直线参数t的几何意义
直线的参数方程

直线的参数方程知识精讲:1.直线参数方程的标准式:(1)过点()000,P x y ,倾斜角为α的直线l 的参数方程是⎩⎨⎧+=+=ααsin cos 00t y y t x x (t 为参数).t 的几何意义:t 表示有向线段P P 0的数量,P(y x ,)为直线上任意一点.(2)若12P P 、是直线上两点,所对应的参数分别为12t t 、,则122112P P t t P P t t==-∣,∣∣-∣. (3)若123P P P 、、是直线上的点,所对应的参数分别为123t t t 、、,则P 1P 2中点P 3的参数为1232t t t +=,12032t t P P +=∣∣. (4)若P 0为P 1P 2的中点,则t 1+t 2=0,t 1·t 2<0.2.直线参数方程的一般式: 过点P 0(00,y x ),斜率为a b k =的直线的参数方程是⎩⎨⎧+=+=bty y at x x 00(t 为参数).一、参数的几何意义323.()______.112x t y t ⎧=+⎪⎪⎨⎪=+⎪⎩(二星)直线为参数的倾斜角是31:()1x t y t⎧=⎪⎨=-⎪⎩变改为直线为参数呢?答案:6π;变式:56π321.()(3,1)2_______.112x t M y t ⎧=-⎪⎪⎨⎪=+⎪⎩(二星)直线为参数上到点距离为的点的坐标是3()(3,1)2_______.1x t M y t⎧=+⎪⎨=-⎪⎩变式:直线为参数上到点距离为的点的坐标是答案:()()3;3;变式:()()3;31.(三星)已知直线l的参数方程为112x y t ⎧=--⎪⎪⎨⎪=⎪⎩(t 为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,圆C 的极坐标方程为4sin()6πρθ=-.(1)求圆C 的直角坐标方程;(2)若P (x ,y )是直线l 与圆面4sin()6πρθ≤-y +的取值范围.备注:直线的参数方程的典型使用解:(1)因为圆C 的极坐标方程为ρ=4sin (θ﹣),所以ρ2=4ρ(sin θ﹣cos θ),所以圆C 的直角坐标方程为:x 2+y 2+2x ﹣2y=0.(2)方法一:直接使用直线的参数方程: 设z=x+y由圆C 的方程x 2+y 2+2x ﹣2y=0,可得(x+1)2+(y ﹣)2=4所以圆C 的圆心是(﹣1,),半径是2将代入z=x+y 得z=﹣t又直线l 过C (﹣1,),圆C 的半径是2, 由题意有:﹣2≤t ≤2 所以﹣2≤t ≤2即x+y 的取值范围是[﹣2,2].方法二:完全化为直角坐标方程来做,运算比较麻烦。
直线的参数方程的几何意义

直线的参数方程的几何意义直线的参数方程是用变量表示直线上的每一个点的坐标的一种表示方法。
在二维空间中,直线的参数方程可以用以下形式表示:x = x0 + nt, y = y0 + mt,其中n和m是常数。
在三维空间中,直线的参数方程可以用以下形式表示:x = x0 + nt, y = y0 + mt, z = z0 + pt,其中n、m和p是常数。
直线的参数方程的几何意义体现在以下几个方面:1.直线的方向向量:直线的参数方程中的常数n、m和p是直线的方向向量的分量。
直线上的每一个点都可以通过起点坐标加上方向向量的分量与参数的乘积得到。
2. 直线的斜率:在二维空间中,直线的参数方程可以转化为斜截式方程y = mx + c的形式,其中m代表直线的斜率。
直线的斜率是直线上两个不同点之间纵坐标变化量与横坐标变化量的比值。
3. 直线的截距:在二维空间中,直线的参数方程可以转化为截距式方程y = mx + c的形式,其中c代表直线与y轴的交点坐标。
