成都市2018年中考数学模拟试卷一

合集下载

中考综合模拟测试《数学试卷》含答案解析

中考综合模拟测试《数学试卷》含答案解析

数学中考综合模拟检测试题学校________ 班级________ 姓名________ 成绩________一、选择题1. 下列四个实数中,是无理数的为( ) A.B.27C. D.32. 如图所示的几何体的左视图是( )A. B. C. D.3. 如图,直线AB ∥CD ,∠A =70°,∠E =30°,则∠C 等于( )A. 30°B. 40°C. 60°D. 70°4. 如果分式||11x x -+的值为0,那么的值为( ) A. -1B. 1C. -1或1D. 1或05. 下列计算正确的是( ) A. 66122a a a += B. 25822232-÷⨯= C. ()721120a a a a ⋅-⋅=-D. ()32233122ab a b a b ⎛⎫-⋅-= ⎪⎝⎭6. 我国是世界上严重缺水的国家之一,目前我国每年可利用的淡水资源总量为27500亿米3,人均占有淡水量居全世界第110位,因此我们要节约用水,27500亿用科学记数法表示为( ) A. 275×104B. 2.75×104C. 2.75×1012D. 27.5×10117. 如图,△ABD 是以BD 为斜边的等腰直角三角形,△BCD 中,∠DBC =90°,∠BCD =60°,DC 中点为E ,AD 与BE 的延长线交于点F ,则∠AFB 的度数为( )A. 30°B. 15°C. 45°D. 25°8. 若不等式组11324x xx m+⎧<-⎪⎨⎪<⎩无解,则的取值范围为( )A 2m ≤B. 2m <C. 2m ≥D. 2m >9. 如图,在平面直角坐标中,正方形ABCD 与正方形BEFG 是以原点O 为位似中心的位似图形,且相似比为13,点A ,B ,E 在x 轴上,若正方形BEFG 的边长为6,则C 点坐标为( )A. (3,2)B. (3,1)C. (2,2)D. (4,2)10. 如图,BC 是半圆的直径,,是BC 上两点,连接BD ,CE 并延长交于点,连接OD ,OE ,如果70A ∠︒=,那么DOE ∠的度数为( )A. 35︒B. 38︒C. 40︒D. 42︒二、填空题11. 1483的结果是_____. 12. 将一副直角三角板如图放置,点C 在FD 的延长上,AB ∥CF ,∠F =∠ACB =90°,∠E =30°,∠A =45°,AC =2,则CD 的长为______.13. 在光明中学组织的全校师生迎”五四”诗词大赛中,来自不同年级的25名参赛同学的得分情况如图所示.这些成绩的中位数是_______.14. 在阳光中学举行的春季运动会上,小亮和大刚报名参加100米比赛,预赛分,,,A B C D 四组进行,运动员通过抽签来确定要参加的预赛小组,小亮和大刚恰好抽到同一个组的概率是_______.三、解答题15. 计算:2216313969a a a a a +⎛⎫-+÷ ⎪+--+⎝⎭. 16. 解分式方程:31133x x-=-- ______________. 17. 已知如图,△ABC 中,AB =AC ,用尺规在BC 边上求作一点P ,使△BP A ∽△BAC (保留作图痕迹,不写作法).18. 学习一定要讲究方法,比如有效的预习可大幅提高听课效率.九年级(1)班学习兴趣小组为了了解全校九年级学生的预习情况,对该校九年级学生每天的课前预习时间(单位:min )进行了抽样调查.并将抽查得到的数据分成5组,下面是未完成的频数、顿率分布表和频数分布扇形图. 组别课前预习时间/t min频数(人数)频率1 010t ≤<2 21020t ≤<0.103 2030t ≤< 16 0.324 3040t ≤< 540t ≥3请根据图表中的信息,回答下列问题:(1)本次调查的样本容量为 ,表中的a = ,b = ,c = ; (2)试计算第4组人数所对应扇形圆心角的度数;(3)该校九年级其有1000名学生,请估计这些学生中每天课前预习时间不少于20min 的学生人数. 19. 某商场运动服装专柜,对,A B 两种品牌的远动服分两次采购试销后,效益可观,计划继续采购进行销售.已知这两种服装过去两次的进货情况如下表.第一次 第二次 品牌运动服装数/件 20 30 品牌运动服装数/件 30 40 累计采购款/元1020014400(1)问,A B 两种品牌运动服的进货单价各是多少元?(2)由于品牌运动服的销量明显好于品牌,商家决定采购品牌的件数比品牌件数的32倍多5件,在采购总价不超过21300元的情况下,最多能购进多少件品牌运动服?20. 在如图菱形ABCD 中,点是BC 边上一点,连接AP ,点,E F 是AP 上的两点,连接DE ,BF ,使得AED ABC ∠=∠,ABF BPF ∠=∠.(1)求证:ABF DAE ≌;(2)求证:DE BF EF =+.21. 2018年3月2日,500架无人飞机在西安创业咖啡街区的夜空绽放,西安高新区用”硬科技”打造了最具独特的风景线,2018”西安年,最中国”以一场华丽的视觉盛宴完美收官,当晚,某兴趣爱好者想用手中的无人机测量大雁塔的高度,如图是从大雁塔正南面看到的正视图,兴趣爱好者将无人机上升至离地面185米高大雁塔正东面的F点,此时,他测得F点都塔顶A点的俯视角为30°,同时也测得F点到塔底C 点的俯视角为45°,已知塔底边心距OC=23米,请你帮助该无人机爱好者计算出大雁塔的大体高度(结果精确到01米)?(3≈1.73,2≈1.41).22. 如图,点A(32,4),B(3,m)是直线AB与反比例函数nyx(x>0)图象的两个交点.AC⊥x轴,垂足为点C,已知D(0,1),连接AD,BD,BC.(1)求直线AB的表达式;(2)△ABC和△ABD的面积分别为S1,S2,求S2-S1.23. 如图,在平面直角坐标系中,抛物线y=ax2+bx+c与x轴交于点A(﹣2,0),点B(4,0),与y轴交于点C(0,8),连接BC,又已知位于y轴右侧且垂直于x轴的动直线l,沿x轴正方向从O运动到B(不含O 点和B点),且分别交抛物线、线段BC以及x轴于点P,D,E.(1)求抛物线的表达式;(2)连接AC,AP,当直线l运动时,求使得△PEA和△AOC相似的点P的坐标;(3)作PF⊥BC,垂足为F,当直线l运动时,求Rt△PFD面积最大值.24. 问题探究(1)如图①,点E、F分别在正方形ABCD的边BC、CD上,∠EAF=45°,则线段BE、EF、FD之间的数量关系为;(2)如图②,在△ADC中,AD=2,CD=4,∠ADC是一个不固定的角,以AC为边向△ADC的另一侧作等边△ABC,连接BD,则BD的长是否存在最大值?若存在,请求出其最大值;若不存在,请说明理由;问题解决(3)如图③,在四边形ABCD中,AB=AD,∠BAD=60°,BC=42,若BD⊥CD,垂足为点D,则对角线AC的长是否存在最大值?若存在,请求出其最大值;若不存在,请说明理由.答案与解析一、选择题1. 下列四个实数中,是无理数的为()A. B. 27C. D. 3【答案】D【解析】【分析】根据无理数的定义”也称为无限不循环小数,不能写作两整数之比”即可.【详解】由无理数的定义得:四个实数中,只有3是无理数故选:D.【点睛】本题考查了无理数的定义,熟记定义是解题关键.2. 如图所示的几何体的左视图是( )A. B. C. D.【答案】B【解析】【分析】主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.【详解】从左向右看,得到的几何体的左视图是.故选B.【点睛】本题考查了几何体的三种视图,掌握定义是关键.注意所有的看到的棱都应表现在三视图中.3. 如图,直线AB∥CD,∠A=70°,∠E=30°,则∠C等于( )A. 30°B. 40°C. 60°D. 70°【答案】B 【解析】 【分析】根据平行线的性质得出∠A =∠EFD ,再根据三角形的外角性质求出∠C 即可. 【详解】解:∵AB ∥CD ,∠A =70°, ∴∠EFD =70°, ∵∠E =30°, ∴∠C =40°, 故选B .【点睛】本题考查了平行线的性质和三角形的外角性质,关键是求出∠EFD 的度数和求出∠EFD =∠A . 4. 如果分式||11x x -+的值为0,那么的值为( ) A. -1 B. 1C. -1或1D. 1或0【答案】B 【解析】 【分析】根据分式的值为零的条件可以求出x 的值. 【详解】根据题意,得 |x|-1=0且x+1≠0, 解得,x=1. 故选B .【点睛】本题考查了分式的值为零的条件.若分式的值为零,需同时具备两个条件:(1)分子为0;(2)分母不为0.这两个条件缺一不可. 5. 下列计算正确的是( ) A. 66122a a a += B. 25822232-÷⨯= C. ()721120a a a a ⋅-⋅=- D. ()32233122ab a b a b ⎛⎫-⋅-= ⎪⎝⎭【答案】C 【解析】 【分析】根据整式的加减、有理数的乘方运算、同底数幂的乘法、积的乘方逐项判断即可.【详解】A 、6662a a a +=,此项错误B 、25825825822222222-----+=⨯=÷⨯⨯=,此项错误C 、()7211271120a a a a a ++⋅-⋅=-=-,此项正确D 、()()322236751128422ab a b ab a b a b ⎛⎫⎛⎫-⋅--⋅-= ⎪ ⎪⎝⎭⎝⎭=,此项错误故选:C .【点睛】本题考查了整式的加减、有理数的乘方运算、同底数幂的乘法、积的乘方,熟记各运算法则是解题关键.6. 我国是世界上严重缺水的国家之一,目前我国每年可利用的淡水资源总量为27500亿米3,人均占有淡水量居全世界第110位,因此我们要节约用水,27500亿用科学记数法表示为( ) A. 275×104 B. 2.75×104 C. 2.75×1012 D. 27.5×1011 【答案】C 【解析】【详解】解:将27500亿用科学记数法表示为:2.75×1012. 故选C .【点睛】本题考查科学记数法—表示较大的数.7. 如图,△ABD 是以BD 为斜边的等腰直角三角形,△BCD 中,∠DBC =90°,∠BCD =60°,DC 中点为E ,AD 与BE 的延长线交于点F ,则∠AFB 的度数为( )A. 30°B. 15°C. 45°D. 25°【答案】B 【解析】 解:∵∠DBC =90°,E 为DC 中点,∴BE =CE =12CD ,∵∠BCD =60°,∴∠CBE =60°,∴∠DBF =30°,∵△ABD 是等腰直角三角形,∴∠ABD =45°,∴∠ABF =75°,∴∠AFB =180°﹣90°﹣75°=15°,故选B .8. 若不等式组11324x xx m+⎧<-⎪⎨⎪<⎩无解,则的取值范围为( )A. 2m ≤B. 2m <C. 2m ≥D. 2m >【答案】A 【解析】 【分析】求出第一个不等式的解集,根据口诀:大大小小无解了可得关于m 的不等式,解之可得. 【详解】解不等式1132x x+<-,得:x >8, ∵不等式组无解, ∴4m≤8, 解得m≤2, 故选A .【点睛】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知”同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.9. 如图,在平面直角坐标中,正方形ABCD 与正方形BEFG 是以原点O 为位似中心的位似图形,且相似比为13,点A ,B ,E 在x 轴上,若正方形BEFG 的边长为6,则C 点坐标为( )A (3,2) B. (3,1) C. (2,2) D. (4,2)【答案】A 【解析】【详解】∵正方形ABCD 与正方形BEFG 是以原点O 为位似中心的位似图形,且相似比为13, ∴AD BG =13, ∵BG =6, ∴AD =BC =2, ∵AD ∥BG , ∴△OAD ∽△OBG ,∴OA OB =13, ∴2OAOA +=13, 解得:OA =1,∴OB =3, ∴C 点坐标为:(3,2), 故选A .10. 如图,BC 是半圆的直径,,是BC 上两点,连接BD ,CE 并延长交于点,连接OD ,OE ,如果70A ∠︒=,那么DOE ∠的度数为( )A. 35︒B. 38︒C. 40︒D. 42︒【答案】C 【解析】 【分析】连接CD ,由圆周角定理得出∠BDC=90°,求出∠ACD=90°-∠A=20°,再由圆周角定理得出∠DOE=2∠ACD=40°即可, 【详解】连接CD ,如图所示:∵BC 是半圆O 的直径, ∴∠BDC=90°, ∴∠ADC=90°,∴∠ACD=90°-∠A=20°, ∴∠DOE=2∠ACD=40°, 故选C .【点睛】本题考查了圆周角定理、直角三角形的性质;熟练掌握圆周角定理是解题的关键.二、填空题11. 计算14893-的结果是_____.【答案】3【解析】【分析】先化简,再合并同类二次根式即可.【详解】解:14893-4333=-=3故答案为3.【点睛】此题考查二次根式的加减运算,注意先化简,再合并.12. 将一副直角三角板如图放置,点C在FD的延长上,AB∥CF,∠F=∠ACB=90°,∠E=30°,∠A=45°,AC=122,则CD的长为______.【答案】12﹣3【解析】【分析】如图(见解析),过点B作BG CF⊥于点G,先根据直角三角形的性质、平行线的性质得出45,60,2BCF EDF BC∠=︒∠=︒=,CG DG的长,然后根据线段的和差即可得.【详解】如图,过点B作BG CF⊥于点G90,45ACB A∠=︒∠=︒9045ABC A∴∠=︒-∠=︒,即45ABC A∠=∠=︒122BC AC∴==//AB CF45ABCBCF∴==∠∠︒Rt BCG为等腰直角三角形2122CG BG BC ∴=== 又90,30F E ∠=︒∠=︒9060EDF E ∴=︒-∠=∠︒在Rt BDG 中,tan BG BDG DG ∠=,即12tan 60DG︒= 解得121243tan 603DG ===︒1243CD CG DG ∴=-=-故答案:1243-.【点睛】本题考查了直角三角形的性质、平行线的性质、解直角三角形等知识点,通过作辅助线,构造直角三角形,进而运用到解直角三角形的方法是解题关键.13. 在光明中学组织的全校师生迎”五四”诗词大赛中,来自不同年级的25名参赛同学的得分情况如图所示.这些成绩的中位数是_______.【答案】96分 【解析】 【分析】先根据图得出这25名同学的得分,再根据中位数的定义即可得.【详解】由图可知,得分为94分的有5人,得分为96分的有8人,得分为98分的有9人,得分为100分的有3人则将这25名同学的得分按从小到大的顺序进行排序,排在第13位的得分为96分 由中位数的定义得:这些成绩的中位数是96分 故答案为:96分.【点睛】本题考查了中位数的定义,读懂图形,掌握中位数的定义是解题关键.14. 在阳光中学举行的春季运动会上,小亮和大刚报名参加100米比赛,预赛分,,,A B C D 四组进行,运动员通过抽签来确定要参加的预赛小组,小亮和大刚恰好抽到同一个组的概率是_______. 【答案】14【解析】 【分析】根据题意可以画出相应的树状图,从而可以求得甲、乙两人恰好分在同一组的概率. 【详解】如下图所示,小亮和大刚两人恰好分在同一组的情况有4种,共有16种等可能的结果, ∴小亮和大刚两人恰好分在同一组的概率是41164=, 故答案为14. 【点睛】本题考查列表法与树状图法、用样本估计总体、条形统计图、扇形统计图,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答三、解答题15. 计算:2216313969a a a a a +⎛⎫-+÷ ⎪+--+⎝⎭. 【答案】63a + 【解析】 【分析】根据分式的混合运算法则计算即可. 【详解】原式223319(3)a a a a ++=-÷--23(3)1(3)(3)3a a a a a +-=-⋅+-+313a a -=-+ 3(3)3a a a +--=+ 63a =+. 【点睛】本题考查的是分式的混合运算,掌握分式的混合运算法则、分式的通分、约分法则是解题的关键. 16. 解分式方程:31133x x-=-- ______________. 【答案】x =7 【解析】 【分析】方程两边都乘以最简公分母,注意不要漏乘没有分母的项;去括号,移项合并同类项,即可求得方程的解. 【详解】解:方程两边都乘以(x-3),得:3-(x-3)=-1 去括号,移项,得:-x=-1-6 合并同类项,得:x=7 经检验,x=7是原方程的根 故答案为:x=7【点睛】本题考查了解分式方程,注意在去分母时,不要漏乘没有分母的项,解分式方程必须验根. 17. 已知如图,△ABC 中,AB =AC ,用尺规在BC 边上求作一点P ,使△BP A ∽△BAC (保留作图痕迹,不写作法).【答案】详见解析 【解析】 【分析】作出AB 的垂直平分线,可得BP =AP ,则∠PBA =∠BAP ,进而得出△BPA ∽△BAC . 【详解】解:如图所示:点P 即为所求, 此时△BPA ∽△BAC .【点睛】此题主要考查了相似变换以及复杂作图,正确把握相似三角形的判定方法是解题关键.18. 学习一定要讲究方法,比如有效的预习可大幅提高听课效率.九年级(1)班学习兴趣小组为了了解全校九年级学生的预习情况,对该校九年级学生每天的课前预习时间(单位:min)进行了抽样调查.并将抽查得到的数据分成5组,下面是未完成的频数、顿率分布表和频数分布扇形图.组别课前预习时间/t min频数(人数) 频率t≤< 21 010t≤<0.102 1020t≤<16 0.323 2030t≤<4 3040t≥ 35 40请根据图表中的信息,回答下列问题:(1)本次调查的样本容量为,表中的a=,b=,c=;(2)试计算第4组人数所对应的扇形圆心角的度数;(3)该校九年级其有1000名学生,请估计这些学生中每天课前预习时间不少于20min的学生人数.【答案】(1)50,5,24,0.48;(2)第4组人数所对应的扇形圆心角的度数为172.8;(3)九年级每天课前预习时间不少于20min的学生约有860人.【解析】【分析】(1)根据3组的频数和百分数,即可得到本次调查的样本容量,根据2组的百分比即可得到a的值,进而得到2组的人数,由本次调查的样本容量-其他小组的人数即可得到b,用b÷本次调查的样本容量得到c;(2)根据4组的人数占总人数的百分比乘上360°,即可得到扇形统计图中”4”区对应的圆心角度数;(3)根据每天课前预习时间不少于20min的学生人数所占的比例乘上该校九年级总人数,即可得到结果.【详解】(1)16÷0.32=50,a=50×0.1=5,b=50-2-5-16-3=24,c=24÷50=0.48;故答案为50,5,24,0.48;(2)第4组人数所对应的扇形圆心角的度数=360°×0.48=172.8°;(3)每天课前预习时间不少于20min的学生人数的频率=1-250-0.10=0.86,∴1000×0.86=860,答:这些学生中每天课前预习时间不少于20min的学生人数是860人.【点睛】本题主要考查了扇形统计图的应用,解题时注意:通过扇形统计图可以很清楚地表示出各部分数量同总数之间的关系,用整个圆的面积表示总数(单位1),用圆的扇形面积表示各部分占总数的百分数.用样本去估计总体时,样本越具有代表性、容量越大,这时对总体的估计也就越精确.19. 某商场的运动服装专柜,对,A B两种品牌的远动服分两次采购试销后,效益可观,计划继续采购进行销售.已知这两种服装过去两次的进货情况如下表.(1)问,A B两种品牌运动服的进货单价各是多少元?(2)由于品牌运动服的销量明显好于品牌,商家决定采购品牌的件数比品牌件数的32倍多5件,在采购总价不超过21300元的情况下,最多能购进多少件品牌运动服?【答案】(1),A B两种品牌运动服的进货单价分别为240元和180元;(2)最多能购进65件品牌运动服. 【解析】【分析】(1)直接利用两次采购的总费用得出等式进而得出答案;(2)利用采购B品牌的件数比A品牌件数的32倍多5件,在采购总价不超过21300元,进而得出不等式求出答案.【详解】(1)设,A B两种品牌运动服的进货单价分别为元和元.根据题意,得203010200304014400x y x y +=⎧⎨+=⎩,解之,得240180x y =⎧⎨=⎩.经检验,方程组的解符合题意.答:,A B 两种品牌运动服的进货单价分别为240元和180元.(2)设购进品牌运动服件,则购进品牌运动服352m ⎛⎫+⎪⎝⎭件, ∴32401805213002m m ⎛⎫++≤⎪⎝⎭, 解得,40m ≤.经检验,不等式的解符合题意,∴3354056522m +≤⨯+=. 答:最多能购进65件品牌运动服.【点睛】此题主要考查了一元一次不等式的应用和二元一次方程组的应用,正确得出等量关系是解题关键. 20. 在如图菱形ABCD 中,点是BC 边上一点,连接AP ,点,E F 是AP 上的两点,连接DE ,BF ,使得AED ABC ∠=∠,ABF BPF ∠=∠.(1)求证:ABF DAE ≌;(2)求证:DE BF EF =+. 【答案】(1)见解析;(2)见解析. 【解析】 【分析】(1)根据菱形的性质得到AB=AD ,AD ∥BC ,由平行线的性质得到∠BOA=∠DAE ,等量代换得到∠BAF=∠ADE ,求得∠ABF=∠DAE ,根据全等三角形的判定定理即可得到结论; (2)根据全等三角形的性质得到AE=BF ,DE=AF ,根据线段的和差即可得到结论. 【详解】证明:(1)∵四边形ABCD 为菱形, ∴AB AD =,AD BC ∥, ∴BPA DAE ∠=∠.在ABP ∆和DAE ∆中, 又∵ABC AED ∠=∠, ∴BAF ADE ∠=∠.∵ABF BPF ∠=∠且BPA DAE ∠=∠, ∴ABF DAE ∠=∠, 又∵AB DA =, ∴()ABF DAE ASA ≅ (2)∵ABF DAE ≅, ∴AE BF =,DE AF =. ∵AF AE EF BF EF =+=+, ∴DE BF EF =+.【点睛】本题考查了菱形的性质,全等三角形的判定和性质,熟练掌握菱形的性质是解题的关键. 21. 2018年3月2日,500架无人飞机在西安创业咖啡街区的夜空绽放,西安高新区用”硬科技”打造了最具独特的风景线,2018”西安年,最中国”以一场华丽的视觉盛宴完美收官,当晚,某兴趣爱好者想用手中的无人机测量大雁塔的高度,如图是从大雁塔正南面看到的正视图,兴趣爱好者将无人机上升至离地面185米高大雁塔正东面的F 点,此时,他测得F 点都塔顶A 点的俯视角为30°,同时也测得F 点到塔底C 点的俯视角为45°,已知塔底边心距OC =23米,请你帮助该无人机爱好者计算出大雁塔的大体高度(结果精确到0.1米)?(3≈1.73,2 ≈1.41).【答案】大雁塔的大体高度是65.1米. 【解析】 【分析】作FD ⊥BC ,交BC 的延长线于D ,作AE ⊥DF 于E ,则四边形AODE 是矩形.解直角△CDF ,得出CD =DF =185米,那么OD =OC+CD =208米,AE =OD =208米.再解直角△AEF ,求出EF =AE•tan ∠FAE =20833米,然后根据OA=DE=DF﹣EF即可求解.【详解】解:如图,作FD⊥BC,交BC的延长线于D,作AE⊥DF于E,则四边形AODE是矩形.由题意,可知∠FAE=30°,∠FCD=45°,DF=185米.在直角△CDF中,∵∠D=90°,∠FCD=45°,∴CD=DF=185米,∴OD=OC+CD=208米,∴AE=OD=208米.在直角△AEF中,∵∠AEF=90°,∠FAE=30°,∴EF=AE•tan∠FAE=208×33=20833(米),∴DE=DF﹣EF=185﹣20833≈185﹣119.95≈65.1(米),∴OA=DE≈65.1米.故大雁塔的大体高度是65.1米.【点睛】本题考查解直角三角形的应用﹣仰角俯角问题,要求学生能借助俯角构造直角三角形并解直角三角形.22. 如图,点A(32,4),B(3,m)是直线AB与反比例函数nyx(x>0)图象的两个交点.AC⊥x轴,垂足为点C,已知D(0,1),连接AD,BD,BC.(1)求直线AB 的表达式;(2)△ABC 和△ABD 的面积分别为S 1,S 2,求S 2-S 1.【答案】(1)463y x =-+;(2)34 【解析】【分析】(1)先由A 点坐标求出反比例函数的表达式,再求出B 点坐标,最后运用待定系数法求直线AB 的表达式即可;(2)ABC 的面积可由”底乘高除以2”直接求得,ABD △的面积运用”补”的思想求出,然后两者作差即可得.【详解】(1)由点3(,4)2A 在反比例函数(0)n y x x=>的图象上 ∴432n=∴6n = ∴反比例函数的表达式为6(0)y x x=> 将点(3,)B m 代入6y x =得623m == ∴(3,2)B设直线AB 的表达式为y kx b =+ 将点3(,4),(3,2)2A B 代入得34232k b k b ⎧+=⎪⎨⎪+=⎩, 解得436k b ⎧=-⎪⎨⎪=⎩ 则直线AB 的表达式为463y x =-+;(2)由点A 、B 的坐标得4AC =,点B 到AC 的距离为33322-= ∴1134322S =⨯⨯= 如图,设直线AB 与y 轴的交点为E令0x =得6y =,则点E 坐标为(0,6)E(0,1)D∴615DE =-=由点3(,4),(3,2)2A B 得:点A 、B 到DE 的距离分别为32,3 ∴2113155352224BDE ADE S S S=-=⨯⨯-⨯⨯= 则21153344S S -=-=.【点睛】本题考查了运用待定系数法求反比例函数、一次函数的表达式,在平面直角坐标系中求几何图形的面积,正确求出两个函数的表达式是解题关键.23. 如图,在平面直角坐标系中,抛物线y =ax 2+bx +c 与x 轴交于点A (﹣2,0),点B (4,0),与y 轴交于点C (0,8),连接BC ,又已知位于y 轴右侧且垂直于x 轴的动直线l ,沿x 轴正方向从O 运动到B (不含O 点和B 点),且分别交抛物线、线段BC 以及x 轴于点P ,D ,E .(1)求抛物线的表达式;(2)连接AC ,AP ,当直线l 运动时,求使得△PEA 和△AOC 相似点P 的坐标;(3)作PF ⊥BC ,垂足为F ,当直线l 运动时,求Rt △PFD 面积的最大值.【答案】(1) y =﹣x 2+2x +8;(2)点P (1523,416);(3)165 【解析】【分析】(1)将点A 、B 、C 的坐标代入二次函数表达式,即可求解;(2)只有当∠PEA =∠AOC 时,PEA △∽AOC ,可得:PE =4AE ,设点P 坐标(4k ﹣2,k ),即可求解; (3)利用Rt △PFD ∽Rt △BOC 得: 2()PFD BOC S PD S BC=,再求出PD 的最大值,即可求解. 【详解】解:(1)将点A 、B 、C 的坐标代入二次函数表达式得:42016408a b c a b c c -+=⎧⎪++=⎨⎪=⎩,解得:a = -1,b =2,c =8,故抛物线的表达式为:y =﹣x 2+2x +8;(2)∵点A (﹣2,0)、C (0,8),∴OA =2,OC =8,∵l ⊥x 轴,∴∠PEA =∠AOC =90°,∵∠P AE ≠∠CAO ,∴只有当∠PEA =∠AOC 时,PEA △∽AOC , 此时AE PE CO AO =,即:82AE PE =, ∴AE =4PE ,设点P 的纵坐标为k ,则PE =k ,AE =4k ,∴OE =4k ﹣2,将点P 坐标(4k ﹣2,k )代入二次函数表达式并解得:k =0或2316(舍去0),则点P (1523,416); (3)在Rt △PFD 中,∠PFD =∠COB =90°,∵l ∥y 轴,∴∠PDF =∠COB ,∴Rt △PFD ∽Rt △BOC , ∴2()PFD BOC S PD S BC=, ∴S △PDF =2()PD BC •S △BOC , 而S △BOC =12OB •OC =12×4×8=16,BC==∴S △PDF =2()PD BC•S △BOC =15PD 2, 即当PD 取得最大值时,S △PDF 最大,将B 、C 坐标代入一次函数表达式y kx b =+得:408k b b +=⎧⎨=⎩, 解得:28k b =-⎧⎨=⎩, ∴直线BC 的表达式为:y =﹣2x +8,设点P (m ,﹣m 2+2m +8),则点D (m ,﹣2m +8),则PD =﹣m 2+2m +8+2m ﹣8=﹣(m ﹣2)2+4,当m =2时,PD 的最大值为4,故当PD =4时,∴S △PDF =15PD 2=165. 【点睛】本题主要考查了待定系数法求二次函数和一次函数的解析式,相似三角形的判定和性质,利用数形结合的思想把代数和几何结合起来,利用点的坐标的意义表示线段的长度,从而求得线段之间的关系是正确解答本题的关键.24. 问题探究(1)如图①,点E 、F 分别在正方形ABCD 的边BC 、CD 上,∠EAF=45°,则线段BE 、EF 、FD 之间的数量关系为 ;(2)如图②,在△ADC 中,AD=2,CD=4,∠ADC 是一个不固定的角,以AC 为边向△ADC 的另一侧作等边△ABC ,连接BD ,则BD 的长是否存在最大值?若存在,请求出其最大值;若不存在,请说明理由; 问题解决(3)如图③,在四边形ABCD 中,AB=AD ,∠BAD=60°,,若BD ⊥CD ,垂足为点D ,则对角线AC的长是否存在最大值?若存在,请求出其最大值;若不存在,请说明理由.【答案】(1)BE+DF=EF;(2)存在,BD的最大值为6;(3)存在,AC的最大值为26.【解析】【分析】(1)作辅助线,首先证明△ABE≌△ADG,再证明△AEF≌△AEG,进而得到EF=FG问题即可解决;(2)将△ABD绕着点B顺时针旋转60°,得到△BCE,连接DE,由旋转可得,CE=AD=2,BD=BE,∠DBE=60°,可得DE=BD,根据DE<DC+CE,则当D、C、E三点共线时,DE存在最大值,问题即可解决;(3)以BC为边作等边三角形BCE,过点E作EF⊥BC于点F,连接DE,由旋转的性质得△DBE是等边三角形,则DE=AC,根据在等边三角形BCE中,EF⊥BC,可求出BF,EF,以BC为直径作⊙F,则点D在⊙F上,连接DF,可求出DF,则AC=DE≤DF+EF,代入数值即可解决问题.【详解】(1)如图①,延长CD至G,使得DG=BE,∵正方形ABCD中,AB=AD,∠B=∠AFG=90°,∴△ABE≌△ADG,∴AE=AG,∠BAE=∠DAG,∵∠EAF=45°,∠BAD=90°,∴∠BAE+∠DAF=45°,∴∠DAG+∠DAF=45°,即∠GAF=∠EAF,又∵AF=AF,∴△AEF≌△AEG,∴EF=GF=DG+DF=BE+DF,故答案为BE+DF=EF;(2)存在.在等边三角形ABC中,AB=BC,∠ABC=60°,如图②,将△ABD绕着点B顺时针旋转60°,得到△BCE,连接DE.由旋转可得,CE=AD=2,BD=BE,∠DBE=60°,∴△DBE是等边三角形,∴DE=BD,∴在△DCE中,DE<DC+CE=4+2=6,∴当D、C、E三点共线时,DE存在最大值,且最大值为6,∴BD的最大值为6;(3)存在.如图③,以BC为边作等边三角形BCE,过点E作EF⊥BC于点F,连接DE,∵AB=BD,∠ABC=∠DBE,BC=BE,∴△ABC≌△DBE,∴DE=AC,∵在等边三角形BCE中,EF⊥BC,∴BF=BC=2,∴EF=BF=×2=2,以BC为直径作⊙F,则点D在⊙F上,连接DF,∴DF=BC=×4=2,∴AC=DE≤DF+EF=2+2,即AC的最大值为2+2.【点睛】本题考查了全等三角形的判定与性质以及旋转的性质,解题的关键是熟练的掌握全等三角形的判定与性质以及旋转的性质.。

