式:9x2﹣1=.【知识考点】因式分解﹣运用公式法.【思路分析】符合平方差公式的结构特点,利用平方差公式分解即可.【解题过程】解:9x2﹣1=(3x)2﹣12=(3x+1)(3x﹣1).【总结归纳】本题考查了平方差公式因式分解,熟记平方差公式的特点:两项平方项,符号相反是解题的关键.10.2020年我国将完成脱贫攻坚目标任务.从2012年底到2019年底,我国贫困人口减少了93480000人,用科学记数法把93480000表示为.【知识考点】科学记数法—表示较大的数.【思路分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于93480000有8位,所以可以确定n=8﹣1=7.【解题过程】解:93480000=9.348×107.故答案为:9.348×107.【总结归纳】此题考查科学记数法表示较大的数的方法,准确确定n值是关键.11.一元二次方程x2﹣2x=0的两根分别为.【知识考点】解一元二次方程﹣因式分解法.【思路分析】利用因式分解法求解可得.【解题过程】解:∵x2﹣2x=0,∴x(x﹣2)=0,∴x=0或x﹣2=0,解得x1=0,x2=2.【总结归纳】本题主要考查解一元二次方程的能力,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解题的关键.12.一只不透明的袋子中装有5个红球和1个黄球,这些球除颜色外都相同,搅匀后从中任意摸出1个球,摸出红球的概率等于.【知识考点】概率公式.【思路分析】用红球的个数除以球的总个数即可得.【解题过程】解:∵袋子中共有5+1=6个小球,其中红球有5个,∴搅匀后从中任意摸出1个球,摸出红球的概率等于,故答案为:.【总结归纳】本题主要考查概率公式,解题的关键是掌握随机事件A的概率P(A)=事件A可能出现的结果数÷所有可能出现的结果数.13.圆锥底面圆半径为5,母线长为6,则圆锥侧面积等于.【知识考点】圆锥的计算.【思路分析】利用扇形的面积公式计算圆锥侧面积.【解题过程】解:圆锥侧面积=×2π×5×6=30π.故答案为30π.【总结归纳】本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.14.点O是正五边形ABCDE的中心,分别以各边为直径向正五边形的外部作半圆,组成了一幅美丽的图案(如图).这个图案绕点O至少旋转°后能与原来的图案互相重合.【知识考点】旋转对称图形.【思路分析】直接利用旋转图形的性质进而得出旋转角.【解题过程】解:连接OA,OE,则这个图形至少旋转∠AOE才能与原图象重合,∠AOE==72°.故答案为:72.【总结归纳】此题主要考查了旋转图形,正确掌握旋转图形的性质是解题关键.15.根据数值转换机的示意图,输出的值为.【知识考点】有理数的混合运算;代数式求值.【思路分析】利用代入法和负整数指数幂的计算方法进行计算即可.【解题过程】解:当x=﹣3时,31+x=3﹣2=,故答案为:.【总结归纳】本题考查代数式求值,用具体的数值代替代数式中的字母,按照代数式规定的运算,求出的结果即为代数式的值.16.如图,点P是正方形ABCD内位于对角线AC下方的一点,∠1=∠2,则∠BPC的度数为°.【知识考点】正方形的性质.【思路分析】由正方形的性质可得∠ACB=∠BAC=45°,可得∠2+∠BCP=45°=∠1+∠BCP,由三角形内角和定理可求解.【解题过程】解:∵四边形ABCD是正方形,∴∠ACB=∠BAC=45°,∴∠2+∠BCP=45°,∵∠1=∠2,∴∠1+∠BCP=45°,∵∠BPC=180°﹣∠1﹣∠BCP,∴∠BPC=135°,故答案为:135.【总结归纳】本题考查了正方形的性质,三角形内角和定理,掌握正方形的性质是本题的关键.17.在从小到大排列的五个数x,3,6,8,12中再加入一个数,若这六个数的中位数、平均数与原来五个数的中位数、平均数分别相等,则x的值为.【知识考点】算术平均数;中位数.【思路分析】原来五个数的中位数是6,如果再加入一个数,变成了偶数个数,则中位数是中间两位数的平均数,由此可知加入的一个数是6,再根据平均数的公式得到关于x的方程,解方程即可求解.【解题过程】解:从小到大排列的五个数x,3,6,8,12的中位数是6,∵再加入一个数,这六个数的中位数与原来五个数的中位数相等,∴加入的一个数是6,∵这六个数的平均数与原来五个数的平均数相等,∴(x+3+6+8+12)=(x+3+6+6+8+12),解得x=1.故答案为:1.【总结归纳】本题属于基础题,考查了确定一组数据的中位数和平均数的能力.一些学生往往对这个概念掌握不清楚,计算方法不明确而错误,注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求,如果是偶数个则找中间两个数的平均数.18.如图,在△ABC中,BC=3,将△ABC平移5个单位长度得到△A1B1C1,点P、Q分别是AB、A1C1的中点,PQ的最小值等于.【知识考点】平移的性质.【思路分析】取AC的中点M,A1B1的中点N,连接PM,MQ,NQ,PN,根据平移的性质和三角形的三边关系即可得到结论.【解题过程】解:取AC的中点M,A1B1的中点N,连接PM,MQ,NQ,PN,∵将△ABC平移5个单位长度得到△A1B1C1,∴B1C1=BC=3,PN=5,∵点P、Q分别是AB、A1C1的中点,∴NQ=B1C1=,∴5﹣≤PQ≤5+,即≤PQ≤,∴PQ的最小值等于,故答案为:.【总结归纳】本题考查了平移的性质,三角形的三边关系,熟练掌握平移的性质是解题的关键.三、解答题(本大题共10小题,共78分.解答时应写出必要的计算过程、推演步骤或文字说明)19.(8分)(1)计算:4sin60°﹣+(﹣1)0;(2)化简(x+1)÷(1+).【知识考点】实数的运算;分式的混合运算;零指数幂;特殊角的三角函数值.【思路分析】(1)先代入三角函数值、化简二次根式、计算零指数幂,再计算乘法,最后计算加减可得;(2)先计算括号内分式的加法,再将除法转化为乘法,最后约分即可得.【解题过程】解:(1)原式=4×﹣2+1=2﹣2+1=1;(2)原式=(x+1)÷(+)=(x+1)÷=(x+1)•=x.【总结归纳】本题主要考查分式和实数的混合运算,解题的关键是掌握分式的混合运算顺序和运算法则.20.(10分)(1)解方程:=+1;(2)解不等式组:【知识考点】解分式方程;解一元一次不等式组.【思路分析】(1)解分式方程的步骤有:去分母,去括号,移项,合并同类项,系数化为1,检验;(2)先求出每个不等式的解集,再在数轴上表示出其解集,然后根据是否存在公共部分求解即可.【解题过程】解:(1)=+1,2x=1+x+3,2x﹣x=1+3,x=4,经检验,x=4是原方程的解,∴此方程的解是x=4;(2),①4x﹣x>﹣2﹣7,3x>﹣9,x>﹣3;②3x﹣6<4+x,3x﹣x<4+6,2x<10,x<5,∴不等式组的解集是﹣3<x<5.【总结归纳】本题主要考查了解分式方程以及解一元一次不等式组,熟练掌握解分式方程的步骤以及不等式的性质是解答本题的关键.21.(6分)如图,AC是四边形ABCD的对角线,∠1=∠B,点E、F分别在AB、BC上,BE=CD,BF=CA,连接EF.(1)求证:∠D=∠2;(2)若EF∥AC,∠D=78°,求∠BAC的度数.【知识考点】全等三角形的判定与性质.【思路分析】(1)由“SAS”可证△BEF≌△CDA,可得∠D=∠2;(2)由(1)可得∠D=∠2=78°,由平行线的性质可得∠2=∠BAC=78°.【解题过程】证明:(1)在△BEF和△CDA中,,∴△BEF≌△CDA(SAS),∴∠D=∠2;(2)∵∠D=∠2,∠D=78°,∴∠D=∠2=78°,∵EF∥AC,∴∠2=∠BAC=78°.【总结归纳】本题考查了全等三角形的判定和性质,平行线的性质,证明△BEF≌△CDA是本题的关键.22.(6分)教育部发布的义务教育质量监测结果报告显示,我国八年级学生平均每天的睡眠时间达9小时及以上的比例为19.4%.某校数学社团成员采用简单随机抽样的方法,抽取了本校八年级50名学生,对他们一周内平均每天的睡眠时间t(单位:小时)进行了调查,将数据整理后绘制成下表:5≤t<6 6≤t<7 7≤t<8 8≤t<9 9小时及以上平均每天的睡眠时间分组频数 1 5 m 24 n 该样本中学生平均每天的睡眠时间达9小时及以上的比例高于全国的这项数据,达到了22%.(1)求表格中n的值;(2)该校八年级共400名学生,估计其中平均每天的睡眠时间在7≤t<8这个范围内的人数是多少.【知识考点】用样本估计总体;频数(率)分布表;加权平均数.【思路分析】(1)根据频率=求解可得;(2)先根据频数的和是50及n的值求出m的值,再用总人数乘以样本中平均每天的睡眠时间在7≤t<8这个范围内的人数所占比例即可得.【解题过程】解:(1)n=50×22%=11;(2)m=50﹣1﹣5﹣24﹣11=9,所以估计该校平均每天的睡眠时间在7≤t<8这个范围内的人数是400×=72(人).【总结归纳】本题主要考查加权平均数、样本估计总体及频数(率)分布表,解题的关键是掌握频率=、频数的和是50.23.(6分)智慧的中国古代先民发明了抽象的符号来表达丰富的含义.例如,符号“”有刚毅的含义,符号“”有愉快的含义.符号中的“”表示“阴”,“”表示“阳”,类似这样自上而下排成的三行符号还有其他的含义.所有这些三行符号中,每一行只有一个阴或一个阳,且出现阴、阳的可能性相同.(1)所有这些三行符号共有种;(2)若随机画一个这样的三行符号,求“画出含有一个阴和两个阳的三行符号”的概率.【知识考点】列表法与树状图法.【思路分析】(1)用列举法举出所有等可能的结果数即可;(2)根据(1)列举的结果数和概率公式即可得出答案.【解题过程】解:(1)共有8种等可能的情况数,分别是:阴,阴,阴;阴,阳,阴;阴,阴,阳;阳,阴,阴;阳,阳,阴;阳,阴,阳;阴,阳,阳;阳、阳、阳;故答案为:8;(2)根据第(1)问一个阴、两个阳的共有3种,则有一个阴和两个阳的三行符号”的概率是.【总结归纳】此题考查的是用列举法求概率.用到的知识点为:概率=所求情况数与总情况数之比.24.(6分)如图,点E与树AB的根部点A、建筑物CD的底部点C在一条直线上,AC=10m.小明站在点E处观测树顶B的仰角为30°,他从点E出发沿EC方向前进6m到点G时,观测树顶B的仰角为45°,此时恰好看不到建筑物CD的顶部D(H、B、D三点在一条直线上).已知小明的眼睛离地面1.6m,求建筑物CD的高度(结果精确到0.1m).(参考数据:≈1.41,≈1.73.)【知识考点】解直角三角形的应用﹣仰角俯角问题.【思路分析】延长FH,交CD于点M,交AB于点N,求CD,只需求出DM即可,即只要求出HN就可以,在Rt△BNF中,设BN=NH=x,则根据tan∠BFN=就可以求出x的值,再根据等腰直角三角形的性质和线段的和可求得CD的长.【解题过程】解:如图,延长FH,交CD于点M,交AB于点N,∵∠BHN=45°,BA⊥MH,则BN=NH,设BN=NH=x,∵HF=6,∠BFN=30°,∴tan∠BFN==,即tan30°=,解得x=8.19,根据题意可知:DM=MH=MN+NH,∵MN=AC=10,则DM=10+8.19=18.19,∴CD=DM+MC=DM+EF=18.19+1.6=19.79≈19.8(m).答:建筑物CD的高度约为19.8m.【总结归纳】本题考查了解直角三角形的应用﹣仰角俯角问题,解决本题的关键是掌握仰角俯角定义.25.(6分)如图,正比例函数y=kx(k≠0)的图象与反比例函数y=﹣的图象交于点A(n,2)和点B.(1)n=,k=;(2)点C在y轴正半轴上.∠ACB=90°,求点C的坐标;(3)点P(m,0)在x轴上,∠APB为锐角,直接写出m的取值范围.【知识考点】反比例函数综合题.【思路分析】(1)把A点坐标代入反比例函数解析式求得n,再把求得的A点坐标代入正比例函数解析式求得k;(2)可设点C(0,b),只要求出b的值就行,求值一般的方法是相似和勾股定理,此题用相似,只需证明△ACD∽△CBE即可;(3)在x轴上找到点P1,P2,使AP1⊥P1B,AP2⊥BP2,则点P在P1的左边,在P2的右边就符合要求了.【解题过程】解:(1)把A(n,2)代入反比例函数y=﹣中,得n=﹣4,∴A(﹣4,2),把A(﹣4,2)代入正比例函数y=kx(k≠0)中,得k=﹣,故答案为:﹣4;﹣;(2)过A作AD⊥y轴于D,过B作BE⊥y轴于E,∵A(﹣4,2),∴根据双曲线与正比例函数图象的对称性得B(4,﹣2),设C(0,b),则CD=b﹣2,AD=4,BE=E,CE=b+2,∵∠ACO+∠OCB=90°,∠OCB+∠CBE=90°,∴∠ACO=∠CBE,∵∠ADC=∠CEB=90°,∴△ACD∽△CBE,∴,即,解得,b=2,或b=﹣2(舍),∴C(0,2);(3)如图2,过A作AM⊥x轴于M,过B作BN⊥x轴于N,在x轴上原点的两旁取两点P1,P 2,使得OP1=OP2=OA=OB,∴,∴P1(﹣2,0),P2(2,0),∵OP1=OP2=OA=OB,∴四边形AP1BP2为矩形,∴AP1⊥P1B,AP2⊥BP2,∵点P(m,0)在x轴上,∠APB为锐角,∴P点必在P1的左边或P2的右边,∴m<﹣2或m>2.【总结归纳】本题主要考查了反比例函数图象与性质,正比例函数的图象与性质,相似三角形的性质与判定,矩形的判定,待定系数法,第(2)小题关键是证明相似三角形,第(3)小题关键在于构造矩形.26.(8分)如图,▱ABCD中,∠ABC的平分线BO交边AD于点O,OD=4,以点O为圆心,OD 长为半径作⊙O,分别交边DA、DC于点M、N.点E在边BC上,OE交⊙O于点G,G为的中点.(1)求证:四边形ABEO为菱形;(2)已知cos∠ABC=,连接AE,当AE与⊙O相切时,求AB的长.【知识考点】平行四边形的性质;菱形的判定与性质;垂径定理;圆周角定理;切线的判定与性质;解直角三角形.【思路分析】(1)先由G为的中点及同弧所对的圆周角和圆心角的关系得出∠MOG=∠MDN,再由平行四边形的性质得出AO∥BE,∠MDN+∠A=180°,进而判定四边形ABEO是平行四边形,然后证明AB=AO,则可得结论;(2)过点O作OP⊥BA,交BA的延长线于点P,过点O作OQ⊥BC于点Q,设AB=AO=OE =x,则由cos∠ABC=,可用含x的式子分别表示出PA、OP及OQ,由勾股定理得关于x的方程,解得x的值即可.【解题过程】解:(1)证明:∵G为的中点,∴∠MOG=∠MDN.∵四边形ABCD是平行四边形.∴AO∥BE,∠MDN+∠A=180°,∴∠MOG+∠A=180°,∴AB∥OE,∴四边形ABEO是平行四边形.∵BO平分∠ABE,∴∠ABO=∠OBE,又∵∠OBE=∠AOB,∴∠ABO=∠AOB,∴AB=AO,∴四边形ABEO为菱形;(2)如图,过点O作OP⊥BA,交BA的延长线于点P,过点O作OQ⊥BC于点Q,设AE交OB于点F,则∠PAO=∠ABC,设AB=AO=OE=x,则∵cos∠ABC=,∴cos∠PAO=,∴=,∴PA=x,∴OP=OQ=x当AE与⊙O相切时,由菱形的对角线互相垂直,可知F为切点,∴由勾股定理得:+=82,解得:x=2(舍负).∴AB的长为2.【总结归纳】本题考查了平行四边形的判定与性质、菱形的判定与性质、解直角三角形、切线的性质及勾股定理等知识点,熟练掌握相关性质及定理是解题的关键.27.(11分)【算一算】如图①,点A、B、C在数轴上,B为AC的中点,点A表示﹣3,点B表示1,则点C表示的数为,AC长等于;【找一找】如图②,点M、N、P、Q中的一点是数轴的原点,点A、B分别表示实数﹣1、+1,Q是AB的中点,则点N是这个数轴的原点;【画一画】如图③,点A、B分别表示实数c﹣n、c+n,在这个数轴上作出表示实数n的点E(要求:尺规作图,不写作法,保留作图痕迹);【用一用】学校设置了若干个测温通道,学生进校都应测量体温,已知每个测温通道每分钟可检测a个学生.凌老师提出了这样的问题:假设现在校门口有m个学生,每分钟又有b个学生到达校门口.如果开放3个通道,那么用4分钟可使校门口的学生全部进校;如果开放4个通道,那么用2分钟可使校门口的学生全部进校.在这些条件下,a、m、b会有怎样的数量关系呢?爱思考的小华想到了数轴,如图④,他将4分钟内需要进校的人数m+4b记作+(m+4b),用点A表示;将2分钟内由4个开放通道检测后进校的人数,即校门口减少的人数8a记作﹣8a,用点B表示.①用圆规在小华画的数轴上分别画出表示+(m+2b)、﹣12a的点F、G,并写出+(m+2b)的实际意义;②写出a、m的数量关系:.【知识考点】实数与数轴;二元一次方程组的应用;作图—复杂作图.【思路分析】(1)根据数轴上点A对应﹣3,点B对应1,求得AB的长,进而根据AB=BC可求得AC的长以及点C表示的数;(2)可设原点为O,根据条件可求得AB中点表示的数以及线段AB的长度,根据AB=2,可得AQ=BQ=1,结合OQ的长度即可确定N为数轴的原点;(3)设AB的中点为M,先求得AB的长度,得到AM=BM=n,根据线段垂直平分线的作法作图即可;(4)①根据每分钟进校人数为b,每个通道每分钟进入人数为a,列方程组,根据m+2b=OF,m+4b=12a,即可画出F,G点,其中m+2b表示两分钟后,校门口需要进入学校的学生人数;②解①中的方程组,即可得到m=4a.。