直线的截距可以通过将参数方程中x等于零得到。
4.直线的方向:直线的参数方程中的常数n、m和p可以决定直线的方向。
当n、m和p都不为零时,直线是斜的,方向由斜率来确定;当其中一个常数为零时,直线平行于一个坐标轴,方向由与之平行的轴来决定;当两个常数为零时,直线垂直于一个坐标轴,方向由与之垂直的轴来决定。
5.直线上的点的坐标:直线的参数方程中的变量t可以取不同的值,对应于直线上的不同点。
通过给定不同的t值,可以得到直线上的各个点的坐标。
直线上的点的坐标可以通过代入参数方程中的t值来计算。
总之,直线的参数方程能够描述直线的方向、斜率、截距以及直线上各个点的坐标。
利用参数方程,可以方便地求解与直线相关的问题,如直线与其他几何图形的交点、直线的长度等。
同时,参数方程也是研究曲线、平面、空间之间关系的重要工具。
直线的参数方程t的几何意义应用

由韦达定理得
t1 t2 12cos,t1t2 11
AB t1 t2 t1 t2 2 4t1t2 10
即 144cos2 44 10
cos2 3 从而sin2 5
8
8
直线l的斜率k tan 15
3
【及时总结】
当直线与曲线相交于两点,解决有关弦长或 以直线所过定点为起点的线段长的有关问题的步 骤:
轨迹参数 方程
题 有 关 的
参化普
求圆的轨 迹方程
直化极
极化参
全国2卷
椭圆中点 弦的斜率
求三角形 面积最大 值
弦长问题
直线与圆 的切点坐 标
高 考
直线和圆 相交求倾 斜角范围
求双曲线 方程
参化普、 极化直
真 题
全国3卷
求圆的弦 中点的轨 迹方程
求直线与 双曲线交 点的极坐 标
椭圆上动 点到直线 距离的最 值
a的值.
y
解:设A, B两点对应的参数分别是 t1,t2
由| PA| 2 | PB | 得 | t1 | 2 | t2 |, 即t1 2t2
A
P
B
x
变式
2.若直线
l
的参数方程为
x
a
y
1
2t
2 2
t
(t为参数 , a
R)
,l
交 C1
:
y2
4x
于
2
A,B 两点,点 P(a,1) 在线段 AB 上,若| PA| 2 | PB | ,求实数 a 的值。
1. 确定该点所在直线的标准参数方程;
直线的参数方程中t的几何意义总结

直线的参数方程中t的几何意义总结直线的参数方程中t的几何意义总结直线是平面几何中的基本图形之一,其参数方程是直线研究中常用的一种表达方式。
在直线的参数方程中,t代表着自变量,其具有较为重要的几何意义。
下面将从不同角度出发,对直线参数方程中t的几何意义进行总结。
一、t表示直线上某一点到起点距离所占总距离的比例在平面直角坐标系中,设直线L过点A(x1,y1)和B(x2,y2),则L的参数方程为:x = x1 + t(x2 - x1)y = y1 + t(y2 - y1)其中0≤t≤1。
这时,我们可以将t理解为从A到B这条线段上任意一点P到A点距离与AB长度之比。
例如当t=0.5时,P点距离A点和B点的长度相等,即P点处于AB 中点M处;当t=0时,P点位于A点处;当t=1时,P点位于B点处。
因此,在L的参数方程中,t表示了从起始端点到任意一点所需走过路程与整条直线长度之比。
二、t表示向量AB与向量AP夹角余弦值在向量学中,向量的夹角是指两个向量之间的夹角,其余弦值可以用点积公式来表示。
在直线参数方程中,我们可以将t理解为从起点A到任意一点P所对应的向量AP与直线L上已知向量AB之间的夹角余弦值。
设向量AB=(x2-x1,y2-y1),向量AP=(x-x1,y-y1),则有:cosθ = (AB·AP) / (|AB|×|AP|)= [(x2-x1)(x-x1)+(y2-y1)(y-y1)] / [(x2-x1)²+(y2-y1)²]^(1/2) × [(x-x1)²+(y-y1)²]^(1/2)其中θ为向量AB与向量AP之间的夹角。
