函数导数与数列结合题

合集下载

导数中的数列问题

导数中的数列问题

高考数学押题系列——数列与导数最值的完美结合
领军教育高三数学 朱腾飞老师
导数解题题目,有一种题型是和数列相结合进行考查的,这类题目在求解时,往往要利用导数研究函数的最值,在根据自变量与通项公式之间的关系进行转化,这类题目的难点在于如何寻找函数中的自变量和数列通项公式的关系,这个考点在近些年的考题中略有体现,所以今天我们(微信公众号:高中数学题型研究)针对这个考点进行了整理,将我们相关的题目进行分析和整理,对考点和难点进行归纳,方便大家参考学习!
【题目一】(2017年新课标卷3理科21题)已知函数()1f x x alnx =−−.
(1)若()0f x ,求a 的值;
(2)设m 为整数,且对于任意正整数n ,2111(1)(1)(1)222
n m ++⋯+<,求m 的最小值.
【题目二】(2021年宝鸡市高考数学三模文科21题)已知函数2()2ln 1f x x x =−+.
(1)求函数()f x 的最大值;
(2)证明:*222572132ln(1),(23n n n N n
+++++>+∈).
【题目三】(2021年宝鸡市高考数学三模理科20题)已知函数1()2ln .f x x x x
=−
− 求证:
(1)函数()f x 有且仅有一个零点; (2)
*35212ln(1),().1223(1)
n n n N n n ++++>+∈⋅⋅+ 【题目四】(2021年安徽宣城市高考数学模拟最后一卷文科21题)
已知函数f (x )=ae x ﹣x ﹣1.
(1)若f (x )≥0对于任意的x 恒成立,求a 的取值范围;
(2)证明:1111ln(1)23n n
++++≥+对任意的*n N ∈恒成立.。

导数与数列结合题目

导数与数列结合题目

导数与数列结合题目一、背景介绍数列是数学中一个重要的概念,它由一系列按特定规则排列的数构成。

数列的性质和规律对于数学的发展和应用有着重要的影响。

而导数是微积分中的一个重要概念,它描述了函数在某一点的变化率。

导数的计算和性质对于函数的研究和应用有着重要的意义。

在数学学习中,我们常常会遇到一些题目涉及到导数和数列的结合。

这些题目既考察了对导数和数列的理解,也考察了学生的解题能力和思维灵活性。

本文将介绍一些常见的导数与数列结合题目,并通过具体的例子进行说明和解答。

二、题目示例题目1:数列的导数已知数列 {an} 满足 an = 2n + 1,求数列的导数{a’n}。

解答:首先,我们需要知道数列的导数的定义。

对于数列 {an},其导数{a’n} 的定义为:a’n = limh→0 (an+h - an) / h代入题目给定的数列 {an} = 2n + 1,得到:a’n = limh→0 ((2(n+h)+1) - (2n+1)) / h化简上式得:a’n = limh→0 (2h) / h由此可知,数列的导数{a’n} = 2。

题目2:数列的极限与导数已知数列 {an} 满足 a1 = 2,an+1 = an + 3 / an,求数列的极限。

解答:首先,我们先对数列 {an} 进行求导。

令 f(x) = x + 3 / x,根据导数的定义,有:f’(x) = limh→0 (f(x+h) - f(x)) / h代入 f(x) = x + 3 / x,得到:f’(x) = limh→0 ((x+h + 3 / (x+h)) - (x + 3 / x)) / h化简上式得:f’(x) = limh→0 (3h / (x(x+h))) / h通过化简,得到f’(x) = 3 / x^2。

接下来,我们考察数列 {an} 的极限。

根据题目中给定的递推关系式,我们可以得到数列 {an} 的通项公式:an = an-1 + 3 / an-1化简上式得:an^2 = an-1^2 + 3进一步推导,可得:an^2 - an-1^2 = 3再次化简,可得:(an + an-1) * (an - an-1) = 3由此可知,数列 {an} 是一个有界数列,其极限存在。