镇江2020中考数学综合模拟测试卷(含答案)

镇江2020中考数学综合模拟测试卷(含答案)

2020镇江市初中毕业升学模拟考试数学试题(含答案全解全析)一、填空题(本大题共有12小题,每小题2分,共计24分)1.|-5|= .2.计算:-×3=.3.化简:(x+1)(x-1)+1= .4.分式在实数范围内有意义,则x的取值范围是.-5.如图,CD是△ABC的中线,点E、F分别是AC、DC的中点,EF=1,则BD= .6.如图,直线m∥n,Rt△ABC的顶点A在直线n上,∠C=90°.若∠1=25°,∠2=70°,则∠B= °.7.一组数据:1,2,1,0,2,a,若它们的众数为1,则这组数据的平均数为.8.若关于x的一元二次方程x2+x+m=0有两个相等的实数根,则m= .9.已知圆锥的底面半径为3,母线长为8,则圆锥的侧面积等于.10.如图,将△OAB绕着点O逆时针连续旋转两次得到△OA″B″,每次旋转的角度都是50°,若∠B″OA=120°,则∠AOB= °.11.一辆货车从甲地匀速驶往乙地,到达乙地后用了半小时卸货,随即匀速返回,已知货车返回时的速度是它从甲地驶往乙地的速度的1.5倍,货车离甲地的距离y(千米)关于时间x(小时)的函数图象如图所示,则a= (小时).12.满足≥2014×(-+1)的n可以取得的最小正整数是.二、选择题(本大题共有5小题,每小题3分,共计15分.在每小题所给出的四个选项中,恰有一项符合题目要求)13.下列运算正确的是( )A.(x3)3=x9B.(-2x)3=-6x3C.2x2-x=xD.x6÷x3=x214.一个圆柱如图放置,则它的俯视图是( )A.三角形B.半圆C.圆D.矩形15.若实数x、y满足-+2(y-1)2=0,则x+y的值等于( )A.1B.C.2D.16.如图,△ABC内接于半径为5的☉O,圆心O到弦BC的距离等于3,则∠A的正切值等于( )A. B. C. D.17.已知过点(2,-3)的直线y=ax+b(a≠0)不经过第一象限.设s=a+2b,则s的取值范围是( )A.-5≤s≤-B.-6<s≤-C.-6≤s≤-D.-7<s≤-三、解答题(本大题共有11小题,共计81分.解答时应写出必要的文字说明、证明过程或演算步骤)18.(本小题满分8分)(1)计算:-+cos45°-;(2)化简:-÷--.19.(本小题满分10分)(1)解方程:-=0;(2)解不等式:2+-≤x,并将它的解集在数轴上表示出来.20.(本小题满分6分)如图,在四边形ABCD中,AB=AD,BC=DC,AC、BD相交于点O,点E在AO上,且OE=OC.(1)求证:∠1=∠2;(2)连结BE、DE,判断四边形BCDE的形状,并说明理由.21.(本小题满分6分)为了了解“通话时长”(“通话时长”指每次通话时间)的分布情况,小强收集了他家1000个“通话时长”数据,这些数据均不超过18(单位:分钟),他从中随机抽取了若干个数据作为样本,统根据图、表提供的信息,解答下面的问题:(1)a= ,样本容量是,并将这个频数分布直方图补充完整;(2)求样本中“通话时长”不超过9分钟的频率;(3)请估计小强家这1000次通话中“通话时长”超过15分钟的次数.22.(本小题满分6分)在一只不透明的布袋中装有红球、黄球各若干个,这些球除颜色外都相同,充分摇匀.(1)若布袋中有3个红球,1个黄球.从袋中一次摸出2个球,计算“摸出的球恰是一红一黄”的概率(用“画树状图”或“列表”的方法写出计算过程);(2)若布袋中有3个红球,x个黄球.请写出一个x的值,使得事件“从袋中一次摸出4个球,都是黄球”是不可能事件;(3)若布袋中有3个红球,4个黄球.我们知道:“从袋中一次摸出4个球,至少有一个黄球”为必然事件.请你仿照这个表述,设计一个必然事件: .23.(本小题满分6分)在平面直角坐标系xOy中,直线y=kx+4(k≠0)与y轴交于点A.(1)如图,直线y=-2x+1与直线y=kx+4(k≠0)交于点B,与y轴交于点C,点B的横坐标为-1.①求点B的坐标及k的值;②直线y=-2x+1、直线y=kx+4与y轴所围成的△ABC的面积等于;(2)直线y=kx+4(k≠0)与x轴交于点E(x0,0),若-2<x0<-1,求k的取值范围.24.(本小题满分6分)如图,小明从点A处出发,沿着坡角为α的斜坡向上走了0.65千米到达点B,sinα=,然后又沿着坡度为i=1∶4的斜坡向上走了1千米到达点C.问小明从A点到C点上升的高度CD 是多少千米(结果保留根号)?25.(本小题满分6分)六·一儿童节,小文到公园游玩,看到公园的一段人行弯道MN(不计宽度),如图,它与两面互相垂直的围墙OP、OQ之间有一块空地MPOQN(MP⊥OP,NQ⊥OQ),他发现弯道MN上任一点到两边围墙的垂线段与围墙所围成的矩形的面积都相等,比如:A、B、C是弯道MN上三点,矩形ADOG、矩形BEOH、矩形CFOI的面积相等.爱好数学的他建立了平面直角坐标系(如图),图中三块阴影部分的面积分别记为S1、S2、S3,并测得S2=6(单位:平方米),OG=GH=HI.(1)求S1和S3的值;(2)设T(x,y)是弯道MN上的任一点,写出y关于x的函数关系式;(3)公园准备对区域MPOQN内部进行绿化改造,在横坐标、纵坐标都是偶数的点处种植花木(区域边界上的点除外),已知MP=2米,NQ=3米.问一共能种植多少棵花木?26.(本小题满分8分)如图,☉O的直径AC与弦BD相交于点F,点E是DB延长线上一点,∠EAB=∠ADB.(1)求证:EA是☉O的切线;(2)已知点B是EF的中点.求证:以A、B、C为顶点的三角形与△AEF相似;(3)已知AF=4,CF=2,在(2)的条件下,求AE的长.27.(本小题满分9分)如图1,在平面直角坐标系xOy中,点M为抛物线y=-x2+2nx-n2+2n的顶点,过点(0,4)作x轴的平行线,交抛物线于点P、Q(点P在点Q的左侧),PQ=4.(1)求抛物线的函数关系式,并写出点P的坐标;(2)小丽发现:将抛物线y=-x2+2nx-n2+2n绕着点P旋转180°,所得新抛物线的顶点恰为坐标原点O.你认为正确吗?请说明理由;(3)如图2,已知点A(1,0),以PA为边作矩形PABC(点P、A、B、C按顺时针的方向排列),=.①写出C点的坐标:C( , )(坐标用含有t的代数式表示);②若点C在题(2)中旋转后的新抛物线上,求t的值.28.(本小题满分10分)我们知道平行四边形有很多性质.现在如果我们把平行四边形沿着它的一条对角线翻折,会发现这其中还有更多的结论.【发现与证明】▱ABCD中,AB≠BC,将△ABC沿AC翻折至△AB'C,连结B'D.结论1:B'D∥AC;结论2:△AB'C与▱ABCD重叠部分的图形是等腰三角形.……请利用图1证明结论1或结论2(只需证明一个结论).【应用与探究】在▱ABCD中,已知∠B=30°,将△ABC沿AC翻折至△AB'C,连结B'D.(1)如图1,若AB=,∠AB'D=75°,则∠ACB= °,BC=;(2)如图2,AB=2,BC=1,AB'与边CD相交于点E,求△AEC的面积;(3)已知AB=2,当BC长为多少时,△AB'D是直角三角形?答案全解全析:一、填空题1.答案5解析负数的绝对值是它的相反数,所以|-5|=5.2.答案-1解析-×3=-=-1.3.答案x2解析(x+1)(x-1)+1=x2-1+1=x2.4.答案x≠1解析要使有意义,则x-1≠0,所以x≠1.-5.答案2解析∵点E、F分别是AC、DC的中点,∴EF是△ACD的中位线,∴AD=2EF=2,又∵CD是△ABC的中线,∴BD=AD=2.6.答案45解析∵m∥n,∴∠2=∠BAC+∠1,∴∠BAC=∠2-∠1=45°,∴∠B=90°-∠BAC=45°.7.答案解析一组数据1,2,1,0,2,a的众数为1,所以a=1,则这一组数据的平均数为=.评析本题考查了众数和平均数的概念,属容易题.8.答案解析因为一元二次方程有两个相等的实数根,所以Δ=12-4m=0,解得m=.9.答案24π解析S侧面积=×2π×3×8=24π.评析圆锥侧面展开图的弧长是圆锥的底面周长,半径是圆锥的母线长,属容易题.10.答案20解析∠B″OA=2×50°+∠AOB,所以∠AOB=120°-100°=20°.11.答案5解析由题意可知,货车从甲地到乙地所用的时间为3.2-0.5=2.7小时,所以货车从乙地返回到甲地所用的时间为=1.8小时,所以a=3.2+1.8=5小时.12.答案7解析由题意可得,a2+b2+c2=3(a1+b1+c1)=32(++1),同理,a3+b3+c3=3(a2+b2+c2)=32(a1+b1+c1)=33(++1),…,a n+b n+c n=3n(++1),所以==3n(-+1),不等式≥2014×(-+1)可转化为:3n≥2014,而36<2014<37,所以n可以取得的最小正整数是7.评析本题首先要观察a1+b1+c1,a2+b2+c2,a3+b3+c3,…,a n+b n+c n前后项的关系,进而得出a n+b n+c n的表达式,在解不等式3n≥2014时,主要看2014和3的几次幂相接近,从而找到最小的正整数n,属难题.二、选择题13.A (x3)3=x3×3=x9,所以A正确,故选A.14.D 从上往下看该圆柱得到的图形是矩形,故选D.15.B 由完全平方式和二次根式的非负性可知,2x-1=0,y-1=0,所以x=,y=1,所以x+y=.故选B.16.D 连结CO并延长交☉O于点D,则CD为☉O的直径,连结BD,作OE⊥BC交BC于点E,依题意可得BD=2OE=6,又CD=2×5=10,所以BC=-=8,所以tan D===.又因为∠A=∠D,所以tan A=,故选D.评析本题综合考查圆周角定理,垂径定理,解直角三角形等有关知识,属中等难度题.17.B ∵直线y=ax+b(a≠0)不经过第一象限,∴a<0,b≤0,又∵直线过点(2,-3),∴2a+b=-3,∴b=-2a-3,∴s=a+2b=-3a-6,解不等式组--得-≤a<0,∴-6<-3a-6≤-,即-6<s≤-.三、解答题18.解析(1)原式=2+×-3(3分)=0.(4分)(2)原式=---÷--(1分)=--·--(3分)=3x-3.(4分)19.解析(1)去分母,得3x+6-2x=0,(2分)解得x=-6,(4分)经检验,x=-6是原方程的解.故原方程的解为x=-6.(5分)(2)去分母,得6+2x-1≤3x,(2分)解得x≥5.(4分)它的解集在数轴上表示如下:(5分)评析本题考查了分式方程和一元一次不等式的解法,解分式方程时一定要注意验根.在数轴上表示不等式的解集时要注意方向和实心圆与空心圆的判断,属容易题.20.解析(1)在△ABC与△ADC中,AB=AD,BC=DC,AC=AC,∴△ABC≌△ADC,(2分)∴∠1=∠2.(3分)(2)菱形.理由:∵BC=DC,∠1=∠2,∴OD=OB,OC⊥BD.(4分)∵OE=OC,∴四边形BCDE是平行四边形.(5分)∵OC⊥BD,∴▱BCDE是菱形.(6分)21.解析(1)24;100;频数分布直方图补充完整如下图.(3分) (2)=0.68.答:“通话时长”不超过9分钟的频率为0.68.(4分)(3)1000×=120.答:“通话时长”超过15分钟的次数为120.(6分)评析本题考查了数据分析的方法及用样本估计总体的思想,属容易题.22.解析(1)设三个红球分别为红1,红2,红3,列表如下:(2分)∴共有12种等可能的结果,∴P(摸出的球恰是一红一黄)=.(4分)(2)1.(答案不唯一,x可取1≤x≤3之间的整数)(5分)(3)答案不唯一.(6分)23.解析(1)①当x=-1时,y=-2×(-1)+1=3,∴B(-1,3).(1分)将B(-1,3)代入y=kx+4,得k=1.(2分)②.(4分)(2)2<k<4.(6分)评析本题考查两直线的交点,直角坐标系中三角形面积的计算等,属容易题.24.解析作BE⊥AD于E,BF⊥CD于F,则sinα==,∴BE=AB×=0.65×=.(2分)∵i==,(3分)设CF=x,则BF=4x,∴BC=x=1,∴CF=x=.(5分)∵BE⊥AD,BF⊥CD,CD⊥AD,∴四边形BEDF是矩形,∴BE=DF,∴CD=CF+DF=CF+BE=千米.答:小明从A点到C点上升的高度CD是千米.(6分)25.解析(1)根据题意:S1+S2+S3=2S2+2S3=3S3,(1分)又∵S2=6,∴S1=18,S3=12.(3分)(设面积为k,表示出各点坐标的解题方法相应给分)(2)点T(x,y)是弯道MN上任一点,根据弯道MN上任一点到围墙两边的垂线段与围墙所围成的矩形的面积都相等,得xy=3S3=36,∴y=.(4分)(3)一共能种植17棵花木.(6分)26.解析(1)连结BC,∵AC是☉O的直径,∴∠ABC=90°,(1分)∴∠BAC+∠ACB=90°,∵∠ADB=∠ACB,又∵∠EAB=∠ADB,∴∠EAB=∠ACB,∴∠BAC+∠EAB=90°,即∠EAC=90°,(2分)又∵点A在☉O上,∴EA是☉O的切线.(3分)(2)∵点B是EF的中点,∠EAC=90°,∴AB=BE=BF=EF,∴∠EAB=∠AEB,(4分)又∵∠EAB=∠ACB,∴∠AEB=∠ACB.∵∠EAC=∠ABC=90°,∴△AEF∽△BCA.(5分)(3)∵△AEF∽△BCA,∴=,∴=,∴AB=2.(7分)∴EF=4.∴AE=-=-=4.(8分)评析本题考查圆的切线的判定方法,相似三角形的判定及性质,属中等难度题.27.解析(1)解法一:在y=-x2+2nx-n2+2n中,令y=4,得-x2+2nx-n2+2n=4,∴x1=n+-,x2=n--,(1分)∴PQ=2-=4,∴n=4,∴抛物线的函数关系式为y=-x2+8x-8,(3分)∴点P(2,4).(4分)解法二:∵y=-x2+2nx-n2+2n=-(x-n)2+2n,∴M(n,2n).根据抛物线的对称性可设P(n-2,4),Q(n+2,4),(1分)把点P(n-2,4)代入抛物线y=-(x-n)2+2n,得-(n-2-n)2+2n=4,解得n=4,∴抛物线的函数关系式为y=-x2+8x-8,(3分)点P(2,4).(4分)(2)解法一:由(1)可得M(4,8),∴直线OM的函数关系式为y=2x.∵点P(2,4)满足直线OM的函数关系式,∴点P在直线OM上.(5分)易知OP=2,OM=4,∴点P是线段OM的中点,∴将抛物线y=-x2+8x-8绕着点P旋转180°,所得新抛物线的顶点恰为坐标原点O.(6分)解法二:由(1)可得M(4,8).设P'是线段OM的中点,过点P'、M分别作P'D⊥x轴,ME⊥x轴,垂足分别为D、E,∴P'D∥ME,∴△OP'D∽△OME.∵P'为线段OM的中点,∴===,∴P'D=ME=4,OD=OE=2,∴点P'的坐标为(2,4),(5分)∴点P与点P'重合,∴点P是线段OM的中点,∴将抛物线y=-x2+8x-8绕着点P旋转180°,所得新抛物线的顶点恰为坐标原点O.(6分) (3)C(2-4t,4+t).(8分,横纵坐标答对各给1分)在(2)中旋转后的新抛物线的解析式为y=x2,把C(2-4t,4+t)代入y=x2,得t=0(舍去)或t=.(9分)28.解析【发现与证明】证明:如图1,设AD与B'C相交于点F,∵△ABC沿直线AC翻折至△AB'C,∴△ABC≌△AB'C,∴∠ACB=∠ACB',BC=B'C,∵四边形ABCD为平行四边形,∴AD=BC,AD∥BC,图1∴B'C=AD,∠ACB=∠CAD,∴∠ACB'=∠CAD=-,∴AF=CF,(1分)∴B'F=DF,∴∠CB'D=∠B'DA=-.∵∠AFC=∠B'FD,∴∠ACB'=∠CB'D,∴B'D∥AC.(2分)【应用与探究】(1)45;(3分)+.(4分)(2)解法一:过点C分别作CG⊥AB,CH⊥AB',垂足分别为G、H,∴CG=CH.在Rt△BCG中,∠BGC=90°,BC=1,∠B=30°,∴CG=,BG=.∵AB=2,∴AG=,∴CH=CG=.由△AGC≌△AHC,得AH=AG=.设AE=x,则CE=x,由CE2=CH2+HE2,得x2=+-,解得x=,(5分)∴△ACE的面积=AE·CH=.(6分)解法二:分别过点C、A作CG⊥AB,AI⊥CD,垂足分别为G、I,∵AB∥CD,∴四边形AGCI是矩形,∴CG=AI,AG=CI.在Rt△BCG中,∠BGC=90°,BC=1,∠B=30°,∴CG=,BG=.∵AB=2,∴AG=,∴AI=CG=,CI=AG=,设AE=x,则CE=x,由AE2=EI2+AI2,得x2=+-,∴x=,(5分)∴△ACE的面积=AI·CE=.(6分)(3)解法一:按△AB'D中的直角分类:①当∠B'AD=90°时,如图3,∠ACB=30°,BC=6;如图4,∠BAC=30°,BC=2;②当∠AB'D=90°时,如图5,∠ACB=60°,BC=4;③当∠ADB'=90°时,如图6,∠ACB=90°,BC=3;综上,BC的长为6,2,4或3.(10分,各1分)解法二:按点B'在直线AD上方、下方的位置分类:第一种情形:点B'在直线AD上方,设∠ACB=α,可得∠B'AD=150°-2α,∠B'DA=α,∠AB'D=30°+α,由∠B'AD=150°-2α>0,得0°<α<75°.①当∠B'AD=90°时,150°-2α=90°,∴α=30°,BC=6;②当∠AB'D=90°时,30°+α=90°,∴α=60°,BC=4;③当∠ADB'=90°时,α=90°(舍去);第二种情形:点B'在直线AD下方,设∠ACB=α,可得∠B'AD=2α-150°,∠B'DA=180°-α,∠AB'D=150°-α,同理可得:75°<α<150°.①当∠B'AD=90°时,2α-150°=90°,∴α=120°,BC=2;②当∠AB'D=90°时,150°-α=90°,∴α=60°(舍去);③当∠ADB'=90°时,180°-α=90°,∴α=90°,BC=3.综上,BC的长为6,2,4或3.(10分,各1分)图3 图4图5 图6评析本题考查利用勾股定理构造方程求线段的长度,以及分类讨论思想,属难题.。