2024年四川省成都市高中阶段教育学校统一招生暨初中学业水平考试数学模拟试卷(一)(无答案)

2024年四川省成都市高中阶段教育学校统一招生暨初中学业水平考试数学模拟试卷(一)(无答案)

2024年四川省成都市高中阶段教育学校统一招生暨初中学业水平考试数学模拟试卷(一)(全卷分A卷和B卷,A卷满分100分,B卷满分50分;考试时间120分钟)A卷(共100分)第Ⅰ卷(选择题,共32分)一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1.下列各数中,是无理数的是()(C)3―27(D)2(A)3.7 (B)-172.地球上的海洋面积约为361000000km2,用科学记数法可表示为()(A)3.61×107km2(B)3.61×108km2(C)0.361×108km2(D)3.61×109km23.下列文物图案中,既是中心对称图形又是轴对称图形的是()4.下列计算正确的是(A)(3a2)3=9a5(B)-4a5b3÷2a3b=2a2b2(C)(2m+n)(n-2m)=n2-4m2(D)(x-2)2=x2-2x+45.某班在开展劳动教育课程调查中发现,第一小组6名同学每周做家务的天数依次为3,7,5,6, 5,4(单位:天),则这组数据的众数和中位数分别为()(A)5和5 (B)5和4 (C)5和6 (D)6和56.《九章算术》是人类科学史上应用数学的“算经之首”,其书中卷八方程[七]中记载:“今有牛五、羊二,直金十两.牛二、羊五,直金八两.牛、羊各直金几何?“题目大意是:5头牛、2只羊共价值10两“金”.2头牛、5只羊共价值8两“金”.每头牛、每只羊各价值多少两“金”?设每头牛价值x两“金”,每只羊价值y两“金”,那么下面列出的方程组中正确的是()7.如图,已知∠C=∠D,AC=AD,增加下列条件:① AB=AE;② BC=ED;③∠1=∠2;④∠B =∠E.其中能使△ABC≌△AED的条件有()(A)4个(B)3个(C)2个(D)1个8.如图,二次函数y=ax2+bx+c的图象与x轴交于A(-2,0),B两点,对称轴是直线x=2,下列结论:① a>0;②点B的坐标为(6,0);③ c=3b;④对于任意实数m,都有4a+2b≥am2+ bm.其中所有正确结论的序号为()(A)①②(B)②③(C)②③④(D)③④第Ⅱ卷(非选择题,共68分)二、填空题(本大题共5个小题,每小题4分,共20分)9.因式分解:3ma2+6mab+3mb2=_____.10.如图,△ABC与△A′B′C′是位似图形,点O是位似中心,若OA=AA′,S△ABC=8,则S△A′B′C′=_____.11.某气球内充满了一定质量的气体,在温度不变的条件下,气球内气体的压强p(Pa )是气球体积V(m3)的反比例函数,且当V=3m3时,p=8000Pa.当气球内的气体压强大于40000Pa时,气球将爆炸,为确保气球不爆炸,气球的体积应不小于______m3.12.在平面直角坐标系xOy中,已知点P(a,1)与点Q(2,b)关于x轴对称,则a+b=______.13.如图,在▱ABCD中,以点B为圆心,适当长度为半径作弧,分别交AB,BC于点F ,G,再分别以点F,G为圆心,大于1FG的长为半径作弧,两弧交于点H,作射线BH2交AD于点E,连接CE,若AB=5,BC=8,CE=4,则BE的长为_______.三、解答题(本大题共5个小题,共48分)14.(本小题满分12分,每题6分)(1)计算:-12024+tan60°+|3-3|-16.(2)解不等式组:{3(x -1)<5x +1, x -12≥2x -4, 并写出它的所有的非正整数解.15.(本小题满分8分)打造书香文化,培养阅读习惯.某中学计划在各班建图书角,于是开展了以“我最喜欢的书籍”为主题的调查活动,学生根据自己的爱好选择一类书籍(A:科技类,B:文学类,C:政史类,D:艺术类,E:其他类).张老师组织数学兴趣小组对学校部分学生进行了问卷调查,根据收集到的数据,绘制了两幅不完整的统计图(如图).根据图中信息,请回答下列问题;(1)条形图中的m =______,n =______,文学类书籍对应扇形圆心角等于______度;(2)若该校有2000名学生,请你估计最喜欢阅读政史类书籍的学生人数;(3)甲同学从A ,B ,C 三类书籍中随机选择一种,乙同学从B ,C ,D 三类书籍中随机选择一种,请用画树状图或列表法求甲乙两位同学选择相同类别书籍的概率.16.(本小题满分8分)暑假期间,小明与小亮相约到某旅游风景区登山.需要登顶600m高的山峰,由山底A处先步行300m到达B处,再由B处乘坐登山缆车到达山顶D处.已知点A, B,D,E,F在同一平面内,山坡AB的坡角为30°,缆车行驶路线BD与水平面的夹角为53°(换乘登山缆车的时间忽略不计).(1)求登山缆车上升的高度DE;(2)若步行速度为30m/min,登山缆车的速度为60m/min,求从山底A处到达山顶D处大约需要多少分钟(结果精确到0.1min).(参考数据:sin53°≈0.80,cos53°≈0.60,tan53°≈1.33)17.(本小题满分10分)如图,圆内接四边形ABCD的对角线AC,BD交于点E,BD平分∠ABC,∠BAC=∠ADB.(1)求证:DB平分∠ADC,并求∠BAD的大小;(2)过点C作CF∥AD交AB的延长线于点F,若AC=AD,BF=2,求此圆半径的长.与一次函数y=x+b的图象交于A,18.(本小题满分10分)如图,反比例函数y=kxB两点,已知B(2,3).(1)求反比例函数和一次函数的表达式;(2)一次函数y=x+b的图象与x轴交于点C,D(未在图中画出)是反比例函数图象上的一个动点,若S△OCD=3,求点D的坐标;(3)若M是坐标轴上一点,N是平面内一点,是否存在点M,N,使得四边形ABMN是矩形若存在,请求出点M的坐标;若不存在,请说明理由.B卷(共50分)一、填空题(本大题共5个小题,每小题4分,共20分)19.已知a,b是方程x2+x-6=0的两个根,则代数式(aa2―a2-1a+b)÷1a2―ab的值为_______.l20.据《墨经》记载,在两千多年前,我国学者墨子和他的学生做了“小孔成像”实验,阐释了光的直线传播原理.小孔成像的示意图如图所示,光线经过小孔O,物体AB在幕布上形成倒立的实像CD(点A,B的对应点分别是C,D).若物体AB 的高为12cm,实像CD的高度为4cm,则小孔O的高度OE为_______cm.21.如图,分别以等边△ABC的顶点A,B,C为圆心,以AB长为半径画弧,我们把这三条弧组成的封闭图形称为菜洛三角形.若菜洛三角形的周长为2π,则菜路三角形的面积为_____.22.如图,在菱形纸片ABCD中,点E在边AB上,将纸片沿CE折叠,点B落在点B′处,CB′⊥ AD,垂足为F.若CF=4cm,FB′=1cm,则BE=_______cm.23.世界上第一次给出勾股数通解公式的是我国古代数学著作《九章算术》,其勾股数组公式为a=12(m2-n2),b=mn,c=12(m2+n2),其中m,n(m>n)是互质的奇数,则a,b,c为勾股数.我们令n=1,得到下列顺序排列的勾股数组及验证的等式:① 3,4,5,32+42=52;② 5,12,13,52+122=132;③ 7,24,25,72+242=252;④ 9,40,41,92+402=412;…;根据规律写出第⑥组勾股数为______.二、解答题(本大题共3个小题,共30分)24.(本小题满分8分)某商店准备购进甲、乙两款篮球进行销售,已知一个甲款篮球的进价比一个乙款篮球的进价多30元.(1)若该商店用6000元购进甲款篮球的数量是用2400元购进乙款篮球的数量的2倍,求每个甲款篮球和每个乙款篮球的进价;(2)若该商店购进乙款篮球的数量比购进甲款篮球的数量的2倍少10个,且乙款篮球的数量不高于甲款篮球的数量.该商店销售甲款篮球每个获利30元,销售乙款篮球每个获利20元,则购进甲款篮球的数量为多少时,该商店销售完这两款篮球后获利最大?并求出最大获利.25.(本小题满分10分)已知抛物线y=ax2+bx+c与x轴交于A,B两点,与y轴交于点C,顶点为D,其中A(-3,0),D(-1,-4).(1)求抛物线的函数表达式;(2)如图1,在第三象限内抛物线上找点E,使∠OCE=∠OAD,求点E的坐标;(3)如图2,过抛物线对称轴上点P的直线交抛物线于F,G两点,线段FG的中点是一个定值,求点P的坐标.是M,过点M作y轴的平行线交抛物线于点N.若FGMN26.(本小题满分12分)如图1,在直角三角形纸片ABC中,∠BAC=90°,AB =6,AC=8.将三角形纸片ABC进行以下操作:第一步:折叠三角形纸片ABC,使点C与点A重合,然后展开铺平,得到折痕DE;第二步:将△DEC绕点D顺时针方向旋转得到△DFG,点E,C的对应点分别是点F,G,直线GF与边AC交于点M(点M 不与点A重合),与边AB交于点N.[观察思考](1)折痕DE的长为______;[深入探究](2)在△DEC绕点D旋转的过程中,探究下列问题:①如图2,当直线GF经过点B时,求tan∠ABM的值;②如图3,当直线GF∥BC时,求AM的长.[拓展延伸](3)在△DEC绕点D旋转的过程中,连接AF,求AF的最小值.。