概率与数列、导数、函数和方程等知识交汇的创新题型

概率与数列、导数、函数和方程等知识交汇的创新题型

概率与数列、导数、函数和方程等知识交汇的创新题型ʏ河南省固始县信合外国语高级中学 胡云兵2019年高考全国Ⅰ卷首次把概率题作为压轴题出现,当时引起一片哗然,这是在传递什么信号?概率统计题何去何从?我们要如何备考带着这些问题,我们从近几年全国卷和部分省份的概率高考题,发现概率题增加难度,不是概率知识本身增加难度,而是难在概率与其他数学知识交汇处命题㊂下面通过几道高考题来说明概率与其他数学知识交汇的创新题型㊂一㊁概率与数列的交汇例1 (2019全国Ⅰ卷理数第21题)为治疗某种疾病,研制了甲㊁乙两种新药,希望知道哪种新药更有效,为此进行动物试验㊂试验方案如下:每一轮选取两只白鼠对药效进行对比试验㊂对于两只白鼠,随机选一只施以甲药,另一只施以乙药㊂一轮的治疗结果得出后,再安排下一轮试验㊂当其中一种药治愈的白鼠比另一种药治愈的白鼠多4只时,就停止试验,并认为治愈只数多的药更有效㊂为了方便描述问题,约定:对于每轮试验,若施以甲药的白鼠治愈且施以乙药的白鼠未治愈,则甲药得1分,乙药得-1分;若施以乙药的白鼠治愈且施以甲药的白鼠未治愈,则乙药得1分,甲药得-1分;若都治愈或都未治愈,则两种药均得0分㊂甲㊁乙两种药的治愈率分别记为α和β,一轮试验中甲药的得分记为X ㊂(1)求X 的分布列㊂(2)若甲药㊁乙药在试验开始时都赋予4分,p i (i =0,1, ,8)表示 甲药的累计得分为i 时,最终认为甲药比乙药更有效 的概率,则p 0=0,p 8=1,p i =a p i -1+b p i +c p i +1(i =1,2, ,7),其中a =P (X =-1),b =P (X =0),c =P (X =1)㊂假设α=0.5,β=0.8㊂(i )证明:{p i +1-p i }(i =0,1,2, ,7)为等比数列;(i i)求p 4,并根据p 4的值解释这种试验方案的合理性㊂解析:(1)X 的所有可能取值为-1,0,1㊂P (X =-1)=(1-α)β,P (X =0)=αβ+(1-α)(1-β),P (X =1)=α(1-β)㊂故X 的分布列如表1㊂表1X -101P(1-α)βαβ+(1-α)(1-β)α(1-β)(2)(i )已知α=0.5,β=0.8,故由(1)得,a =0.4,b =0.5,c =0.1㊂因此,p i =0.4p i -1+0.5p i +0.1p i +1(i =1,2, ,7)㊂整理得0.1(p i +1-p i )=0.4(p i -p i -1),即p i +1-p i =4(p i -p i -1)㊂又p 1-p 0=p 1ʂ0,故{p i +1-p i }(i =0,1,2, ,7)为公比为4,首项为p 1的等比数列㊂(i i )由(i)可得:p 8=(p 8-p 7)+(p 7-p 6)+ +(p 1-p 0)+p 0=p 1(1-48)1-4=48-13p 1㊂因p 8=1,故p 1=348-1㊂因此,p 4=(p 4-p 3)+(p 3-p 2)+(p 2-p 1)+(p 1-p 0)+p 0=44-13p 1=1257㊂p 4表示最终认为甲药更有效的概率㊂由计算结果可以看出,在甲药治愈率为0.5,乙药治愈率为0.8时,认为甲药更有效的概率为p 4=1257ʈ0.0039,此时得出错误结论的概率非常小,说明这种试验方案合理㊂点评:本题是函数与数列的综合题,主要考查数列和函数的应用,考查离散型随机变量的分布列㊂根据条件推出数列的递推关系是解决本题的关键㊂其本质仍然是常规的概率与统计问题,只是其中涉及了数列问题的应用,一般转化为等差㊁等比数列的定义㊁通项公式或者数列求和问题㊂二㊁概率与函数㊁方程和导数的交汇例2 (2021新高考Ⅱ卷第21题)一种微生物群体可以经过自身繁殖不断生存下63 解题篇 创新题追根溯源 高二数学 2023年4月Copyright ©博看网. All Rights Reserved.来,设一个这种微生物为第0代,经过一次繁殖后为第1代,再经过一次繁殖后为第2代, ,该微生物每代繁殖的个数是相互独立的且有相同的分布列,设X表示1个微生物个体繁殖下一代的个数,P(X=i)=p i(i =0,1,2,3)㊂(1)已知p0=0.4,p1=0.3,p2=0.2,p3 =0.1,求E(X)㊂(2)设p表示该种微生物经过多代繁殖后临近灭绝的概率,p是关于x的方程:p0+ p1x+p2x2+p3x3=x的一个最小正实根㊂求证:当E(X)ɤ1时,p=1;当E(X)>1时,p<1㊂(3)根据你的理解,请说明(2)问结论的实际含义㊂解析:(1)E(X)=0ˑ0.4+1ˑ0.3+2ˑ0.2+3ˑ0.1=1㊂(2)设f(x)=p3x3+p2x2+(p1-1)x+p0㊂因为p3+p2+p1+p0=1,所以f(x)= p3x3+p2x2-(p2+p0+p3)x+p0㊂①若E(X)ɤ1,则p1+2p2+3p3ɤ1,故p2+2p3ɤp0㊂f'(x)=3p3x2+2p2x-(p2+p0+p3)㊂因为f'(0)=-(p2+p0+p3)<0, f'(1)=p2+2p3-p0ɤ0,所以f'(x)有两个不同零点x1,x2,且x1<0<1ɤx2㊂当xɪ(-ɕ,x1)ɣ(x2,+ɕ)时, f'(x)>0;当xɪ(x1,x2)时,f'(x)<0㊂故f(x)在(-ɕ,x1)上为增函数,在(x1,x2)上为减函数,在(x2,+ɕ)上为增函数㊂若x2=1,f(x)在(x2,+ɕ)为增函数且f(1)=0㊂而当xɪ(0,x2)时,因为f(x)在(x1,x2)上为减函数,所以f(x)>f(x2)= f(1)=0,故1为p0+p1x+p2x2+p3x3=x 