2020年江苏省镇江市中考数学试题(word版,含解析)

2020年江苏省镇江市中考数学试题(word版,含解析)

2020年江苏省镇江市中考数学试题(word版,含解析)2020年江苏省镇江市中考数学试卷一、选择题:(本大题共6小题,每小题3分,共18分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

)1.下列计算正确的是()A。

a+a=aB。

32a=a6C。

a6÷a2=a3D。

(ab)3=ab332.如图,将棱长为6的正方体截去一个棱长为3的正方体后,得到一个新的几何体,这个几何体的主视图是()无法呈现图形)3.一次函数y=kx+3(k≠0)的函数值y随x的增大而增大,它的图像不经过的象限是()A。

第一B。

第二C。

第三D。

第四4.如图,AB是半圆的直径,C、D是半圆上的两点,∠ADC=106°,则∠CAB等于()无法呈现图形)A。

10°B。

14°C。

16°D。

26°5.点P(m,n)在以y轴为对称轴的二次函数y=x+ax+4的图像上,则m-n的最大值等于()A。

215B。

4C。

-4D。

-156.如图∠ABC,AB=5,射线AM∠BN,点C在射线BN 上,将∠___沿AC所在直线翻折,点B的对应点D落在射线BN上,点P、Q分别在射线AM、BN上,PQ∠AB。

设AP=x,QD=y。

若y关于x的函数图像(如图∠)经过点E(9,2),则cosB的值等于()无法呈现图形)A。

2/3B。

√3/5C。

5/6D。

1/2二、填空题(本大题共12小题,每小题2分,共24分)7.2的倒数等于1/2.8.使x-2有意义的x的取值范围是(-∞。

+∞)。

9.分解因式:9x-1=(3x-1)(3x+1)。

10.2020年我国将完成脱贫攻坚目标任务。

从2012年底到2019年底,我国贫困人口减少了xxxxxxxx人,用科学记数法把xxxxxxxx表示为9.348×10^7.11.一元二次方程x^2-2x=0的两根分别为0和2.12.一只不透明的袋子中装有5个红球和1个黄球,这些球除颜色外都相同,搅匀后从中任意摸出1个球,摸出红球的概率等于5/6.13.圆锥底面圆半径为5,母线长为6,则圆锥侧面积等于5√29.14.点O是正五边形ABCDE的中心,分别以各边为直径向正五边形的外部作半圆,组成了一幅美丽的图案(如图)。

2020届中考复习镇江市市区中考数学一模试题(有配套答案)

2020届中考复习镇江市市区中考数学一模试题(有配套答案)