四川省成都市2019年中考一模数学试题

四川省成都市2019年中考一模数学试题

2019年九年级第一次联合质质量抽测试卷数学注意事项:1.本试卷共4页,三个大题,满分120分,考试时间100分钟.2.本试卷上不要答题,请按答题卡上注意事项的要求直接把答案填写在答题卡上.答在试卷上的答案无效.一、选择题(每小题3分,共30分)下列各小题均有四个答案,其中只有一个是正确的.1.25-的绝对值是() A .25- B .25 C .52- D .522.“十三五”期间,河南将安排40.27亿元资金支持郑州大学.河南大学“双一流”建设.数据“40.27亿”用科学记数法表示为()A .104.02710⨯B .100.402710⨯C .94.02710⨯D .90.402710⨯3.下列几何体是由4个相同的小正方体搭成的,其中左视图与俯视图相同的是()A .B .C .D .4.下表是我国近六年“两会”会期(单位:天)的统计结果:则我国近六年“两会”会期(天)的众数和中位数分别是() A .13,11B .13,13C .13,14D .14,13.55.程大位是我国明朝商人,珠算发明家.他60岁时完成的《直指算法统宗》是东方古代数学名著,详述了传统的珠算规则,确立了算盘用法.书中有如下问题:一百馒头百僧,大僧三个更无争,小僧三人分一个,大小和尚得几丁意思是:有100个和尚分100个馒头,如果大和尚1人分3个,小和尚3人分1个,正好分完,大、小和尚各有多少人,下列求解结果正确的是()A .大和尚25人,小和尚75人B .大和尚75人,小和尚25人C .大和尚50人,小和尚50人D .大.小和尚各100人6.将分别标有“学”“习”“强”“国”汉字的四个小球装在一个不透明的口袋中,这些球除汉字外无其它差别,每次摸球前先搅拌均匀,随机摸出一球,不放回;再随机摸出一球,两次摸的球上的汉字组成“强国”的概率是() A .18 B .16 C .14 D .127.下列不等式组的解集,在数轴上表示为如图所示的是()A .1020x x ->⎧⎨+≤⎩ B .1020x x -≤⎧⎨+<⎩C .1020x x +≤⎧⎨->⎩D .1020x x +>⎧⎨-≤⎩8.已知函数y kx b =+的图象如图所示,则一元二次方程210x x k ++-=的根的情况是()A .没有实数根B .有两个相等的实数根C .有两个不相等的实数根D .无法确定9.如图,已知矩形AOBC 的三个顶点的坐标分别为(0,0)O ,(0,3)A ,(4,0)B ,按以下步骤作图:①以点O 为圆心,适当长度为半径作弧,分别交,OC OB 于点,D E ;②分别以点,D E 为圆心,大于12DE 的长为半径作弧,两弧在BOC ∠内交于点F ;③作射线OF ,交边BC 于点G ,则点G 的坐标为()A .44,3⎛⎫ ⎪⎝⎭ B .4,43⎛⎫ ⎪⎝⎭C .5,43⎛⎫ ⎪⎝⎭ D .54,3⎛⎫ ⎪⎝⎭10.如图1,在菱形ABCD 中,120A ∠=︒,点E 是BC 边的中点,点P 是对角线BD 上一动点,设PD 的长度为x ,PE 与PC 的长度和为y ,图2是y 关于x 的函数图象,其中H 是图象上的最低点,则a b +的值为()A .B .4CD 二、填空(每小题3分,共15分)11.计算:112-⎛⎫--= ⎪⎝⎭______.12.已知:如图,12355∠=∠=∠=︒,则4∠的度数是______.13.已知反比例函数2y x=,当1x <-时,y 的取值范围为_____. 14.如图,在菱形ABCD ,60B ∠=︒,2AB =,把菱形ABCD 绕BC 的中点E 顺时针旋转60︒得到菱形A B C D '''',其中点D 的运动路径为¼DD ',则图中阴影部分的面积为______.15.如图,ABC △中,90ACB ∠=︒,30A ∠=︒,1BC =,CD 是ABC △的中线,E 是AC 上一动点,将AED △沿ED 折叠,点A 落在点F 处,EF 与线段CD 交于点G ,若CEG △是直角三角形,则CE =_____.三、解答题(本大题共8道题,共75分)16.先化简,再求值:2443111m m m m m -+⎛⎫÷-- ⎪--⎝⎭,其中2m =. 17.贺岁片《流浪地球》被称为开启了中国科幻片的大门,2019也被称为中国科幻片的元年.某电影院为了全面了解观众对《流浪地球》的满意度情况,进行随机抽样调查,分为四个类别:A .非常满意;B .满意;C 基本满意;D .不满意.依据调查数据绘制成图1和图2的统计图(不完整).根据以上信息,解答下列问题:(1)本次接受调查的观众共有______人;(2)扇形统计图中,扇形C 的圆心角度数是_____; (3)请补全条形统计图;(4)春节期间,该电影院来观看《流浪地球》的观众约3000人,请估计观众中对该电影满意(A B C 、、类视为满意)的人数.18.如图,AB 为O e 的直径,DB AB ⊥于B ,点C 是弧AB 上的任一点,过点C 作O e 的切线交BD 于点E .连接OE 交O e 于F .(1)求证:CE ED =;(2)填空:①当D ∠=_____时,四边形OCEB 是正方形; ②当D ∠=_____时,四边形OACF 是菱形. 19.如图,反比例函数(0)ky x x=>的图象过格点(网格线的交点)A . (1)求反比例函数的解析式;(2)若点P 是该双曲线第一象限上的一点,且45AOP ∠=︒, 填空:①直线OP 的解析式为_______;②点P 的坐标为______.20.某学校为增加体育馆观众坐席数量,决定对体育馆进行施工改造.如图,为体育馆改造的截面示意图.已知原座位区最高点A 到地面的铅直高度AC 长度为15米,原坡面AB 的倾斜角ABC ∠为45︒,原坡脚B 与场馆中央的运动区边界的安全距离BD 为5米.如果按照施工方提供的设计方案施工,新座位区最高点E 到地面的铅直高度EG 长度保持15米不变,使A E 、两点间距离为2米,使改造后坡面EF 的倾斜角EFG ∠为37︒.若学校要求新坡脚F需与场馆中央的运动区边界的安全距离FD 至少保持2.5米( 2.5FD …),请问施工方提供的设计方案是否满足安全要求呢?请说明理由.(参考数据:3sin 375︒≈,3tan 374︒≈)21.某公司推出一款产品,成本价10元/千克,经过市场调查,该产品的日销售量y (千克)与销售单价x (元/克)之间满足一次函数关系,该产品的日销售量与销售单价之间的几组对应值如下表:(注:日销售利润=日销售量×(销售单价-成本单价)) (1)求y 关于x 的函数解析式(不要求写出x 的取值范围); (2)根据以上信息,填空: ①m =_____元;②当销售价格x =_____元时,日销售利润W 最大,最大值是______元;(3)该公司决定从每天的销售利润中捐赠100元给“精准扶贫”对象,为了保证捐赠后每天的剩余利润不低于1025元,试确定该产品销售单价的范围.22.如图1,在ABC △中,90BAC ∠=︒,AB AC =,点,D E 分别在边,AB AC 上,AD AE =,连接DC 、BE ,点P 为DC 的中点.(1)观察猜想图1中,线段AP 与BE 的数量关系是______,位置关系是________; (2)探究证明把ADE △绕点A 逆时针方向旋转到图2的位置,小航猜想(1)中的结论仍然成立,请你证明小航的猜想; (3)拓展延伸把ADE △绕点A 在平面内自由旋转,若4AD =,10AB =,请直接写出线段AP 的取值范围.23.如图,抛物线23y ax bx =-+交x 轴于(1,0)B ,(3,0)C 两点,交y 轴于A 点,连接AB ,点P 为抛物线上一动点. (1)求抛物线的解析式; (2)当点P 到直线AB 时,求点P 的横坐标; (3)当ACP △和ABC △的面积相等时,请直接写出点P 的坐标.2019年九年级第一次联合质质量抽测试卷数学参考答案及评分标准一、选择题:(每小题3分,共30分) BCDBA BDCAC二、填空题:(每小题3分,共15分)11.4- 12.125︒ 13.20y -<< 14.76π 三、解答题:(本大题共8个小题,满分75分)16.解:原式22(2)31111m m m m m ⎛⎫--=÷- ⎪---⎝⎭22(2)411m m m m --=÷--2(2)11(2)(2)m m m m m --=⋅--+-22m m -=-+当2m =-时,原式=== 17解:(1)Q 被调查的总户数为6060%100÷=,故答案为100; (2)54︒;(3)补全图形如下:(4)观众对该电影的满意(A B C 、、类视为满意)的人数为:6020153000100%2850100++⨯⨯=(人)18.(1)证明:连接BC ,AB Q 为O e 的直径,DB AB ⊥于A ,CE 为O e 切线,EB EC ∴=,90DBA ACB ∠=∠=︒,ECB EBC ∴∠=∠,90EBC D ∠+∠=︒Q ,90ECB ECD ∠+∠=︒,D ECD ∴∠=∠. CE CD ∴=(2)①45︒②30︒19.解:(1)Q 反比例函数(0)ky x x =>的图象过格点(1,3)A ,133k ∴=⨯=, ∴反比例函数的解析式为3y x=;(2)①12y x =;②⎭20.解:施工方提供的设计方案不满足安全要求,理由如下:在Rt ABC △中,15AC m =,45ABC ∠=︒,15tan 45ACBC m ==︒.在Rt EFG △中,15EG m =,37EFC ∠=︒,15203tan374EG GF m =≈=︒15EG AC m ==Q ,AC BC ⊥,EG BC ⊥,EG AC ∴P ,∴四边形EGCA 是矩形,2GC EA m ∴==,201523BF GF GC BC m ∴=--≈--=. 5BD m =Q ,532 2.5FD BD BF ∴=-≈-=<,∴施工方提供的设计方案不满足安全要求.21.解:(1)设y 与x 的函数关系式为y kx b =+,则1424018180k b k b +=⎧⎨+=⎩解得:15k =-,450b =,15450y x ∴=-+,(2)60,20,1500(3)21001560045001001025W x x -=-+--=整理得:215(20)375x --=-,解得:115x =,225x =所以,当1525x 剟时,捐赠后每天的剩余利润不低于1025元 22.(1)12AP BE =,AP BE ⊥ (2)延长PA 交BE 于N 延长AP 到M 使PM AP =,连接CM ,则ADP MCP △≌△,AD CM AE ∴==,DAP M ∠=∠,AD CM ∴P ,M DAP ∴∠=∠,180DAC ACM ∠+∠=︒,又90BAC DAE ∠︒∠==Q ,180DAC BAE ∴∠+∠=︒,ACM BAE ∴∠=∠, 又AB AC =Q ,BAE ACM ∴△≌△,M AEB DAP ∴∠=∠=∠,BE AM =,12AP AM =Q ,12AP BE ∴= 又90EAN DAP ∠︒∠+=Q ,90EAN AEB ∴∠+∠=︒,90ENA ∴∠=︒即AP BE ⊥(3)37AP 剟23.解:(1)把(1,0)B ,(3,0)C 代入23y ax bx =-+得030933a b a b =-+⎧⎨=-+⎩解得:14a b =⎧⎨=⎩所以,抛物线的解析式为:243y x x =-+(2)过点P 作PQ AB ⊥于Q ,过点P 作PD y P 轴交直线AB 于D , 则OAB PDQ ∠=∠,(0,3)A Q ,(1,0)B3OA ∴=,1OB =,∴直线AB 的解析式为:33y x =-+AB ∴===sin sinOAB PDQ ∴∠=∠=又sin PQ PDQ PD∠=PQ PD ∴=PQ ∴=设点()2,43P m m m -+,(,33)D m m -+2243(33)PD m m m m m =-+--+=-,PQ =2|m m --=解得:173m =-,2103m = 故点P 的横坐标为73-或103(3)(2,1)-或⎝⎭或⎝⎭。

2018年四川省成都市中考数学试卷及答案

2018年四川省成都市中考数学试卷及答案

1 / 17成都市二0一八年高中阶段教育学校统一招生考试(含成都市初中毕业会考)数 学A 卷(共100分)第Ⅰ卷(选择题,共30分)一、选择题(本大题共10个小题,每小题3分,共30分,每小题均有四个选项,其中只有一项符合题目要求,答案涂在答题卡上)1.实数在数轴上对应的点的位置如图所示,这四个数,,,a b c d 中最大的是( )A .B .C .D .a b c d2.2018年5月21日,西昌卫星发射中心成功发射探月工程嫦娥四号任务“鹊桥号”中继星,卫星进入近地点高度为200公里、远地点高度为40万公里的预定轨道.将数据40万用科学记数法表示为( )A .B .C .D .60.410⨯5410⨯6410⨯60.410⨯3.如图所示的正六棱柱的主视图是()2 / 174.在平面直角坐标系中,点关于原点对称的点的坐标是( )()3,5P --A . B . C. D .()3,5-()3,5-()3,5()3,5--5.下列计算正确的是( )A .B .224x x x +=()222x y x y -=-C. D .()326x y x y =()235x x x -∙=6.如图,已知,添加以下条件,不能判定ABC DCB ∠=∠的是( )ABC DCB ∆∆≌A . B .A D ∠=∠ACB DBC ∠=∠C.D .AC DB =AB DC=7.如图是成都市某周内日最高气温的折线统计图,关于这7天的日最高气温的说法正确的是( )A .极差是8℃B .众数是28℃C.中位数是24℃D .平均数是26℃8.分式方程的解是( )1112x x x ++=-A .x = 1 B . C. D .1x =-3x =3x =-9.如图,在□ABCD 中,,的半径为3,则图中阴影部分60B ∠=︒C ⊙的面积是( )A . B.π2π3 / 17C. D .3π6π10.关于二次函数,下列说法正确的是( )2241y x x =+-A .图像与轴的交点坐标为 y ()0,1B .图像的对称轴在轴的右侧y C.当时,的值随值的增大而减小0x <y x D .的最小值为-3y 第Ⅱ卷(非选择题,共70分)二、填空题(本大题共4个小题,每小题4分,满分16分,答案填在答题卡上)11.等腰三角形的一个底角为,则它的顶角的度数为 .50︒12.在一个不透明的盒子中,装有除颜色外完全相同的乒乓球共16个,从中随机摸出一个乒乓球,若摸到黄色乒乓球的概率为,则该盒子中装有黄色兵乓球的个数是 .3813.已知,且,则的值为 .a 6=b 5=c 426a b c +-=a 14.如图,在矩形中,按以下步骤作图:①分别以点和为ABCD A C 圆心,以大于的长为半径作弧,两弧相交于点和;②作直12AC M N 线交于点.若,,则矩形的对角线的MN CD E 2DE =3CE =AC 长为 .三、解答题(本大题共6小题,共54分.解答过程写在答题卡上)4 / 1715. (本小题满分12分,每题6分)(1)(2)化简.222sin 60+-21111x x x ⎛⎫-÷ ⎪+-⎝⎭16.(本小题满分6分)若关于的一元二次方程有两个不相等的实数根,求的取值范围.x ()22210x a x a -++=a 17.(本小题满分8分)为了给游客提供更好的服务,某景区随机对部分游客进行了关于“景区服务工作满意度”的调查,并根据调查结果绘制成如下不完整的统计图表.根据图表信息,解答下列问题:(1)本次调查的总人数为 ,表中的值 ;m (2)请补全条形统计图;(3)据统计,该景区平均每天接待游客约3600人,若将“非常满意”和“满意”作为游客对景区服务工作的肯定,请你估计该景区服务工作平均每天得到多少名游客的肯定.18. (本小题满分8分)5 / 17由我国完全自主设计、自主建造的首艘国产航母于 2018 年 5 月成功完成第一次海上试验任务.如图,航母由西向东航行,到达处时,测得小岛位于它的北偏东方向,且于航母A C 70︒相距 80 海里,再航行一段时间后到达B 处,测得小岛位于它的北偏东方向.如果航母继C 37︒续航行至小岛的正南方向的处,求还需航行的距离的长.C D BD (参考数据:,,,sin 700.94︒≈cos700.34︒≈tan 70 2.75︒≈,,.)sin 370.6︒≈cos370.80︒≈tan 370.75︒≈19. (本小题满分10分)如图,在平面直角坐标系中,一次函数的图象经过点,与反比例xOy y x b =+()2,0A -函数的图象交于点.()0k y x x=>(),4B a (1)求一次函数和反比例函数的表达式;(2)设是直线上一点,过作轴,交反比例M AB M //MN x 函数的图象于点.若为顶点的四()0k y x x=>N ,,,A O M N 边形是平行四边形,求点的坐标.M 20.(本小题满分10分)如图,在中,,平分交于点,为上一点,经过点Rt ABC ∆90C ∠=︒AD BAC ∠BC D O AB ,的分别交,于点,,连接交AD 于点.A D O ⊙AB AC E F OF G (1)求证:是的切线;BC O⊙6 / 17(2)设,,试用含的代数式表示线段的长;AB x =AF y =,x y AD (3)若,,求的长.8BE =5sin 13B =DG7 / 17B 卷(共50分)一、填空题(本大题共5个小题,每小题4分,共20分,答案填在答题卡上)21.已知,,则代数式的值为 .0.2x y +=31x y +=2244x xy y ++22.汉代数学家赵爽在注解《周髀算经》时给出的“赵爽弦图”是我国古代数学的瑰宝.如图所示的弦图中,四个直角三角形都是全等的,它们的两直角边之比均为,现随机向该图形内掷一枚小针,则针尖落在阴2:3影区域的概率为 .23.已知,,,,,,…(即当为大于1的0a >11S a =211S S =--321S S =431S S =--541S S =n 奇数时,;当为大于1的偶数时,),按此规律,11n n S S -=n 11n n S S -=--2018S = .(用含a 的代数式表示)24.如图,在菱形中,,分别在边ABCD 4tan 3A =,M N ,AD BC 上,将四边形沿翻折,使的对应线段经AMNB MN AB EF 过顶点,当时,的值为 .D EF AD ⊥BN CN25.设双曲线与直线交于,两点(点在第三象限),将双曲线在第一()0k y k x=>y x =A B A 象限的一支沿射线的方向平移,使其经过点,将双曲线在第三象限的一支沿射线的BA A AB 方向平移,使其经过点,平移后的两条曲线相交于点,B P Q8 / 17两点,此时我称平移后的两条曲线所围部分(如图中阴影部分)为双曲线的“眸”,为PQ 双曲线的“眸径”当双曲线的眸径为6时,的值为 .()0k y k x=>k 二、解答题 (本大题共3个小题,共30分.解答过程写在答题卡上)26.(本小题满分8分)为了美化环境,建设宜居成都,我市准备在一个广场上种植甲、乙两种花卉.经市场调查,甲种花卉的种植费用(元)与种植面积之间的函数关系如图所示,乙种花卉的种植费y ()2x m用为每平方米100元.(1)直接写出当和时,与的函数关系式;0300x ≤≤300x >y x (2)广场上甲、乙两种花卉的种植面积共,若甲种花卉的种植面积不少于,且21200m 2200m 不超过乙种花卉种植面积的2倍,那么应该怎忙分配甲、乙两种花卉的种植面积才能使种植费用最少?最少总费用为多少元?27.(本小题满分10分)在中,,,,过点作直线,将绕点顺Rt ABC ∆90ABC ∠=︒AB =2AC =B //m AC ABC ∆C 时针得到(点,的对应点分别为,)射线,分别交直线于点,.A B C ∆′′A B A ′B ′CA ′CB ′m P Q (1)如图1,当与重合时,求的度数;P A ′ACA ∠′9 / 17(2)如图2,设与的交点为,当为的中点时,求线段的长;A B ′′BC M M A B ′′PQ (3)在旋转过程时,当点分别在,的延长线上时,试探究四边形的面积是,P Q CA ′CB ′PA B Q ′′否存在最小值.若存在,求出四边形的最小面积;若不存在,请说明理由.PA B Q ′′28.(本小题满分12分)如图,在平面直角坐标系中,以直线 为对称轴的抛物线与直xOy x =522y ax bx c =++线交于,两点,与轴交于,直线与轴交于点.():0l y kx m k =+>()1,1A B y ()0,5C l y D (1)求抛物线的函数表达式;(2)设直线与抛物线的对称轴的交点为,是抛物线上位于对称轴右侧的一点,若l F G ,且与面积相等,求点的坐标;34AF FB =BCG ∆BCD ∆G (3)若在轴上有且仅有一点,使,求的值.x P 90APB ∠=︒k10 / 1711 / 17试卷答案A 卷一、选择题1-5: 6-10:DBACD CBACD 二、填空题11.80︒三、解答题15.(1)解:原式1224=+-+124=+94(2)解:原式()()11111x x x x x+-+-=⨯+()()111x x x x x+-=⨯+1x =-16.解:由题知:.()2222214441441a a a a a a ∆=+-=++-=+原方程有两个不相等的实数根,,. 410a +>∴14a >-∴17.解:(1)120,45%;(2)比较满意;(人)图略;12040%=48⨯12 / 17(3)(人).12+543600=1980120⨯答:该景区服务工作平均每天得到1980人的肯定.18.解:由题知:,,.70ACD ∠=︒37BCD ∠=︒80AC =在中,,,(海里).Rt ACD ∆cos CD ACD AC ∠=0.3480CD =∴27.2CD =∴在中,,,(海里).Rt BCD ∆tan BD BCD CD ∠=0.7527.2BD =∴20.4BD =∴答:还需要航行的距离的长为20.4海里.BD 19.解:(1)一次函数的图象经过点,()2,0A -,,.20b -+=∴2b =∴1y x =+∴一次函数与反比例函数交于. ()0k y x x=>(),4B a ,,,.24a +=∴2a =∴()2,4B ∴()80y x x =>∴(2)设,.()2,M m m -8,N m m ⎛⎫⎪⎝⎭当且时,四边形是平行四边形.//MN AO MN AO =AOMN 即:且,解得:或,()822m m--=0m >m =2m =的坐标为或.M∴(2,-()220.--B卷21.0.3613 / 1714 / 1722.121323.1a a +-24.2725.3226.解:(1)()()130,03008015000.300x x y x x ≤≤⎧⎪=⎨+>⎪⎩(2)设甲种花卉种植为,则乙种花卉种植.2am ()21200a m -.()200,21200a a a ≥⎧⎪⎨≤-⎪⎩∴200800a ≤≤∴当时,.200300a ≤<()1130100120030120000W a a a =+-=+当时,元.200a =min 126000W =当时,.300800a ≤≤()2801500010020013500020W a a a =++-=-当时,元.800a =min 119000W =,当时,总费用最低,最低为119000元.119000126000< ∴800a =此时乙种花卉种植面积为.21200800400m -=答:应分配甲种花卉种植面积为,乙种花卉种植面积为,才能使种植总费用最2800m 2400m 少,最少总费用为119000元.27.解:(1)由旋转的性质得:.'2AC A C ==15 / 17,,,90ACB ∠=︒ //m AC '90A BC ∠=︒∴cos ''BC A CB A C ∠==∴,.'30A CB ∠=︒∴'60ACA ∠=︒∴(2)为的中点,.M ''A B ''A CM MA C ∠=∴由旋转的性质得:,.'MA C A ∠=∠'A A CM ∠=∠∴,.tan tan PCB A ∠=∠=∴32PB BC ==∴,,.tantan Q PCA ∠=∠= 2BQ BC===∴72PQ PB BQ =+=∴(3)最小,即最小,''''PA B Q PCQ A CB PCQ S S SS ∆∆∆=-=- ''PA B Q S ∴PCQ S ∆.12PCQ S PQ BC ∆=⨯=∴法一:(几何法)取中点,则.PQ G 90PCQ ∠=︒.12CG PQ =∴当最小时,最小,,即与重合时,最小.CG PQCG PQ ⊥∴CG CB CG ,,,.minCG =∴min PQ =()min 3PCQ S ∆=∴''3PA B Q S =法二:(代数法)设,.PB x =BQ y =由射影定理得:,当最小,即最小,3xy =∴PQ x y +.()22222262612x yx y xy x y xy +=++=++≥+=∴当“”成立,.x y ===PQ ==∴16 / 1728.解:(1)由题可得:解得,,.5,225, 1.b a c a b c ⎧-=⎪⎪=⎨⎪++=⎪⎩1a =5b =-5c =二次函数解析式为:.∴255y x x =-+(2)作轴,轴,垂足分别为,则.AM x ⊥BN x ⊥,M N 34AF MQ FB QN ==,,,32MQ = 2NQ =∴911,24B ⎛⎫ ⎪⎝⎭,解得,,.1,91,24k m k m +=⎧⎪⎨+=⎪⎩∴1,21,2k m ⎧=⎪⎪⎨⎪=⎪⎩1122t y x =+∴102D ⎛⎫ ⎪⎝⎭,同理,.152BC y x =-+,BCD BCG S S ∆∆= ①(在下方),,∴//DG BC G BC 1122DG y x =-+,即,.2115522x x x -+=-+∴22990x x -+=123,32x x ==∴,,.52x > 3x =∴()3,1G -∴②在上方时,直线与关于对称.G BC 23G G 1DG BC ,,.1211922G G y x =-+∴21195522x x x -+=-+∴22990x x --=∴17 / 17,,.52x >x =∴G ∴综上所述,点坐标为;.G ()13,1G-2G (3)由题意可得:.1k m +=,,,即.1m k =-∴11y kx k =+-∴2155kx k x x +-=-+∴()2540x k x k -+++=,,.11x =∴24x k =+()24,31B k k k +++∴设的中点为,AB 'O 点有且只有一个,以为直径的圆与轴只有一个交点,且为切点.P ∴AB x P 轴,为的中点,.OP x ⊥∴P ∴MN 5,02k P +⎛⎫ ⎪⎝⎭∴,,,AMP PNB ∆∆ ∽AM PN PM BN=∴AM BN PN PM ∙=∙∴,即,.()255314122k k k k k ++⎛⎫⎛⎫⨯++=+-- ⎪⎪⎝⎭⎝⎭∴123650k k +-=960∆=>,0k > 1k ==-∴。