的一个最小正实根㊂若x2>1,因为f(1)=0且在(0,x2)上为减函数,所以1为p0+p1x+p2x2+p3x3 =x的一个最小正实根㊂综上,若E(X)ɤ1,则p=1㊂②若E(X)>1,则p1+2p2+3p3>1,故p2+2p3>p0㊂此时f'(0)=-(p2+p0+p3)<0, f'(1)=p2+2p3-p0>0,故f'(x)有两个不同零点x3,x4,且x3<0<x4<1㊂当xɪ(-ɕ,x3)ɣ(x4,+ɕ)时, f'(x)>0;当xɪ(x3,x4)时,f'(x)<0㊂故f(x)在(-ɕ,x3)上为增函数,在(x3,x4)上为减函数,在(x4,+ɕ)上为增函数㊂而f(1)=0,故f(x4)<0㊂又f(0)=p0>0,故f(x)在(0,x4)存在一个零点p,且p<1㊂所以p为p0+p1x+p2x2+p3x3=x的一个最小正实根,此时p<1㊂故当E(X)>1时,p<1㊂(3)结论的实际含义:每一个该种微生物繁殖后代的平均数不超过1,则若干代必然灭绝;若繁殖后代的平均数超过1,则若干代后被灭绝的概率小于1㊂点评:在概率与统计的问题中,决策的工具是样本的数字特征或有关概率㊂决策方案的最佳选择是将概率最大(最小)或均值最大(最小)的方案作为最佳方案,这往往借助于函数㊁不等式或数列的有关性质去实现㊂例3(2018年全国Ⅰ卷理数第20题)某工厂的某种产品成箱包装,每箱200件,每一箱产品在交付用户之前要对产品进行检验,如检验出不合格品,则更换为合格品㊂检验时,先从这箱产品中任取20件进行检验,再根据检验结果决定是否对余下的所有产品检验㊂设每件产品为不合格品的概率都为p(0<p<1),且各件产品是否为不合格品相互独立㊂(1)记20件产品中恰有2件不合格品的概率为f(p),求f(p)的最大值点p0㊂(2)现对一箱产品检验了20件,结果恰有2件不合格品,以(1)中确定的p0作为p 的值㊂已知每件产品的检验费用为2元,若有不合格品进入用户手中,则工厂要对每件不合格品支付25元的赔偿费用㊂①若不对该箱余下的产品进行检验,这一箱产品的检验费用与赔偿费用的和记为X,求E(X);73解题篇创新题追根溯源高二数学2023年4月Copyright©博看网. All Rights Reserved.②以检验费用与赔偿费用和的期望值为决策依据,是否该对这箱余下的所有产品作检验解析:(1)20件产品中恰有2件不合格品的概率为f(p)=C220p2㊃(1-p)18(0< p<1)㊂因此,f'(p)=C220[2p(1-p)18-18p2(1-p)17]=2C220p(1-p)17(1-10p),0<p<1㊂令f'(p)=0,得p=0.1㊂当pɪ(0,0.1)时,f'(p)>0;当pɪ(0.1,1)时,f'(p)<0㊂所以f(p)的最大值点为p0=0.1㊂(2)由(1)知,p=0.1㊂①令Y表示余下的180件产品中的不合格品件数,依题意知Y~B(180,0.1),X= 20ˑ2+25Y,即X=40+25Y㊂所以E(X)=E(40+25Y)=40+ 25E(Y)=40+25ˑ180ˑ0.1=490㊂②若对余下的产品作检验,则这一箱产品所需要的检验费用为400元㊂由于E(X)>400,故应该对余下的产品作检验㊂点评:解决概率和函数㊁导数的综合问题,关键是读懂题意,将与概率有关的问题(尤其是最值问题)转化为函数问题,再利用函数或导数知识解决,在转化过程中,对已知条件进行适当变形㊁整理,使之与求解的结论建立联系,从而解决问题㊂三、概率与不等式的交汇例4(2017年江苏卷第23题)已知一个口袋有m个白球,n个黑球(m,nɪN*, nȡ2),这些球除颜色外完全相同㊂现将口袋中的球随机地逐个取出,并放入如表2所示的编号为1,2,3, ,m+n的抽屉内,其中第k次取球放入编号为k的抽屉(k=1,2, 3, ,m+n)㊂表2123 m+n(1)试求编号为2的抽屉内放的是黑球的概率p;(2)随机变量X表示最后一个取出的黑球所在抽屉编号的倒数,E(X)是X的数学期望,证明:E(X)<n(m+n)(n-1)㊂解析:(1)编号为2的抽屉内放的是黑球的概率p=C n-1m+n-1C n m+n=nm+n㊂(2)随机变量X的概率分布如表3㊂表3X1n1n+11n+2 1k 1n+m PC n-1n-1C n m+nC n-1nC n m+nC n-1n+1C n m+nC n-1k-1C n m+nC n-1n+m-1C n m+n随机变量X的期望为:E(X)=ðm+n k=n1k㊃C n-1k-1C n m+n=1C n m+nðm+n k=n1k㊃(k-1)!(n-1)!(k-n)!㊂所以E(X)<1C n m+nðm+n k=n(k-2)!(n-1)!(k-n)!=1(n-1)C n m+nðm+n k=n(k-2)!(n-2)!(k-n)!=1(n-1)C n m+n(1+C n-2n-1+C n-2n+ + C n-2m+n-2)=1(n-1)C n m+n(C n-1n-1+C n-2n-1+C n-2n+ + C n-2m+n-2)=1(n-1)C n m+n(C n-1n+C n-2n+ + C n-2m+n-2)=1(n-1)C n m+n(C n-1m+n-2+C n-2m+n-2)=C n-1m+n-1(n-1)C n m+n=n(m+n)(n-1)㊂故E(X)<n(m+n)(n-1)㊂点评:本题表面看起来是概率问题,但是它重点恰在不等式,所以对于概率统计问题,我们要有意关注与其他数学知识的整合㊂同时也提醒我们要跳出固定思维模式,学会灵活处理问题的能力㊂(责任编辑徐利杰)8 3解题篇创新题追根溯源高二数学2023年4月Copyright©博看网. All Rights Reserved.。