江苏省镇江市市区中考数学一模试卷一、填空题(本大题共有12小题,每小题2分,共计24分.)1.﹣5的相反数是.2.计算:()2= .3.如图,a∥b,直线c与直线a,b相交,已知∠1=110°,则∠2= °.4.当a= 时,式子的值为2.5.如果从初三(1)、(2)、(3)班中随机抽取一个班与初三(4)班进行一场拔河比赛,那么恰好抽到初三(1)班的概率是.6.一组数据:3,5,2,5,3,7,5,则这组数据的中位数是.7.如图,半径为3cm的扇形纸片的周长为10cm,将它围成一个圆锥的侧面,则圆锥的底面圆的半径等于cm.(结果保留π)8.如图,P是菱形ABCD对角线BD上一点,PE⊥AB于点E,PE=4cm,则点P到BC的距离是cm.9.如图,△ABC内接于⊙O,∠BAC=30°,BC=,则⊙O的半径等于.10.在直角坐标系中有两点A(6,3)、B(6,0).以原点O为位似中心,把线段AB按相似的1:3缩小后得到线段CD,点C在第一象限(如图),则点C的坐标为.11.设甲、乙两车在同一直线公路上相向匀速行驶,相遇后两车停下来,把乙车的货物卸到甲车用了100秒,然后两车分别按原路原速返回.设x秒后两车之间的距离为y米,y关于x的函数关系如图所示,则a= 米.12.如图,一次函数与反比例函数的图象交于A(1,12)和B(6,2)两点.点P是线段AB上一动点(不与点A和B重合),过P点分别作x、y轴的垂线PC、PD交反比例函数图象于点M、N,则四边形PMON面积的最大值是.二、选择题(本大题共有5小题,每小题3分,共计15分.在每小题所给出的四个选项中,恰有一项符合题目要求.)13.江苏省占地面积约为107200平方公里.将107200用科学记数法表示应为()A.0.1072×106B.1.072×105C.1.072×106D.10.72×10414.如图是几何体的三视图,该几何体是()A.正三棱柱 B.正三棱锥 C.圆锥 D.圆柱15.已知实数a<0,则下列事件中是必然事件的是()A.a+3<0 B.a﹣3<0 C.3a>0 D.a3>016.已知点E(2,1)在二次函数y=x2﹣8x+m(m为常数)的图象上,则点E关于图象对称轴的对称点坐标是()A.(4,1) B.(5,1) C.(6,1) D.(7,1)17.如图,正方形ABCD边长为2,点P是线段CD边上的动点(与点C,D不重合),∠PBQ=45°,过点A 作AE∥BP,交BQ于点E,则下列结论正确的是()A.BP•BE=2B.BP•BE=4C. = D. =三、解答题(本大题共有11小题,共计81分.解答时应写出必要的文字说明、证明过程或演算步骤.)18.计算:•sin45°+(3﹣π)0+(﹣2)(2)化简:(a﹣)÷.19.(1)解方程组:(2)解不等式: +1≥x﹣3.20.如图,E、F分别是▱ABCD的边BC、AD上的中点.(1)求证:△ABE≌△CDF;(2)当∠BAC= °时,四边形AECF是菱形.21.图①表示的是某综合商场今年1~5月的商品各月销售总额的情况,图②表示的是商场服装部各月销售额占商场当月销售总额的百分比情况,观察图①、图②,解答下列问题:(1)来自商场财务部的数据报告表明,商场1~5月的商品销售总额一共是410万元,请你根据这一信息将图①中的统计图补充完整;(2)商场服装部5月份的销售额是多少万元?(3)小刚观察图②后认为,5月份商场服装部的销售额比4月份减少了.你同意他的看法吗?请说明理由.22.甲、乙两人做游戏,规则如下:每人手中各持分别标有“1”、“2”、“3”的三张纸牌,甲、乙背靠背同时从各自的纸牌中随机抽取一张,规定纸牌数字大的获胜,数字相同时不分胜负.请你用树状图或列表法求甲获胜的概率.23.某校为迎接中学生文娱汇演,原计划由八年级(1)班的3个小组制作288面彩旗,后因时间紧急,增加了1个小组参与任务,完成任务过程中,每名学生可比原计划少做3面彩旗.如果每个小组的人数相等,那么每个小组有学生多少名?24.已知:线段a,b和∠MBN(1)作△ABC,使BC=a,AC=b,∠ABC=∠MBN;(2)当∠MBN=30°时,如果(1)中所作的三角形只能有一个,则a,b间满足的数量关系式是.25.从一幢建筑大楼的两个观察点A,B观察地面的花坛(点C),测得俯角分别为15°和60°,如图,直线AB与地面垂直,AB=50米,试求出点B到点C的距离.(结果保留根号)26.一个不透明的盒中装有若干个除颜色外都相同的红球与黄球.在这个口袋中先放入2个白球,再进行摸球试验,摸球试验的要求:先搅拌均匀,每次摸出一个球,记录颜色后放回盒中,再继续摸球,全班一共做了400次这样的摸球试验.如果知道摸出白球的频数是40,你能估计在未放入白球前,袋中原来共有多少个小球吗?(2)提出问题:一个不透明的盒中装有若干个只有颜色不一样的红球与黄球,怎样估算不同颜色球的数量?活动操作:先从盒中摸出8个球,画上记号放回盒中.再进行摸球试验,摸球试验的要求:先搅拌均匀,每次摸出一个球,记录颜色、是否有记号,放回盒中,再继续摸球、记录、放回袋中.统计结果:摸球试验活动一共做了50次,统计结果如下表:球的类别无记号有记号红色黄色红色黄色摸到的次数18 28 2 2由上述的摸球试验推算:①盒中红球、黄球各占总球数的百分比分别是多少?②盒中有红球多少个?27.如图,AB为⊙O的直径,AB=2,点在M在QO上,MC垂直平分OA,点N为直线AB上一动点(N不与A 重合),若△MNP∽△MAC,PC与直线AB所夹锐角为α.(1)若AM=AC,点N与点O重合,则α= °;(2)若点C、点N的位置如图所示,求α的度数;(3)当直线PC与⊙O相切时,则MC的长为.28.如图,在平面直角坐标系中,一次函数y=﹣x﹣3分别与x轴、y轴相交于A、B两点,二次函数y=x2+mx+n (m≠6)的图象经过点A.(1)试证明二次函数y=x2+mx+n(m≠6)的图象与x轴有两个交点;(2)若二次函数y=x2+mx+n图象的顶点D在直线AB上,求m,n的值;(3)设二次函数y=x2+mx+n的图象与x轴的另一个交点为点C,顶点D关于x轴的对称点设为点E,以AE,AC为邻边作平行四边形EACF,顶点F能否在该二次函数的图象上?如果在,求出这个二次函数的表达式;如果不在,请说明理由?江苏省镇江市市区中考数学一模试卷参考答案与试题解析一、填空题(本大题共有12小题,每小题2分,共计24分.)1.﹣5的相反数是 5 .【考点】相反数.【分析】根据相反数的定义直接求得结果.【解答】解:﹣5的相反数是5.故答案为:5.【点评】本题主要考查了相反数的性质,只有符号不同的两个数互为相反数,0的相反数是0.2.计算:()2= .【考点】有理数的乘方.【分析】根据有理数的乘方的定义进行计算即可得解.【解答】解:()2=.故答案为:.【点评】本题考查了有理数的乘方,是基础题,熟记概念并准确计算是解题的关键.3.如图,a∥b,直线c与直线a,b相交,已知∠1=110°,则∠2= 70 °.【考点】平行线的性质.【分析】先根据平行线的性质求出∠3的度数,再由补角的定义即可得出结论.【解答】解:∵a∥b,∠1=110°,∴∠3=∠1=110°,∴∠2=180°﹣110°=70°.故答案为:70.【点评】本题考查的是平行线的性质,用到的知识点为:两直线平行,同位角相等.4.当a= 4 时,式子的值为2.【考点】算术平方根.【分析】根据题意得出=2,求出即可.【解答】解:根据题意得: =2,即a=4,故答案为:4.【点评】本题考查了算术平方根,能根据=2求出a是解此题的关键.5.如果从初三(1)、(2)、(3)班中随机抽取一个班与初三(4)班进行一场拔河比赛,那么恰好抽到初三(1)班的概率是.【考点】概率公式.【分析】由从初三(1)、(2)、(3)班中随机抽取一个班与初三(4)班进行一场拔河比赛,直接利用概率公式求解即可求得答案.【解答】解:∵从初三(1)、(2)、(3)班中随机抽取一个班与初三(4)班进行一场拔河比赛,∴恰好抽到初三(1)班的概率是:.故答案为:.【点评】此题考查了概率公式的应用.用到的知识点为:概率=所求情况数与总情况数之比.6.一组数据:3,5,2,5,3,7,5,则这组数据的中位数是 5 .【考点】中位数.【分析】把这组数按从大到小(或从小到大)的顺序排列,因为数的个数是奇数个,所以中间那个数就是中位数.【解答】解:按照从小到大的顺序排列为:2,3,3,5,5,5,7,中位数为:5.故答案为:5.【点评】本题考查了中位数的定义,解题时牢记中位数的定义是关键.7.如图,半径为3cm的扇形纸片的周长为10cm,将它围成一个圆锥的侧面,则圆锥的底面圆的半径等于cm.(结果保留π)【考点】圆锥的计算;弧长的计算.【分析】首先根据题意确定扇形的弧长,然后根据扇形的弧长等于圆锥的底面周长求解.【解答】解:∵半径为3cm的扇形纸片的周长为10cm,∴扇形的弧长为10﹣3﹣3=4cm,设圆锥的底面周长为r,则2πr=4,∴r==,故答案为:.【点评】本题考查了圆锥的计算及弧长的计算,能够了解圆锥的底面周长等于扇形的弧长是解答本题的关键,难度不大.8.如图,P是菱形ABCD对角线BD上一点,PE⊥AB于点E,PE=4cm,则点P到BC的距离是 4 cm.【考点】菱形的性质.【分析】根据菱形的性质,BD是∠ABC的平分线,再根据角平分线的性质即可得到点P到BC的距离.【解答】解:在菱形ABCD中,BD是∠ABC的平分线,∵PE⊥AB于点E,PE=4cm,∴点P到BC的距离=PE=4cm.故答案为:4.【点评】本题利用菱形的对角线平分一组对角的性质求解,熟练掌握菱形的性质是解题的关键.9.如图,△ABC内接于⊙O,∠BAC=30°,BC=,则⊙O的半径等于.【考点】三角形的外接圆与外心.【分析】首先作⊙O的直径CD,连接BD,可得∠CBD=90°,然后由直角三角形的性质求出直径CD,即可求得答案.【解答】解:作⊙O的直径CD,连接BD,如图所示:∴∠CBD=90°,∵∠D=∠BAC=30°,BC=,∴CD=2BC=2,∴⊙O的半径=.故答案为:.【点评】此题考查了圆周角定理以及直角三角形的性质.此题难度不大,注意掌握辅助线的作法,注意掌握数形结合思想的应用.10.在直角坐标系中有两点A(6,3)、B(6,0).以原点O为位似中心,把线段AB按相似的1:3缩小后得到线段CD,点C在第一象限(如图),则点C的坐标为(2,1).【考点】位似变换;坐标与图形性质.【分析】根据位似变换的性质可知,△ODC∽△OBA,相似比是,根据已知数据可以求出点C的坐标.【解答】解:由题意得,△ODC∽△OBA,相似比是,∴=,又∵OB=6,AB=3,∴OD=2,CD=1,∴点C的坐标为:(2,1).故答案为:(2,1).【点评】本题考查的是位似变换,掌握位似变换与相似的关系是解题的关键,注意位似比与相似比的关系的应用.11.设甲、乙两车在同一直线公路上相向匀速行驶,相遇后两车停下来,把乙车的货物卸到甲车用了100秒,然后两车分别按原路原速返回.设x秒后两车之间的距离为y米,y关于x的函数关系如图所示,则a= 225 米.【考点】一次函数的应用.【分析】根据图象可以看出,经过20秒甲、乙两车一共行驶900米,得出甲、乙两车的速度和,又把乙车的货物卸到甲车后两车分别按原路原速返回,则所求a值为速度和乘以时间5秒.【解答】解:∵经过20秒甲、乙两车一共行驶900米,∴甲、乙两车的速度和为:900÷20=45(米/秒),∴a=45×(125﹣120)=225(米).故答案为225.【点评】本题是一道运用函数图象表示出来的行程问题,考查了相遇问题的运用,路程=速度×时间的运用,解答时认真分析函数图象的含义是关键.12.如图,一次函数与反比例函数的图象交于A(1,12)和B(6,2)两点.点P是线段AB上一动点(不与点A和B重合),过P点分别作x、y轴的垂线PC、PD交反比例函数图象于点M、N,则四边形PMON面积的最大值是.【考点】反比例函数与一次函数的交点问题.【分析】由点A、B的坐标利用待定系数法即可求出一次函数与反比例函数的解析式,设出点P的坐标为(n,﹣2n+14)(1<n<6).由反比例的函数解析式表示出来M、N点的坐标,分割矩形OCPD,结合矩形和三角形的面积公式即可得出结论.【解答】解:设反比例函数解析式为y=,一次函数解析式为y=kx+b,由已知得:12=和,解得:m=12和.∴一次函数解析式为y=﹣2x+14,反比例函数解析式为y=.∵点P在线段AB上,∴设点P的坐标为(n,﹣2n+14)(1<n<6).令x=n,则y=;令y=﹣2n+14,则=﹣2n+14,解得:x=.∴点M(n,),点N(,﹣2n+14).S四边形PMON=S矩形OCPD﹣S△ODN﹣S△OCM=n(﹣2n+14)﹣n•﹣••(﹣2n+14)=﹣2n2+14n﹣12=﹣2+.∴当n=时,四边形PMON面积最大,最大面积为.故答案为:.【点评】本题考查了反比例函数与一次函数的交点问题以及待定系数法求函数解析式,解题的关键是利用分割法求出四边形PMON面积关于点P横坐标的函数关系式.本题属于基础题,难度不大,解决该题型题目时,根据分割法找出面积的函数关系式,再结合函数的性质(单调性、二次函数的顶点之类)来解决最值问题.二、选择题(本大题共有5小题,每小题3分,共计15分.在每小题所给出的四个选项中,恰有一项符合题目要求.)13.江苏省占地面积约为107200平方公里.将107200用科学记数法表示应为()A.0.1072×106B.1.072×105C.1.072×106D.10.72×104【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将107200用科学记数法表示为1.072×105.故选B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a的值以及n的值.14.如图是几何体的三视图,该几何体是()A.正三棱柱 B.正三棱锥 C.圆锥 D.圆柱【考点】由三视图判断几何体.【分析】该几何体的俯视图与左视图均为矩形,主视图为三角形,易得出该几何体的形状.【解答】解:该几何体的左视图为矩形,俯视图亦为矩形,主视图是一个三角形,则可得出该几何体为正三棱柱.故选:A.【点评】本题主要考查的是三视图的相关知识,解得此题时要有丰富的空间想象力,是个简单题.15.