初2018届成都市郫都区中考数学九年级一诊数学试卷(含答案)

初2018届成都市郫都区中考数学九年级一诊数学试卷(含答案)

初2018届成都市郫都区中考数学九年级一诊试卷(考试时间:120分钟满分150分)A卷(共100分)一、选择题(本大题共10个小题,每小题3分,共30分,每小题均有四个选项,其中只有一项符合题目要求,答案涂在答题卡上)1.如图摆放的圆锥、圆柱、三棱柱、球,其主视图、左视图、俯视图都相同的是()A.B.C.D.2.一元二次方程5x2﹣4x﹣3=0的二次项系数与一次项系数分别为()A.5,﹣1 B.5,4 C.5x2,﹣4x D.5,﹣43.已知=,则的值是()A.B.C.﹣D.﹣4.如图,在平面直角坐标系中,点A的坐标为(4,3),那么cosα的值是()A.B.C.D.5.若m是一元二次方程x2﹣5x﹣2=0的一个实数根,则2018﹣m2+5m的值为()A.2015 B.2016 C.2017 D.20186.下列哪种光线形成的投影不是中心投影()A.探照灯B.太阳C.手电筒D.路灯7.如图所示,阳光中学教学楼前喷水池喷出的抛物线形水柱,其解析式为y=﹣(x﹣2)2+6,则水柱的最大高度是()A.2 B.4 C.6 D.2+8.函数y=中,自变量x的取值范围是()A.x>5 B.x<5 C.x≥5 D.x≤59.小红上学要经过两个十字路口,每个路口遇到红、绿灯的机会都相同,小红希望上学时经过每个路口都是绿灯,但实际这样的机会是()A.B.C.D.10.在同一坐标系中,一次函数y=ax+b与二次函数y=ax2+b的大致图象为()A.B.C.D.二、填空题(本大题共4个小题,每小题4分,共16分,答案写在答题卡上)11.若反比例函数y=的图象在第一、三象限内,则k的取值范围为.12.抛物线y=x2+2x﹣2向右平移2个单位长度,所得抛物线的对称轴为直线.13.如图,河两岸分别有A、B两村,测得A、B、D在一直线上,A、C、E在一条直线上,BC∥DE,DE=100m,BC=70m,BD=30m,则A、B两村间的距离为.14.在一个不透明的口袋中装有4个红球和若干个白球,它们除颜色外其他完全相同,通过多次摸球试验后发现,摸到红球的频率稳定在25%附近,则口袋中白球可能有个.三、解答题(本大题共6个小题,共54分,解答过程写在答题卡上)15.(12分)(1)计算:||+﹣2tan45°﹣2sin60°(2)解方程:x2﹣6x+5=016.(6分)如图是由6个小立方块搭成的几何体的俯视图,小正方形中的数字表示该位置小立方块的个数,请按要求画出该几何体的主视图与左视图.17.(8分)如图,一艘核潜艇在海面下500米A点处测得俯角为31°正前方的海底C点处有黑匣子信号发出,继续在同一深度直线航行3000米后再次在B点处测得俯角为62°正前方的海底C点处有黑匣子信号发出,求海底黑匣子C点处距离海面的深度CH.(参考数据:sin62°≈0.88,cos62°≈0.47,tan62°≈1.88)18.(8分)端午节那天,小贤回家看到桌上有一盘粽子,其中有豆沙粽、肉粽各1个,蜜枣粽2个,这些粽子除馅外无其他差别.(1)小贤随机地从盘中取出一个粽子,取出的是肉粽的概率是多少?(2)小贤随机地从盘中取出两个粽子,试用画树状图或列表的方法表示所有可能的结果,并求出小贤取出的两个都是蜜枣粽的概率.19.(10分)如图,在平面直角坐标系xOy中,一次函数y=kx+b的图象与反比例函数y=图象交于点A (1,5)和点B(n,1).(1)求m,n的值;(2)设直线AB与x轴交于点C,求△AOC的面积;(3)若图中一次函数的函数值小于反比例函数的函数值,直接写出x的取值范围.20.(10分)如图,已知矩形ABCD中,过对角线AC的中点O作AC的垂线,分别交射线AD和CB于点E、F,交DC于点G,交AB于点H,连接AF,CE.(1)求证:四边形AFCE是菱形;(2)若=,△DGE的面积是2,求△CGF的面积;(3)如果OF=2GO,求证:GO2=DG•GC.B卷(共50分)一、填空题(本大题共5分,每小题4分,共20分,答案写在答题卡上)21.已知三角形的3条中位线分别为3cm、4cm、6cm,则这个三角形的周长是.22.已知x1,x2是关于x的方程x2+ax﹣2b=0的两实数根,且x1+x2=﹣2,x1•x2=﹣2,则b a的值为.23.已知函数y=(k﹣3)x2+2x+1的图象与x轴有两个交点,则k的取值范围是.24.从﹣2、﹣1、0、1这四个数中随机抽取一个记为a,则使关于x的不等式组有解,且使关于x的一次函数y=的图象与反比例函数y=的图象有1个交点的概率是.25.如图,正方形ABCD的边长为2,E,F分别是AB,BC的中点,AF与DE,DB分别交于点M、N,则S △MND:S△AFD的值为.二、解答题(本大题共3个小题,共30分,解答过程写在答题卡上)26.(8分)受益于国家支持新能源汽车发展和“一带一路”发展战略等多重利好因素,我市某汽车零部件生产企业的利润逐年提高,据统计,2015年利润为2亿元,2017年利润为2.88亿元.(1)求该企业从2015年到2017年利润的年平均增长率;(2)若保持年平均增长率不变,该企业2018年的利润能否超过3.4亿元?27.(10分)如图,在△ABC中,已知AB=AC=5,BC=6,且△ABC≌△DEF,将△DEF与△ABC重合在一起,△ABC不动,△DEF运动,并满足:点E在边BC上沿B到C的方向运动,且DE始终经过点A,EF与AC交于M点.(1)求证:△ABE∽△ECM;(2)探究:在△DEF运动过程中,重叠部分能否构成等腰三角形?若能,求出BE的长;若不能,请说明理由;(3)当线段BE为何值时,线段AM最短,最短是多少?28.(12分)如图,在平面直角坐标系中,抛物线F1:y=ax2+bx﹣4(a≠0)与x轴交于点A(﹣1,0)和点B(3,0),将抛物线F1沿x轴翻折得到抛物线F2,抛物线F2与y轴交于点C.(1)求抛物线F1和抛物线F2的解析式;(2)若点P是抛物线F2在第一象限的图象上的一个动点,过点P作PE平行于y轴交直线BC于点E,求PE 的最大长度及△PCB的最大面积;(3)若点Q在抛物线F1上,且到∠OCB的两边的距离相等,求点Q的坐标.参考答案与试题解析1.【解答】解:球的三视图是大小相同的圆,而圆锥、圆柱、三棱柱的三视图都不完全相同.所以主视图、左视图、俯视图都完全相同的是球.故选:D.2.【解答】解:一元二次方程5x2﹣4x﹣3=0的二次项系数和一次项系数分别为5,﹣4,故选:D.3.【解答】解:∵=,∴a=5k,b=13k,∴=,故选:A.4.【解答】解:由点A的坐标为(4,3),那么OA==5,∴cosα的值为A的横坐标:OA=4:5,故选:B.5.【解答】解:∵m是一元二次方程x2﹣5x﹣2=0的一个实数根,∴m2﹣5m﹣2=0,即m2﹣5m=2,∴2018﹣m2+5m=2018﹣(m2﹣5m)=2018﹣2=2016.故选:B.6.【解答】解:中心投影的光源为灯光,平行投影的光源为阳光与月光,在各选项中只有B选项得到的投影为平行投影,故选B.7.【解答】解:∵抛物线形水柱,其解析式为y=﹣(x﹣2)2+6,∴水柱的最大高度是:6.故选:C.8.【解答】解:根据题意得:x﹣5≥0解得:x≥5故选:C.9.【解答】解:共4种情况,有1种情况每个路口都是绿灯,所以概率为.故选:A.10.【解答】解:A、由一次函数y=ax+b的图象可得:a>0,此时二次函数y=ax2+b的图象应该开口向上,故A错误;B、由一次函数y=ax+b的图象可得:a<0,b>0,此时二次函数y=ax2+b的图象应该开口向下,顶点的纵坐标大于零,故B正确;C、由一次函数y=ax+b的图象可得:a<0,b<0,此时二次函数y=ax2+b的图象应该开口向下,故C错误;D、由一次函数y=ax+b的图象可得:a<0,b>0,此时二次函数y=ax2+b的图象应该开口向下,故D错误;故选:B.二、填空题(本大题共4个小题,每小题4分,共16分,答案写在答题卡上)11.【解答】解:∵反比例函数y=的图象在第一、三象限内,∴k﹣5>0,解得 k>5.故答案为:k>5.12.【解答】解:∵y=x2+2x﹣2=(x+1)2﹣3,∴向右平移2个单位长度后抛物线解析式为y=(x﹣1)2+3,∴所得抛物线的对称轴为直线 x=1.故答案是:x=1.13.【解答】解:∵BC∥DE,∴△ABC∽△AED,∴=,即=,解得,AB=70,故答案为:70.14.【解答】解:设白球个数为:x个,∵摸到红色球的频率稳定在25%左右,∴口袋中得到红色球的概率为25%,∴=,解得:x=12,故白球的个数为12个.故答案为:12.三、解答题(本大题共6个小题,共54分,解答过程写在答题卡上)15.【解答】解:(1)原式=2﹣+3﹣2×1﹣2×=;(2)(x﹣5)(x+1)=0,x﹣5=0或x+1=0,所以x1=5,x2=1.16.【解答】解:如图所示:17.【解答】解:在△ABC中∠CAG=31°,∠CBG=62°,∴BC=AB=3000m,在Rt△BCG中,∠BCD=62°,∴sin∠CBG=,∴CG=0.88×3000≈2640 (m),∴CH=CG﹣GH=2640+500=3140(m),∴海底黑匣子C点处距离海面的深度CH为3140m.18.【解答】解:(1)∵有豆沙粽、肉粽各1个,蜜枣粽2个,∴随机地从盘中取出一个粽子,取出的是肉粽的概率是:;(2)如图所示:,一共有12种可能,取出的两个都是蜜枣粽的有2种,故取出的两个都是蜜枣粽的概率为:=.19.【解答】解:(1)∵点A(1,5)在反比例函数y=图象上,∴m=1×5=5,∴反比例函数的解析式为y=,∵点B(n,1)在反比例函数y=的图象上,∴n=5.(2)∵点A(1,5)和点B(5,1)在直线y=kx+b上∴,解得,∴直线AB的解析式为y=﹣x+6,∴点C的坐标为(6,0),OC=6,∴△AOC的面积=×6×5=15,(3)观察图象可知:当图中一次函数的函数值小于反比例函数的函数值,x的取值范围为:0<x<1或x >5.20.【解答】证明:(1)∵四边形ABCD是矩形,∴AD∥BC,∴∠EAC=∠ACF,在△EOA和△FOC中,,∴△EOA≌△FOC(ASA).∴AE=CF,OE=OF.∴四边形AFCE是平行四边形.∵AC⊥EF,∴四边形AFCE是菱形;(2)∵四边形AFCE是菱形∴AE∥CF,AE=CF.∴△DGE∽△CGF.∴=()2.∵=,△DGE的面积是2,∴=()2.∴S△CGF=18;(3)∵∠EDG=∠COG=90°,∠EGD=∠CGO,∴△EGD∽△CGO.∴EG:DG=CG:GO.∵OF=2GO,∴EG=GO.∴GO2=DG•GC.一、填空题(本大题共5分,每小题4分,共20分,答案写在答题卡上)21.【解答】解:∵三角形的3条中位线分别为3cm、4cm、6cm,根据三角形的中位线定理,得三角形的三边分别是6cm、8cm、12cm,则三角形的周长是26cm.故答案为26cm.22.【解答】解:∵x1,x2是关于x的方程x2+ax﹣2b=0的两实数根,∴x1+x2=﹣a=﹣2,x1•x2=﹣2b=﹣2,解得a=2,b=1,∴b a=12=1.故答案为:1.23.【解答】解:∵函数y=(k﹣3)x2+2x+1的图象与x轴有两个交点,∴令y=0,则(k﹣3)x2+2x+1=0,则△=4﹣4(k﹣3)>0,且k﹣3≠0,解得,k<4且k≠3.故答案是:k<4且k≠3.24.【解答】解:由题意:当a=﹣1时,关于x的不等式组有解,关于x的一次函数y=的图象与反比例函数y=的图象有1个交点,当a=0或1时,关于x的不等式组有解,关于x的一次函数y=的图象与反比例函数y =的图象有2个交点,∴使关于x的不等式组有解,且使关于x的一次函数y=的图象与反比例函数y=的图象有1个交点的概率是.故答案.25.【解答】解:连接DF,如图,∵E,F分别是AB,BC的中点,∴AE=BF=,∵四边形ABCD是正方形,∴AD∥BC,AB=BC=,∴DE=AF==5,在△ADE和△BAF中,∴△ADE≌△BAF(SAS),∴∠ADE=∠BAF,∵∠BAF+∠FAD=90°,∴∠FAD+∠ADE=90°,∴∠AMD=90°,∴AM⊥DE,∵AM•DE=AE•AD,∴AM==2,在Rt△AMD中,DM==4,又∵AD∥BF,∴△AND∽△FNB,∴,∴AN=2NF==×5=,∴MN=﹣2=,∴S△DMN=DM•MN=×4×=8,∵S△ADF=×2×2=30,∴S△MND:S△AFD=8:30=4:15.故答案为4:15.二、解答题(本大题共3个小题,共30分,解答过程写在答题卡上)26.【解答】解:(1)设这两年该企业年利润平均增长率为x,根据题意得:2(1+x)2=2.88,解答:x1=0.2=20%,x2=﹣2.2(不合题意,舍去),则设这两年该企业年利润平均增长率为20%;(2)如果2018年仍保持相同的年平均增长率,那么2018年该企业年利润为:2.88(1+20%)=3.456,且3.456>3.4,则该企业2018年的利润能超过3.4亿元.27.【解答】解:(1)∵AB=AC,∴∠B=∠C,∵△ABC≌△DEF,∴∠AEF=∠B,又∵∠AEF+∠CEM=∠AEC=∠B+∠BAE,∴∠CEM=∠BAE,∴△ABE∽△ECM;(2)能.∵∠AEF=∠B=∠C,且∠AME>∠C,∴∠AME>∠AEF∴AE≠AM;当AE=EM时,则△ABE≌△ECM,∴CE=AB=5,∴BE=BC﹣EC=6﹣5=1,当AM=EM时,则∠MAE=∠MEA,∴∠MAE+∠BAE=∠MEA+∠CEM,即∠CAB=∠CEA,∵∠C=∠C,∴△CAE∽△CBA,∴,∴CE=,∴BE=6﹣=;∴BE=1或.(3)设BE=x,又∵△ABE∽△ECM,∴,即:,∴CM=﹣+x=﹣(x﹣3)2+,∴AM=5﹣CM=(x﹣3)2+,∴当x=3时,AM最短为.28.【解答】解:(1)F1的表达式为:y=a(x+1)(x﹣3)=a(x2﹣2x﹣3),即﹣3a=﹣4,解得:a=,故函数F1的表达式为:y=x2﹣x﹣4,将抛物线F1沿x轴翻折得到抛物线F2,抛物线的表达式为:y=﹣x2+x+4;(2)点B、C的坐标分别为(3,0)、(0,4),将点B、C坐标代入一次函数表达式:y=kx+b并解得:直线C的表达式为:y=﹣x+4,设点P(x,﹣x2+x+4),则点E(x,﹣x+4),PE=﹣x2+x+4﹣(﹣x+4)=﹣(x﹣)2+3,∵<0,∴当x=时,PE的最大值为3;(3)如图,在y轴上截取CB=CD=5,则点D(0,﹣1),设BD的中点为H(,﹣),同理过点C、H的直线表达式为:y=﹣3x+4,∵CH平分∠OCB,则CH与抛物线F1的交点Q到∠PCB两边的距离相等,,解得:x=,故点Q(,)或(,)。