高中数学《导数和数列综合证明 (1)》导学案

高中数学《导数和数列综合证明 (1)》导学案

高中数学《导数和数列综合证明(一)》导学案例2:已知:x x <+)1ln(2,(1)求证:)*2222()21...(81)41)(21(N n e n ∈<+⎪⎭⎫ ⎝⎛+++(2)求证:*2()311)...(8111)(911(N n e n ∈<+++)(3)求证:(1+421)(1+431)…(1+41n)<e )211ln(......)411ln()211ln()]211)...(411)(211ln[()1ln(12222222n n x x ++++++=+++∴<+ )(e n n n n <+++∴<⎪⎭⎫ ⎝⎛-=-⎪⎭⎫ ⎝⎛-=++++<)211)...(411)(211(12112112112121 (814121222),)311)...(8111)(911(21311213113113131......3131)311ln(......)8111ln()911()]311)...(8111)(911ln[(2212222e e n n n n n n =<+++∴<⎪⎭⎫ ⎝⎛-=-⎪⎭⎫ ⎝⎛-=++<++++++=+++∴)( (3)ln[(1+421)(1+431)……(1+41n )]=ln[(1+421)(1+431)+…ln (1+41n )<221+231+…+21n<)1(1321211-+⨯+⨯n n =1-21+21-31+…+n n 111--=1-n 1<1∴(1+421)(1+431)……(1+41n )<e 例3:设曲线y = f (x ) =cx bx x a ++23213在点x 处的切线斜率为k (x ),且k (-1) = 0.对一切实数x ,不等式).0()1(21)(2≠+≤≤a x x k x 恒成立(1)求f (1)的值;(2)求函数k (x )的表达式;(3)设数列)(1n k 的前n 项和为S n ,求证22+>n nS n解:(1)04)1(,0,00)(222≤--≤∆>∴≥-++++=ac b a x c bx ax c bx ax x k ①0)21)(21(4,0,021,02121222≤---≤∆<-∴≤--++c a b a x c bx ax ②又,4)1(1)1(),11(21)1(12a cb a k k k =++==∴+≤≤ 又1270)1(41=∴=∴f a(2))0()(2≠++='=a c bx ax y x k ,由0)1(,1)1(=-=k k 得⎩⎨⎧=+-=++01c b a c b a 得⎪⎩⎪⎨⎧==+2121b c a 又)1(21)(2+≤≤x x k x 恒成立,则由)0(0212≠≥+-a c x ax 恒成立得410402141==⇒⎪⎩⎪⎨⎧=+≤-=∆>c a c a ac a 同理由02121)21(2≥-++-c x x a 恒成立得41==c a 综上,21,41===b c a 412141)(2++=∴x x k(3)∑=+++⨯+⨯>+++=ni n n n i k 122])2)(1(1431321[41])1(121[41)(1 22]2121[41+=+-=n n n 法二:和式代换,要证22+>n n S n ,即也证()1121+->-n n S n ,只需证:()()()21411222++=+--+>n n n n n n a n ,只需()()()21414)(12++>+=n n n n k ,且()322121114211=+>=+==S a ,故22+>n n S n。