已知实数a<0,则下列事件中是必然事件的是()A.a+3<0 B.a﹣3<0 C.3a>0 D.a3>0【考点】随机事件.【分析】根据必然事件指在一定条件下,一定发生的事件,可得答案.【解答】解:A、a+3<0是随机事件,故A错误;B、a﹣3<0是必然事件,故B正确;C、3a>0是不可能事件,故C错误;D、a3>0是随机事件,故D错误;故选:B.【点评】本题考查了随机事件,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.16.已知点E(2,1)在二次函数y=x2﹣8x+m(m为常数)的图象上,则点E关于图象对称轴的对称点坐标是()A.(4,1) B.(5,1) C.(6,1) D.(7,1)【考点】二次函数图象上点的坐标特征;二次函数的性质.【分析】求得对称轴,即可求得对称点.【解答】解:由二次函数y=x2﹣8x+m可知对称轴为x=﹣=﹣=4,∵点E(2,1)与点(6,1)关于图象对称轴对称,∴点E关于图象对称轴的对称点坐标是(6,1),故选C.【点评】本题考查了二次函数图象上点的坐标特征,二次函数的性质,求得对称轴是解题的关键.17.如图,正方形ABCD边长为2,点P是线段CD边上的动点(与点C,D不重合),∠PBQ=45°,过点A 作AE∥BP,交BQ于点E,则下列结论正确的是()A.BP•BE=2B.BP•BE=4C. = D. =【考点】正方形的性质.【分析】连接AP,作EM⊥PB于M,根据S△PBE=S△ABP=S正方形ABCD=2即可解决问题.【解答】解:如图,连接AP,作EM⊥PB于M.∵AE∥PB,∴S△PBE=S△ABP=S正方形ABCD=2,∴•PB•EM=2,∵∠EBM=45°,∠EMB=90°,∴EM=BE,∴•PB•BE=2,∴PB•BE=4.故选B.【点评】本题考查正方形的性质、平行线的性质等知识,解题的关键是发现△PBE的面积是定值,题目有一定难度,属于中考选择题中的压轴题.三、解答题(本大题共有11小题,共计81分.解答时应写出必要的文字说明、证明过程或演算步骤.)18.(1)计算:•sin45°+(3﹣π)0+(﹣2)(2)化简:(a﹣)÷.【考点】实数的运算;分式的混合运算;零指数幂;特殊角的三角函数值.【专题】计算题;实数;分式.【分析】(1)原式第一项利用特殊角的三角函数值计算,第二项利用零指数幂法则计算即可得到结果;(2)原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分即可得到结果.【解答】解:(1)原式=×+1﹣2=1+1﹣2=0;(2)原式=•(a+1)=a2.【点评】此题考查了实数的运算,以及分式的混合运算,熟练掌握运算法则是解本题的关键.19.(1)解方程组:(2)解不等式: +1≥x﹣3.【考点】解一元一次不等式;解二元一次方程组.【分析】(1)利用加减法即可求解;(2)去分母,去括号,移项,合并同类项,系数化成1即可求解.【解答】解:(1)方程组:;①×3得3x+3y=0 ③③﹣②得x=﹣3,将x=﹣3代入①式,得y=3,则方程组的解为:;(2)解不等式:≥x﹣3,移项,得﹣x≥﹣3﹣1,合并同类项,得﹣≥﹣4,系数化为1得x≤8,则不等式的解集为:x≤8.【点评】本题考查了二元一次方程组和一元一次方程的解法,解方程组的基本思想是消元.20.如图,E、F分别是▱ABCD的边BC、AD上的中点.(1)求证:△ABE≌△CDF;(2)当∠BAC= 90 °时,四边形AECF是菱形.【考点】菱形的判定;全等三角形的判定与性质;平行四边形的性质.【分析】(1)首先根据平行四边形的性质1可得AD=BC,AB=CD,∠B=∠D,再根据中点的性质可得BE=DF,然后利用SAS判定△ABE≌△CDF即可;(2)首先证明四边形AECF是平行四边形,再添加∠BAC=90°,根据直角三角形斜边中线等于斜边的一半可得AE=EC,从而可判定四边形AECF是菱形.【解答】(1)证明:∵四边形ABCD是平行四边形,∴AD=BC,AB=CD,∠B=∠D,∵E、F分别是▱ABCD的边BC、AD上的中点,∴BE=BC,DF=AD,∴BE=DF.在△ABE和△CDF中,,∴△ABE≌△CDF(SAS);(2)当∠BAC=90°时,四边形AECF是菱形.∵四边形ABCD是平行四边形,∴AD=BC,AD∥BC,∴AF=EC,∴四边形AECF是平行四边形,∵∠BAC=90°,E为BC中点,∴AE=EC=BC,∴四边形AECF是菱形,故答案为:90.【点评】此题主要考查了平行四边形的性质和菱形的判定,关键是掌握平行四边形对边相等,对角相等,邻边相等的平行四边形是菱形.21.图①表示的是某综合商场今年1~5月的商品各月销售总额的情况,图②表示的是商场服装部各月销售额占商场当月销售总额的百分比情况,观察图①、图②,解答下列问题:(1)来自商场财务部的数据报告表明,商场1~5月的商品销售总额一共是410万元,请你根据这一信息将图①中的统计图补充完整;(2)商场服装部5月份的销售额是多少万元?(3)小刚观察图②后认为,5月份商场服装部的销售额比4月份减少了.你同意他的看法吗?请说明理由.【考点】条形统计图;折线统计图.【分析】(1)根据图①可得,1235月份的销售总额,再用总的销售总额减去这四个月的即可;(2)由图可知用第5月的销售总额乘以16%即可;(3)分别计算出4月和5月的销售额,比较一下即可得出答案.【解答】解:(1)410﹣(100+90+65+80)=410﹣335=75;如图:(2)商场服装部5月份的销售额是80万元×16%=12.8万元;(3)4月和5月的销售额分别是75万元和80万元,服装销售额各占当月的17%和16%,则为75×17%=12.75万元,80×16%=12.8万元,故小刚的说法是错误的.【点评】本题是统计题,考查了条形统计图和折线统计图,是基础知识要熟练掌握.22.甲、乙两人做游戏,规则如下:每人手中各持分别标有“1”、“2”、“3”的三张纸牌,甲、乙背靠背同时从各自的纸牌中随机抽取一张,规定纸牌数字大的获胜,数字相同时不分胜负.请你用树状图或列表法求甲获胜的概率.【考点】列表法与树状图法.【分析】首先根据题意列出表格,然后由表格即可求得所有等可能的结果与甲获胜的情况,再利用概率公式即可求得答案.【解答】解:列表得:1 2 3乙甲1 (1,1)(1,2)(1,3)2 (2,1)(2,2)(2,3)3 (3,1)(3,2)(3,3)∵共有9种等可能的结果,甲获胜的有3种情况,∴甲获胜的概率是: =.【点评】此题考查了列表法或树状图法求概率.用到的知识点为:概率=所求情况数与总情况数之比.23.某校为迎接中学生文娱汇演,原计划由八年级(1)班的3个小组制作288面彩旗,后因时间紧急,增加了1个小组参与任务,完成任务过程中,每名学生可比原计划少做3面彩旗.如果每个小组的人数相等,那么每个小组有学生多少名?【考点】分式方程的应用.【分析】根据题意可以列出相应的分式方程,从而可以解答本题.【解答】解:设每个小组有学生x名,,解得,x=8,经检验,x=8是原分式方程的根,答:每个小组有学生8名.【点评】本题考查分式方程的应用,解答此类问题的关键是明确题意,列出相应的方程,注意分式方程要检验.24.已知:线段a,b和∠MBN(1)作△ABC,使BC=a,AC=b,∠ABC=∠MBN;(2)当∠MBN=30°时,如果(1)中所作的三角形只能有一个,则a,b间满足的数量关系式是b=a或b ≥a .【考点】作图—复杂作图.【专题】作图题.【分析】(1)在BN上截取BC=a,然后以点C为圆心,b为半径画弧交BM于A点,则△ABC满足要求;(2)要使所作的三角形只能有一个,则以点C为圆心,b为半径画弧只与BM有唯一公共点,则b=a或b ≥a.【解答】解:(1)如图,△ABC为所作;(2)故答案:b=a或b≥a.【点评】本题考查了作图﹣复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.25.从一幢建筑大楼的两个观察点A,B观察地面的花坛(点C),测得俯角分别为15°和60°,如图,直线AB与地面垂直,AB=50米,试求出点B到点C的距离.(结果保留根号)【考点】解直角三角形的应用﹣仰角俯角问题.【分析】作AD⊥BC于点D,根据正切的定义求出BD,根据正弦的定义求出AD,根据等腰直角三角形的性质求出CD,计算即可.【解答】解:作AD⊥BC于点D,∵∠MBC=60°,∴∠ABC=30°,∵AB⊥AN,∴∠BAN=90°,∴∠BAC=105°,则∠ACB=45°,在Rt△ADB中,AB=50,则AD=25,BD=25,在Rt△ADC中,AD=25,CD=25,则BC=25+25.答:观察点B到花坛C的距离为(25+25)米.【点评】本题考查的是解直角三角形的应用﹣仰角俯角问题,理解仰角俯角的概念、熟记锐角三角函数的定义是解题的关键.26.(1)一个不透明的盒中装有若干个除颜色外都相同的红球与黄球.在这个口袋中先放入2个白球,再进行摸球试验,摸球试验的要求:先搅拌均匀,每次摸出一个球,记录颜色后放回盒中,再继续摸球,全班一共做了400次这样的摸球试验.如果知道摸出白球的频数是40,你能估计在未放入白球前,袋中原来共有多少个小球吗?(2)提出问题:一个不透明的盒中装有若干个只有颜色不一样的红球与黄球,怎样估算不同颜色球的数量?活动操作:先从盒中摸出8个球,画上记号放回盒中.再进行摸球试验,摸球试验的要求:先搅拌均匀,每次摸出一个球,记录颜色、是否有记号,放回盒中,再继续摸球、记录、放回袋中.统计结果:摸球试验活动一共做了50次,统计结果如下表:球的类别无记号有记号红色黄色红色黄色摸到的次数18 28 2 2由上述的摸球试验推算:①盒中红球、黄球各占总球数的百分比分别是多少?②盒中有红球多少个?【考点】模拟实验.【专题】探究型.【分析】(1)根据试验次数和白球的频数可以估算出摸到白球的概率,从而可以得到未放入白球前袋中的小球个数;(2)①根据表格可以得到袋中红球和黄球的百分比;②根据表格和题意可以得到袋中的球的数量,然后根据红球所占的百分比可以得到红球的个数.【解答】解:(1)设盒中在未放入白球前共有x个球解得x=18,即袋中原来共有18个小球;(2)由题意可得,①盒中红球占总球数的百分比是: =40%,盒中黄球占总球数的百分比是: =60%;②设盒中有x个球,,解得x=100.100×40%=40个,即盒中有40个红球.【点评】本题考查模拟实验,解题的关键是明确题意,根据表格中的数据和试验的结果可以计算出相应的概率,找出所求问题需要的条件.27.如图,AB为⊙O的直径,AB=2,点在M在QO上,MC垂直平分OA,点N为直线AB上一动点(N不与A 重合),若△MNP∽△MAC,PC与直线AB所夹锐角为α.(1)若AM=AC,点N与点O重合,则α= 30 °;(2)若点C、点N的位置如图所示,求α的度数;(3)当直线PC与⊙O相切时,则MC的长为.【考点】圆的综合题.【专题】综合题.【分析】(1)根据AM=AC,MC垂直平分AO,OM=OA,可以求得△MAO的形状,然后根据点C在圆O上,AP 是圆O的直径,从而可以求得α的值;(2)根据AM=AC,MC垂直平分AO,OM=OA,可以求得△MAO的形状,△MNP∽△MAC,从而可以求得∠AMC和α的值,从而可以求得α的值;(3)根据题意和图形,以及(2)中α的值,直线PC与⊙O相切.可以分别求得MD、DC的长,从而可以求得MC的长.【解答】解:(1)如右图一所示,∵AM=AC,MC垂直平分AO,OM=OA,∴MA=AC=MO=OA,∵点M在圆O上,∴点C在圆O上,∵AP是圆O的直径,∴∠ACP=90°,∵AP=2AC,∴∠APC=30°,即α=30°,故答案为:30;(2)连接MO,如右图二所示,∵MC垂直平分AO,MO=AO,∴MA=MO=AO,∴∠MAO=60°,∵△MNP∽△MAC,∴,∠AMC=∠NMP,∴∠AMN=∠CMP,∴△AMN∽△CMP,∴∠MAN=∠MCP,.. ∵∠MAN=60°,∴∠MCP=60°,又∵∠CDB=90°,∴α=90°﹣60°=30°;(3)连接OE,如右图三所示,∵AB=2,MC垂直平分AO,∴AO=1,DO=,MD=,由(2)可得,α=30°,∵OE=1,∠OEF=90°,∴OF=2OE=2,∴DF=,∴DC=DF•tanα==,∴MC=MD+DC==,故答案为:.【点评】本题考查圆的综合题,解题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答问题.28.如图,在平面直角坐标系中,一次函数y=﹣x﹣3分别与x轴、y轴相交于A、B两点,二次函数y=x2+mx+n (m≠6)的图象经过点A.(1)试证明二次函数y=x2+mx+n(m≠6)的图象与x轴有两个交点;(2)若二次函数y=x2+mx+n图象的顶点D在直线AB上,求m,n的值;(3)设二次函数y=x2+mx+n的图象与x轴的另一个交点为点C,顶点D关于x轴的对称点设为点E,以AE,AC为邻边作平行四边形EACF,顶点F能否在该二次函数的图象上?如果在,求出这个二次函数的表达式;如果不在,请说明理由?【考点】二次函数综合题.【分析】(1)根据待定系数法,可得n与m的关系,根据根的判别式,可得答案;(2)根据顶点坐标公式,可得顶点坐标,根据直线上点的坐标满足函数解析式,可得关于m的方程,根据n=3m﹣9,可得答案;(3)根据因式分解法,可得C点坐标,根据关于x轴对称的点的横坐标相等,纵坐标互为相反数,可得E 点坐标,根据平形四边顶点的坐标关系,可得F点坐标,根据F点的坐标是否满足函数解析式,可得答案.【解答】解:(1)当x=0时,y=﹣3,即B(0,﹣3),当y=0时,﹣x﹣3=0,解得x=﹣3,即A点坐标(﹣3,0).A(﹣3,0),B(0,﹣3),二次函数y=x2+mx+n的图象经过点A(﹣3,0),则n=3m﹣9.即y=x2+mx+(3m﹣9).∵b2﹣4ac=m2﹣4(3m﹣9)=m2﹣12m+36=(m﹣6)2,又m≠6,∴b2﹣4ac>0,则二次函数y=x2+mx+(3m﹣9)的图象与x轴有两个交点;(2)二次函数y=x2+mx+n,即y=x2+mx+(3m﹣9).顶点坐标为(﹣,﹣ +3m﹣9),因为二次函数y=x2+mx+n图象的顶点在直线AB上,。

