酯化反应机理、催化剂、酯化方法[研究知识]
化学反应中的酯化反应

化学反应中的酯化反应化学反应是指物质之间发生的化学变化,通常伴随着物质的结构和性质的改变。
而酯化反应是一种重要的有机化学反应,它在生活和工业中都有着广泛的应用。
本文将从定义、特点、机理、应用等方面,详细介绍酯化反应。
一、酯化反应的定义和特点酯化反应是指酸和醇反应生成酯的化学反应。
通常情况下,酯化反应是在酸的催化下进行的。
酯分子是由一个酸基和一个醇基组成的,它们分别来自于反应物中的酸和醇。
酯化反应的化学方程式可以表示为:酸+醇→酯+水酯化反应的特点是发生在室温下,常常需要酸性催化剂加速反应的进行。
酯化反应是一个可逆反应,同时也是一个缓慢的反应。
在工业中,需要对反应条件进行优化,提高反应速率和收率。
一般情况下,酯化反应需要精确的配比和控制反应条件,才能达到最佳的反应效果。
二、酯化反应的机理酯化反应遵循的是亲核取代机理(nucleophilic acyl substitution)。
在酸性催化剂的作用下,酸分子发生质子化,生成了一个带正电荷的电子亏藻的中间体。
而醇分子则通过亲核作用攻击酸中间体的亚氨基,形成化学键,释放出水分子。
同时,酸中间体又通过亲电作用攻击醇分子的氧原子,生成醚中间体。
接下来,酸中间体脱去酸性的氢离子,进一步形成酯化合物。
三、酯化反应的应用酯化反应在医药、化妆品、食品等行业具有广泛的应用。
下面列举一些重要的应用场景。
1. 医药行业许多药物都是由酯化反应合成而来,例如阿司匹林等。
酯类药物具有良好的转化率和稳定性,不易水解,且可达到特定的目标组织,有着广泛的应用前景。
2. 化妆品行业酯类化合物广泛存在于香精、染发剂、防晒霜、化妆油等化妆品中。
其中,起着增稠、保湿、防腐等作用。
酯类化合物能够改善化妆品的质地和感观,提高其使用体验。
3. 食品行业酯类化合物被广泛应用于香精和食品添加剂中。
例如,柠檬酸的乙酯化反应得到的柠檬酸三乙酯,在饮料、糖果等食品中被使用作为增甜剂,同时还能延长食品的保质期。
酯化反应机理催化剂酯化方法

酯化反应机理催化剂酯化方法酯化反应是一种常见的有机合成反应,它是通过醇与酸反应生成酯的过程。
酯化反应在工业上具有广泛的应用,例如生产香料、塑料、溶剂、涂料等。
本文将介绍酯化反应的机理、常见的催化剂以及酯化反应的方法。
酯化反应通常是使用醇和酸发生酸催化反应来生成酯。
在酸性条件下,酸会负责催化酸酯交换反应。
其机理主要分为四个步骤:1.酸催化:酸作为催化剂使酯化反应加速进行。
酸可以与醇或酸形成氢键,使得醇中的-OH基和酸中的-COOH基增加亲电性,促进了反应的进行。
2.亲核进攻:醇中的氧原子攻击酸中的羰基碳原子,形成一个酰氧离子。
这是反应的决速步骤。
3.水解:酰氧离子失去一个负电荷,并与酸中的-OH基结合,生成产物酯。
4.生成酸与醇:剩余的酸与醇进行酸酯交换反应,生成酮和水。
酯化反应催化剂:为了提高酯化反应的速度和产率,常常使用催化剂来加速反应。
常见的催化剂包括:1.酸催化酯化催化剂:例如硫酸、磷酸和苯甲酸等。
酸具有高度的亲电性,可以促进亲核取代反应。
2.酶催化酯化催化剂:例如酯酶,可以在温和的条件下促进酯化反应的进行。
酶作为生物催化剂,具有高效和特异性。
3.有机催化剂:例如有机酸,可以作为替代传统无机酸的催化剂使用,并且具备环境友好性。
酯化反应方法:酯化反应可以通过多种方法进行,根据反应条件的不同可以分为以下几种方法:1.酸催化酯化反应:将酸和醇加热反应,酸催化酯化反应是一种常见的酯化反应方法,常用的酸包括硫酸、盐酸、磷酸等。
2.酯交换反应:通过醇的交换来进行酯化反应,常用的催化剂包括金属醇盐、酯化酶等。
3.酰氯法:将酸与氯化物反应生成酰氯,然后将酰氯与醇反应生成酯。
酰氯法具有反应速度快、操作简单等特点,常用于大规模工业生产。
4.酸酐法:将酸酐与醇反应生成酯。
酸酐反应具有较高的选择性和反应速度,常用于特定的酯化反应。
总结:酯化反应是一种重要的有机合成反应,其机理是通过酸催化,亲核进攻,水解和生成酸与醇等步骤完成的。
大学有机化学反应方程式总结酯化反应与酸酐酯化反应