2-3-23函数、导数与不等式、解析几何、数列型解答题

2-3-23函数、导数与不等式、解析几何、数列型解答题

高考专题训练二十三函数、导数与不等式、解析几何、数列型解答题班级_______ 姓名_______ 时间:45分钟 分值:72分 总得分________1.(12分)(2011·成都市高中毕业班第二次诊断性检测)设△ABC 的三内角A 、B 、C 所对应的边长分别为a 、b 、c ,平面向量m =(cos A ,cos C ),n =(c ,a ),p =(2b,0),且m ·(n -p )=0.(1)求角A 的大小;(2)当|x |≤A 时,求函数f (x )=sin x cos x +sin xsin ⎝ ⎛⎭⎪⎫x -π6的值域. 解:(1)m ·(n -p )=(cos A ,cos C )·(c -2b ,a ) =(c -2b )cos A +a cos C =0⇒(sin C -2sin B )cos A +sin A cos C =0⇒-2sin B cos A +sin B =0. ∵sin B ≠0,∴cos A =12⇒A =π3.(2)f (x )=sin x cos x +sin x sin ⎝ ⎛⎭⎪⎫x -π6=12sin x cos x +32sin 2x =14sin2x +32·1-cos2x 2=34+14sin2x - 34cos2x =34+12sin ⎝ ⎛⎭⎪⎫2x -π3.∵|x |≤A ,A =π3,∴-π3≤x ≤π3-π≤2x -π3≤π3∴-1≤sin ⎝ ⎛⎭⎪⎫2x -π3≤32⇒3-24≤34+12sin ⎝ ⎛⎭⎪⎫2x -π3≤32.∴函数f (x )的值域为[3-24,32].2.(12分)(2011·正定)如图,在多面体ABCDEF 中,四边形ABCD 是正方形,AB =2EF =2,EF ∥AB ,EF ⊥FB ,∠BFC =90°,BF =FC ,H 为BC 的中点.(1)求证:FH ∥平面EDB ; (2)求证:AC ⊥平面EDB ; (3)求四面体B —DEF 的体积.分析:本题考查空间线面平行、线面垂直、面面垂直、体积的计算等基础知识,同时考查空间想象能力与推理论证能力.解:(1)证明:设AC 与BD 交于点G ,则G 为AC 的中点.连接EG 、GH ,由于H 为BC 的中点,故GH 綊12AB .又EF 綊12AB ,∴EF 綊GH ,∴四边形EFHG 为平行四边形,∴EG ∥FH ,而EG ⊂平面EDB ,∴FH ∥平面EDB . (2)证明:由四边形ABCD 为正方形,有AB ⊥BC .又EF ∥AB ,∴EF ⊥BC .而EF ⊥FB ,∴EF ⊥平面BFC ,∴EF⊥FH ,∴AB ⊥FH .又BF =FC ,H 为BC 的中点,∴FH ⊥BC . ∴FH ⊥平面ABCD .∴FH ⊥AC .又FH ∥EG ,∴AC ⊥EG .又AC ⊥BD ,EG ∩BD =G , ∴AC ⊥平面EDB .(3)∵EF ⊥FB ,∠BFC =90°,∴BF ⊥平面CDEF . ∴BF 为四面体B -DEF 的高.∵BC =AB =2,∴BF =FC = 2.又EF =1, ∴V B -DEF =13×12×1×2×2=13.3.(12分)(2011·预测题)小王参加一次比赛,比赛共设三关,第一、二关各有两个必答题,如果每关两个问题都答对,可进入下一关,第三关有三个问题,只要答对其中两个问题,则闯关成功.每过一关可一次性获得价值分别为1000元,3000元,6000元的奖品(不重复得奖),小王对三关中每个问题回答正确的概率依次为45,34,23,且每个问题回答正确与否相互独立.(1)求小王过第一关但未过第二关的概率;(2)用X 表示小王所获得奖品的价值,写出X 的概率分布列,并求X 的数学期望.解:(1)设小王过第一关但未过第二关的概率为P 1,则P 1=⎝ ⎛⎭⎪⎫452⎝ ⎛⎭⎪⎫14+34×14=725.(2)X 的取值为0,1000,3000, 6000, 则P (X =0)=15+45×15=925,P (X =1000)=⎝ ⎛⎭⎪⎫452⎝ ⎛⎭⎪⎫14+34×14=725,P (X =3000)=⎝ ⎛⎭⎪⎫452⎝ ⎛⎭⎪⎫342⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫232-C 12⎝ ⎛⎭⎪⎫232×13=775, P (X =6000)=⎝ ⎛⎭⎪⎫452⎝ ⎛⎭⎪⎫342⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫232+C 12⎝ ⎛⎭⎪⎫232×13=415, ∴X 的概率分布列为∴X 的数学期望E (X )=0×25+1000×25+3000×75+6000×415=2160.4.(12分)(2011·天津卷)已知a >0,函数f (x )=ln x -ax 2,x >0.(f (x )的图象连续不断)(1)求f (x )的单调区间;(2)当a =18时,证明:存在x 0∈(2,+∞),使f (x 0)=f ⎝ ⎛⎭⎪⎫32;(3)若存在均属于区间[1,3]的α,β,且β -α≥1,使f (α)=f (β),证明:ln3-ln25≤a ≤ln23.分析:本小题主要考查导数的运算、利用导数研究函数的单调性、解不等式、函数的零点等基础知识,考查运算能力、分类讨论的思想、分析解决问题的能力.解:(1)f ′(x )=1x -2ax =1-2ax 2x ,x ∈(0,+∞).令f ′(x )=0,解得x =2a2a.当x 变化时,f ′(x )、f (x )的变化情况如下表:⎝⎭⎝ ⎛⎭⎪⎫2a 2a ,+∞. (2)证明:当a =18时,f (x )=ln x -18x 2,由(1)知f (x )在(0,2)内单调递增,在(2,+∞)内单调递减.