2020年江苏省镇江市中考数学模拟试卷及答案解析

2020年江苏省镇江市中考数学模拟试卷及答案解析

2020年江苏省镇江市中考数学模拟试卷及答案解析一.填空题(共12小题,满分24分,每小题2分)1.(2分)当1﹣2a 与a 互为相反数时,则a = 1 .解:根据题意得:1﹣2a +a =0,解得:a =1,故答案为:1.2.(2分)若x ,y 为实数,且|x ﹣2|+(y +4)2=0,则xy 的立方根为 ﹣2 .解:∵|x ﹣2|+(y +4)2=0,∴x ﹣2=0,y +4=0,解得:x =2,y =﹣4,则xy =﹣8,故xy 的立方根为:﹣2.故答案为:﹣2.3.(2分)九年级某同学6次数学小测验的成绩分别为:100,112,102,105,112,110,则该同学这6次成绩的众数是 112 .解:在这组数据中出现次数最多的是112,所以这组数据的众数为112,故答案为:112.4.(2分)使二次根式√1−12x 有意义的x 的取值范围是 x ≤2 .解:∵二次根式√1−12x 有意义, ∴1−12x ≥0,解得:x ≤2.故答案为:x ≤2.5.(2分)一种新型病毒的直径约为0.000043毫米,把0.000043这个数用科学记数法表示为 4.3×10﹣5 . 解:把0.000043这个数用科学记数法表示为4.3×10﹣5. 故答案为:4.3×10﹣5. 6.(2分)已知A (m ,3)、B (﹣2,n )在同一个反比例函数图象上,则m n = −23 .解:设反比例函数解析式为y =k x ,根据题意得:k =3m =﹣2n∴m n =−23故答案为:−23.7.(2分)计算√48−9√13的结果是 √3 . 解:√48−9√13=4√3−3√3=√3.故答案为:√3.8.(2分)如图,已知直线l 1∥l 2,将等边三角形如图放置,若∠β=20°,则∠α等于 40° .解:过点A 作AD ∥l 1,如图,则∠BAD =∠β.∵l 1∥l 2,∴AD ∥l 2,∵∠DAC =∠α,∵△ABC 是等边三角形,∴∠BAC =60°,∴∠β=∠BAD =∠BAC ﹣∠α=60°﹣α=20°. ∴∠α=40°,故答案为:40°.。

2020年江苏省镇江市初中毕业、升学统一考试模拟试卷(共4份)最新

2020年江苏省镇江市初中毕业、升学统一考试模拟试卷(共4份)最新

江苏省 镇江市 初中毕业、升学统一考试数学模拟试卷一一、填空题(本大题共 12 小题,每小题 2 分,共计 24 分.不需写出解答过程,请把答案直接填写在 相应空格处)1.2- 的倒数是___________ ;33- 的绝对值是_____________ .2.不等式30x -<的解集是_________ ;方程2x x =的解是 .3.分解因式:32__________a ab -= ;抛物线24y x =- 与x 轴的交点的坐标是___________ . 4.若32mx y 与23n x y - 是同类项,则_______m n +=合并的结果是___________ . 5.函数12y x =-的自变量x 的取值范围是________ ;当1x =- 时,3__________y = .6.抛物线2(2)3y x =-++ 的对称轴为直线________;顶点坐标为____________.7.已知23a b = ,则_________a b b +=;已知分式211x x -+的值为 0,那么x 的值为 . 8.甲、乙、丙、丁四支足球队在世界杯预选赛中的进球数分别为:9、9、11、7,则这组数据 的众数为_____________,中位数为____________.9.据第二次全国经济普查资料修订及各项数据初步核算,某市 GDP 从 2009 年的 987.9 亿元 增加到 2010 年的 1272.2 亿元.设平均年增长率为x ,则可列方程为______________ .10.圆心在x 轴上的两圆相交于,A B 两点,已知A 点的坐标为()3,2-,则B 点的坐标 是_____ .11.在,,Rt ABC A B CM ∆∠<∠是斜边AB 上的中线,将ACM ∆ 沿直线CM 折叠,点 A 落在点 D 处,如果CD 恰好与 AB 垂直,那么∠A 等于________度.12.如图,已知正六边形的边长为1cm ,分别以它的三个不相邻的 顶点为圆心,1cm 长为半径画弧,则所得到的三条弧的长度之 和为____________ cm(结果保留π ).二、选择题(每题 3 分,共 15 分.每小题有四个选项,其中只有一个选项是正确的,将正确选 项的字母填入题后的括号内)13. 下列调查方式中,合适的是( )A .要了解约 90 万顶救灾帐蓬的质量,采用普查的方式B .要了解外地游客对我市旅游景点“西津古渡”的喜欢程度,采用抽样调查的方式C .要保证“神舟七号”飞船成功发射,对主要零部件的检查采用抽样调查的方式D .要了解全区中学生的业余爱好,采用普查的方式14. 如图所示,Rt ABC Rt DEF ∆∆:,则cos E 的值等于( )A. 12B.C.D.15.在Rt ABC ∆的直角边AC 边上有一动点P (点P 与点A 、C 不重合),过点P 作直线截Rt ABC ∆,使 截得的三角形与Rt ABC ∆相似,满足条件的直线最多有 ( )(A)1条 (B)2条 (C)3条 (D)4条16.右图所示几何体的正视图是( )A. B. C.D. 17.如图,在正方形铁皮中,剪下一个圆和一个扇形,使余料尽量少.用圆做圆锥的底面,用扇形做圆锥的侧面,正好围成一个圆锥. 若圆的半径为r ,扇形的半径为R ,则( )A .2R r =B .R r =C .3R r =rD .4R r =三、解答题 (本大题共 11 题,计 81 分.解答时应写明演算步骤、证明过程或必要的文字说明)18.(1)计算:1012()( 3.14)cos302π-︒--+-(2)先化简,再计算:231(1)24a a a -+÷--,其中2a =; (3)解不等式组:3(2)8123x x x x +<+⎧⎪-⎨≤⎪⎩ (4)解方程:221221x x x x =--+19.如 图 ,ABC ∆ 中,,,AB AC BD AC CE AB =⊥⊥.求证:BD CE =.20.在平面直角坐标系中,ABC ∆的三个 顶点的位置如图所示, 点(2,2)A '- ,现 将ABC ∆ 平移。

2020年江苏省镇江市中考数学三模名校押题试卷附解析

2020年江苏省镇江市中考数学三模名校押题试卷附解析

2020年江苏省镇江市中考数学三模名校押题试卷 学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.如图,D 、E 、F 分别是等边△ABC 的边AB 、BC 、CA 的中点,现沿着虚线折起,使A 、B 、C 三点重合,折起后得到的空间图形是( )A .正方体B .圆锥C .棱柱D .棱锥 2.由6个大小相同的小正方体组合而成的立方体图形如图所示,则关于它的三视图说法正确的是( )A .主视图的面积最大B .左视图的面积最大C .俯视图的面积最大D .三个视图的面积一样大3.用A B C ,,分别表示学校、小明家、小红家,已知学校在小明家的南偏东25︒,小红家在小明家正东,小红家在学校北偏东35︒,则ACB ∠等于( )A .35︒B .55︒C .60︒D .65︒4.其市气象局预报称:明天本市的降水概率为70%,这句话指的是( )A . 明天本市70%的时间下雨,30%的时间不下雨B . 明天本市70%的地区下雨,30%的地区不下雨C . 明天本市一定下雨D . 明天本市下雨的可能性是70%5.如图,梯子(长度不变)跟地面所成的锐角为A ,关于A ∠的三角函数值与梯子的倾斜程度之间,叙述正确的是( )A .sin A 的值越大,梯子越陡B .cos A 的值越大,梯子越陡C .tan A 的值越小,梯子越陡D .陡缓程度与A ∠的函数值无关6.已知某种品牌电脑的显示器的寿命大约为4210⨯小时,这种显示器工作的天数为d(天),平均每天工作的时间为t (小时),那么能正确表示d 与t 之间的函数关系的图象是( )7.已知数据13、2-、0.618、125、34-,任意抽取一个数是负数的概率为( ) A .20% B .40% C .60% D .80%8.下列说法中正确的是( )A .从所有的质数中任取一个数是偶数是不可能事件B .如果一件事不是必然发生,那么它就不可能发生C .抛掷四枚普通硬币,掷得四个正面朝上和掷得四个反面朝上的概率一样大D .投掷一枚普通正方体骰子,“掷得的数是奇数”是必然发生的,因为骰子上有奇数9.如图,AC ⊥BE ,∠A =∠E ,不能判断△ABC ≌△EDC 的条件是( )A .BC =DCB .∠B =∠CDEC .AB =DED .AC =CE10.在①(2)(2)a b b a -+;②(34)(43)a b b a -+--;③2(2)(22)x y x y +-;④()()a b b a --的计算中,能利用平方差公式计算的有( )A .1 个B .2 个C .3 个D . 4 个 11.用 1,2,3 三个数字组成可以重复的三位数,则组成偶数的可能性是( ) A .13 B . 16 C . 19 D .127 12.如图所示扇形统计图中,有问题的是( )A .B .C .D .二、填空题 13.若函数2y ax bx c =++是二次函数,则系数应满足条件 .14.如图,∠DCE 是平行四边形ABCD 的一个外角,且∠DCE=500,则∠A 的度数是 .15.等腰直角三角形一条直角边的长为1cm ,那么它斜边上的高长是________cm .16.已知一个正比例函数的图象经过点(-2,4),那么这个正比例函数的表达式是 .17.观察图象,与图①中的鱼相比,图②中的鱼发生了一些变化.若图①中鱼上点P 的坐标为(4,3.2),则这个点在图②中的对应点P 1的坐标为 (图中的方格是边长为1的小正方形).18.如图,在△ABC中,AB=AC=BC,若AD⊥BC,BD=5 cm,则AB= cm.19.如图中每一个标有数字的方块均是可以翻动的木牌,其中只有两块木牌的背面贴有中奖标志,则随机翻动一块木牌中奖的概率为 .20.如图,AD是△ABC 的中线. 如果△ABC 的面积是18 cm2,则△ADC 的面积是cm2.21.如果21(3)(4)34x A Bx x x x+=+-+-+,那么A= ,B= .22.去括号.(1)(a-b)+(-c-d)= ;(2)(a-b)-(-c-d)= ;(3) -(a-b)+(-c-d)= ;(4) -(a-b)-(-c-d)= .23.213-= (精确到 0.1).24.如图,已知等腰直角ΔABC的直角边长与正方形MNPQ的边长均为20厘米,AC与MN 在同一直线上,开始时点A与点N重合.让ΔABC以每秒2厘米的速度向左运动,最终点A 与点M重合,则重叠部分面积y(厘米2)与时间t(秒)之间的函数关系式为____________.三、解答题25.如图,以 0为圆心,方圆 8海里范围内有暗礁,某轮船行驶到距 0点正西 16海里的A处接到消息,则该船至少向东偏南多少度航行才不会触礁?26.如图,一次函数y kx b=+的图象与反比例函数myx=图象交于A、B 两点:A(-2 ,1),B(1,n).(1)求反比例函数和一次函数的解析式;(2)根据图象写出使一次函数的值大于反比例函数的值的 x取值范围.27.如图,一个圆柱体的高为6cm,底面半径为8πcm,在圆柱体下底面A点有一只蚂蚁,想吃到上底面B点的一粒砂糖(A,B是圆柱体上、下底面相对的两点),则这只蚂蚁从A出点沿着圆柱表面爬到B点的最短路线是多长?28.一座隧道的截面由抛物线和长方形构成,长方形的长为8m ,宽为2m ,隧道最高点P 位于AB 的中央且距地面6m ,建立如图所示的坐标系.(1)求抛物线的解析式;(2)一辆货车高4m ,宽2m ,能否从该隧道内通过,为什么?(3)如果隧道内设双行道,那么这辆货车是否可以顺利通过,为什么?29.如图在△ABC 中,D 是BC 的中点,过点D 的直线GF 交AC 于点F ,交AC 的平行线BG 于点G ,DE ⊥GF ,交AB 于点E ,连结EG ,EF .(1)求证:BG=CF ;(2)请你判断BE+CF 与EF 的大小关系,并证明你的结论.30.若“*”是新规定的某种运算法则,设2*A B A B B =⋅-,试求:(1)(2)6-*的值;(2)若(5)10x *-=,求x 的值.GF E D C B A【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.D2.C3.B4.D5.A6.C7.B8.C9.B10.B11.A12.A二、填空题13.a ≠014.130°15.16.y=-2x17.(4,2.2)18.1019.-3120.921.-1,122.(1)a b c d --- (2) a b c d -++ (3) a b c d -+-- (4)a b c d -+++23.1.424.2)10(2t y -=三、解答题25.该船要不触礁,则航线至少与⊙O 相切,过A 作⊙O 的切线 AB ,再过0点作0C ⊥AB 于 C ,则OC=8,又AO=16,在 Rt △OAC 中,81sin 162OC A OA ===,∴∠A= 30°,即当该船至少向东偏南30°航行时,才不会触礁.26.(1)212m xy ==-⨯=-,∴2y x =-,∴当1x =时,y n ==-2 ∴212k b k b -+=⎧⎨+=-⎩,得11k b =-⎧⎨=-⎩,∴1y x =-- (2)由图象可知满足要求的 x 取值范围是x<-2 或 0<x<127.解:把圆柱侧面展开,展开图如右图所示,点A ,B•的最短距离为线段AB•的长, BC=6cm ,AC 为底面半圆弧长,AC=8π·π=8,所以AB=2286+=10(cm ). 28.(1)由题意可知抛物线经过点()()()024682A P B ,,,,,设抛物线的方程为2y ax bx c =++ ,将A P D ,,三点的坐标代入抛物线方程, 解得抛物线方程为21224y x x =-++. (2)令4y =,则有212244x x -++=,解得12422422x x =+=-, 21422x x -=>,∴货车可以通过.(3)由(2)可知2112222x x -=> ,∴货车可以通过. 29.(1)提示:△BGD ≌△CFD ,则BG =CF .(2)BE +CF>EF .由EG =EF ,BG =CF ,BG +BE>EG ,得出BE +CF>EF . 30.(1)-48 (2)7x =-。