因此,在直线参数方程中,t也可以表示从起始点A出发到任意一点P所对应的向量与已知向量之间的夹角余弦值。
三、t表示平面上一条射线上某个点到起点距离在平面几何中,射线是由一个端点和以该端点为原点的半直线组成的。
《直线参数方程t的几何意义》专题-直线参数方程t的意义

《直线参数方程t 的几何意义》专题2019年( )月( )日 班级 姓名直线参数方程的标准式(1)过点P 0(00,y x ),倾斜角为α的直线l 的参数方程是⎩⎨⎧+=+=ααsin cos 00t y y t x x (t 为参数) t 的几何意义:t 表示有向线段P P 0的数量,P 0P =t ∣P 0P ∣=t P (y x ,)为直线上任意一点.(2)若P 1、P 2是直线上两点,所对应的参数分别为t 1、t 2, 则P 1P 2=t 2-t 1 ∣P 1P 2∣=∣t 2-t 1∣(3) 若P 1、P 2、P 3是直线上的点,所对应的参数分别为t 1、t 2、t 3 则P 1P 2中点P 3的参数为t 3=221t t +,∣P 0P 3∣=221t t + (4)若P 0为P 1P 2的中点,则t 1+t 2=0,t 1·t 2<0 直线参数方程的一般式 过点P 0(00,y x ),斜率为abk =的直线的参数方程是 ⎩⎨⎧+=+=bty y atx x 00 (t 为参数)性质一:A 、B 两点之间的距离为||||21t t AB -=,特别地,A 、B 两点到0M 的距离分别为.|||,|21t t性质二:A 、B 两点的中点所对应的参数为221t t +,若0M 是线段AB 的中点,则 021=+t t ,反之亦然。
在解题时若能运用参数t 的上述性质,则可起到事半功倍的效果。
应用一:求距离之积例1:已知直线l :01=-+y x 与抛物线2x y =交于B A ,两点,求线段AB 的长和点)2,1(-M 到B A ,两点的距离之积。
应用二:求距离例2、直线l 过点)0,4(0-P ,倾斜角为6π,且与圆722=+y x 相交于A 、B 两点。
(1)求弦长AB .(2)求A P 0和B P 0的长。
应用三:求点的坐标例3、直线l 过点)4,2(0P ,倾斜角为6π,求出直线l 上与点)4,2(0P 相距为4的点的坐标。
极坐标与参数方程专题(1)——直线参数t几何意义的应用

极坐标与参数方程专题(1)——直线参数t几何意义的应用极坐标与参数方程专题(1)——直线参数t的几何意义的应用1.(2018•银川三模)在平面直角坐标系xoy中,以O为极点,x轴非负半轴为极轴建立极坐标系。
已知曲线C的极坐标方程为ρsin2θ=4cosθ,直线l的参数方程为:x=2t-2,y=2t+2求M、N两点。
Ⅰ)求曲线C的直角坐标方程和直线l的普通方程;Ⅱ)若P(﹣2,﹣4),求|PM|+|PN|的值。
解:(Ⅰ)根据x=ρcosθ、y=ρsinθ,求得曲线C的直角坐标方程为y2=4x。
用代入法消去参数求得直线l的普通方程x-y-2=0.Ⅱ)直线l的参数方程为:x=2t-2,y=2t+2(t为参数),两曲线相交于M、N两点。
代入y2=4x,得到t1=-4,t2=6.则|PM|+|PN|=|t1+t2|=10.2.(2018•乐山二模)已知圆C的极坐标方程为ρ=2cosθ,直线l的参数方程为x=t+1,y=t-1(t为参数),点A的极坐标为(2,π/4),设直线l与圆C交于点P、Q两点。
1)求圆C的直角坐标方程;2)求|AP|•|AQ|的值。
解:(1)圆C的极坐标方程为ρ=2cosθ即ρ2=2ρcosθ,即(x-1)2+y2=1,表示以C(1,0)为圆心、半径等于1的圆。