2018-2019学年初中数学二次根式、勾股定理、平行四边形一次函数和数据的分析中考模拟考试测试题

2018-2019学年初中数学二次根式、勾股定理、平行四边形一次函数和数据的分析中考模拟考试测试题
①求y关于n的函数关系式;
②该手机店购进A型、B型手机各多少部,才能使销售总利润最大?
(3)实际进货时,厂家对B型手机出厂价下调m(30<m<100)元,且限定商店最多购进B型手机80台.若商店保持两种手机的售价不变,请你根据以上信息及(2)中的条件,设计出使这110部手机销售总利润最大的进货方案.
24.某初中在“读书共享月”活动中.学生都从家中带了图书到学校给大家共享阅读.经过抽样调查得知,初一人均带了2册;初二人均带了3.5册:初三人均带了2.5册.已知各年级学生人数的扇形统计图如图所示,其中初三共有210名学生.请根据以上信息解答下列问题:
(1)扇形统计图中,初三年级学生数所对应的圆心角为°;
28.如图,在▱ABCD中,以点A为圆心,AB长为半径画弧交AD于点F,再分别以点B,F为圆心,大于 BF的长为半径画弧,两弧交于一点P,连接AP并延长交BC于点E,连接EF.
(1)根据条件与作图信息知四边形ABEF是
A.非特殊的平行四边形
B.矩形
C.菱形
D.正方形
(2)设AE与BF相交于点O,四边形ABEF的周长为16,BF=4,求AE的长和∠C的度数.
22.随着”互联网+“时代的到来,利用网络呼叫专车的打车方式深受大众欢迎.据了解,在非高峰期时,某种专车所收取的费用y(元)与行驶里程x(km)的函数图象如图所示.请根据图象,回答下列问题:
(1)当x≥5时,求y与x之间的函数关系式;
(2)若王女士有一次在非高峰期乘坐这种专车外出,共付费47元,求王女士乘坐这种专车的行驶里程.
【详解】
∵EF∥BC,GH∥AB,
∴四边形HPFD、BEPG、AEPH、CFPG为平行四边形,
∴S△PEB=S△BGP,

2024年四川省成都市中考一模模拟试卷(一)(原卷版)

2024年四川省成都市中考一模模拟试卷(一)数学(考试时间:120分钟试卷满分:150分)A卷(共100分)第Ⅰ卷(选择题,共32分)一、单项选择题:本题共8小题,每小题4分,共32分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

....A.1:35.下列命题中,属于真命题的是(A.各边相等的多边形是正多边形A .1∶2B .1∶4C .1∶3D .1∶97.在一个不透明的布袋中装有50个黄、白两种颜色的球,除颜色外其他都相同,小红通过多次摸球试验后发现,摸到白球的频率稳定在0.6左右,则布袋中黄球可能有()A .15个B .20个C .30个D .35个8.如图,已知直线l 是线段AB 的中垂线,l 与AB 相交于点C ,点D 是位于直线AB 下方的l 上的一动点(点D 不与C 重合),连接AD ,BD .过点A 作AE BD ,过点B 作BE AE ⊥,AE 与BE 相交于点E .若6AB =,设AD x =,AE y =.则y 关于x 的函数关系用图像可以大致表示为()A .B .C .D .第Ⅱ卷(非选择题,共68分)二、填空题(本大题共5个小题,每小题4分,共20分,答案写在答题卡上)三、解答题(本大题共5个小题,共48分,解答过程写在答题卡上)根据统计图中的信息解答下列问题:(1)本次参加课后延时服务的学生人数是______名;(2)把条形统计图补充完整;(3)在C 组最优秀的3名同学(1名男生2名女生)和E 组最优秀的3名同学(2名男生1名女生)中,各选1名同学参加全县的课后延时服务成果展示比赛,利用树状图或表格,求所选两名同学中恰好是1名男生1名女生的概率.18.如图,在平面直角坐标系中,()120A ,,()0,9B ,动点M 从点A 出发沿AO 以每秒2个单位长度的速度向原点O 运动,同时动点N 从点B 出发沿折线BO OA -向终点A 运动,点N 在y 轴上的速度是每秒3个单位长度,在x 轴上的速度是每秒4个单位长度,过点M 作x 轴的垂线交AB 于点C ,连接MN 、CN .点M 和N 都到达终点时,停止运动.设点M 运动的时间为t (秒),MCN △面积为S (平方单位).(1)当t 为何值时,点M ,N 相遇?(2)求MCN △的面积S (平方单位)与时间t (秒)的函数关系式;(3)直接写出当t 为何值时,MCN △是等腰三角形.B 卷(共50分)一、填空题(本大题共5个小題,每小題4分,共20分,答案写在答题卡上)21.化简222214(x x x x x ++--+-22.如图,正方形ABCD 将线段DE 绕点D 逆时针旋转23.如图,三角形ABC 3BAE BCD ∠=∠,若AD 二、解答题(本大题共3个小题,共24.随旅游业的快速发展,外来游客对住宿的需求明显增大,某宾馆拥有的床位数不断增加.(1)该宾馆床位数从2021年底的年底)拥有的床位数的年平均增长率;(2)该宾馆打算向游客出售了一款纪念工艺品,每件成本△DEC∽△ABC,并且BC=n AC.连结AD,直接写出+,求k的值;(1)若点D(1,21)-,点E(22,2)(2)求证:点D在直线OB上;(3)如图2,当45∠=︒时,射线OB交曲线l于点F,以点MON⊥轴.证:FH x。

初2018届成都市锦江区中考数学九年级一诊数学试卷(含答案)

初2018届成都市锦江区中考数学九年级一诊试卷(考试时间:120分钟满分150分)A卷(共100分)一、选择题:(共10个小题,每小题3分,满分30分)1.如图所示的几何体,其主视图是()A.B.C.D.2.已知=,则的值为()A.B.C.﹣D.﹣3.如图,线段AB两个端点的坐标分别为A(2,2)、B(3,1),以原点O为位似中心,在第一象限内将线段AB扩大为原来的2倍后得到线段CD,则端点C的坐标分别为()A.(3,1)B.(3,3)C.(4,4)D.(4,1)4.如图,在菱形ABCD中,AB=2,∠ABC=120°,则对角线BD等于()A.2 B.4 C.6 D.85.如图,A、B、C三点在正方形网格线的交点处,若将△ABC绕着点A逆时针旋转得到△AC′B′,则tanB′的值为()A.B.C.D.6.如图,在▱ABCD中,AD=18,点E、F分别是BD、CD上的点,EF∥BC,且=,则EF等于()A.6 B.8 C.9 D.187.小明家2015年年收入20万元,通过合理理财,2017年年收入达到25万元,求这两年小明家年收入的平均增长率,设这两年年收入的平均增长率为x,根据题意所列方程为()A.20x2=25 B.20(1+x)=25C.20(1+x)2=25 D.20(1+x)+20(1+x)2=258.如图所示的暗礁区,两灯塔A,B之间的距离恰好等于圆的半径,为了使航船(S)不进入暗礁区,那么S对两灯塔A,B的视角∠ASB必须()A.大于60°B.小于60°C.大于30°D.小于30°9.如图所示,在矩形ABCD中,AD=6,AB=10,若将矩形ABCD沿DE折叠,使点C落在AB边上的点F处,则线段CE的长为()A.B.C.D.1010.如图,菱形OBAC的边OB在x轴上,点A(8,4),tan∠COB=,若反比例函数y=(k≠0)的图象经过点C,则反比例函数解析式为()A.y=B.y=C.y=D.y=二、填空题:(本大题共4个小题,每小题4分,满分16分)11.课间休息,小亮与小明一起玩“五子棋”游戏,他们决定通过“剪刀、石头、布”游戏赢者开棋,若小亮出“石头”,则小亮开棋的概率是.12.如图,AC是正方形ABCD的对角线,∠DCA的平分线交BA的延长线于点E,若AB=3,则AE=13.关于x的一元二次方程(k﹣2)x2+2kx+k=0有实数根,则k的取值范围是14.如图,⊙O的直径为10,弦AB=8,P是弦AB上一动点,那么OP长的取值范围是.三、简答题(15小题每小题12分,16小题6分,共18分)15.(12分)(1)计算:+(﹣)﹣1+6cos30°﹣(+2)0(2)解方程:(x+2)(x+3)=2x+1616.(6分)为传递爱心,传播文明,某中学团委倡议全校同学在寒假期间选择参加志愿者活动(每人只能参加一种活动),活动项目有:敬老助残(A)、环境保护(B)、关爱留守儿童(C)、团委筹备小组在校门口随机调查50位同学,发现这50位同学选择三种活动项目(A、B、C)的人数之比为3:3:4.(1)若该校有1200名同学,请估计参加环境活动项目的同学有多少人?(2)请用画树状图或列表的方法,求九年级一班班长和团委书记两位同学都选择参加关爱留守儿童(C)的概率17.(8分)如图,AC是▱ABCD的对角线,在AD边上取一点F,连接BF交AC于点E,并延长BF交CD的延长线于点G.(1)若∠ABF=∠ACF,求证:CE2=EF•EG;(2)若DG=DC,BE=6,求EF的长.18.(8分)如图,一辆滴滴快车在笔直公路上由西向东行驶,行驶至A处时接到正东方B处乘客订单,但师傅发现油量不足,马上左拐30°,沿AC行驶1200米到达加油站C处加油,加油用时5分钟,加油后再沿CB行驶1000米到B处接到乘客,假设滴滴快车的平均速度是每分钟360米,其他情况忽略不计,滴滴快车让乘客多等了多少时间?(结果保留整数≈1.414,≈1.732,≈2.236)19.(10分)如图,一次函数y1=kx+b的图象与反比例函数y2=的图象交于点A、B两点,与x轴、y轴交于C、D两点,且点C、D刚好是线段AB的三等分点,OD=2,tan∠DCO=(1)求一次函数与反比例函数的解析式;(2)求△AOB的面积;(3)若y1≤y2,请直接写出相应自变量x的取值范围20.(10分)如图,在△ABC中,∠ABC=90°,⊙O是△ABC外接圆,点D是圆上一点,点D、B分别在AC 两侧,且BD=BC,连接AD、BD、OD、CD,延长CB到点P,使∠APB=∠DCB.(1)求证:AP为⊙O的切线;(2)若⊙O的半径为1,当△OED是直角三角形时,求△ABC的面积;(3)若△BOE、△DOE、△AED的面积分别为a、b、c,试探究a、b、c之间的等量关系式,并说明理由.B卷(共50分)一、填空题:(每小题4分,共20分)21.已知m、n是方程x2﹣2x﹣7=0的两个根,那么m2+mn+2n=.22.如图,小明周末晚上陪父母在锦江绿道上散步,他由灯下A处前进4米到达B处时,测得影子BC长为1米,已知小明身高1.6米,他若继续往前走4米到达D处,此时影子DE长为米.23.如图,点A是反比例函数y=(x>0)图象上的一点,点B是反比例函数y=﹣(x<0)图象上的点,连接OA、OB、AB,若∠AOB=90°,则sin∠A=24.如图,二次函数y=ax2+bx+c(a≠0)的图象过点(﹣1,2),下列结论:①abc>0;②a+b+c>0;③2a+b<0;④b<﹣1;⑤b2﹣4ac<8a,正确的结论是(只填序号)25.如图,⊙O的半径为6,∠AOB=90°,点C是上一动点(不与点B、A重合),过点C作CD⊥OB于点D,CE⊥OA于点E,连接ED,点F是OD的中点,连接CF交DE于点P,则CE2+3CP2等于.二、解答题(8分)26.(8分)科技驱动新零售商业变革的时代已经来临,无人超市的经营模式已在全国各地兴起,某家无人超市开业以来,经测算,为销售A型商品每天需固定支出的费用为400元,若A型商品每件的销售利润不超过9元,每天销售A型商品的数量为280件,若A型商品每件的销售利润超过9元,则每超过1元,每天销售A型商品的数量减少10件,设该家无人超市A型商品的销售利润为x元/件,A型商品的日净收入为y元(日净收入=A型商品每天销售的总利润﹣A型商品每天固定的支出费用):(1)试求出该超市A型商品的日净收入为y(元)与A型商品的销售利润x(元/件)之间的关系式;(2)该超市能否实现A型商品的销售日净收入3000元的目的?如能实现,求出A型商品的销售利润为多少元/件?如不能实现,请说明理由;(3)请问该超市A型商品的销售利润为多少元/件时,能获得A型商品的最大日净收入?27.(10分)如图,在△ABC中,CA=CB,AB=10,0°<∠C<60°,AF⊥BC于点F,在FC上截取FD=FB,点E是AC上一点,连接DA、DE,且∠ADE=∠B.(1)求证:ED=EC(2)若∠C=30°,求BD长;(3)在(2)的条件下,将图1中△DEC绕点D逆时针旋转得到△DE′C′,请问在旋转的过程中,以点D、E、C′、E′为顶点的四边形可以构成平行四边形吗?若可以,请求出该平行四边形的面积;若不可以,请说明理由.28.(12分)如图,在平面直角坐标系中,抛物线y=x2+bx+c的图象与x轴交于点A(2,0)、B(﹣4,0),与y轴交于点D.(1)求抛物线的解析式;(2)连接BD,点P在抛物线的对称轴上,以Q为平面内一点,以点P、B、D、Q为顶点的四边形能否成为矩形?若能,请求出点P的坐标;若不能,请说明理由;(3)在抛物线上有一点M,过点M、A的直线MA交y轴于点C,连接BC,若∠MBO=∠BCO,请直接写出点M的坐标.参考答案与试题解析1.【解答】解:从正面看第一层是三个小正方形,第二层左边一个小正方形,右边一个小正方形,故选:B.2.【解答】解:设x=2k,y=5k,则==﹣.故选:D.3.【解答】解:∵以原点O为位似中心,在第一象限内将线段AB扩大为原来的2倍后得到线段CD,∴A点与C点是对应点,∵C点的对应点A的坐标为(2,2),位似比为:1:2,∴点C的坐标为:(4,4)故选:C.4.【解答】解:∵四边形ABCD为菱形,∴AD∥BC,AD=AB,∴∠A+∠ABC=180°,∴∠A=180°﹣120°=60°,∴△ABD为等边三角形,∴BD=AB=2,故选:A.5.【解答】解:过C点作CD⊥AB,垂足为D.根据旋转性质可知,∠B′=∠B.在Rt△BCD中,tanB==,∴tanB′=tanB=.故选:B.6.【解答】解:∵四边形ABCD是平行四边形,∴BC=AD=18,∵EF∥BC,且=,∴EF=BC=×18=6.故选:A.7.【解答】解:设这两年年收入的平均增长率为x,由题意得:20(1+x)2=25,故选:C.8.【解答】解:连接OA,OB,AB,BC,如图所示:∵AB=OA=OB,即△AOB为等边三角形,∴∠AOB=60°,∵∠ACB与∠AOB所对的弧都为,∴∠ACB=∠AOB=30°,又∠ACB为△SCB的外角,∴∠ACB>∠ASB,即∠ASB<30°.故选:D.9.【解答】解:由折叠是性质可知,DF=DC=AB=10,在Rt△ADF中,AF==8,∴BF=AB﹣AF=2,设CE=x,则BE=6﹣x,由折叠是性质可知,EF=CE=x,在Rt△BEF中,EF2=BF2+BE2,即x2=22+(6﹣x)2,解得,x=,故选:C.10.【解答】解:如图,过点A作AE⊥x轴于点E,过点C作CF⊥OB于点F,∵四边形OCAB为菱形,∴OC∥BA,则tan∠COB=tan∠ABE==,∵点A(8,4),∴AE=4,则BE=3,∴OC=AB==5,设CF=4x,则OF=3x,根据OF2+CF2=OC2即(3x)2+(4x)2=52,解得x=1,则OF=3、CF=4,即点C坐标为(3,4),所以反比例函数解析式为y=,故选:B.二、填空题:(本大题共4个小题,每小题4分,满分16分)11.【解答】解:若小亮出“石头”,则小明出的手势情况为剪刀、石头、布这3种,其中小明出布时,小亮获胜,所以小亮开棋的概率是,故答案为:.12.【解答】解:∵AC是正方形ABCD的对角线,AB=3,∴AC=3,∵正方形ABCD,∠DCA的平分线交BA的延长线于点E,∴∠DCE=∠ECA,DC∥EB,∴∠CEA=∠DCE,∴∠E=∠ECA,∴AE=AC=3,故答案为:313.【解答】解:∵关于x的一元二次方程(k﹣2)x2+2kx+k=0有实数根,∴,解得:k≥0且k≠2.故答案为:k≥0且k≠2.14.【解答】解:如图:连接OA,作OM⊥AB与M,∵⊙O的直径为10,∴半径为5,∴OP的最大值为5,∵OM⊥AB与M,∴AM=BM,∵AB=8,∴AM=4,在Rt△AOM中,OM=,OM的长即为OP的最小值,∴3≤OP≤5.三、简答题(15小题每小题12分,16小题6分,共18分)15.【解答】解:(1)原式=2﹣2+6×﹣1,=2﹣2+3﹣1,=5﹣3.(2)(x+2)(x+3)=2x+16,x2+5x+6=2x+16,x2+3x﹣10=0,(x﹣2)(x+5)=0,解得x1=2,x2=﹣5.16.【解答】解:(1)1200×=360(人),答:估计参加环境活动项目的同学有360人;(2)如图所示:,一共有9种可能,两位同学都选择参加关爱留守儿童的可能有1种,故两位同学都选择参加关爱留守儿童的概率为:.四、简答题:(每小题8分,共16分)17.【解答】解:(1)∵AB∥CG,∴∠ABF=∠G,又∵∠ABF=∠ACF,∴∠ECF=∠G,又∵∠CEF=∠CEG,∴△ECF∽△EGC,∴,即CE2=EF•EG;(2)∵平行四边形ABCD中,AB=CD,又∵DG=DC,∴AB=CD=DG,∴AB:CG=1:2,∵AB∥CG,∴,即,∴EG=12,BG=18,∵AB∥DG,∴,∴BF=BG=9,∴EF=BF﹣BE=9﹣6=3.18.【解答】解:如图作CH⊥AB于H.在Rt△ACH中,AC=1200,∠A=30°,∴CH=AC=600,AH=CH≈1039.2,在Rt△BCH中,BH===800,∴AB=1893,AC+BC=2200,∴滴滴快车让乘客多等的时间=5+≈6(分钟),五、简答题:(每小题10分,共20分)19.【解答】解:(1)∵OD=2,tan∠DCO==,∴,∴OC=3,∴D(0,2),C(﹣3,0),把D(0,2),C(﹣3,0)代入y1=kx+b中得:,解得:,∴一次函数的解析式为:y1=x+2;过A作AE⊥x轴于E,∵点C、D刚好是线段AB的三等分点,∴AC=CD=BD,∵∠AEC=∠COD=90°,∠ECA=∠OCD,∴△AEC≌△DOC,∴EC=OC=3,AE=OD=2,∴A(﹣6,﹣2),∴m=﹣6×(﹣2)=12,∴反比例函数的解析式为:y2=;(2)同理得:B(3,4),∴S△AOB=S△BOC+S△ACO,=•|y B|+•|y A|,=+×3×2,=9;(3)由图象得:当x≤﹣6或0<x≤3时,y1≤y2.20.【解答】(1)证明:∵BD=BC,∴∠BDC=∠BCD,∵∠P=∠BCD,∠BAC=∠BDC,∴∠P=∠BAC,∵AC是直径,∴∠ABC=∠ABP=90°,∴∠P+∠BAP=90°,∴∠BAP+∠BAC=90°,∴∠OAP=90°,∴OA⊥PA,∴PA是⊙O的切线.(2)解:①当∠OED=90°时,CB=CD=BD,△BCD是等边三角形,可得∠ACB=30°,∵AC=2,∴AB=1,BC=,∴S△ABC=.②当∠DOE=90°时,作BH⊥AC于H.∵BD=BC,BO=BO,OC=OD,∴△BOC≌△BOD(SSS),∴∠OBC=∠OBD=∠OCB=22.5°,∴∠BOH=45°,∴BH=,∴S△ABC=×2×=(3)解:∵BD=BC,OD=OC,BO=BO,∴△BOD≌△BOC,∴∠OBD=∠OBC,∵OB=OD=CO,∴∠OBD=∠OBC=∠ODB=∠OCB,∵∠ADB=∠OCB,∴∠ADB=∠OBD,∴AD∥OB,∴△AED∽△OEB,∴=()2,∵==,∴=()2,∴b2=ac.一、填空题:(每小题4分,共20分)21.【解答】解:∵m、n是方程x2﹣2x﹣7=0的两个根,∴m+n=2,mn=﹣7,m2﹣2m﹣7=0,∴m2=2m+7,∴m2+mn+2n=2m+7+mn+2n=7+2×2+(﹣7)=4.故答案为:4.22.【解答】解:由FB∥AP可得,△CBF∽△CAP,∴,即,解得AP=8,由GD∥AP可得,△EDG∽△EAP,∴,即,解得ED=2,故答案为:2.23.【解答】解:如图作AE⊥x轴于E,BF⊥x轴于F.设A(a,),B(b,﹣),∵∠AOB=∠OFB=∠AEO=90°,∴∠BOF+∠AOE=90°,∠AOE+∠OAE=90°,∴∠BOF=∠OAE,∴△BOF∽△OAE,∴=,∴=,∴a2b2=5,∵AB2=OB2+OA2=b2++a2+=6b2+,∴AB=,OB=,∴sin∠A===,故答案为.24.【解答】解:①∵抛物线开口向上,∴a>0,∵x=﹣>0,∴b<0,又∵抛物线与y轴交于负半轴,∴c<0,∴abc>0.故①正确;②∵x=1时,y<0,∴a+b+c<0,故②错误;③∵a>0,0<﹣<1,∴﹣b<2a,∴2a+b>0.故③错误;④∵抛物线过点(﹣1,2),∴a﹣b+c=2∴a+c=b+2∵a+b+c<0,∴b+2+b<0∴b<﹣1故④正确;∵>﹣2且a>0∴4ac﹣b2>﹣8a∴b2﹣4ac<8a成立,故⑤正确.故答案为:①④⑤.25.【解答】解:设DF=OF=a,CD=b,连接OC.∵CD⊥OB于点D,CE⊥OA于点E,∴∠EOD=∠CDO=∠CEO=90°,∴四边形CDOE是矩形,∴CE=OD=2a,CD=OE=b,∵EC∥DF,∴==,∴PC=2PF,PC=CF=,∴EC2+3CP2=4a2+(a2+b2)=(4a2+b2),在Rt△OCE中,∵EC2+OE2=OC2,∴4a2+b2=36,∴EC2+3CP2=48.故答案为48二、简答题(8分)26.【解答】解:(1)由题意可得,当0<x≤9时,y=280x﹣400,当x>9时,y=[280﹣(x﹣9)×10]x﹣400=﹣10x2+370x﹣400,由上可得,该超市A型商品的日净收入为y(元)与A型商品的销售利润x(元/件)之间的关系式是:y=;(2)∵当0<x≤9时,y=280x﹣400≤2120,∴令y=3000代入y=﹣10x2+370x﹣400,解得,x1=17,x2=20,答:该超市能实现A型商品的销售日净收入3000元的目的,A型商品的销售利润为17元/件或20元/件;(3)∵当0<x≤9时,y=280x﹣400≤2120,当x>9时,y=﹣10x2+370x﹣400=﹣10(x﹣)2+3022.5,∵x>9且x为整数,∴当x=18或19时,y取得最大值,此时y=3020,答:该超市A型商品的销售利润为18元/件或19元/件时,能获得A型商品的最大日净收入.27.【解答】解:(1)∵AC=BC,∴∠ABC=∠BAC,∴∠C=180°﹣∠ABC﹣∠BAC=180°﹣2∠ABC,∵AF⊥BC,BF=DF,∴AB=AD,∴∠ADB=∠ABC,∵∠ADE=∠ABC,∴∠CDE=180°﹣∠ADE﹣∠ADB=180°﹣2∠ABC,∴∠CDE=∠C,∴DE=CE;(2)∵∠C=30°,∴∠ABC=∠ADB=∠BAC=∠ADE=75°,∴∠BAD=30°,过点B作BG⊥AD于G,如图1,在Rt△ABG中,AB=10,∠BAD=30°,∴BG=5,AG=5,∴DG=AD﹣AG=10﹣5=5(2﹣),在Rt△BDG中,BD==10=5﹣5;(3)可以,①理由:如图2;∵DE=CE,∴∠EDC=∠C=30°,由旋转知,∠E'DC'=∠E'C'D=∠C=30°∵四边形DEC'E'是平行四边形,∴C'E'∥DE,∴∠C'DE=30°,∴∠C'DC=60°,∴C'D⊥AC于H,在Rt△ADH中,AD=10,∠DAH=∠BAC﹣∠BAD=45°,∴DH=5,在Rt△DEH中,∠AED=∠ACB+∠CDE=60°,∴∠EDH=30°,∴DE=,∴CE=,∴S▱DEC'E'=2S△CDE=2×CE×DH=×5=.②理由:如图3,由①知,S△CDE=S△C'DE'=,∴S▱DEC'E'=2S△CDE=2×CE×DH=×5=.四、简答题(12分)28.【解答】解:(1)由题意,解得,∴抛物线的解析式为y=x2+x﹣4.(2)如图1中,当BD为矩形的边时,∵直线BD的解析式为y=﹣x﹣4,∴直线BP的解析式为y=x=4,直线 DP′的解析式为y=x﹣4,可得P(﹣1,3),P′(﹣1,﹣5).当BD为矩形的对角线时,设P(﹣1,m),BD的中点N(﹣2,﹣2),由BN=P″N,可得12+(m+2)2=(2)2,解得m=﹣2+或﹣2﹣,∴P″(﹣1,﹣2+),或(﹣1.﹣2﹣),∴要使四边形PBQD能成为矩形,满足条件的点P坐标为(﹣1,﹣2+)或(﹣1.﹣2﹣).综上所述,满足条件的P的坐标为(﹣1,3)或(﹣1,﹣5)或(﹣1,﹣2+)或(﹣1.﹣2﹣).(3)设M(m,m2+m﹣4),设直线AM的解析式为y=kx+b,则有,解得,∴直线AM的解析式为y=x﹣m﹣4,∴C(0,﹣m﹣4).①点M在第二象限显然不可能,当点M在第三象限时,如图2中,作MN⊥OB于N.∵∠MBN=∠BCO,∠MNB=∠BOC=90°,∴△MNB∽△BOC,∴=,∴=,∴m=﹣2或0.∴M(﹣2,﹣4)或(0,﹣4)(舍弃)②当点M在y轴上时,可得M(0,﹣4);③当点M在第一象限时,同法可得=,整理得:m2+2m﹣16=0,∴m=﹣1+或﹣1﹣(舍弃),∴M(﹣1+,4),④当点M在第四象限时,不存在,综上所述,满足条件的点M坐标(﹣2,﹣4)或(0,﹣4)或(﹣1+,4)。