江苏省镇江市2019-2020学年中考数学一模考试卷含解析

江苏省镇江市2019-2020学年中考数学一模考试卷含解析

江苏省镇江市2019-2020学年中考数学一模考试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.下列说法中不正确的是( )A .全等三角形的周长相等B .全等三角形的面积相等C .全等三角形能重合D .全等三角形一定是等边三角形2.一元二次方程220x x -=的根是( )A .120,2x x ==-B .121,2x x ==C .121,2x x ==-D .120,2x x ==3.在同一平面直角坐标系中,函数y=x+k 与k y x=(k 为常数,k≠0)的图象大致是( ) A . B .C .D .4.长江经济带覆盖上海、江苏、浙江、安徽、江西、湖北、湖南、重庆、四川、云南、贵州等11省市,面积约2 050 000平方公里,约占全国面积的21% .将2 050 000用科学记数法表示应为( ) A .205万 B .420510⨯ C .62.0510⨯ D .72.0510⨯5.如图给定的是纸盒的外表面,下面能由它折叠而成的是( )A .B .C .D .6.如图,△ABC 的面积为12,AC =3,现将△ABC 沿AB 所在直线翻折,使点C 落在直线AD 上的C 处,P 为直线AD 上的一点,则线段BP 的长可能是( )A.3 B.5 C.6 D.107.如图,正方形ABCD的边长为3cm,动点P从B点出发以3cm/s的速度沿着边BC﹣CD﹣DA运动,到达A点停止运动;另一动点Q同时从B点出发,以1cm/s的速度沿着边BA向A点运动,到达A点停止运动.设P点运动时间为x(s),△BPQ的面积为y(cm2),则y关于x的函数图象是()A.B. C. D.8.如图,四边形ABCD内接于⊙O,AD∥BC,BD平分∠ABC,∠A=130°,则∠BDC的度数为()A.100°B.105°C.110°D.115°9.如图,△ABC内接于⊙O,BC为直径,AB=8,AC=6,D是弧AB的中点,CD与AB的交点为E,则CE:DE等于()A.3:1 B.4:1 C.5:2 D.7:210.如图,△ABC在平面直角坐标系中第二象限内,顶点A的坐标是(﹣2,3),先把△ABC向右平移6个单位得到△A1B1C1,再作△A1B1C1关于x轴对称图形△A2B2C2,则顶点A2的坐标是()A .(4,﹣3)B .(﹣4,3)C .(5,﹣3)D .(﹣3,4)11.抛物线y =x 2+2x +3的对称轴是( )A .直线x =1B .直线x =-1C .直线x =-2D .直线x =212.把四张形状大小完全相同的小长方形卡片(如图①)不重叠地放在一个底面为长方形(长为acm 宽为bcm )的盒子底部(如图②),盒子底面未被卡片覆盖的部分用阴影表示.则图②中两块阴影部分周长和是( )A .4acmB .4()a b cm -C .2()a b cm +D .4bcm二、填空题:(本大题共6个小题,每小题4分,共24分.)13.已知点A (a ,y 1)、B (b ,y 2)在反比例函数y=3x的图象上,如果a <b <0,那么y 1与y 2的大小关系是:y 1__y 2;14.如图,在每个小正方形的边长为1的网格中,点A ,B ,C 均在格点上.(Ⅰ)AC 的长等于_____;(Ⅱ)在线段AC 上有一点D ,满足AB 2=AD•AC ,请在如图所示的网格中,用无刻度的直尺,画出点D ,并简要说明点D 的位置是如何找到的(不要求证明)_____.15.有公共顶点A ,B 的正五边形和正六边形按如图所示位置摆放,连接AC 交正六边形于点D ,则∠ADE 的度数为( )A .144°B .84°C .74°D .54° 16.已知n >1,M =1n n -,N =1n n-,P =1n n +,则M 、N 、P 的大小关系为 . 17.计算:(π﹣3)0+(﹣13)﹣1=_____. 18.如图,在△ABC 中,D ,E 分别是AB ,AC 边上的点,DE ∥BC .若AD =6,BD =2,DE =3,则BC =______.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图,甲、乙为两座建筑物,它们之间的水平距离BC 为30m ,在A 点测得D 点的仰角∠EAD为45°,在B 点测得D 点的仰角∠CBD 为60°.求这两座建筑物的高度(结果保留根号).20.(6分)如图,四边形ABCD 为平行四边形,∠BAD 的角平分线AF 交CD 于点E ,交BC 的延长线于点F .(1)求证:BF=CD ;(2)连接BE ,若BE ⊥AF ,∠BFA=60°,BE=23,求平行四边形ABCD 的周长.21.(6分)在ABC ∆中,AB AC =,以AB 为直径的圆交BC 于D ,交AC 于E .过点E 的切线交OD 的延长线于F .求证:BF 是O e 的切线.22.(8分)如图,在平面直角坐标系中,直线y=x+4与x轴、y轴分别交于A、B两点,抛物线y=-x2+bx+c经过A、B两点,并与x轴交于另一点C(点C点A的右侧),点P是抛物线上一动点.(1)求抛物线的解析式及点C的坐标;(2)若点P在第二象限内,过点P作PD⊥轴于D,交AB于点E.当点P运动到什么位置时,线段PE 最长?此时PE等于多少?(3)如果平行于x轴的动直线l与抛物线交于点Q,与直线AB交于点N,点M为OA的中点,那么是否存在这样的直线l,使得△MON是等腰三角形?若存在,请求出点Q的坐标;若不存在,请说明理由.23.(8分)2018年“清明节”前夕,宜宾某花店用1000元购进若干菊花,很快售完,接着又用2500元购进第二批花,已知第二批所购花的数量是第一批所购花数的2倍,且每朵花的进价比第一批的进价多0.5元.(1)第一批花每束的进价是多少元.(2)若第一批菊花按3元的售价销售,要使总利润不低于1500元(不考虑其他因素),第二批每朵菊花的售价至少是多少元?24.(10分)为响应市政府“创建国家森林城市”的号召,某小区计划购进A、B两种树苗共17棵,已知A 种树苗每棵80元,B种树苗每棵60元.若购进A、B两种树苗刚好用去1220元,问购进A、B两种树苗各多少棵?若购买B种树苗的数量少于A种树苗的数量,请你给出一种费用最省的方案,并求出该方案所需费用.25.(10分)已知:关于x的一元二次方程kx2﹣(4k+1)x+3k+3=0(k是整数).(1)求证:方程有两个不相等的实数根;(2)若方程的两个实数根都是整数,求k的值.26.(12分)已知开口向下的抛物线y=ax2-2ax+2与y轴的交点为A,顶点为B,对称轴与x轴的交点为C,点A与点D关于对称轴对称,直线BD与x轴交于点M,直线AB与直线OD交于点N.(1)求点D的坐标.(2)求点M的坐标(用含a的代数式表示).(3)当点N在第一象限,且∠OMB=∠ONA时,求a的值.27.(12分)解分式方程:2322xx x+--=1参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.D【解析】【详解】根据全等三角形的性质可知A,B,C命题均正确,故选项均错误;D.错误,全等三角也可能是直角三角,故选项正确.故选D.【点睛】本题考查全等三角形的性质,两三角形全等,其对应边和对应角都相等.2.D【解析】试题分析:此题考察一元二次方程的解法,观察发现可以采用提公因式法来解答此题.原方程可化为:,因此或,所以.故选D.考点:一元二次方程的解法——因式分解法——提公因式法.3.B【解析】【分析】【详解】选项A中,由一次函数y=x+k的图象知k<0,由反比例函数y=的图象知k>0,矛盾,所以选项A错误;选项B中,由一次函数y=x+k的图象知k>0,由反比例函数y=的图象知k>0,正确,所以选项B正确;由一次函数y=x+k的图象知,函数图象从左到右上升,所以选项C、D错误.故选B.4.C【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【详解】2 050 000将小数点向左移6位得到2.05,所以2 050 000用科学记数法表示为:20.5×106,故选C.【点睛】本题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.5.B【解析】【分析】将A、B、C、D分别展开,能和原图相对应的即为正确答案:【详解】A、展开得到,不能和原图相对应,故本选项错误;B、展开得到,能和原图相对,故本选项正确;C、展开得到,不能和原图相对应,故本选项错误;D、展开得到,不能和原图相对应,故本选项错误.故选B.6.D【解析】【分析】过B作BN⊥AC于N,BM⊥AD于M,根据折叠得出∠C′AB=∠CAB,根据角平分线性质得出BN=BM,根据三角形的面积求出BN,即可得出点B到AD的最短距离是8,得出选项即可.【详解】解:如图:过B作BN⊥AC于N,BM⊥AD于M,∵将△ABC沿AB所在直线翻折,使点C落在直线AD上的C′处,∴∠C′AB=∠CAB,∴BN=BM,∵△ABC的面积等于12,边AC=3,∴12×AC×BN=12,∴BN=8,∴BM=8,即点B到AD的最短距离是8,∴BP的长不小于8,即只有选项D符合,故选D.【点睛】本题考查的知识点是折叠的性质,三角形的面积,角平分线性质的应用,解题关键是求出B到AD的最短距离,注意:角平分线上的点到角的两边的距离相等.7.C【解析】试题分析:由题意可得BQ=x.①0≤x≤1时,P点在BC边上,BP=3x,则△BPQ的面积=12BP•BQ,解y=12•3x•x=232x;故A选项错误;②1<x≤2时,P点在CD边上,则△BPQ的面积=12BQ•BC,解y=12•x•3=32x;故B选项错误;③2<x≤3时,P点在AD边上,AP=9﹣3x,则△BPQ的面积=12AP•BQ,解y=12•(9﹣3x)•x=29322x x;故D选项错误.故选C.考点:动点问题的函数图象.8.B【解析】【分析】根据圆内接四边形的性质得出∠C的度数,进而利用平行线的性质得出∠ABC的度数,利用角平分线的定义和三角形内角和解答即可.【详解】∵四边形ABCD内接于⊙O,∠A=130°,∴∠C=180°-130°=50°,∵AD∥BC,∴∠ABC=180°-∠A=50°,∵BD平分∠ABC,∴∠DBC=25°,∴∠BDC=180°-25°-50°=105°,故选:B.【点睛】本题考查了圆内接四边形的性质,关键是根据圆内接四边形的性质得出∠C的度数.9.A【解析】【分析】利用垂径定理的推论得出DO⊥AB,AF=BF,进而得出DF的长和△DEF∽△CEA,再利用相似三角形的性质求出即可.【详解】连接DO,交AB于点F,∵D是»AB的中点,∴DO⊥AB,AF=BF,∵AB=8,∴AF=BF=4,∴FO是△ABC的中位线,AC∥DO,∵BC为直径,AB=8,AC=6,∴BC=10,FO=12AC=1,∴DO=5,∴DF=5-1=2,∵AC∥DO,∴△DEF∽△CEA,∴CE AC DE FD,∴CEDE=62=1.故选:A.【点睛】此题主要考查了垂径定理的推论以及相似三角形的判定与性质,根据已知得出△DEF∽△CEA是解题关键.10.A【解析】【分析】直接利用平移的性质结合轴对称变换得出对应点位置.【详解】如图所示:顶点A2的坐标是(4,-3).故选A.【点睛】此题主要考查了轴对称变换和平移变换,正确得出对应点位置是解题关键.11.B【解析】【分析】 根据抛物线的对称轴公式:2b x a =-计算即可. 【详解】解:抛物线y =x 2+2x +3的对称轴是直线2121x =-=-⨯ 故选B .【点睛】此题考查的是求抛物线的对称轴,掌握抛物线的对称轴公式是解决此题的关键.12.D【解析】【分析】根据题意列出关系式,去括号合并即可得到结果.【详解】解:设小长方形卡片的长为x ,宽为y ,根据题意得:x+2y=a ,则图②中两块阴影部分周长和是:2a+2(b-2y )+2(b-x )=2a+4b-4y-2x=2a+4b-2(x+2y )=2a+4b-2a=4b .故选择:D.【点睛】此题考查了整式的加减,熟练掌握运算法则是解本题的关键.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.>【解析】【分析】根据反比例函数的性质求解.【详解】反比例函数y=3x的图象分布在第一、三象限,在每一象限y随x的增大而减小,而a<b<0,所以y1>y2故答案为:>【点睛】本题考查了反比例函数图象上点的坐标特征:反比例函数y=kx(k为常数,k≠0)的图象是双曲线,图象上的点(x,y)的横纵坐标的积是定值k,即xy=k.也考查了反比例函数的性质.14.5 见解析.【解析】【分析】(1)由勾股定理即可求解;(2)寻找格点M和N,构建与△ABC全等的△AMN,易证MN⊥AC,从而得到MN与AC的交点即为所求D点.【详解】(1)AC=22435+=;(2)如图,连接格点M和N,由图可知:AB=AM=4,BC=AN=221417+=,AC=MN=22435+=,∴△ABC≌△MAN,∴∠AMN=∠BAC,∴∠MAD+∠CAB=∠MAD+∠AMN=90°,∴MN⊥AC,易解得△MAN以MN为底时的高为165,∵AB2=AD•AC,∴AD=AB2÷AC=165,综上可知,MN与AC的交点即为所求D点.【点睛】本题考查了平面直角坐标系中定点的问题,理解第2问中构造全等三角形从而确定D 点的思路. 15.B【解析】正五边形的内角是∠ABC=()521805-⨯=108°,∵AB=BC ,∴∠CAB=36°,正六边形的内角是∠ABE=∠E=()621806-⨯=120°,∵∠ADE+∠E+∠ABE+∠CAB=360°,∴∠ADE=360°–120°–120°–36°=84°,故选B .16.M >P >N【解析】∵n >1,∴n-1>0,n>n-1,∴M>1,0<N<1,0<P<1,∴M 最大;()11011n n P N n n n n --=-=>++Q , ∴P N >,∴M>P>N. 点睛:本题考查了不等式的性质和利用作差法比较两个代数式的大小.作差法比较大小的方法是:如果a-b>0,那么a>b; 如果a-b=0,那么a=b; 如果a-b<0,那么a<b;另外本题还用到了不等式的传递性,即如果a>b,b>c,那么a>b>c.17.-1【解析】【分析】先计算0指数幂和负指数幂,再相减.【详解】(π﹣3)0+(﹣13)﹣1, =1﹣3,=﹣1,故答案是:﹣1.【点睛】考查了0指数幂和负指数幂,解题关键是运用任意数的0次幂为1,a -1=1a . 18.1【解析】【分析】根据已知DE∥BC得出ADAB=DEBC进而得出BC的值【详解】∵DE∥BC,AD=6,BD=2,DE=3,∴△ADE∽△ABC,∴AD DE AB BC=,∴638BC =,∴BC=1,故答案为1.【点睛】此题考查了平行线分线段成比例的性质,解题的关键在于利用三角形的相似求三角形的边长.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.甲建筑物的高AB为(303-30)m,乙建筑物的高DC为303m【解析】【详解】如图,过A作AF⊥CD于点F,在Rt△BCD中,∠DBC=60°,BC=30m,∵CDBC=tan∠DBC,∴3,∴乙建筑物的高度为3;在Rt△AFD中,∠DAF=45°,∴DF=AF=BC=30m,∴AB=CF=CD﹣DF=(330)m,∴甲建筑物的高度为(330)m.20.(1)证明见解析;(2)12【解析】【分析】(1)由平行四边形的性质和角平分线得出∠BAF=∠BFA ,即可得出AB=BF ;(2)由题意可证△ABF 为等边三角形,点E 是AF 的中点. 可求EF 、BF 的值,即可得解.【详解】解:(1)证明:∵ 四边形ABCD 为平行四边形,∴ AB=CD ,∠FAD=∠AFB又∵ AF 平分∠BAD ,∴ ∠FAD=∠FAB∴ ∠AFB=∠FAB∴ AB=BF∴ BF=CD(2)解:由题意可证△ABF 为等边三角形,点E 是AF 的中点在Rt △BEF 中,∠BFA=60°,BE=可求EF=2,BF=4∴ 平行四边形ABCD 的周长为1221.证明见解析.【解析】【分析】连接OE ,由OB=OD 和AB=AC 可得ODB C ∠=∠,则OF ∥AC ,可得BOD A ∠=∠,由圆周角定理和等量代换可得∠=∠EOF BOF ,由SAS 证得∆≅∆OBF OEF ,从而得到=90∠∠=︒OBF OEF ,即可证得结论.【详解】证明:如图,连接OE ,∵AB AC =,∴ABC C ∠=∠,∵OB OD =,∴ABC ODB ∠=∠,∴ODB C ∠=∠,∴//OF AC ,∴BOD A ∠=∠∵»»=BEBE∴2BOE A ∠=∠,则2∠+∠=∠BOD EOD A ,∴2∠+∠=∠BOD EOD BOD ,∴∠=∠EOD BOD ,即∠=∠EOF BOF ,在OBF ∆和OEF ∆中,∵OB OE BOF EOF OF OF =⎧⎪∠=∠⎨⎪=⎩,∴()∆≅∆OBF OEF SAS ,∴OBF OEF ∠=∠∵FE 是O e 的切线,则OE FE ⊥,∴90OEF ∠=︒,∴90OBF ∠=︒,则OB BF ⊥,∴BF 是O e 的切线.【点睛】本题主要考查了等腰三角形的性质、切线的性质和判定、圆周角定理和全等三角形的判定与性质,熟练掌握圆周角定理和全等三角形的判定与性质是解题的关键.22.(1)y=-x 2-2x +1,C (1,0)(2)当t=-2时,线段PE 的长度有最大值1,此时P (-2,6)(2)存在这样的直线l ,使得△MON 为等腰三角形.所求Q 点的坐标为 (3+132-,2)或(3132-,2)或(3+172-,2)或(3172-,2) 【解析】解:(1)∵直线y=x+1与x 轴、y 轴分别交于A 、B 两点,∴A (-1,0),B (0,1).∵抛物线y=-x 2+bx +c 经过A 、B 两点,∴164b c0?{c4--+==,解得b3?{c4=-=.∴抛物线解析式为y=-x2-2x+1.令y=0,得-x2-2x+1=0,解得x1=-1,x2=1,∴C(1,0).(2)如图1,设D(t,0).∵OA=OB,∴∠BAO=15°.∴E(t,t+1),P(t,-t2-2t+1).PE=y P-y E=-t2-2t+1-t-1=-t2-1t=-(t+2)2+1.∴当t=-2时,线段PE的长度有最大值1,此时P(-2,6).(2)存在.如图2,过N点作NH⊥x轴于点H.设OH=m(m>0),∵OA=OB,∴∠BAO=15°.∴NH=AH=1-m,∴y Q=1-m.又M为OA中点,∴MH=2-m.当△MON为等腰三角形时:①若MN=ON,则H为底边OM的中点,∴m=1,∴y Q=1-m=2.由-x Q2-2x Q+1=2,解得Q 313x-±=∴点Q坐标为(3+132-,2)或(3132--,2).②若MN=OM=2,则在Rt △MNH 中,根据勾股定理得:MN 2=NH 2+MH 2,即22=(1-m )2+(2-m )2,化简得m 2-6m +8=0,解得:m 1=2,m 2=1(不合题意,舍去).∴y Q =2,由-x Q 2-2x Q +1=2,解得Q x =.∴点Q 22). ③若ON=OM=2,则在Rt △NOH 中,根据勾股定理得:ON 2=NH 2+OH 2,即22=(1-m )2+m 2,化简得m 2-1m +6=0,∵△=-8<0,∴此时不存在这样的直线l ,使得△MON 为等腰三角形.综上所述,存在这样的直线l ,使得△MON 为等腰三角形.所求Q 点的坐标为,2,222). (1)首先求得A 、B 点的坐标,然后利用待定系数法求抛物线的解析式,并求出抛物线与x 轴另一交点C 的坐标.(2)求出线段PE 长度的表达式,设D 点横坐标为t ,则可以将PE 表示为关于t 的二次函数,利用二次函数求极值的方法求出PE 长度的最大值.(2)根据等腰三角形的性质和勾股定理,将直线l 的存在性问题转化为一元二次方程问题,通过一元二次方程的判别式可知直线l 是否存在,并求出相应Q 点的坐标. “△MON 是等腰三角形”,其中包含三种情况:MN=ON ,MN=OM ,ON=OM ,逐一讨论求解.23.(1)2元;(2)第二批花的售价至少为3.5元;【解析】【分析】(1)设第一批花每束的进价是x 元,则第二批花每束的进价是(x+0.5)元,根据数量=总价÷单价结合第二批所购花的数量是第一批所购花数的2倍,即可得出关于x 的分式方程,解之经检验后即可得出结论;(2)由第二批花的进价比第一批的进价多0.5元可求出第二批花的进价,设第二批菊花的售价为m 元,根据利润=每束花的利润×数量结合总利润不低于1500元,即可得出关于m 的一元一次不等式,解之即可得出结论.【详解】(1)设第一批花每束的进价是x 元,则第二批花每束的进价是()0.5x +元, 根据题意得:1000250020.5x x ⨯=+, 解得:2x =,经检验:2x =是原方程的解,且符合题意.答:第一批花每束的进价是2元.(2)由()1可知第二批菊花的进价为2.5元.设第二批菊花的售价为m 元, 根据题意得:()()1000250032 2.515002 2.5m ⨯-+⨯-≥, 解得: 3.5m ≥.答:第二批花的售价至少为3.5元.【点睛】本题考查了分式方程的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出分式方程;(2)根据各数量之间的关系,正确列出一元一次不等式.24.(1)购进A 种树苗1棵,B 种树苗2棵(2)购进A 种树苗9棵,B 种树苗8棵,这时所需费用为1200元【解析】【分析】(1)设购进A 种树苗x 棵,则购进B 种树苗(12﹣x )棵,利用购进A 、B 两种树苗刚好用去1220元,结合单价,得出等式方程求出即可;(2)结合(1)的解和购买B 种树苗的数量少于A 种树苗的数量,可找出方案.【详解】解:(1)设购进A 种树苗x 棵,则购进B 种树苗(12﹣x )棵,根据题意得:80x+60(12﹣x )=1220,解得:x=1.∴12﹣x=2.答:购进A 种树苗1棵,B 种树苗2棵.(2)设购进A 种树苗x 棵,则购进B 种树苗(12﹣x )棵,根据题意得:12﹣x <x ,解得:x >8.3.∵购进A 、B 两种树苗所需费用为80x+60(12﹣x )=20x+120,是x 的增函数,∴费用最省需x 取最小整数9,此时12﹣x=8,所需费用为20×9+120=1200(元).答:费用最省方案为:购进A 种树苗9棵,B 种树苗8棵,这时所需费用为1200元.25.(3)证明见解析(3)3或﹣3【解析】【分析】(3)根据一元二次方程的定义得k≠2,再计算判别式得到△=(3k -3)3,然后根据非负数的性质,即k 的取值得到△>2,则可根据判别式的意义得到结论;(3)根据求根公式求出方程的根,方程的两个实数根都是整数,求出k 的值.【详解】证明:(3)△=[﹣(4k+3)]3﹣4k (3k+3)=(3k ﹣3)3.∵k 为整数,∴(3k ﹣3)3>2,即△>2.∴方程有两个不相等的实数根.(3)解:∵方程kx 3﹣(4k+3)x+3k+3=2为一元二次方程,∴k≠2.∵kx 3﹣(4k+3)x+3k+3=2,即[kx ﹣(k+3)](x ﹣3)=2,∴x 3=3,2111k x k k+==+. ∵方程的两个实数根都是整数,且k 为整数,∴k=3或﹣3.【点睛】本题主要考查了根的判别式的知识,熟知一元二次方程的根与△的关系是解答此题的关键.26.(1)D (2,2);(2)22,0M a ⎛⎫- ⎪⎝⎭;(3)1 【解析】【分析】(1)令x=0求出A 的坐标,根据顶点坐标公式或配方法求出顶点B 的坐标、对称轴直线,根据点A 与点D 关于对称轴对称,确定D 点坐标.(2)根据点B 、D 的坐标用待定系数法求出直线BD 的解析式,令y=0,即可求得M 点的坐标.(3)根据点A 、B 的坐标用待定系数法求出直线AB 的解析式,求直线OD 的解析式,进而求出交点N 的坐标,得到ON 的长.过A 点作AE ⊥OD ,可证△AOE 为等腰直角三角形,根据OA=2,可求得AE 、OE 的长,表示出EN 的长.根据tan ∠OMB=tan ∠ONA ,得到比例式,代入数值即可求得a 的值.【详解】(1)当x=0时,2y =,∴A 点的坐标为(0,2)∵()222212y ax ax a x a =-+=-+-∴顶点B 的坐标为:(1,2-a ),对称轴为x= 1,∵点A 与点D 关于对称轴对称∴D 点的坐标为:(2,2)(2)设直线BD 的解析式为:y=kx+b把B (1,2-a )D (2,2)代入得:2{22a k bk b -=+=+ ,解得:{22k ab a ==-∴直线BD 的解析式为:y=ax+2-2a当y=0时,ax+2-2a=0,解得:x=22a -∴M 点的坐标为:22,0a ⎛⎫- ⎪⎝⎭(3)由D(2,2)可得:直线OD 解析式为:y=x设直线AB 的解析式为y=mx+n,代入A(0,2)B (1,2-a )可得:2{2n m n a =+=- 解得:{2m an =-=∴直线AB 的解析式为y= -ax+2联立成方程组:{2y x y ax ==-+ ,解得:21{21x a y a =+=+ ∴N 点的坐标为:(2211a a ++,)21a +) 过A 点作AE ⊥OD 于E 点,则△AOE 为等腰直角三角形.∵OA=2∴,21a +)12(1a a -+) ∵M 22,0a ⎛⎫- ⎪⎝⎭,C(1,0), B (1,2-a ) ∴MC=2221a a a---=,BE=2-a ∵∠OMB=∠ONA∴tan ∠OMB=tan ∠ONA ∴AE BE EN CM =,即2211a a a a a -=--⎫⎪+⎭解得:a=1a 1=-∵抛物线开口向下,故a<0,∴a=1+a 1=-【点睛】本题是一道二次函数与一次函数及三角函数综合题,掌握并灵活应用二次函数与一次函数的图象与性质,以及构建直角三角形借助点的坐标使用相等角的三角函数是解题的关键.27.x=1【解析】【分析】分式方程变形后去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【详解】化为整式方程得:2﹣3x=x﹣2,解得:x=1,经检验x=1是原方程的解,所以原方程的解是x=1.【点睛】此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