2)点A的直角坐标为(2,2),所以点A在直线l上。
把直线的参数方程代入曲线C的方程可得t2+t-2=0.由韦达定理可得t1=-2,t2=1.根据参数的几何意义可得|AP|•|AQ|=|t1•t2|=2.3.(2018•西宁模拟)在直角坐标系xOy中,以坐标原点为极点,x轴正半轴为极轴建立极坐标系。
已知直线l的极坐标方程为ρcosθ+ρsinθ-2=0,C的极坐标方程为ρ=4sin(θ-π/2)。
I)求直线l和C的普通方程;II)直线l与C有两个公共点A、B,定点P(2,-2),求||PA|-|PB||的值。
解:(I)直线l的极坐标方程为ρcosθ+ρsinθ-2=0,所以直线l的普通方程为:x-y+2=0.圆C的极坐标方程为ρ=4sin(θ-π/2),所以圆C的直角坐标方程为:(x-2)2+y2=16.II)直线l的参数方程为:x=tcosθ+tsinθ,y=tsinθ-tcosθ-2(t为参数)。
直线参数方程t的几何意义

直线参数方程t的几何意义
1 几何意义
直线参数方程t是一种数学表达式,描述的是一条直线上所有点的位置。
它很好地表现出空间中的直线,是一种非常实用的空间表达方式。
直线参数方程t的广义形式如下:
t(X,Y)= X * Cosα + Y * Sinα – a
其中X,Y是一个直线上的点的极坐标,a是表达直线的参数,α是一个系数。
该系数α描述的是以原点为基准,水平方向为0°时,直线与水平方向的偏角,也叫斜率角或偏角。
但凡参数t的系数a和α都一定,则t可以表达出特定一条直线,从中可以看出t“=0”这条直线本身。
当
t“>0”或者“<0”时,表示一个空间中到该直线上某一点的距离,当t“=0”时,表示在直线上某一点的位置。
因此,直线参数方程t的几何意义就是用它来描述一条直线以及距离该直线距离的具体数值。
空间中任意一点到该直线距离可由t值来确定,如果t值等于0,就表示该点在该直线上。
这样就可以将直线参数方程t用来描述空间中任意一条直线,该方法非常方便、实用。
第04讲-直线参数t的几何意义-2020届一轮复习数学套路之极坐标与参数方程(解析版)

第四讲 直线参数t 的几何意义1.直线的参数方程(1)过点M 0(x 0,y 0),倾斜角为α的直线l 的参数为00cos (sin x x t t y y t αα=+⎧⎪⎨=+⎪⎩为参数)(2)由α为直线的倾斜角知α∈[0,π)时,sin α≥0. 2.直线参数方程中参数t 的几何意义参数t 的绝对值表示参数t 所对应的点M 到定点M 0的距离.(1)当0M M u u u u u r与e (直线的单位方向向量)同向时,t 取正数.(2)当0M M u u u u u r与e 反向时,t 取负数,(3)当M 与M 0重合时,t =0.3.经过点P (x 0,y 0),倾斜角为α的直线l 的参数方程为为参数)t t y y t x x (sin cos 00⎩⎨⎧+=+=αα若A ,B 为直线l 上两点,其对应的参数分别为t 1,t 2,线段AB 的中点为M ,点M 所对应的参数为t 0,则以下结论在解题中经常用到: (1)t 0=t 1+t 22; (2)|PM |=|t 0|=t 1+t 22; (3)|AB |=|t 2-t 1|; (4)|PA |·|PB |=|t 1·t 2|(5)212121212121212()4,0,0t t t t t t t t PA PB t t t t t t ⎧-=+-<⎪+=+=⎨+>⎪⎩当当(注:记住常见的形式,P 是定点,A 、B 是直线与曲线的交点,P 、A 、B 三点在直线上) 【特别提醒】(1)直线的参数方程中,参数t 的系数的平方和为1时,t 才有几何意义且其几何意义为:|t |是直线上任一点M (x ,y )到M 0(x 0,y 0)的距离,即|M 0M |=|t |.