令g (x )=f (x )-f ⎝ ⎛⎭⎪⎫32.由于f (x )在(0,2)内单调递增, 故f (2)>f ⎝ ⎛⎭⎪⎫32,即g (2)>0.取x ′=32e>2,则g (x ′)=41-9e 232<0.所以存在x 0∈(2,x ′),使g (x 0)=0,即存在x 0∈(2,+∞),使f (x 0)=f ⎝ ⎛⎭⎫32.(说明:x ′的取法不唯一,只要满足x ′>2,且g (x ′)<0即可.)(3)证明:由f (α)=f (β)及(1)的结论知α<2a2a<β,从而f (x )在[α,β]上的最小值为f (α),又由β-α≥1,α,β∈[1,3],知1≤α≤2≤β≤3.故⎩⎪⎨⎪⎧ f (2)≥f (α)≥f (1),f (2)≥f (β)≥f (3).即⎩⎪⎨⎪⎧ln2-4a ≥-a ,ln2-4a ≥ln3-9a . 从而ln3-ln25≤a ≤ln23.5.(12分)已知椭圆x 2a 2+y 2b 2=1(a >b >0)的离心率e =32,连接椭圆的四个顶点得到的菱形的面积为4.(1)求椭圆的方程;(2)设直线l 与椭圆相交于不同的两点A ,B ,已知点A 的坐标为(-a,0),点Q (0,y 0)在线段AB 的垂直平分线上,且QA →·QB →=4.求y 0的值.分析:本题主要考查椭圆的标准方程和几何性质、直线的方程、平面向量等基础知识,考查用代数方法研究圆锥曲线的性质及数形结合的思想,考查运算能力和推理能力.解:(1)由e =c a =32,得3a 2=4c 2,再由c 2=a 2-b 2,得a =2b .由题意可知12×2a ×2b =4,即ab =2.解方程组⎩⎪⎨⎪⎧a =2b ,ab =2,得a =2,b =1.所以椭圆的方程为x 24+y 2=1.(2)由(1)可知A (-2,0),设B 点的坐标为(x 1,y 1),直线l 的斜率为k ,则直线l 的方程为y =k (x +2).于是A ,B 两点的坐标满足方程组⎩⎨⎧y =k (x +2),x 24+y 2=1.由方程组消去y 并整理,得 (1+4k 2)x 2+16k 2x +(16k 2-4)=0. 由-2x 1=16k 2-41+4k 2,得 x 1=2-8k 21+4k 2,从而y 1=4k 1+4k 2.设线段AB 的中点为M ,则M 的坐标为⎝ ⎛⎭⎪⎫-8k 21+4k 2,2k 1+4k 2. 以下分两种情况:①当k =0时,点B 的坐标为(2,0),线段AB 的垂直平分线为y 轴,于是QA →=(-2,-y 0),QB →=(2,-y 0).由QA →·QB →=4,得y 0=±2 2.②当k ≠0时,线段AB 的垂直平分线的方程为 y -2k 1+4k =-1k ⎝ ⎛⎭⎪⎫x +8k 21+4k 2. 令x =0,解得y 0=-6k 1+4k2. 由|QA →|=(-2,-y 0),QB →=(x 1,y 1-y 0), QA →·QB →=-2x 1-y 0(y 1-y 0)=-2(2-8k 2)1+4k 2+6k 1+4k 2⎝ ⎛⎭⎪⎫4k1+4k 2+6k 1+4k 2=4(16k 4+15k 2-1)(1+4k 2)2=4,整理得7k 2=2,故k =±147,所以y 0=±2145.综上,y 0=±22或y 0=±2145.6.(12分)(2011·湖北卷)已知数列{a n }的前n 项和为S n ,且满足:a 1=a (a ≠0),a n +1=rS n (n ∈N *,r ∈R ,r ≠-1).(1)求数列{a n }的通项公式;(2)若存在k ∈N *,使得S k +1,S k ,S k +2成等差数列,试判断:对于任意的m ∈N *,且m ≥2,a m +1,a m ,a m +2是否成等差数列,并证明你的结论.分析:本小题主要考查等差数列、等比数列等基础知识,同时考查推理论证能力,以及特殊与一般的思想.解:(1)由已知a n +1=rS n ,可得a n +2=rS n +1,两式相减可得 a n +2-a n +1=r (S n +1-S n )=ra n +1,即a n +2=(r +1)a n +1,又a 2=ra 1=ra ,所以当r =0时,数列{a n }为:a,0,…,0,…;当r ≠0,r ≠-1时,由已知a ≠0,所以a n ≠0(n ∈N *), 于是由a n +2=(r +1)a n +1,可得a n +2a n +1=r +1(n ∈N *),∴a 2,a 3,…,a n ,…成等比数列, ∴当n ≥2时,a n =r (r +1)n -2a .综上,数列{a n }的通项公式为a n =⎩⎪⎨⎪⎧a ,n =1,r (r +1)n -2a ,n ≥2. (2)对于任意的m ∈N *,且m ≥2,a m +1,a m ,a m +2成等差数列,证明如下:当r =0时,由(1)知,a n =⎩⎪⎨⎪⎧a ,n =1,0,n ≥2.∴对于任意的m∈N*,且m≥2,a m+1,a m,a m+2成等差数列.当r≠0,r≠-1时,∵S k+2=S k+a k+1+a k+2,S k+1=S k+a k+1.若存在k∈N*,使得S k+1,S k,S k+2成等差数列,则S k+1+S k+2=2S k,∴2S k+2a k+1+a k+2=2S k,即a k+2=-2a k+1.由(1)知,a2,a3,…,a m,…的公比r+1=-2,于是对于任意的m∈N*,且m≥2,a m+1=-2a m,从而a m+2=4a m,∴a m+1+a m+2=2a m,即a m+1,a m,a m+2成等差数列.综上,对于任意的m∈N*,且m≥2,a m+1,a m,a m+2成等差数列.。