江苏省镇江市中考数学试卷一、填空题(本大题共有12小题,每小题2分,共计24分.)1.(2分)﹣8的绝对值是.2.(2分)一组数据2,3,3,1,5的众数是.3.(2分)计算:(a2)3= .4.(2分)分解因式:x2﹣1= .5.(2分)若分式有意义,则实数x的取值范围是.6.(2分)计算:= .7.(2分)圆锥底面圆的半径为1,侧面积等于3π,则它的母线长为.8.(2分)反比例函数y=(k≠0)的图象经过点A(﹣2,4),则在每一个象限内,y随x的增大而.(填“增大”或“减小”)9.(2分)如图,AD为△ABC的外接圆⊙O的直径,若∠BAD=50°,则∠ACB= °.(2分)已知二次函数y=x2﹣4x+k的图象的顶点在x轴下方,则实数k的取值范围是.10.11.(2分)如图,△ABC中,∠BAC>90°,BC=5,将△ABC绕点C按顺时针方向旋转90°,点B 对应点B′落在BA的延长线上.若sin∠B′AC=,则AC= .12.(2分)如图,点E、F、G分别在菱形ABCD的边AB,BC,AD上,AE=AB,CF=CB,AG=AD.已知△EFG的面积等于6,则菱形ABCD的面积等于.二、选择题(本大题共有5小题,每小题3分,共计15分.在每小题所给出的四个选项中,只有一项符合题目要求.)13.(3分)0.000182用科学记数法表示应为()A.0182×10﹣3B.1.82×10﹣4C.1.82×10﹣5D.18.2×10﹣414.(3分)如图是由3个大小相同的小正方体组成的几何体,它的左视图是()A.B.C.D.15.(3分)小明将如图所示的转盘分成n(n是正整数)个扇形,并使得各个扇形的面积都相等,然后他在这些扇形区域内分别标连接偶数数字2,4,6,…,2n(每个区域内标注1个数字,且各区域内标注的数字互不相同),转动转盘1次,当转盘停止转动时,若事件“指针所落区域标注的数字大于8”的概率是,则n的取值为()A.36 B.30 C.24 D.1816.(3分)甲、乙两地相距80km,一辆汽车上午9:00从甲地出发驶往乙地,匀速行驶了一半的路程后将速度提高了20km/h,并继续匀速行驶至乙地,汽车行驶的路程y(km)与时间x (h)之间的函数关系如图所示,该车到达乙地的时间是当天上午()A.10:35 B.10:40 C.10:45 D.10:5017.(3分)如图,一次函数y=2x与反比例函数y=(k>0)的图象交于A,B两点,点P在以C(﹣2,0)为圆心,1为半径的⊙C上,Q是AP的中点,已知OQ长的最大值为,则k的值为()A.B.C.D.三、解答题(本大题共有11小题,共计81分,解答应写出必要的文字说明、证明过程或演算步骤.)18.(8分)(1)计算:2﹣1+(2018﹣π)0﹣sin30°(2)化简:(a+1)2﹣a(a+1)﹣1.19.(10分)(1)解方程:=+1.(2)解不等式组:20.(6分)如图,数轴上的点A,B,C,D表示的数分别为﹣3,﹣1,1,2,从A,B,C,D 四点中任意取两点,求所取两点之间的距离为2的概率.21.(6分)小李读一本名著,星期六读了36页,第二天读了剩余部分的,这两天共读了整本书的,这本名著共有多少页?22.(6分)如图,△ABC中,AB=AC,点E,F在边BC上,BE=CF,点D在AF的延长线上,AD=AC.(1)求证:△ABE≌△ACF;(2)若∠BAE=30°,则∠ADC= °.23.(6分)某班50名学生的身高如下(单位:cm):160 163 152 161 167 154 158 171 156 168178 151 156 154 165 160 168 155 162 173158 167 157 153 164 172 153 159 154 155169 163 158 150 177 155 166 161 159 164171 154 157 165 152 167 157 162 155 160(1)小丽用简单随机抽样的方法从这50个数据中抽取一个容量为5的样本:161,155,174,163,152,请你计算小丽所抽取的这个样本的平均数;(2)小丽将这50个数据按身高相差4cm分组,并制作了如下的表格:身高频数频率147.5~151.50.06151.5~155.5155.5~159.511m159.5~163.50.18163.5~167.580.16167.5~171.54171.5~175.5n0.06175.5~179.52合计501①m= ,n= ;②这50名学生身高的中位数落在哪个身高段内?身高在哪一段的学生数最多?24.(6分)如图,校园内有两幢高度相同的教学楼AB,CD,大楼的底部B,D在同一平面上,两幢楼之间的距离BD长为24米,小明在点E(B,E,D在一条直线上)处测得教学楼AB顶部的仰角为45°,然后沿EB方向前进8米到达点G处,测得教学楼CD顶部的仰角为30°.已知小明的两个观测点F,H距离地面的高度均为1.6米,求教学楼AB的高度AB长.(精确到0.1米)参考值:≈1.41,≈1.73.25.(6分)如图,一次函数y=kx+b(k≠0)的图象与x轴,y轴分别交于A(﹣9,0),B(0,6)两点,过点C(2,0)作直线l与BC垂直,点E在直线l位于x轴上方的部分.(1)求一次函数y=kx+b(k≠0)的表达式;(2)若△ACE的面积为11,求点E的坐标;(3)当∠CBE=∠ABO时,点E的坐标为.26.(8分)如图1,平行四边形ABCD中,AB⊥AC,AB=6,AD=10,点P在边AD上运动,以P 为圆心,PA为半径的⊙P与对角线AC交于A,E两点.(1)如图2,当⊙P与边CD相切于点F时,求AP的长;(2)不难发现,当⊙P与边CD相切时,⊙P与平行四边形ABCD的边有三个公共点,随着AP 的变化,⊙P与平行四边形ABCD的边的公共点的个数也在变化,若公共点的个数为4,直接写出相对应的AP的值的取值范围.27.(9分)(1)如图1,将矩形ABCD折叠,使BC落在对角线BD上,折痕为BE,点C落在点C′处,若∠ADB=46°,则∠DBE的度数为°.(2)小明手中有一张矩形纸片ABCD,AB=4,AD=9.【画一画】如图2,点E在这张矩形纸片的边AD上,将纸片折叠,使AB落在CE所在直线上,折痕设为MN(点M,N分别在边AD,BC上),利用直尺和圆规画出折痕MN(不写作法,保留作图痕迹,并用黑色水笔把线段描清楚);【算一算】如图3,点F在这张矩形纸片的边BC上,将纸片折叠,使FB落在射线FD上,折痕为GF,点A,B分别落在点A′,B′处,若AG=,求B′D的长;【验一验】如图4,点K在这张矩形纸片的边AD上,DK=3,将纸片折叠,使AB落在CK所在直线上,折痕为HI,点A,B分别落在点A′,B′处,小明认为B′I所在直线恰好经过点D,他的判断是否正确,请说明理由.28.(10分)如图,二次函数y=x2﹣3x的图象经过O(0,0),A(4,4),B(3,0)三点,以点O为位似中心,在y轴的右侧将△OAB按相似比2:1放大,得到△OA′B′,二次函数y=ax2+bx+c (a≠0)的图象经过O,A′,B′三点.(1)画出△OA′B′,试求二次函数y=ax2+bx+c(a≠0)的表达式;(2)点P(m,n)在二次函数y=x2﹣3x的图象上,m≠0,直线OP与二次函数y=ax2+bx+c(a ≠0)的图象交于点Q(异于点O).①连接AP,若2AP>OQ,求m的取值范围;②当点Q在第一象限内,过点Q作QQ′平行于x轴,与二次函数y=ax2+bx+c(a≠0)的图象交于另一点Q′,与二次函数y=x2﹣3x的图象交于点M,N(M在N的左侧),直线OQ′与二次函数y=x2﹣3x的图象交于点P′.△Q′P′M∽△QB′N,则线段NQ的长度等于.江苏省镇江市中考数学试卷参考答案与试题解析一、填空题(本大题共有12小题,每小题2分,共计24分.)1.(2分)﹣8的绝对值是8 .【解答】解:﹣8的绝对值是8.2.(2分)一组数据2,3,3,1,5的众数是 3 .【解答】解:数据2,3,3,1,5的众数为3.故答案为3.3.(2分)计算:(a2)3= a6.【解答】解:(a2)3=a6.故答案为:a6.4.(2分)分解因式:x2﹣1= (x+1)(x﹣1).【解答】解:x2﹣1=(x+1)(x﹣1).故答案为:(x+1)(x﹣1).5.(2分)若分式有意义,则实数x的取值范围是x≠3 .【解答】解:由题意,得x﹣3≠0,解得x≠3,故答案为:x≠3.6.(2分)计算:= 2 .【解答】解:原式===2.故答案为:27.(2分)圆锥底面圆的半径为1,侧面积等于3π,则它的母线长为 3 .【解答】解:设它的母线长为l,根据题意得×2π×1×l=3π,解得l=3,即它的母线长为3.故答案为3.8.(2分)反比例函数y=(k≠0)的图象经过点A(﹣2,4),则在每一个象限内,y随x的增大而增大.(填“增大”或“减小”)【解答】解:∵反比例函数y=(k≠0)的图象经过点(﹣2,4),∴4=,解得k=﹣8<0,∴函数图象在每个象限内y随x的增大而增大.故答案为:增大.9.(2分)如图,AD为△ABC的外接圆⊙O的直径,若∠BAD=50°,则∠ACB= 40 °.【解答】解:连接BD,如图,∵AD为△ABC的外接圆⊙O的直径,∴∠ABD=90°,∴∠D=90°﹣∠BAD=90°﹣50°=40°,∴∠ACB=∠D=40°.故答案为40.10.(2分)已知二次函数y=x2﹣4x+k的图象的顶点在x轴下方,则实数k的取值范围是k <4 .【解答】解:∵二次函数y=x2﹣4x+k中a=1>0,图象的开口向上,又∵二次函数y=x2﹣4x+k的图象的顶点在x轴下方,∴△=(﹣4)2﹣4×1×k>0,解得:k<4,故答案为:k<4.11.(2分)如图,△ABC中,∠BAC>90°,BC=5,将△ABC绕点C按顺时针方向旋转90°,点B 对应点B′落在BA的延长线上.若sin∠B′AC=,则AC= .【解答】解:作CD⊥BB′于D,如图,∵△ABC绕点C按顺时针方向旋转90°,点B对应点B′落在BA的延长线上,∴CB=CB′=5,∠BCB′=90°,∴△BCB′为等腰直角三角形,∴BB′=BC=5,∴CD=BB′=,在Rt△ACD中,∵sin∠DAC==,∴AC=×=.故答案为.12.(2分)如图,点E、F、G分别在菱形ABCD的边AB,BC,AD上,AE=AB,CF=CB,AG=AD.已知△EFG的面积等于6,则菱形ABCD的面积等于27 .【解答】解:在CD上截取一点H,使得CH=CD.连接AC交BD于O,BD交EF于Q,EG交AC 于P.∵=,∴EG∥BD,同法可证:FH∥BD,∴EG∥FH,同法可证EF∥GF,∴四边形EFGH是平行四边形,∵四边形ABCD是菱形,∴AC⊥BD,∴EF⊥EG,∴四边形EFGH是矩形,易证点O在线段FG上,四边形EQOP是矩形,=6,∵S△EFG∴S=3,即OP•OQ=3,矩形EQOP∵OP:OA=BE:AB=2:3,∴OA=OP,同法可证OB=3OQ,∴S=•AC•BD=×3OP×6OQ=9OP×OQ=27.菱形ABCD故答案为27.二、选择题(本大题共有5小题,每小题3分,共计15分.在每小题所给出的四个选项中,只有一项符合题目要求.)13.(3分)0.000182用科学记数法表示应为()A.0182×10﹣3B.1.82×10﹣4C.1.82×10﹣5D.18.2×10﹣4【解答】解:0.000182=2×10﹣4.故选:B.14.(3分)如图是由3个大小相同的小正方体组成的几何体,它的左视图是()A.B.C.D.【解答】解:如图所示:它的左视图是:.故选:D.15.(3分)小明将如图所示的转盘分成n(n是正整数)个扇形,并使得各个扇形的面积都相等,然后他在这些扇形区域内分别标连接偶数数字2,4,6,…,2n(每个区域内标注1个数字,且各区域内标注的数字互不相同),转动转盘1次,当转盘停止转动时,若事件“指针所落区域标注的数字大于8”的概率是,则n的取值为()A.36 B.30 C.24 D.18【解答】解:∵“指针所落区域标注的数字大于8”的概率是,∴=,解得:n=24,故选:C.16.(3分)甲、乙两地相距80km,一辆汽车上午9:00从甲地出发驶往乙地,匀速行驶了一半的路程后将速度提高了20km/h,并继续匀速行驶至乙地,汽车行驶的路程y(km)与时间x (h)之间的函数关系如图所示,该车到达乙地的时间是当天上午()A.10:35 B.10:40 C.10:45 D.10:50【解答】解:因为匀速行驶了一半的路程后将速度提高了20km/h,所以1小时后的路程为40km,速度为40km/h,所以以后的速度为20+40=60km/h,时间为分钟,故该车到达乙地的时间是当天上午10:40;故选:B.17.(3分)如图,一次函数y=2x与反比例函数y=(k>0)的图象交于A,B两点,点P在以C(﹣2,0)为圆心,1为半径的⊙C上,Q是AP的中点,已知OQ长的最大值为,则k的值为()A.B.C.D.【解答】解:连接BP,由对称性得:OA=OB,∵Q是AP的中点,∴OQ=BP,∵OQ长的最大值为,∴BP长的最大值为×2=3,如图,当BP过圆心C时,BP最长,过B作BD⊥x轴于D,∵CP=1,∴BC=2,∵B在直线y=2x上,设B(t,2t),则CD=t﹣(﹣2)=t+2,BD=﹣2t,在Rt△BCD中,由勾股定理得:BC2=CD2+BD2,∴22=(t+2)2+(﹣2t)2,t=0(舍)或﹣,∴B(﹣,﹣),∵点B在反比例函数y=(k>0)的图象上,∴k=﹣=;故选:C.三、解答题(本大题共有11小题,共计81分,解答应写出必要的文字说明、证明过程或演算步骤.)18.(8分)(1)计算:2﹣1+(2018﹣π)0﹣sin30°(2)化简:(a+1)2﹣a(a+1)﹣1.【解答】解:(1)原式=+1﹣=1;(2)原式=a2+2a+1﹣a2﹣a﹣1=a.19.(10分)(1)解方程:=+1.(2)解不等式组:【解答】解:(1)两边都乘以(x﹣1)(x+2),得:x(x﹣1)=2(x+2)+(x﹣1)(x+2),解得:x=﹣,当x=﹣时,(x﹣1)(x+2)≠0,∴分式方程的解为x=﹣;(2)解不等式2x﹣4>0,得:x>2,解不等式x+1≤4(x﹣2),得:x≥3,则不等式组的解集为x≥3.20.(6分)如图,数轴上的点A,B,C,D表示的数分别为﹣3,﹣1,1,2,从A,B,C,D 四点中任意取两点,求所取两点之间的距离为2的概率.【解答】解:画树状图为:共有12种等可能的结果数,其中所取两点之间的距离为2的结果数为4,所以所取两点之间的距离为2的概率==.21.(6分)小李读一本名著,星期六读了36页,第二天读了剩余部分的,这两天共读了整本书的,这本名著共有多少页?【解答】解:设这本名著共有x页,根据题意得:36+(x﹣36)=x,解得:x=216.答:这本名著共有216页.22.(6分)如图,△ABC中,AB=AC,点E,F在边BC上,BE=CF,点D在AF的延长线上,AD=AC.(1)求证:△ABE≌△ACF;(2)若∠BAE=30°,则∠ADC= 75 °.【解答】(1)证明:∵AB=AC,∴∠B=∠ACF,在△ABE和△ACF中,,∴△ABE≌△ACF(SAS);(2)∵△ABE≌△ACF,∠BAE=30°,∴∠BAE=∠CAF=30°,∵AD=AC,∴∠ADC=∠ACD,∴∠ADC==75°,故答案为:75.23.(6分)某班50名学生的身高如下(单位:cm):160 163 152 161 167 154 158 171 156 168178 151 156 154 165 160 168 155 162 173158 167 157 153 164 172 153 159 154 155169 163 158 150 177 155 166 161 159 164171 154 157 165 152 167 157 162 155 160(1)小丽用简单随机抽样的方法从这50个数据中抽取一个容量为5的样本:161,155,174,163,152,请你计算小丽所抽取的这个样本的平均数;(2)小丽将这50个数据按身高相差4cm分组,并制作了如下的表格:身高频数频率147.5~151.5 3 0.06151.5~155.510 0.20155.5~159.511m159.5~163.59 0.18163.5~167.580.16167.5~171.540.08171.5~175.5n0.06175.5~179.520.04合计501①m= 0.22 ,n= 3 ;②这50名学生身高的中位数落在哪个身高段内?身高在哪一段的学生数最多?【解答】解:(1)=(161+155+174+163+152)=161;(2)①如表可知,m=0,22,n=3,故答案为:0.22;3;②这50名学生身高的中位数落在159.5~163.5,身高在151.5~155.5的学生数最多.24.(6分)如图,校园内有两幢高度相同的教学楼AB,CD,大楼的底部B,D在同一平面上,两幢楼之间的距离BD长为24米,小明在点E(B,E,D在一条直线上)处测得教学楼AB顶部的仰角为45°,然后沿EB方向前进8米到达点G处,测得教学楼CD顶部的仰角为30°.已知小明的两个观测点F,H距离地面的高度均为1.6米,求教学楼AB的高度AB长.(精确到0.1米)参考值:≈1.41,≈1.73.【解答】解:延长HF交CD于点N,延长FH交AB于点M,如右图所示,由题意可得,MB=HG=FE=ND=1.6m,HF=GE=8m,MF=BE,HN=GD,MN=BD=24m,设AM=xm,则CN=xm,在Rt△AFM中,MF=,在Rt△CNH中,HN=,∴HF=MF+HN﹣MN=x+x﹣24,即8=x+x﹣24,解得,x≈11.7,∴AB=11.7+1.6=13.3m,答:教学楼AB的高度AB长13.3m.25.(6分)如图,一次函数y=kx+b(k≠0)的图象与x轴,y轴分别交于A(﹣9,0),B(0,6)两点,过点C(2,0)作直线l与BC垂直,点E在直线l位于x轴上方的部分.(1)求一次函数y=kx+b(k≠0)的表达式;(2)若△ACE的面积为11,求点E的坐标;(3)当∠CBE=∠ABO时,点E的坐标为(11,3).【解答】解:(1)∵一次函数y=kx+b(k≠0)的图象与x轴,y轴分别交于A(﹣9,0),B(0,6)两点,∴,∴,∴一次函数y=kx+b的表达式为y=x﹣6;. (2)如图,记直线l与y轴的交点为D,∵BC⊥l,∴∠BCD=90°=∠BOC,∴∠OBC+∠OCB=∠OCD+∠OCB,∴∠OBC=∠OCD,∵∠BOC=∠COD,∴△OBC∽△OCD,∴,∵B(0,6),C(2,0),∴OB=6,OC=2,∴,∴OD=,∴D(0,﹣),∵C(2,0),∴直线l的解析式为y=x﹣,设E(t,t﹣t),∵A(﹣9,0),C(2,0),∴S△ACE =AC×yE=×11×(t﹣)=11,∴t=8,∴E(8,2);(3)如图,过点E作EF⊥x轴于F,∵∠ABO=∠CBE,∠AOB=∠BCE=90°∴△ABO∽△EBC,∴,∵∠BCE=90°=∠BOC,∴∠BCO+∠CBO=∠BCO+∠ECF,∴∠CBO=∠ECF,∵∠BOC=∠EFC=90°,∴△BOC∽△CFE,∴,∴,∴CF=9,EF=3,∴OF=11,∴E(11,3).故答案为(11,3).26.(8分)如图1,平行四边形ABCD中,AB⊥AC,AB=6,AD=10,点P在边AD上运动,以P 为圆心,PA为半径的⊙P与对角线AC交于A,E两点.(1)如图2,当⊙P与边CD相切于点F时,求AP的长;(2)不难发现,当⊙P与边CD相切时,⊙P与平行四边形ABCD的边有三个公共点,随着AP 的变化,⊙P与平行四边形ABCD的边的公共点的个数也在变化,若公共点的个数为4,直接写出相对应的AP的值的取值范围<AP<或AP=5 .【解答】解:(1)如图2所示,连接PF,在Rt△ABC中,由勾股定理得:AC==8,设AP=x,则DP=10﹣x,PF=x,∵⊙P与边CD相切于点F,∴PF⊥CD,∵四边形ABCD是平行四边形,∴AB∥CD,∵AB⊥AC,∴AC⊥CD,∴AC∥PF,∴△DPF∽△DAC,∴,∴,∴x=,AP=;(2)当⊙P与BC相切时,设切点为G,如图3,S▱ABCD==10PG,PG=,①当⊙P与边AD、CD分别有两个公共点时,<AP<,即此时⊙P与平行四边形ABCD的边的公共点的个数为4,②⊙P过点A、C、D三点.,如图4,⊙P与平行四边形ABCD的边的公共点的个数为4,此时AP=5,综上所述,AP的值的取值范围是:<AP<或AP=5.故答案为:<AP<或AP=5.27.(9分)(1)如图1,将矩形ABCD折叠,使BC落在对角线BD上,折痕为BE,点C落在点C′处,若∠ADB=46°,则∠DBE的度数为23 °.(2)小明手中有一张矩形纸片ABCD,AB=4,AD=9.【画一画】如图2,点E在这张矩形纸片的边AD上,将纸片折叠,使AB落在CE所在直线上,折痕设为MN(点M,N分别在边AD,BC上),利用直尺和圆规画出折痕MN(不写作法,保留作图痕迹,并用黑色水笔把线段描清楚);【算一算】如图3,点F在这张矩形纸片的边BC上,将纸片折叠,使FB落在射线FD上,折痕为GF,点A,B分别落在点A′,B′处,若AG=,求B′D的长;【验一验】如图4,点K在这张矩形纸片的边AD上,DK=3,将纸片折叠,使AB落在CK所在直线上,折痕为HI,点A,B分别落在点A′,B′处,小明认为B′I所在直线恰好经过点D,他的判断是否正确,请说明理由.【解答】解:(1)如图1中,∵四边形ABCD是矩形,∴AD∥BC,∴∠ADB=∠DBC=46°,由翻折不变性可知,∠DBE=∠EBC=∠DBC=23°,故答案为23.(2)【画一画】,如图2中,. 【算一算】如图3中,∵AG=,AD=9,∴GD=9﹣=,∵四边形ABCD是矩形,∴AD∥BC,∴∠DGF=∠BFG,由翻折不变性可知,∠BFG=∠DFG,∴∠DFG=∠DGF,∴DF=DG=,∵CD=AB=4,∠C=90°,∴在Rt△CDF中,CF==,∴BF=BC﹣CF=,由翻折不变性可知,FB=FB′=,∴DB′=DF﹣FB′=﹣=3.【验一验】如图4中,小明的判断不正确.理由:连接ID,在Rt△CDK中,∵DK=3,CD=4,∴CK==5,∵AD∥BC,∴∠DKC=∠ICK,由折叠可知,∠A′B′I=∠B=90°,∴∠IB′C=90°=∠D,∴△CDK∽△IB′C,∴==,即==,设CB′=3k,IB′=4k,IC=5k,由折叠可知,IB=IB′=4k,∴BC=BI+IC=4k+5k=9,∴k=1,∴IC=5,IB′=4,B′C=3,在Rt△ICB′中,tan∠B′IC==,连接ID,在Rt△ICD中,tan∠DIC==,∴tan∠B′IC≠tan∠DIC,∴B′I所在的直线不经过点D.28.(10分)如图,二次函数y=x2﹣3x的图象经过O(0,0),A(4,4),B(3,0)三点,以点O为位似中心,在y轴的右侧将△OAB按相似比2:1放大,得到△OA′B′,二次函数y=ax2+bx+c (a≠0)的图象经过O,A′,B′三点.(1)画出△OA′B′,试求二次函数y=ax2+bx+c(a≠0)的表达式;(2)点P(m,n)在二次函数y=x2﹣3x的图象上,m≠0,直线OP与二次函数y=ax2+bx+c(a ≠0)的图象交于点Q(异于点O).①连接AP,若2AP>OQ,求m的取值范围;②当点Q在第一象限内,过点Q作QQ′平行于x轴,与二次函数y=ax2+bx+c(a≠0)的图象交于另一点Q′,与二次函数y=x2﹣3x的图象交于点M,N(M在N的左侧),直线OQ′与二次函数y=x2﹣3x的图象交于点P′.△Q′P′M∽△QB′N,则线段NQ的长度等于 6 .【解答】解:(1)由以点O为位似中心,在y轴的右侧将△OAB按相似比2:1放大,得==∵A(4,4),B(3,0)∴A′(8,8),B′(6,0)将O(0,0),A′(8,8),B′(6,0)代入y=ax2+bx+c得解得∴二次函数的解析式为y=x2﹣3x;(2)①∵P(m,n)在二次函数y=x2﹣3x的图象上∴n=m2﹣3m∴P(m,m2﹣3m)设直线OP的解析式为y=kx,将点P(m,m2﹣3m)代入函数解析式,得mk=m2﹣3m∴k=m﹣3∴OP的解析是为y=(m﹣3)x∵OP与y═x2﹣3x交于Q点∴解得(不符合题意舍去)∴Q(2m,2m2﹣6m)过点P作PC⊥x轴于点C,过点Q作QD⊥x轴于点D 则OC=|m|,PC=|m2﹣3m|,OD=|2m|,QD=|22﹣6m|∵==2∴△OCP∽△ODQ∴OQ=2OP∵2AP>OQ∴2AP>2OP,即AP>OP∴>化简,得m2﹣2m﹣4<0,解得1﹣<m<1+,且m≠0;②P(m,m2﹣3m),Q(2m,2m2﹣6m)∵点Q在第一象限,∴,解得>3由Q(2m,2m2﹣6m),得QQ′的表达式是y=2m2﹣6m∵QQ′交y=x2﹣3x交于点Q′解得(不符合题意,舍)∴Q′(6﹣2m,2m2﹣6m)设OQ′的解析是为y=kx,(6﹣2m)k=2m2﹣6m解得k=﹣m,OQ′的解析式为y=﹣m∵OQ′与y=x2﹣3x交于点P′∴﹣mx=x2﹣3x解得x1=0(舍),x2=3﹣m∴P′(3﹣m,m2﹣3m)∵QQ′与y=x2﹣3x交于点P′∴﹣mx=x2﹣3x. ∴P′(3﹣m,m2﹣3m)∵QQ′与y=x2﹣3x交于点M、N∴x2﹣3x=2m2﹣6m解得x1=,x2=∵M在N左侧∴M(,2m2﹣6m)N(,2m2﹣6m)∵△Q′P′M∽△QB′N∴∵即化简得m2﹣12m+27=0解得:m1=3(舍),m2=9∴N(12,108),Q(8,108)∴QN=6故答案为:6。

相关文档
最新文档