(2)直线与圆锥曲线相交,交点对应的参数分别为12,t t ,则弦长12l t t =-;知识解读考向一 参数t 的系数的平方和为1【例1】已知在直角坐标系xOy 中,曲线C 的参数方程为⎩⎪⎨⎪⎧x =1+4cos θ,y =2+4sin θ(θ为参数),直线l 经过定点P (3,5),倾斜角为π3.(1)写出直线l 的参数方程和曲线C 的标准方程;(2)设直线l 与曲线C 相交于A ,B 两点,求|PA |·|PB |的值.【答案】(1)见解析 (2)3【解析】(1)曲线C :(x -1)2+(y -2)2=16,直线l :⎩⎪⎨⎪⎧x =3+12t ,y =5+32t(t 为参数).(2)将直线l 的参数方程代入圆C 的方程可得t 2+(2+33)t -3=0,设t 1,t 2是方程的两个根,则t 1t 2=-3,所以|PA ||PB |=|t 1||t 2|=|t 1t 2|=3. 学科&网【举一反三】1.已知曲线C 1的极坐标方程为2sin 4cos ρθθ=, C 2的参数方程为32(32x t t y t ⎧=-⎪⎪⎨⎪=+⎪⎩为参数)(1)将曲线C 1与C 2的方程化为直角坐标系下的普通方程; (2)若C 1与C 2相交于A 、B 两点,求AB .【答案】(1)曲线C 1的普通方程y 2=4x ,C 2的普通方程x+y-6=0 ;(2)AB 【解析】(1)曲线C 1的普通方程为y 2=4x , 曲线C 2的普通方程为x+y-6=0(2)将C 2的参数方程代入C 1的方程y 2=4x,得23=43-+()()整理可得260t +-=,由韦达定理可得12126t t t t +=-=-12AB t t =-==2.已知曲线C 的极坐标方程是4sin 0ρθ-=,以极点为原点,极轴为x 轴的正半轴,建立平面直角坐标系,直线l 过点M (1,0),倾斜角为34π. (Ⅰ)求曲线C 的直角坐标方程与直线l 的参数方程; (Ⅱ)设直线l 与曲线C 交于A 、B 两点,求MA MB +的值. 【答案】(Ⅰ)曲线C 的直角坐标方程为:x 2+(y-2)2=4,直线l的参数方程为1(x t y ⎧=-⎪⎪⎨⎪=⎪⎩为参数)(Ⅱ).【解析】(Ⅰ)因为曲线C 的极坐标方程是4sin 0ρθ-=即曲线C 的直角坐标方程为:x 2+(y-2)2=4直线l 的参数方程31+t cos 4(3sin 4x t y t ππ⎧=⎪⎪⎨⎪=⎪⎩为参数)即1(x t y ⎧=-⎪⎪⎨⎪=⎪⎩为参数)(Ⅱ)设点A 、B 对应的参数分别为t 1,t 2将直线l 的参数方程代入曲线C的直角坐标方程得22(1)2)4-+-=整理,得210t -+=,由韦达定理得12121t t t t +== 因为t 1t 2>0,所以1212MA MB t t t t +=+=+=考向二 t 系数平方和不等于1【例2】在平面直角坐标系xOy 中,已知曲线1C 的参数方程为12{22x t y t=+=-(t 为参数),以O 为极点, x 轴的非负半轴为极轴,曲线2C 的极坐标方程为: 22cos sin θρθ=. (Ⅰ)将曲线1C 的方程化为普通方程;将曲线2C 的方程化为直角坐标方程; (Ⅱ)若点()1,2P ,曲线1C 与曲线2C 的交点为A B 、,求PA PB +的值.【答案】(Ⅰ) 12:30,:C x y C +-= 22y x =;(Ⅱ).【解析】(Ⅰ) 1:3C x y +=,即: 30x y +-=;222:sin 2cos C ρθρθ=,即: 22y x =(Ⅱ)方法一:由t 的几何意义可得C 1的参数方程为12(t 22x ty t ⎧=-⎪⎪⎨⎪=+⎪⎩为参数)代入22:2C y x =得26240t t ++=∴1262t t +=-,∴1262PA PB t t +=+=. 