高三数学 函数及导数应用、数列、三角函数测试题

高三数学 函数及导数应用、数列、三角函数测试题

高三数学 函数及导数应用、数列、三角函数测试题本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.满分150分,考试时间120分钟.第Ⅰ卷(选择题 共60分)一、选择题:(本大题共12小题,每小题5分,满分60分.)1.设0<θ<π,θθsin cos 331i ii+=++,则θ 的值为( ) A .32π B .2π C .3π D .6π 2.条件:11p x +>,条件131:>-xq ,则q⌝是p ⌝的 A .充分不必要条件 B .必要不充分条件C .充要条件D .既不充分又不必要条件3.若不等式222424ax ax x x +-<+对于任意实数x 均成立,则实数a 的取值范围是 .A (2,2)- .B (2,2]- .C (,2)[2,)-∞-+∞ .D (,2)-∞- 4.已知||3=a ,||4=b ,2=+p a b ,=-q a b 且17=-⋅p q ,则a 与b 的夹角为.A 60 .B 90 .C 30 .D5. 已知x a a a xlog 10=<<,则方程的实根个数是A 、1个B 、2个C 、3个D 、1个或2个或3个6.函数f (x )= ⎩⎨⎧≥+≤-.1),1(log ,11|,)cos(|22x x x <x π 若2)1()(=+f m f ,则m 的所有可能值为A.1,-1 B . 1,0,-1 C .-,2222 D. 1, -,2222 7.已知O 是ABC △所在平面内一点,D 为BC 边中点,且2OA OB OC ++=0,那么( ) A.AO OD = B.2AO OD =C.3AO OD =D.2AO OD =8.如果2πlog |3π|log 2121≥-x ,那么x sin 的取值范围是 ( )A .21[-,]21B .21[-,]1C .21[-,21()21 ,]1 D .21[-,23()23 ,]1 9.在等差数列}{n a 中,,0,01312><a a 且1213a a >,若}{n a 的前n 项和0<n S ,则n 的最大值为( ) A .17B .18C .20D .2310. 曲线y=x sin x 在点)2,2(ππ-处的切线与x 轴、直线x =π所围成的三角形的面积为( )A.22π B. 2π C. 22π D. 2)2(21π+11.设函数θ≤=0,)(3若x x f <4π时,)1()tan (m f m f -+⋅θ >0恒成立,则实数m 的取值范围是( )A.(0,1)B.(∞-,0)C.(∞-,1)D.(∞-,21) 12. 如图,半径为2的⊙O 切直线MN 于点P ,射线PK 从PN 出发,绕P 点逆时针旋转到PM ,旋转过程中PK 交⊙O 于点Q ,若∠POQ 为x ,弓形PmQ 的面积为S=f(x),那么f(x)的图象大致是:( )二、填空题:(本大题共4小题,每小题4分,共16分)ABCON Q mKMP13.22132lim 1x x x x →-++-的值等于__________________.14.函数π()3sin 23f x x ⎛⎫=- ⎪⎝⎭的图象为C ,如下结论中正确的是______(写出所有正确结论的编号..). ①图象C 关于直线11π12x =对称; ②图象C 关于点2π03⎛⎫⎪⎝⎭,对称; ③函数()f x 在区间π5π1212⎛⎫-⎪⎝⎭,内是增函数; ④由3sin 2y x =的图角向右平移π3个单位长度可以得到图象C . 15.设10<<a ,函数)22(log )(2--=x x a a a x f ,则使0)(<x f 的x 的取值范围是 。