初2018届成都市高新区中考数学九年级一诊数学试卷(含答案)

初2018届成都市高新区中考数学九年级一诊试卷(考试时间:120分钟满分150分)A卷(共100分)一、选择题(本大题共10个小题,每小题3分,共30分,每小题均有四个选项,其中只有一项符合题目要求,答案涂在答题卡上)1.下列各数与﹣8 相等的是()A.|﹣8| B.﹣|﹣8| C.﹣42D.﹣(﹣8)2.2017年成都市经济呈现活力增强、稳中向好的发展态势.截止2017年12月,全市实现地区生产总值约14000亿元,将14000亿元用科学记数法表示是()A.14×1011元B.1.4×1011元C.1.4×1012元D.1.4×1013元3.如图是由五个大小相同的正方体组成的几何体,从左面看这个几何体,看到的图形的()A.B.C.D.4.下列计算正确的是()A.a3•a2=a6B.a3﹣a2=a C.(﹣a3)2=a6D.a6÷a2=a35.在下列四个标志中,既是中心对称又是轴对称图形的是()A.B.C.D.6.如图,将一块含有30°角的直角三角板的两个顶点放在长方形直尺的一组对边上,如果∠1=30°,那么∠2的度数为()A.30°B.40°C.50°D.60°7.下表记录了甲、乙、丙、丁四名射击运动员最近几次选拔赛成绩的平均数和方差:甲乙丙丁平均数(环)9.1 9.1 9.1 9.1方差7.6 8.6 9.6 9.7根据表中数据,要从中选择一名成绩发挥稳定的运动员参加比赛,应选择()A.甲B.乙C.丙D.丁8.如图,四边形 ABCD 和A′B′C′D′是以点 O 为位似中心的位似图形,若 OA′:A′A=2:1,四边形A′B′C′D′的面积为12cm2,则四边形 ABCD 的面积为()A.24cm2B.27cm2C.36cm2D.54cm29.二次函数y=ax2+bx+c(a≠0)的图象如图所示,则下列结论正确的是()A.a<0 B.c<0 C.a+b+c<0 D.b2﹣4ac<010.如图,在矩形ABCD中,对角线AC,BD相交于点O,AE⊥BD,垂足为E,AE=3,ED=3BE,则AB的值为()A.6 B.5 C.2D.3二、填空题(本大题共4个小题,每小题4分,共16分,答案写在答题卡上)11.在二次根式中,x的取值范围是.12.用反证法证明“若a>b>0,则a2>b2”,应假设.13.将抛物线y=x2+2x+3向左平移2个单位长度,再向下平移3个单位长度,得到的抛物线的函数表达式为.14.如图,在Rt△ABC中,∠C=90°,以顶点A为圆心,适当长为半径画弧,分别交AC,AB于点M、N,再分别以点M、N为圆心,大于MN的长为半径画弧,两弧交于点P,作射线AP交边BC于点D,若CD=4,AB=15,则△ABD的面积是.三、解答题(本大题共6个小题,共54分,解答过程写在答题卡上)15.(12分)(1)计算:(2)解不等式组:16.(6分)关于x的方程x2﹣ax+a+1=0有两个相等的实数根,求的值.17.(8分)某班为了解学生一学期做义工的时间情况,对全班50名学生进行调查,按做义工的时间t(单位:小时),将学生分成五类:A类(0≤t≤2),B类(2<t≤4),C类(4<t≤6),D类(6<t≤8),E类(t>8).绘制成尚不完整的条形统计图如图.根据以上信息,解答下列问题:(1)E类学生有人,补全条形统计图;(2)D类学生人数占被调查总人数的%;(3)从该班做义工时间在0≤t≤4的学生中任选2人,求这2人做义工时间都在2<t≤4中的概率.18.(8分)如图,一辆摩拜单车放在水平的地面上,车把头下方A处与坐垫下方B处在平行于地面的水平线上,A、B之间的距离约为49cm,现测得AC、BC与AB的夹角分别为45°与68°,若点C到地面的距离CD为28cm,坐垫中轴E处与点B的距离BE为4cm,求点E到地面的距离(结果保留一位小数).(参考数据:sin68°≈0.93,cos68°≈0.37,cot68°≈0.40)19.(10分)如图,在平面直角坐标系xOy中,一次函数y=kx+b的图象与反比例函数y=的图象相交于点A(m,3)、B(﹣6,n),与x轴交于点C.(1)求一次函数y=kx+b的关系式;(2)结合图象,直接写出满足kx+b>的x的取值范围;(3)若点P在x轴上,且S△ACP=,求点P的坐标.20.(10分)如图,AB为⊙O的直径,C为⊙O上一点,作CD⊥AB,垂足为D,E为弧BC的中点,连接AE、BE,AE交CD于点F.(1)求证:∠AEC=90°﹣2∠BAE;(2)过点E作⊙O的切线,交DC的延长线于G,求证:EG=FG;(3)在(2)的条件下,若BE=4,CF=6,求⊙O的半径.B卷(共50分)一、填空题(本大题共5个小题,每小题4分,共20分,答案写在答题卡上)21.规定用符号[m]表示一个实数m的整数部分,例如:[]=0,[3.14]=3.按此规定,则[+]的值为.22.有9张卡片,分别写有0﹣8这九个数字,将它们背面朝上洗匀后,任意抽取一张,记卡片上的数字为m,能使关于x的分式方程的解为正数的概率为.23.如图,花园边墙上有一宽为1m的矩形门ABCD,量得门框对角线AC的长为2m,现准备打掉部分墙体,使其变成以AC为直径的圆弧形门,则打掉墙体后,弧形门洞的周长(含线段BC)为.24.如图,点A是反比例函数y=的图象上位于第一象限的点,点B在x轴的正半轴上,过点B作BC⊥x 轴,与线段OA的延长线交于点C,与反比例函数的图象交于点D.若直线 AD恰为线段 OC 的中垂线,则sinC=.25.如图,在△ABC中,∠C=60°,点D、E分别为边BC、AC上的点,连接DE,过点E作EF∥BC交AB于F,若BC=CE,CD=6,AE=8,∠EDB=2∠A,则BC=.二、解答题(本大题共3个小题,共30分,解答过程写在答题卡上)26.(8分)夏季空调销售供不应求,某空调厂接到一份紧急订单,要求在10天内(含10天)完成任务.为提高生产效率,工厂加班加点,接到任务的第一天就生产了空调42台,以后每天生产的空调都比前一天多2台,由于机器损耗等原因,当日生产的空调数量达到50台后,每多生产一台,当天生产的所有空调,平均每台成本就增加20元.(1)设第x天生产空调y台,直接写出y与x之间的函数解析式,并写出自变量x的取值范围.(2)若每台空调的成本价(日生产量不超过50台时)为2000元,订购价格为每台2920元,设第x天的利润为W元,试求W与x之间的函数解析式,并求工厂哪一天获得的利润最大,最大利润是多少.27.(10分)【问题背景】在平行四边形ABCD中,∠BAD=120°,AD=nAB,现将一块含60°的直角三角板(如图)放置在平行四边形ABCD所在平面内旋转,其60°角的顶点始终与点C重合,较短的直角边和斜边所在的两直线分别交线段AB、AD于点E、F(不包括线段的端点).【发现】如图1,当n=1时,易证得AE+AF=AC;【类比】如图2,过点C作CH⊥AD于点H,(1)当n=2时,求证:AE=2FH;(2)当n=3时,试探究AE+3AF与AC之间的等量关系式;【延伸】将60°角的顶点移动到平行四边形ABCD对角线AC上的任意点Q,其余条件均不变,试探究:AE、AF、AQ 之间的等量关系式(请直接写出结论).28.(12分)如图1,平面直角坐标系中,抛物线y=ax2﹣4ax+c与直线y=kx+1(k≠0)交于y轴上一点A 和第一象限内一点B,该抛物线顶点H的纵坐标为5.(1)求抛物线的解析式;(2)连接AH、BH,抛物线的对称轴与直线y=kx+1(k≠0)交于点K,若S△AHB=,求k的值;(3)在(2)的条件下,点P是直线AB上方的抛物线上的一动点(如图2),连接PA.当∠PAB=45°时,ⅰ)求点P的坐标;ⅱ)已知点M在抛物线上,点N在x轴上,当四边形PBMN为平行四边形时,请求出点M的坐标.参考答案与试题解析1.【解答】解:A.|﹣8|=8,与﹣8不相等,故此选项不符合题意;B.﹣|﹣8|=﹣8,与﹣8相等,故此选项符合题意;C.﹣42=﹣16,与﹣8不相等,故此选项不符合题意;D.﹣(﹣8)=8,与﹣8不相等,故此选项不符合题意;故选:B.2.【解答】解:14000亿元用科学记数法表示是1.4×1012元,故选:C.3.【解答】解:由图可得,从左面看几何体有2列,第一列有2块,第二列有1块,∴该几何体的左视图是:故选:D.4.【解答】解:A、a3•a2=a5,故此选项错误;B、a3﹣a2,无法计算,故此选项错误;C、(﹣a3)2=a6,正确;D、a6÷a2=a4,故此选项错误;故选:C.5.【解答】解:A、不是中心对称图形,是轴对称图形,故本选项错误;B、既不是中心对称图形,也不是轴对称图形,故本选项错误;C、既是中心对称图形又是轴对称图形,故本选项正确;D、不是中心对称图形,是轴对称图形,故本选项错误.故选:C.6.【解答】解:如图,由三角形的外角性质可得:∠3=30°+∠1=30°+30°=60°,∵AB∥CD,∴∠2=∠3=60°.故选:D.7.【解答】解:丁的平均数最大,方差最小,成绩最稳当,所以选丁运动员参加比赛.故选:D.8.【解答】解:∵四边形ABCD和A′B′C′D′是以点O为位似中心的位似图形,OA′:A′A=2:1,∴OA′:OA=2:3,∴四边形ABCD与四边形A′B′C′D′的面积比为:9:4,∵四边形A′B′C′D′的面积为12cm2,∴四边形 ABCD 的面积为:27cm2.故选:B.9.【解答】解:∵抛物线开口向上,∴a>0,故A错误;∵抛物线与y轴交于负半轴,∴c<0,故B正确;由图象可得:当x=1时,y>0,故C错误;∵抛物线与x轴有两个交点,∴b2﹣4ac>0,故D错误;故选:B.10.【解答】解:∵四边形ABCD是矩形,∴OB=OD,OA=OC,AC=BD,∴OA=OB,∵BE:ED=1:3,∴BE:OB=1:2,∵AE⊥BD,∴AB=OA,∴OA=AB=OB,即△OAB是等边三角形,∴∠ABD=60°,∵AE⊥BD,AE=3,∴AB==2,故选:C.二、填空题(本大题共4个小题,每小题4分,共16分,答案写在答题卡上)11.【解答】解:由题意可知:4﹣2x≥0,∴x≤2故答案为:x≤212.【解答】解:用反证法证明“若a>b>0,则a2>b2”的第一步是假设a2≤b2,故答案为:a2≤b2,13.【解答】解:y=x2+2x+3=(x+1)2+2,此抛物线的顶点坐标为(﹣1,2),把点(﹣1,2)向下平移3个单位长度,再向左平移2个单位长度后所得对应点的坐标为(﹣3,﹣1),所以平移后得到的抛物线的解析式为y=(x+3)2﹣1.故答案为:y=(x+3)2﹣1.14.【解答】解:作DE⊥AB于E,由基本尺规作图可知,AD是△ABC的角平分线,∵∠C=90°,DE⊥AB,∴DE=DC=4,∴△ABD的面积=×AB×DE=30,故答案为:30.三、解答题(本大题共6个小题,共54分,解答过程写在答题卡上)15.【解答】解:(1)原式=2+2×+﹣1﹣1=2++﹣1﹣1=2;(2)由不等式①得x≤8.由不等式②得x>﹣1;∴不等式组的解集为﹣1<x≤8.16.【解答】解:=×=×=﹣,∵关于x的方程x2﹣ax+a+1=0有两个相等的实数根,∴△=0,即(﹣a)2﹣4(a+1)=0,∴a2﹣4a=4,∴原式=﹣=﹣.17.【解答】解:(1)E类学生有50﹣(2+3+22+18)=5(人),补全图形如下:故答案为:5;(2)D类学生人数占被调查总人数的×100%=36%,故答案为:36;(3)记0≤t≤2内的两人为甲、乙,2<t≤4内的3人记为A、B、C,从中任选两人有:甲乙、甲A、甲B、甲C、乙A、乙B、乙C、AB、AC、BC这10种可能结果,其中2人做义工时间都在2<t≤4中的有AB、AC、BC这3种结果,∴这2人做义工时间都在2<t≤4中的概率为.18.【解答】解:过点C作CH⊥AB于点H,过点E作EF垂直于AB延长线于点F,设CH=x,则AH=CH=x,BH=CHcot68°=0.4x,由AB=49知x+0.4x=49,解得:x=35,∵BE=4,∴EF=BEsin68°=3.72,则点E到地面的距离为CH+CD+EF=35+28+3.72≈66.7(cm),答:点E到地面的距离约为66.7cm.19.【解答】解:(1)将A(m,3)代入反比例解析式得:m=2,则A(2,3),将B(﹣6,n)代入反比例解析式得:n=﹣1,则B(﹣6,﹣1),将A与B的坐标代入y=kx+b得:,解得:,则一次函数解析式为y=x+2;(2)由图象得:x+2>的x的取值范围是:﹣6<x<0或x>2;(3)∵y=x+2中,y=0时,x+2=0,解得x=﹣4,则C(﹣4,0),OC=4∴△BOC的面积=×4×1=2,∴S△ACP==×2=3.∵S△ACP=CP×3=CP,∴CP=3,∴CP=2,∵C(﹣4,0),∴点P的坐标为(﹣2,0)或(﹣6,0).20.【解答】证明:(1)连接AC、BC,∴∠CEA=∠CBA,∵E为的中点,∴=,∴∠CAE=∠BAE,∴∠CAB=2∠BAE,∵AB是直径,∴∠ACB=90°,∴∠CAB+∠CBA=90°,∴2∠BAE+∠AEC=90°,∴∠AEC=90°﹣2∠BAE;(2)连接EO,∵OA=OE,∴∠OEA=∠OAE,设∠OEA=∠OAE=α,∵EG为切线,∴OE⊥EG,∴∠OEG=90°,∴∠GEA=90°﹣∠AEO=90°﹣α,∵DG⊥AB,∴∠FDA=90°,∴∠FAD+∠AFD=90°,∴∠AFD=90°﹣α=∠GFE,∴∠GFE=∠GEF=90°﹣α,∴GE=GF;(3)如图3,连接CE、CB、OE、OC,CB与AE交于点N,CB与OE交于点M,∵E为的中点,∴∠COM=∠BOM,∵OC=OB,∴OM⊥BC,∴∠OMB=90°,由(2)得∠GEM=90°,∴CM∥EG,∴∠GEF=∠CNF,∵∠GFE=∠GEF,∴∠CFE=∠CNF,∴CF=CN=6,设MN=x,则CM=BM=6+x,cos∠EBM=,∴=,解得:x1=2,x2=﹣11(舍),MB=6+x=6+2=8,由勾股定理得:ME===4,在△OBM中,设OM=m,则OE=OB=m+4,OM2+MB2=OB2,即m2+82=(m+4)2,∴OM=m=6,∴OE=OB=6+4=10.则⊙O的半径为10.一、填空题(本大题共5个小题,每小题4分,共20分,答案写在答题卡上)21.【解答】解:∵3<+<4,∴[+]的值为3.故答案为:3.22.【解答】解:解方程得x=m﹣2,因为方程的解为正数,所以m﹣2>0,且m﹣2≠1,解得:m>2且m≠3,则在0﹣8这九个数字中符合条件的有5个,所以使关于x的分式方程的解为正数的概率为,故答案为:.23.【解答】解:设矩形外接圆的圆心为O,连接OB,∵矩形ABCD的AC=2m,BC=1m,∴OB=OC=BC=1m,∴△OBC是等边三角形,∴∠BOC=60°.∴弧形门洞的周长(含线段BC)为:+1=+1,故答案为:(+1)m.24.【解答】解:如图,连接OD,∵AD垂直平分OC,∴CD=OD,设A(a,b),则C(2a,2b),∴BC=2b,OB=2a,∴D(2a,b),∴BD=b,CD=b,∴OD=b,∵Rt△BOD中,BD2+OB2=OD2,∴(b)2+(2a)2=(b)2,∴b2=2a2,又∵Rt△BOC中,OC==2,∴sinC====.故答案为:.25.【解答】解:连接BE,在EC上截取EH=CD=6,作DM⊥EC于M.∵CB=CE,∠C=60°,∴△BCE是等边三角形,∴BE=EC,∠BEH=∠C=60°,∵EH=CD,∴△BEH≌△ECD,∴∠EHB=∠EDC,BH=ED∴∠BHC=∠BDE,∵∠BHC=∠A+∠ABH,∠EDB=2∠A,∴∠A=∠ABH,∴AH=BH=8+6=14,∴DE=BH=14,在Rt△DCM中,∵CD=6,∠CDM=30°,∴CM=3,DM=3,在Rt△DEM中,EM==13,∴EC=3+13=16,∴BC=EC=16,故答案为16.26.【解答】解:(1)∵接到任务的第一天就生产了空调42台,以后每天生产的空调都比前一天多2台,∴由题意可得出,第x天生产空调y台,y与x之间的函数解析式为:y=40+2x(1≤x≤10);(2)当1≤x≤5时,W=(2920﹣2000)×(40+2x)=1840x+36800,∵1840>0,∴W随x的增大而增大,∴当x=5时,W最大值=1840×5+36800=46000;当5<x≤10时,W=[2920﹣2000﹣20(40+2x﹣50)]×(40+2x)=﹣80(x﹣4)2+46080,此时函数图象开口向下,在对称轴右侧,W随着x的增大而减小,又天数x为整数,∴当x=6时,W最大值=45760元.∵46000>45760,∴当x=5时,W最大,且W最大值=46000元.综上所述:W=.27.【解答】解:【发现】:如图1,当n=1时,AD=AB,∴▱ABCD是菱形,∴AB=BC,∵四边形ABCD是平行四边形,∠BAD=120°,∴∠D=∠B=60°,∴△ABC、△ACD都是等边三角形,∴∠B=∠CAD=60°,∠ACB=60°,BC=AC,∵∠ECF=60°,∴∠BCE+∠ACE=∠ACF+∠ACE=60°,∴∠BCE=∠ACF,在△BCE和△ACF中,∵,∴△BCE≌△ACF(ASA),∴BE=AF,∴AE+AF=AE+BE=AB=AC;【类比】:(1)如图2,当n=2时,AD=2AB,设DH=x,由题意得:CD=2x,CH=x,∴AD=2AB=4x,∴AH=AD﹣DH=3x,∵CH⊥AD,由勾股定理得:AC===2x,∴AC2+CD2=AD2,∴∠ACD=90°,∴∠BAC=∠ACD=90°,∴∠CAD=30,∴∠ACH=60°,∵∠ECF=60°,∴∠HCF=∠ACE,∴△ACE∽△HCF,∴,∵AC=2CH,∴AE=2FH;(2)如图3,当n=3时,AD=3AB,过C作CN⊥AD于N,过C作CM⊥AB于M,交AD于H,∴∠ECF+∠EAF=180°,∴∠AEC+∠AFC=180°,∵∠AFC+∠CFN=180°,∴∠CFN=∠AEC,∵∠M=∠CNF=90°,∴△CFN∽△CEM,∴,∵S▱ABCD=AB•CM=AD•CN,AD=3AB,∴CM=3CN,∴,∵EM=3FN,设CN=a,FN=b,则CM=3a,EM=3b,∵∠MAH=60°,∠M=90°,∴∠AHM=∠CHD=30°,∴HC=2a,HM=a,HN=a,∴AM=a,AH=a,∴AC===a,∴AE+3AF=(EM﹣AM)+3(AH+HN﹣FN),=EM﹣AM+3AH+3HN﹣3FN,=3AH+3HN﹣AM,=3×a+3a﹣a,=a,∴==;【延伸】如图4,AD=nAB,过Q作QG∥AD,作QH∥AB,则四边形AGQH是平行四边形,且AH=nAG,过C作CN⊥AD于N,过C作CM⊥AB于M,交AD于P,同理可得:△QFN∽△QEM,∴=,∵S▱AGQH=AG•QM=AH•QN,AH=nAG,∴QM=nQN,∴=,∵EM=nFN,设QN=a,FN=b,则QM=na,EM=nb,∵∠MAH=60°,∠M=90°,∴∠APM=∠QPD=30°,∴PQ=2a,PM=na﹣2a,PN=a,∴AM=(na﹣2a),AP=2AM,∴AQ===,∴AE+nAF=(EM﹣AM)+n(AP+PN﹣FN),=EM﹣AM+nAP+nPN﹣nFN,=nAP+nPN﹣AM,=2n•(na﹣2a)+an﹣(na﹣2a),=a(n2﹣n+1),∴==.28.【解答】解:(1)∵抛物线y=ax2﹣4ax+c与直线y=kx+1交于y轴上一点A ∴A(0,1),即c=1∵抛物线y=ax2﹣4ax+c=a(x﹣2)2﹣4a+c∴顶点坐标为(2,c﹣4a)∴c﹣4a=5∴a=﹣1∴抛物线解析式y=﹣x2+4x+1=﹣(x﹣2)2+5(2)∵抛物线与直线相交∴kx+1=﹣x2+4x+1∴x1=0,x2=4﹣k∴B点横坐标为4﹣k∵点B在第一象限∴4﹣k>0即k<4∵S△AHB=HK×(4﹣k)=∴(5﹣2k﹣1)×(4﹣k)=解得:k1=,k2=(不合题意舍去)(3)ⅰ)如图:将AB绕B点顺时针旋转90°到BC位置,过B点作BD⊥x轴,过点C点作CD⊥BD于D,过A点作AE⊥BD于E∵k=,∴B(,)∵A(0,1),B(,)∴AE=,BE=∵旋转∴BC=AB,∠ABC=90°∴∠CAB=45°,∠CBD+∠ABE=90°且∠CBD+∠DCB=90°∴∠ABE=∠DCB且AB=BC,∠D=∠AEB=90°∴△ABE≌△BCD∴AE=BD=,BE=CD=∴C(,)设AC解析式y=bx+1∴=b+1∴b=3∴AC解析式y=3x+1∵P是直线AC与抛物线的交点∴3x+1=﹣x2+4x+1∴x1=0,x2=1∴P(1,4)ⅱ)如图2:设PM与BN的交点为H∵四边形PBMN为平行四边形∴PH=NH,BH=MH∵设点M坐标为(x,y)∴=∴y=﹣∴﹣=﹣(x﹣2)2+5解得:x1=﹣,x2=∴点M坐标为(﹣,﹣),(,﹣)。