方法二:把1:3C x y +=代入22:2C y x =得2890x x -+=所以128x x +=, 129x x = 所以()221212*********PA PB x x x x +=+-++-=⨯-+-()()1221128262x x =⨯-+-=⨯-=【举一反三】1.在平面直角坐标系xOy 中,直线的参数方程为3(3x tt y t⎧=⎪⎨⎪=-⎩为参数)数),以坐标原点为极点,x 轴正半轴为极轴,建立极坐标系,已知曲线C 的极坐标方程为cos ρθ=. (1)求直线l 的普通方程与曲线C 的直角坐标方程;(2)设点3,0),直线l 与曲线C 交于不同的两点A 、B ,求MA MB ⋅的值. 【答案】(1)直线l 330x y +-=,【总结套路】直线参数t 几何意义运用最终版套路 第一步--化:曲线化成普通方程,直线化成参数方程;第二步--查:检查直线参数t 的系数平方和是否为1,如果是,进行第三步;如果否,则先化1.2202200022(t a b y t a x x t x x at a b t y y bt b y y t a b ±+⎧=+⎪=+⎧+⎪⎪−−−−−→⎨⎨=+⎪⎪⎩=+⎪+⎩前的系数同时除以保证中的的系数为正数为参数) 第三步--代:将直线的参数方程代入曲线的普通方程,整理成关于t 的一元二次方程:02=++c bt at第四步--写:写出韦达定理:a c t t a b t t =-=+2121,曲线C 的直角坐标方程(x-2)2+y 2=4; (2)3MA MB ⋅=-【解析】(1)直线l30y +-= 因为曲线C 的极坐标方程为cos ρθ=. 所以曲线C 的直角坐标方程(x-2)2+y 2=4;(2)点在直线l 上,且直线l 的倾斜角为120°,可设直线的参数方程为:12(x t t y ⎧=⎪⎪⎨⎪=⎪⎩为参数)代入到曲线C 的方程得:30t +-=,由韦达定理得12122,t t t t +==-由参数的几何意义知123MA MB t t ⋅==。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
将直线l的参数方程 (t为参数)代入圆C的方程得:
,其两根 满足
所以,|MA|·|MB| 10分
9.解析:(1)由 得 即
(2)将 的参数方程代入圆C的直角坐标方程,得 ,
即 由于 ,故可设 是上述方程的两实根,
所以 故由上式及t的几何意义得:
.
即 10分
4.(I) ( 为参数, 为倾斜角,且 )
4分
(Ⅱ)
5.解答:⑴ …………5分
⑵将 代入 ,并整理得
设A,B对应的参数为 , ,则 ,
…………10分
6.解:(1)由 得曲线C: ,消去参数t可求得,直线l的普通方程为 .
(2)直线l的参数方程为 (t为参数),代入 ,得 ,设两交点M,N对应的参数分别为t1,t2,则有 , .因为|MN|2=|PM|·|PN|,所以(t1-t2)2=(t1+t2)2-4t1·t2=t1·t2,
(1)求曲线 的直角坐标方程和直线 的普通方程;
(2)设点 ,若直线 与曲线 交于两点 ,且 ,数 的值.
8.在极坐标系中, O为极点,半径为2的圆C的圆心的极坐标为 .(1)求圆C的极坐标方程;
(2)在以极点O为原点,以极轴为x轴正半轴建立的直角坐标系中,直线 的参数方程为 (t为参数),直线 与圆C相交于A,B两点,已知定点 ,求|MA|·|MB|。
则 的普通方程为 ,则 的参数方程为: 2分
代入 得 , . 6分
(2) . 10分
考点:(1)参数方程的应用;(2)直线与椭圆相交的综合问题.