导数压轴题题型归纳及处理技巧

导数压轴题题型归纳及处理技巧

导数压轴题题型归纳及处理技巧以下是 8 条关于导数压轴题题型归纳及处理技巧的内容:1. 哎呀,导数压轴题里有一种常见的题型就是求最值问题呀!就像在登山的时候,要找到那最高的山峰!比如函数y=x³-3x²+5,你能快速找到它的最值吗?2. 嘿,还有判断函数单调性的题型呢!这就像开汽车,要清楚什么时候加速什么时候减速。

像函数 f(x)=xlnx,你能判断它的单调性吗?3. 哇塞,导数里那种恒成立问题也很让人头疼啊!就好比要让一个球一直保持在一个固定的位置。

比如f(x)≥a 在某个区间恒成立,这可得好好琢磨琢磨怎么处理哦!像函数 f(x)=e^x+x,若f(x)≥kx 恒成立,你能搞定吗?4. 哦哟,导数压轴题里的不等式证明可不好惹呢!就像是要跨过一条很难跨的沟。

比如要证明某个不等式成立,怎么把导数的知识用上呀?比如 x>0 时,证明 e^x>1+x,你知道怎么下手吗?5. 嘿呀,有一种题型是利用导数求曲线的切线方程呢!这就像在给一条曲线画上漂亮的切线。

比如给定曲线y=x²,在某点处的切线怎么求呢,你会吗?6. 哇哦,那些与极值点有关的题型也挺有趣的嘛!就如同在一群小朋友里找到那个最特别的。

比如给定一个函数,怎么去找它的极值点呢?像函数g(x)=x³-3x,它的极值点在哪儿呀?7. 哈哈,还有根据导数信息画函数图象的题型呢!这可像是根据描述去画一幅神秘的画。

比如知道了导数的一些情况,那函数图象大概长啥样呢?你能想象出来吗?8. 哎呀呀,最后还有一类是把导数和其他知识综合起来的题型呢!这就像把不同的拼图块拼成一幅完整的画。

比如和数列结合起来,那可真是够有挑战性呢!像这样的综合题,你能勇敢挑战吗?我觉得导数压轴题虽然难,但只要掌握了这些题型和处理技巧,多练习多总结,就一定能攻克它!。

巧妙利用函数的导数_解数列问题_颜复尊

巧妙利用函数的导数_解数列问题_颜复尊

{
[
)
(
)
(
)
[(
(
) (
)
)]
巧与方法
JIETI JIQIAO YU FANGFA
数列中来, 从而问题得到解决. 四、 精心构造, 巧妙运用 ( 1 ) 对任意的正实数 例 4 已知函数 f ( x ) = x - xlnx, x1 , x2 , 且 x1 < x2 . ( 1) 证明: ( x2 - x1 ) f'( x2 ) < f( x2 ) - f( x1 ) < ( x2 - x1 ) f'( x1 ) ; 1 1 + +…+ ( 2 ) 对任意的 n ∈ N + , 且 n ≥2 , 证明: ln2 ln3 1 1 - f( n + 1 ) < . lnn ln2 ·lnn 1 ) 时, 解 ( 1 ) 因 为 f' ( x ) = - lnx, 所 以, 当 x ∈ ( 0, f' ( x) > 0 ; + ∞ ) 时, f' ( x) < 0 . 故 f( x) 在 x ∈ ( 0 , 1 ) 上单 当 x∈( 1 , + ∞ ) 上单调递减. 调递增, 在 x∈( 1 , x1 x2 , < 所以, 对任 意 的 正 实 数 x1 , 且 x1 < x2 , 有f x2 x f( 1 ) , f 2 < f( 1 ) . x1 x1 x1 x1 x1 < f( 1) , - ln < 1, 由f 得 即 x2 - x1 - x2 x2 x2 x2 x2 ( lnx2 - lnx1 ) < 0 , 所以 f( x2 ) - f( x1 ) - ( x2 - x1 ) f' ( x1 ) = x2 - x1 - x2 ( lnx2 - lnx1 ) < 0 , 故: f( x2 ) - f( x1 ) < ( x2 - x1 ) f' ( x1 ) , ①. x2 ) < f( 1 ) , 由 f( 同理可证( x2 - x1 ) f' ( x2 ) < f ( x2 ) - x1 f ( x1 ) , ②. 综合 ①②, 得( x2 - x1 ) f' ( x2 ) < f ( x2 ) - f ( x1 ) < ( x2 - x1 ) f' ( x1 ) . ln( x + k) ( 2) 对 k = 1, 2, …, n - 2, ( x > 令 gk ( x ) = lnx 1) , 则 lnx ln( x + k) - x+k x xlnx - ( x + k) ln( x + k) g k ' ( x) = = , ln2 x x( x + k) ln2 x 0 < lnx < ln ( x + k ) , 显然 1 < x < x + k, 所以 xlnx < ( x + k) ln ( x + k ) , g k ( x ) 在 ( 1 ,+ ∞ ) 上 单 调 所 以 gk ' ( x ) < 0,
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档