华师大版七年级数学专题4.2 三角形-2018年中考数学试题分项版解析汇编(解析版)

一、单选题1.如图,AD,CE分别是△ABC的中线和角平分线.若AB=AC,∠CAD=20°,则∠ACE的度数是()A. 20°B. 35°C. 40°D. 70°【来源】浙江省湖州市2018年中考数学试题【答案】B点睛:本题考查了等腰三角形的两个底角相等的性质,等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合的性质,三角形内角和定理以及角平分线定义,求出∠ACB=70°是解题的关键.2.如图,已知在△ABC中,∠BAC>90°,点D为BC的中点,点E在AC上,将△CDE沿DE折叠,使得点C恰好落在BA的延长线上的点F处,连结AD,则下列结论不一定正确的是()A. AE=EFB. AB=2DEC. △ADF和△ADE的面积相等D. △ADE和△FDE的面积相等【来源】浙江省湖州市2018年中考数学试题【答案】C【解析】分析:先判断出△BFC是直角三角形,再利用三角形的外角判断出A正确,进而判断出AE=CE,得出CE是△ABC的中位线判断出B正确,利用等式的性质判断出D正确.详解:如图,连接CF,由折叠知,EF=CE,∴AE=CE,∵BD=CD,∴DE是△ABC的中位线,∴AB=2DE,故B正确,∵AE=CE,∴S△ADE=S△CDE,由折叠知,△CDE≌△△FDE,∴S△CDE=S△FDE,∴S△ADE=S△FDE,故D正确,∴C选项不正确,故选:C.点睛:此题主要考查了折叠的性质,直角三角形的判定和性质,三角形的中位线定理,作出辅助线是解本题的关键.学科*网3.我国古代伟大的数学家刘徽将勾股形(古人称直角三角形为勾股形)分割成一个正方形和两对全等的直角三角形,得到一个恒等式.后人借助这种分割方法所得的图形证明了勾股定理,如图所示的矩形由两个这样的图形拼成,若a=3,b=4,则该矩形的面积为()A. 20B. 24C.D.【来源】浙江省温州市2018年中考数学试卷【答案】B点睛: 本题考查了勾股定理的证明以及运用和一元二次方程的运用,求出小正方形的边长是解题的关键. 4.如图,在Rt△ABC中,CM平分∠ACB交AB于点M,过点M作MN∥BC交AC于点N,且MN平分∠AMC,若AN=1,则BC的长为()A. 4B. 6C.D. 8【来源】山东省淄博市2018年中考数学试题【答案】B【解析】分析:根据题意,可以求得∠B的度数,然后根据解直角三角形的知识可以求得NC的长,从而可以求得BC的长.点睛:本题考查30°角的直角三角形、平行线的性质、等腰三角形的判定与性质,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.5.如图,已知,添加以下条件,不能判定的是()A. B. C. D.【来源】四川省成都市2018年中考数学试题【答案】C点睛:本题考查了全等三角形的性质和判定,等腰三角形的性质的应用,能正确根据全等三角形的判定定理进行推理是解此题的关键,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS.6.如图,木工师傅在板材边角处作直角时,往往使用“三弧法”,其作法是:(1)作线段,分别以为圆心,以长为半径作弧,两弧的交点为;(2)以为圆心,仍以长为半径作弧交的延长线于点;(3)连接下列说法不正确的是( )A. B.C. 点是的外心D.【来源】山东省潍坊市2018年中考数学试题【答案】D【解析】分析:根据等边三角形的判定方法,直角三角形的判定方法以及等边三角形的性质,直角三角形的性质一一判断即可;详解:由作图可知:AC=AB=BC,∴△ABC是等边三角形,由作图可知:CB=CA=CD,∴点C是△ABD的外心,∠ABD=90°,BD=AB,∴S△ABD=AB2,∵AC=CD,∴S△BDC=AB2,故A、B、C正确,故选D.点睛:本题考查作图-基本作图,线段的垂直平分线的性质,三角形的外心等知识,直角三角形等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.7.如图,点,分别在线段,上,与相交于点,已知,现添加以下哪个条件仍不能...判定..()A. B. C. D.【来源】贵州省安顺市2018年中考数学试题【答案】D点睛:此题主要考查学生对全等三角形判定定理的理解和掌握,此类添加条件题,要求学生应熟练掌握全等三角形的判定定理.8.已知,用尺规作图的方法在上确定一点,使,则符合要求的作图痕迹是()A. B.C. D.【来源】贵州省安顺市2018年中考数学试题【答案】D点睛:本题主要考查了作图知识,解题的关键是根据中垂线的性质得出PA=PB.9.在直角三角形中,若勾为3,股为4,则弦为()A. 5B. 6C. 7D. 8【来源】山东省滨州市2018年中考数学试题【答案】A【解析】分析:直接根据勾股定理求解即可.详解:∵在直角三角形中,勾为3,股为4,∴弦为故选A.点睛:本题考查了勾股定理:在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方.10.在中,,于,平分交于,则下列结论一定成立的是()A. B. C. D.【来源】江苏省扬州市2018年中考数学试题【答案】C【解析】分析:根据同角的余角相等可得出∠BCD=∠A,根据角平分线的定义可得出∠ACE=∠DCE,再结合∠BEC=∠A+∠ACE、∠BCE=∠BCD+∠DCE即可得出∠BEC=∠BCE,利用等角对等边即可得出BC=BE,此题得解.点睛:本题考查了直角三角形的性质、三角形外角的性质、余角、角平分线的定义以及等腰三角形的判定,通过角的计算找出∠BEC=∠BCE是解题的关键.11.如图,,且.、是上两点,,.若,,,则的长为()A. B. C. D.【来源】江苏省南京市2018年中考数学试卷【答案】D【解析】分析:详解:如图,点睛:本题主要考查全等三角形的判定与性质,证明△ABF≌△CDE是关键.学科*网12.如图,将一张含有角的三角形纸片的两个顶点叠放在矩形的两条对边上,若,则的大小为()A. B. C. D.【来源】山东省泰安市2018年中考数学试题【答案】A详解:如图,∵矩形的对边平行,∴∠2=∠3=44°,根据三角形外角性质,可得:∠3=∠1+30°,∴∠1=44°﹣30°=14°.故选A.点睛:本题主要考查了平行线的性质以及三角形外角性质的运用,解题时注意:两直线平行,同位角相等.二、解答题13.如图,AB∥CD,E、F分别为AB、CD上的点,且EC∥BF,连接AD,分别与EC、BF相交与点G、H,若AB=CD,求证:AG=DH.【来源】陕西省2018年中考数学试题【答案】证明见解析.【解析】【分析】利用AAS先证明∆ABH≌∆DCG,根据全等三角形的性质可得AH=DG,再根据AH=AG+GH,DG=DH+GH即可证得AG=HD.【点睛】本题考查了全等三角形的判定与性质,熟练掌握全等三角形的判定与性质是解题的关键.14.如图,中,,小聪同学利用直尺和圆规完成了如下操作:①作的平分线交于点;②作边的垂直平分线,与相交于点;③连接,.请你观察图形解答下列问题:(1)线段,,之间的数量关系是________;(2)若,求的度数.【来源】湖北省孝感市2018年中考数学试题【答案】(1);(2)80°.【解析】分析:(1)根据线段的垂直平分线的性质可得:PA=PB=PC;(2)根据等腰三角形的性质得:∠ABC=∠ACB=70°,由三角形的内角和得:∠BAC=180°-2×70°=40°,由角平分线定义得:∠BAD=∠CAD=20°,最后利用三角形外角的性质可得结论.详解:(1)如图,PA=PB=PC,理由是:∵AB=AC,AM平分∠BAC,∴AD是BC的垂直平分线,∴PB=PC,∵EP是AB的垂直平分线,∴PA=PB,∴PA=PB=PC;故答案为:PA=PB=PC;点睛:本题考查了角平分线和线段垂直平分线的基本作图、等腰三角形的三线合一的性质、三角形的外角性质、线段的垂直平分线的性质,熟练掌握线段的垂直平分线的性质是关键.15.已知:如图,△ABC是任意一个三角形,求证:∠A+∠B+∠C=180°.【来源】山东省淄博市2018年中考数学试题【答案】证明见解析【解析】分析:过点A作EF∥BC,利用E F∥BC,可得∠1=∠B,∠2=∠C,而∠1+∠2+∠BAC=180°,利用等量代换可证∠BAC+∠B+∠C=180°.详解:证明:过点A作EF∥BC,点睛:本题考查了三角形的内角和定理的证明,作辅助线把三角形的三个内角转化到一个平角上是解题的关键.16.(1)操作发现:如图①,小明画了一个等腰三角形ABC,其中AB=AC,在△ABC的外侧分别以AB,AC为腰作了两个等腰直角三角形ABD,ACE,分别取BD,CE,BC的中点M,N,G,连接GM,GN.小明发现了:线段GM与GN的数量关系是__________;位置关系是__________.(2)类比思考:如图②,小明在此基础上进行了深入思考.把等腰三角形ABC换为一般的锐角三角形,其中AB>AC,其它条件不变,小明发现的上述结论还成立吗?请说明理由.(3)深入研究:如图③,小明在(2)的基础上,又作了进一步的探究.向△ABC的内侧分别作等腰直角三角形ABD,ACE,其它条件不变,试判断△GMN的形状,并给与证明.【来源】山东省淄博市2018年中考数学试题【答案】(1)MG=NG;MG⊥NG;(2)成立,MG=NG,MG⊥NG;(3)答案见解析【解析】分析:(1)利用SAS判断出△ACD≌△AEB,得出CD=BE,∠ADC=∠ABE,进而判断出∠BDC+∠DBH=90°,即:∠BHD=90°,最后用三角形中位线定理即可得出结论;(2)同(1)的方法即可得出结论;(3)同(1)的方法得出MG=NG,最后利用三角形中位线定理和等量代换即可得出结论.详解:(1)连接BE,CD相较于H,如图1,(2)连接CD,BE,相较于H,如图2,同(1)的方法得,MG=NG,MG⊥NG;(3)连接EB,DC,延长线相交于H,如图3.点睛:此题是三角形综合题,主要考查等腰直角三角形的性质,全等三角形的判定和性质,平行线的判定和性质,三角形的中位线定理,正确作出辅助线用类比的思想解决问题是解本题的关键.学科*网17.如图,D是△ABC的BC边上一点,连接AD,作△ABD的外接圆,将△ADC沿直线AD折叠,点C的对应点E落在上.(1)求证:AE=AB;(2)若∠CAB=90°,cos∠ADB=,BE=2,求BC的长.【来源】浙江省温州市2018年中考数学试卷【答案】(1)证明见解析;(2)BC=【解析】分析: (1)由翻折的性质得出△ADE≌△ADC,根据全等三角形对应角相等,对应边相等得出∠AED=∠ACD,AE=AC,根据同弧所对的圆周角相等得出∠ABD=∠AED,根据等量代换得出∠ABD=∠ACD,根据等角对等边得出AB=AC,从而得出结论;(2)如图,过点A作AH⊥BE于点H,根据等腰三角形的三线合一得出BH=EH=1,根据等腰三角形的性质及圆周角定理得出∠ABE=∠AEB=ADB,根据等角的同名三角函数值相等及余弦函数的定义得出BH∶AB = 1∶3,从而得出AC=AB=3,在Rt三角形ABC中,利用勾股定理得出BC的长.(2)解:如图,过点A作AH⊥BE于点H∵AB=AE,BE=2∴BH=EH=1∵∠ABE=∠AEB=ADB,cos∠ADB=∴cos∠ABE=cos∠ADB=∴=∴AC=AB=3∵∠BAC=90°,AC=AB∴BC=点睛: 本题主要考查三角形的外接圆,解题的关键是掌握折叠的性质、圆周角定理、等腰三角形的性质及三角函数的应用等知识点.18.如图,在四边形ABCD中,E是AB的中点,AD//EC,∠AED=∠B.(1)求证:△AED≌△EBC;(2)当AB=6时,求CD的长.【来源】浙江省温州市2018年中考数学试卷【答案】(1)证明见解析;(2)CD =3【解析】分析: (1)根据二直线平行同位角相等得出∠A=∠BEC,根据中点的定义得出AE=BE,然后由ASA判断出△AED≌△EBC;(2)根据全等三角形对应边相等得出AD=EC,然后根据一组对边平行且相等的四边形是平行四边形得出四边形AECD是平行四边形,根据平行四边形的对边相等得出答案.(2)解:∵△AED≌△EBC∴AD=EC∵AD∥EC∴四边形AECD是平行四边形∴CD=AE∵AB=6∴CD= AB=3点睛: 本题考查全等三角形的判定和性质、平行四边形的判定和性质等知识,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型.19.如图,已知∠1=∠2,∠B=∠D,求证:CB=CD.【来源】四川省宜宾市2018年中考数学试题【答案】证明见解析.【解析】分析:由全等三角形的判定定理AAS证得△ABC≌△ADC,则其对应边相等.详解:证明:如图,点睛:考查了全等三角形的判定与性质.在应用全等三角形的判定时,要注意三角形间的公共边和公共角,必要时添加适当辅助线构造三角形.20.如图,在四边形中,∥,=2,为的中点,请仅用无刻度的直尺......分别按下列要求画图(保留作图痕迹)(1)在图1中,画出△ABD的BD边上的中线;(2)在图2中,若BA=BD, 画出△ABD的AD边上的高 .【来源】江西省2018年中等学校招生考试数学试题【答案】(1)作图见解析;(2)作图见解析.【详解】(1)如图AF是△ABD的BD边上的中线;(2)如图AH是△ABD的AD边上的高.【点睛】本题考查了利用无刻度的直尺......按要求作图,结合题意认真分析图形的成因是解题的关键.21.在菱形中,,点是射线上一动点,以为边向右侧作等边,点的位置随点的位置变化而变化.(1)如图1,当点在菱形内部或边上时,连接,与的数量关系是,与的位置关系是;(2)当点在菱形外部时,(1)中的结论是否还成立?若成立,请予以证明;若不成立,请说明理由(选择图2,图3中的一种情况予以证明或说理).(3) 如图4,当点在线段的延长线上时,连接,若,,求四边形的面积.【来源】江西省2018年中等学校招生考试数学试题【答案】(1)BP=CE;CE⊥AD;(2)成立,理由见解析;(3) .【详解】(1)①BP=CE,理由如下:连接AC,∵菱形ABCD,∠ABC=60°,∴△ABC是等边三角形,∴AB=AC,∠BAC=60°,∵△APE是等边三角形,∴AP=AE ,∠PAE=60°,∴∠BAP=∠CAE,∴△ABP≌△ACE,∴BP=CE;(2)(1)中的结论:BP=CE,CE⊥AD 仍然成立,理由如下:连接AC,∵菱形ABCD,∠ABC=60°,∴△ABC和△ACD都是等边三角形,∴AB=AC,∠BAD=120°,∠BAP=120°+∠DAP,∵△APE是等边三角形,∴AP=AE ,∠PAE=60°,∴∠CAE=60°+60°+∠DAP=120°+∠DAP,∴∠BAP=∠CAE,∴△ABP≌△ACE,∴BP=CE,,∴∠DCE=30°,∵∠ADC=60°,∴∠DCE+∠ADC=90°,∴∠CHD=90°,∴CE⊥AD,∴(1)中的结论:BP=CE,CE⊥AD 仍然成立;(3) 连接AC交BD于点O,CE,作EH⊥AP于H,由(2)知BP=CE=8,∴DP=2,∴OP=5,∴,∵△APE是等边三角形,∴,,∵,∴,===,∴四边形ADPE的面积是 .【点睛】本题考查了菱形的性质,全等三角形的判定与性质,等边三角形判定与性质等,熟练掌握相关知识,正确添加辅助线是解题的关键. 学科*网22.已知:在中,,为的中点,,,垂足分别为点,且.求证:是等边三角形.【来源】浙江省嘉兴市2018年中考数学试题【答案】证明见解析.点睛:本题考查了等边三角形的判定、等腰三角形的性质以及直角三角形全等的判定与性质.解题的关键是证明∠A=∠C.23.如图,⊙O为锐角△ABC的外接圆,半径为5.(1)用尺规作图作出∠BAC的平分线,并标出它与劣弧BC的交点E(保留作图痕迹,不写作法);(2)若(1)中的点E到弦BC的距离为3,求弦CE的长.【来源】安徽省2018年中考数学试题【答案】(1)画图见解析;(2)CE=【详解】(1)如图所示,射线AE就是所求作的角平分线;(2)连接OE交BC于点F,连接OC、CE,∵AE平分∠BAC,∴,∴OE⊥BC,EF=3,∴OF=5-3=2,在Rt△OFC中,由勾股定理可得FC==,在Rt△EFC中,由勾股定理可得CE==.【点睛】本题考查了尺规作图——作角平分线,垂径定理等,熟练掌握角平分线的作图方法、推导得出OE⊥BC是解题的关键.24.