3.(【解析】(Ⅰ)将 代入,得 ,配方得, ,表示以 为圆心, 为半径的圆.
(Ⅱ)将曲线 的参数方程代入 的直角坐标方程,得 ,7分由参数的几何意义, ,因为 ,故 ,
9.在直角坐标系xoy中,直线 的参数方程为 (t为参数)。在极坐标系(与直角坐标系xoy取相同的长度单位,且以原点O为极点,以x轴正半轴为极轴)中,圆C的方程为 。
(1)圆C的直角坐标方程;
(2)设圆C与直线 交于点A、B,若点P的坐标为 ,求|PA|+|PB|.
参考答案
1.解析:(Ⅰ)曲线 的极坐标方程 ,可化为 ,即 ;
6.在直角坐标系中,以原点为极点,x轴的正半轴为极轴建立极坐标系,已知曲线C: ( >0),已知过点P(-2,-4)的直线l的参数方程为: (t为参数),直线l与曲线C分别交于M,N两点.
(1)写出曲线C和直线l的普通方程;(2)若|PM|,|MN|,|PN|成等比数列,求 的值.
7.已知曲线 的极坐标方程式 ,以极点为平面直角坐标系的原点,极轴为 轴的正半轴,建立平面直角坐标系,直线 的参数方程是 ,( 为参数).
数学试题(文)
1.在平面直角坐标系中,以坐标原点为极点, 轴的正半轴为极轴建立极坐标系,已知曲线 的极坐标方程为 ,过点 的直线 的参数方程为 ( 为参数),直线 与曲线 相交于 两点.
(Ⅰ)写出曲线 的直角坐标方程和直线 的普通方程;
(Ⅱ)若 ,求 的值.
2.在平面直角坐标系中,以原点为极点, 轴为极轴建立极坐标系,曲线 的方程为 ( 为参数),曲线 的极坐标方程为 ,若曲线 与 相交于 、 两点.
直线 的参数方程为 ( 为参数),消去参数 ,化为普通方程是 ;
(Ⅱ)将直线 的参数方程代入曲线 的直角坐标方程 中,得 ;设A、B两点对应的参数分别为t1,t2,
则 ;∵ ,∴ ,
即 ;∴ ,解得: ,或 (舍去);∴ 的值为 .
考点:1.参数方程化成普通方程;2.点的极坐标和直角坐标的互化.
2.解析:解(1)曲线 的普通方程为 , ,
4.已知直线 的参数方程为 ,( 为参数, 为倾斜角,且 )与曲线 =1交于 两点.
(I)写出直线 的一般方程及直线 通过的定点 的坐标;(Ⅱ)求 的最大值。
5.已知直线 的参数方程为 (t为参数),曲线C的参数方程为 (θ为参数).⑴将曲线C的参数方程化为普通方程;⑵若直线l与曲线C交于A、B两点,求线段AB的长.
(1)求 的值;(2)求点 到 、 两点的距离之积.
3.已知在直角坐标系 中,曲线 的参数方程为 为参数).在极坐标系(与直角坐标取相同的长度单位,且以原点 为极点, 轴的非负半轴为极轴)中,曲线 的方程为 , .
(Ⅰ)求曲线 直角坐标方程,并说明方程表示的曲线类型;
(Ⅱ)若曲线 、 交于A、B两点,定点 ,求 的最大值.
解得 .12分
7.解析:(1)曲线 的极坐标方程是 ,化为 ,可得直角坐标方程: .
直线 的参数方程是 ,( 为参数),消去参数 可得 .
(2)把 ,( 为参数),代入方程: ,化为: ,
由 ,解得 .∴ .∵ ,∴ ,
解得 .又满足 .∴实数 .
8.试题分析:(1)设 是圆上任意一点,则在等腰三角形COP中,OC=2,OP= , ,而 所以, 即为所求的圆C的极坐标方程。