如图1,Rt△ABC中,∠ACB=90°,点D为边AC上一点,DE⊥AB于点E,点M为BD中点,CM 的延长线交AB于点F.(1)求证:CM=EM;(2)若∠BAC=50°,求∠EMF的大小;(3)如图2,若△DAE≌△CEM,点N为CM的中点,求证:AN∥EM.【来源】安徽省2018年中考数学试题【答案】(1)证明见解析;(2)∠EMF=100°;(3)证明见解析.【详解】(1)∵M为BD中点,Rt△DCB中,MC=BD,Rt△DEB中,EM=BD,∴MC=ME;(2)∵∠BAC=50°,∠ACB=90°,∴∠ABC=90°-50°=40°,∵CM=MB,∴∠MCB=∠CBM,∴∠CMD=∠MCB+∠CBM=2∠CBM,同理,∠DME=2∠EBM,∴∠CME=2∠CBA=80°,∴∠EMF=180°-80°=100°;(3)∵△DAE≌△CEM,CM=EM,∴AE=EM,DE=CM,∠CME=∠DEA=90°,∠ECM=∠ADE,∵CM=EM,∴AE=ED,∴∠DAE=∠ADE=45°,∴∠ABC=45°,∠ECM=45°,又∵CM=ME=BD=DM,∴DE=EM=DM,∴△DEM是等边三角形,∴∠EDM=60°,∴∠MBE=30°,∵CM=BM,∴∠BCM=∠CBM,∵∠MCB+∠ACE=45°,∠CBM+∠MBE=45°,∴∠ACE=∠MBE=30°,∴∠ACM=∠ACE+∠ECM=75°,∵CM⊥EM,∴AN∥CM.【点睛】本题考查了三角形全等的性质、直角三角形斜边中线的性质、等腰三角形的判定与性质、三角形外角的性质等,综合性较强,正确添加辅助线、灵活应用相关知识是解题的关键.25.数学课上,张老师举了下面的例题:例1 等腰三角形中,,求的度数.(答案:)例2 等腰三角形中,,求的度数.(答案:或或)张老师启发同学们进行变式,小敏编了如下一题:变式等腰三角形中,,求的度数.(1)请你解答以上的变式题.(2)解(1)后,小敏发现,的度数不同,得到的度数的个数也可能不同.如果在等腰三角形中,设,当有三个不同的度数时,请你探索的取值范围.【来源】2018年浙江省绍兴市中考数学试卷解析【答案】(1)或或;(2)当且,有三个不同的度数.【解析】【分析】(1)分为顶角和为底角,两种情况进行讨论.(2)分①当时,②当时,两种情况进行讨论.【点评】考查了等腰三角形的性质,注意分类讨论思想在数学中的应用.三、填空题26.在中,,平分,平分,相交于点,且,则__________.【来源】广东省深圳市2018年中考数学试题【答案】【详解】如图,∵AD、BE分别平分∠CAB和∠CBA,∴∠1=∠2,∠3=∠4,∵∠C=90°,∴∠2+∠3=45°,∴∠AFE=45°,过E作EG⊥AD,垂足为G,在Rt△EFG中,∠EFG=45°,EF=,∴EG=FG=1,在Rt△AEG中,AG=AF-FG=4-1=3,∴AE=,过F分别作FH⊥AC垂足为H,FM⊥BC垂足为M,FN⊥AB垂足为N,易得CH=FH,设EH=a,则FH2=EF2-EH2=2-a2,在Rt△AHF中,AH2+HF2=AF2,即+2-a2=16,∴a=,∴CH=FH=,∴AC=AE+EH+HC=,故答案为:.【点睛】本题考查了角平分线的性质,勾股定理的应用等,综合性质较强,正确添加辅助线是解题的关键. 27.如图,四边形ACDF是正方形,和都是直角,且点三点共线,,则阴影部分的面积是__________.【来源】广东省深圳市2018年中考数学试题【答案】8【解析】【分析】证明△AEC≌△FBA,根据全等三角形对应边相等可得EC=AB=4,然后再利用三角形面积公式进行求解即可.【点睛】本题考查了正方形的性质、全等三角形的判定与性质,三角形面积等,求出CE=AB是解题的关键.28.等腰三角形的一个底角为,则它的顶角的度数为__________.【来源】四川省成都市2018年中考数学试题【答案】点睛:本题考查等腰三角形的性质,即等边对等角.找出角之间的关系利用三角形内角和求角度是解答本题的关键.学科*网29.如图,在每个小正方形的边长为1的网格中,的顶点,,均在格点上.(1)的大小为__________(度);(2)在如图所示的网格中,是边上任意一点.为中心,取旋转角等于,把点逆时针旋转,点的对应点为.当最短时,请用无刻度...的直尺,画出点,并简要说明点的位置是如何找到的(不要求证明)__________.【来源】天津市2018年中考数学试题【答案】;见解析【解析】分析:(1)利用勾股定理即可解决问题;(2)如图,取格点,,连接交于点;取格点,,连接交延长线于点;取格点,连接交延长线于点,则点即为所求.详解:(1)∵每个小正方形的边长为1,∴AC=,BC=,AB=,(2)如图,即为所求.点睛:本题考查作图-应用与设计、勾股定理等知识,解题的关键是利用数形结合的思想解决问题,学会用转化的思想思考问题.30.如图,在边长为4的等边中,,分别为,的中点,于点,为的中点,连接,则的长为__________.【来源】天津市2018年中考数学试题【答案】【解析】分析:连接DE,根据题意可得ΔDEG是直角三角形,然后根据勾股定理即可求解DG的长.详解:连接DE,点睛:本题主要考查了等边三角形的性质,勾股定理以及三角形中位线性质定理,记住和熟练运用性质是解题的关键.31.如图,△ABC的两条高AD,BE相交于点F,请添加一个条件,使得△ADC≌△BEC(不添加其他字母及辅助线),你添加的条件是_____.【来源】浙江省金华市2018年中考数学试题【答案】AC=BC.【解析】分析:添加AC=BC,根据三角形高的定义可得∠ADC=∠BEC=90°,再证明∠EBC=∠DAC,然后再添加AC=BC可利用AAS判定△ADC≌△BEC.点睛:此题主要考查了三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.学科*网32.在△ABC中,若∠A=30°,∠B=50°,则∠C=__________.【来源】山东省滨州市2018年中考数学试题【答案】100°【解析】分析:直接利用三角形内角和定理进而得出答案.详解:∵在△ABC中,∠A=30°,∠B=50°,∴∠C=180°﹣30°﹣50°=100°.故答案为:100°点睛:此题主要考查了三角形内角和定理,正确把握定义是解题关键.33.如图,在中,用直尺和圆规作、的垂直平分线,分别交、于点、,连接.若,则__________.【来源】江苏省南京市2018年中考数学试卷【答案】点睛:本题考查了三角形的中位线定理,属于基础题,解答本题的关键是掌握三角形的中位线定理. 34.如图,五边形是正五边形,若,则__________.【来源】江苏省南京市2018年中考数学试卷【答案】72【解析】分析:延长AB交于点F,根据得到∠2=∠3,根据五边形是正五边形得到∠FBC=72°,最后根据三角形的外角等于与它不相邻的两个内角的和即可求出.详解:延长AB交于点F,∵,∴∠2=∠3,∵五边形是正五边形,∴∠ABC=108°,∴∠FBC=72°,∠1-∠2=∠1-∠3=∠FBC=72°故答案为:72°.点睛:此题主要考查了平行线的性质和正五边形的性质,正确把握五边形的性质是解题关键.35.如图,为的平分线.,..则点到射线的距离为__________.【来源】山东省德州市2018年中考数学试题【答案】3点睛:本题主要考查了角平分线的性质,关键是掌握角的平分线上的点到角的两边的距离相等.36.等腰三角形中,顶角为,点在以为圆心,长为半径的圆上,且,则的度数为__________.【来源】2018年浙江省绍兴市中考数学试卷解析【答案】或【解析】【分析】画出示意图,分两种情况进行讨论即可.【解答】如图:分两种情况进行讨论.【点评】考查全等三角形的判定与性质,等腰三角形的性质等,注意分类讨论思想在数学中的应用. 37.在每个小正方形的边长为1的网格图形中,每个小正方形的顶点称为格点.以顶点都是格点的正方形ABCD的边为斜边,向内作四个全等的直角三角形,使四个直角顶点E,F,G,H都是格点,且四边形EFGH 为正方形,我们把这样的图形称为格点弦图.例如,在如图1所示的格点弦图中,正方形ABCD的边长为,此时正方形EFGH的而积为5.问:当格点弦图中的正方形ABCD的边长为时,正方形EFGH的面积的所有可能值是_____(不包括5).【来源】浙江省湖州市2018年中考数学试题【答案】9或13或49.点睛:本题考查作图-应用与设计、勾股定理等知识,解题的关键是学会利用数形结合的思想解决问题,属于中考填空题中的压轴题.学科*网。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

成都市2018年中考数学模拟试卷一
A 卷
一、选择题(每小题3分,共30分)
1.《九章算术》中注有“今两算得失相反,要令正负以名之”,意思是:今有两数若其意义相反,则分别叫做正数与负数。

若气温为零上8℃记作℃+8,则℃2-表示气温为( ) A. 零上2℃ B. 零下2℃ C. 零上8℃ D. 零下8℃
2.下列各式计算正确的是( )
A. x x x 632=•
B. x x x =-23
C. x x 4)2(2=
D. x x x 326=÷ 3.下图是一个螺母零件的立体图形,它的左视图是( )
4.函数5
1-=x y 中,自变量x 的取值范围是( )
A. 5≥x
B. 5>x
C. 5<x
D. 5≤x
5.已知点()1,a A 与点()b B ,4-关于原点对称,则b a +的值为( )
A. 5
B. 5-
C. 3
D. 3-
6.如图,把一块含有30°的直角三角形的一个锐角顶点放在直尺的一边上。

若︒=∠451,则2∠的度数为( )
A. 115°
B. 105°
C. 125°
D. 135°
7.如图,直径AB 与弦CD 互相垂直,交于点E ,若82==EB AE ,,则CD 的长为( ) A. 3 B. 4 C. 8 D. 6
C A
21
8.一次函数b ax y +=的图象如图所示,则不等式0≥+b ax 的解集是( ) A. 2≥x B. 2≤x C. 4≥x D. 4≤x
9.“连城读书月”活动结束后,对八年级(三)班45人所阅读书籍数量情况的统计结果如下表所
根据统计结果,阅读2本书籍的人数最多,这个数据2是( ) A.平均数 B.中位数 C.众数 D.方差
10.如图,四边形ABCD 和四边形D C B A ''''是以点O 为位似中心的位似图形。

若32∶∶='A O OA ,则四边形ABCD 和四边形D C B A ''''的面积比为( )
A. 4∶9
B. 2∶5
C. 2∶3
D.
32∶
二、填空题(每小题4分,共16分)
11.如图,在ABC Rt △中,B ∠的度数是 .
12.计算:
=---1
1
12x x x .
13.一次函数m x y +-=2的图象经过点()32,-P ,且与x 轴,y 轴分别交于点A ,B ,则△AOB 的面积是 .
14.在△ABC 中,b AC BC AB ===,,232,且关于x 的方程042=+-b x x 有两个相等的实数根,则AC 边上的中位线长为 . 三、解答题
15.(每小题6分,共12分)
(1)计算:()1
02123360sin 2-⎪⎭

⎝⎛--+-+︒π
(2)解不等式组:()⎪⎩

⎨⎧-≤+-<-②①x x x x 32
13341372 16.(本题满分6分)
先化简,再求值:y y x y
x y x -+•⎪⎪⎭⎫ ⎝
⎛-2,其中32==y x ,. 17.(本题8分)
如图,甲、乙两数学兴趣小组测量山CD 的高度。

甲小组在地面A 处测量,乙小组在上坡B 处测量,
m AB 200=. 甲小组测得山顶D 的仰角为45°;
乙小组测得山顶D 的仰角为58°. 求山CD 的高度(结果保留一位小数).(参考数据:732.1360.158tan ≈≈︒,)
18.(本题8分)
“端午节”是我国流传上千年的传统节日,全国各地举行了丰富多彩的纪念活动,为了继承传统,减缓学生考前的心理压力,某班学生组织了一次拔河比赛,裁判员让两队队长用“石头、剪刀、布”的手势方式选择场地位置,规则是:石头胜剪刀,剪刀胜布,布胜石头,手势想通再决胜负. (1)用列表或画树状图法,列出甲、乙两队手势可能出现的情况; (2)裁判员的这种做法对甲、乙双方公平吗?请说明理由. 19.(本题10分)
如图,在平面直角坐标系中,△ABC 为等腰直角三角形,m AB ACB =︒=∠,90,()20,A ,AB ∥
x 轴.
(1)求点B ,C 的坐标(用含m 的式子表示);
(2)若反比例函数x k y =的图象同时经过点B 和点C ,求反比例函数x
k
y =的表达式.
20.(本题10分)
如图,已知:AB 是⊙O 的直径,点C 在⊙O 上,CD 是⊙O 的切线,CD AD ⊥于点D ,E 是AB 延长线上的一点,CE 交⊙O 于点F ,连接OC ,AC . (1)求证:AC 平分DAO ∠; (2)若︒=∠︒=∠30105E DAO , ①求OCE ∠的度数;
②若的⊙O 半径为22,求线段EF 的长.
B 卷
一、填空题(每小题4分,共20分)
21.若关于x 的一元二次方程()0235122=+-++-m m x x m 有一个根为0,则m 的值为 .
22.使关于x 的分式方程
211=--x k 的解为非负数,且使反比例函数x
k
y -=
3的图象经过第一、三象限时满足条件的所有整数k 的和为 .
23.已知⊙O 的两条直径AC ,BD 互相垂直,分别以AB ,BC ,CD ,DA 为直径向外作半圆得到如图
所示的图形. 现随机地向图形内掷一枚小针,记针尖落在阴影区内的概率为1P ,针尖落在⊙O 内的概率为2P ,则
=2
1
P P .
24.如图,直线34
3
+-=x y 与x 轴,y 轴分别交于点A ,B ,点Q 是以()10-,C 为圆心,1为半径
的圆上一动点,过Q 点的切线交线段AB 于点P ,则线段PQ 的最小值是 .
25.如图,若△ABC 内一点P 满足PCB PBA PAC ∠=∠=∠,则点P 为△ABC 的布洛卡点,三角形的布洛卡点由法国数学家和数学教育家克洛尔于1816年首次发现. 问题:已知在等腰直角三角形DEF 中,若Q 为△EDF 的布洛卡点,1=DQ ,则FQ EQ +的值为 .
二、解答题
26.(本题8分)
某新建小区有众多业主需要装修,物业公司在小区某入口AE 处用长m 16的围栏靠近墙体AG (足够长)围成一个建材临时堆放区. 图为入口处的俯视示意图,BC ,CD ,DA 为围栏. 已知入口AE 宽度为m 5.5,设AD 长度为xm .
(1)若围成的堆放区占地面积为224m ,求x 的值;
(2)为保证消防安全,小区入口宽度不能小于2.5米。

此时能围成的建材堆放区的最大占地面积为多少?
32
1
A
Q
F
D
27.(本题10分)
问题背景:已知EDF ∠的顶点D 在ABC 的边AB 所在直线上(不与A ,B 重合). DE 交AC 所在直线于点M ,DF 交BC 所在直线于点N . 记△ADM 的面积为1S ,△BND 的面积为2S .
(1)初步尝试:如图①,当△ABC 是等边三角形,A EDF AB ∠=∠=,6,且2=AD BC DE ,∥时,则=
•21S S ;
(2)类比探究:在(1)的条件下,先将点D 沿AB 平移,使4=AD ,再将EDF ∠绕点D 旋转至如图②所示位置,求21S S •的值;
(3)延伸拓展:当△ABC 是等腰三角形时,设α=∠=∠=∠EDF A B .
Ⅰ.如图③,当D 点在线段AB 上运动时,设b BD a AD ==,,求21S S •的表达式(结果用α和,b a 的三角函数表示).
Ⅱ.如图④,当点D 在BA 的延长线上运动时,设b BD a AD ==,,,直接写出21S S •的表达式,不必写出解答过程.
28.(本题12分)
已知二次函数12+++-=c bx x y .
(1)当1=b 时,求这个二次函数的对称轴方程;
(2)若b b c 24
1
2--=,问:b 为何值时,二次函数的图象与x 轴相切;
图③
图②
图①
(3)若二次函数的图象与x 轴交于点()01,x A ,()02,x B ,且21x x <,与y 轴的正半轴交于点M ,以AB 为直径的半圆恰好经过点M ,二次函数的对称轴l 与x 轴,直线BM ,直线AM 分别相交
于点D ,E ,F ,且满足3
1
=EF DE ,求二次函数的表达式.。

相关文档
最新文档