大学有机化学反应方程式总结酯化反应与酸酐酯化反应酯化反应是有机化学中一种常见的酸碱中和反应,其产物为酯。
酯化反应的反应物一般是酸和醇,而酸酐酯化反应是以酸酐为酰基供体的酯化反应。
本文将从酯化反应和酸酐酯化反应的反应机理、常见的反应条件以及应用领域等方面进行总结。
一、酯化反应的反应机理酯化反应的机理一般分为两步:醇的质子化和质子化的醇与酸底物的酰基化。
具体反应如下所示:醇 + 酸 -> 酯 + 水二、酸酐酯化反应的反应机理酸酐酯化反应是在酯化反应的基础上引入酸酐这一特殊的底物,原理比酯化反应更为复杂。
反应可以分为三步:酸酐的质子化、酸酐的脱羧生成酸中间体、酸中间体与醇的酰基化。
具体反应如下所示:酸酐 + 醇 -> 酯 + 酸三、酯化反应和酸酐酯化反应的常见反应条件1. 酯化反应的常见反应条件包括:- 温度:一般在醇的沸点以下进行反应,常见的反应温度为60-150摄氏度;- 催化剂:酸性催化剂如硫酸、氯化亚铁等可加速反应速率;- 水含量:反应体系中水的含量对反应速率有一定的影响。
2. 酸酐酯化反应的常见反应条件包括:- 温度:一般在醇的沸点以下进行反应,常见的反应温度为60-150摄氏度;- 催化剂:酸性催化剂如氯化亚铁、硫酸等能够提高反应速率;- 反应时间:一般较长,常需反应几小时至几天。
四、酯化反应与酸酐酯化反应的应用领域酯化反应在化学合成过程中具有广泛的应用,包括医药领域的药物合成、香料的合成、聚合物的合成等。
酸酐酯化反应相较于酯化反应,由于酸酐的特殊性质,可以在更温和的条件下进行反应,因此在一些对反应条件敏感的合成中具有更大的应用潜力。
总结:本文对大学有机化学中的酯化反应和酸酐酯化反应进行了总结。
酯化反应的反应机理包括醇的质子化和质子化的醇与酸底物的酰基化;酸酐酯化反应在酯化反应的基础上引入酸酐,反应机理更为复杂。
酯化反应和酸酐酯化反应的常见反应条件包括温度、催化剂和水含量等因素。
酯化反应的机理-定义说明解析

酯化反应的机理-概述说明以及解释1.引言1.1 概述酯化反应是一种重要的有机反应,在有机合成领域具有广泛的应用。
它是通过酸催化或碱催化而发生的一种化学反应,通过在有机酸与醇之间发生酯基的交换,形成酯化产物和水。
酯化反应可以用于合成多种化合物,具有重要的工业价值和科学意义。
酯的合成是酯化反应的关键过程,其机理复杂而多样。
酸催化下的酯化反应机理通常采用亲核取代机制,其中酸催化剂起到了提供质子、促进酯基反应进程的作用。
而碱催化下的酯化反应机理则采用加成-消除机制,其中碱催化剂起到了提供碱性的作用。
这两种机理虽然有所不同,但都可以解释酯化反应发生的原理和过程。
酯化反应的机理研究对于进一步理解其反应过程、优化合成条件以及设计新型酯化催化剂具有重要意义。
了解机理可以帮助我们探索酯化反应的影响因素,例如底物结构、溶剂选择和反应条件等,从而提高反应效率和产物选择性。
本文将对酯化反应的机理进行深入探讨,并从酯化背景知识、基本原理到具体的反应机理,全面介绍酯化反应的相关内容。
通过对现有研究成果的总结和归纳,为酯化反应的进一步应用和发展提供理论基础和指导。
此外,我们还将展望酯化反应的未来发展前景,提出一些可能的应用方向和研究方向。
总之,本文旨在系统地梳理和阐述酯化反应的机理,为读者提供全面深入的理论知识和科学研究参考,进一步推动该领域的发展和应用。
1.2 文章结构文章结构部分:本文主要讨论酯化反应的机理。
为了更好地阐述酯化反应的机理,我们将文章分为引言、正文和结论三个部分。
引言部分首先对酯化反应进行了概述,简要介绍了酯化反应的基本概念和背景。
接着,对整篇文章的结构进行了说明,确立了章节的组织和内容的安排。
针对酯化反应的研究目的,本文明确了对酯化反应机理进行深入分析和探究的目标。
最后,在引言部分对整篇文章的内容进行了总结,为读者提供了文章的大致框架和内容导向。
正文部分分为三个小节,分别是酯化反应的背景知识、酯化反应的基本原理和酯化反应的机理。
酯化反应机理

酯化反应机理酯化反应是有机化学中常见的一种重要反应类型,也是合成酯类的常用方法之一。
本文将介绍酯化反应的机理和相关实例,希望能对读者有所帮助。
一、酯化反应的定义和原理酯化反应是一种酸催化下醇与酸酐之间发生的酯键形成反应。
在酸催化条件下,酸酐与醇反应生成酯和水。
酯化反应的形成机制主要有酸催化机制和醇缺失机制。
酸催化机制:在强酸存在的条件下,酸催化剂(如硫酸)将酸酐中的羧基质子化,形成硫酸酯中间体。
此时,醇与硫酸酯中的氧原子形成氢键,发生亲核加成,产生酯和硫酸作为副产物。
醇缺失机制:在无水条件下,由于酸酐和醇中含有水分,酸酐中的羧基经过质子化形成羧阳离子,与醇中的氧原子形成亲核加成,反应生成酯和水。
二、酯化反应的机理例如,醋酸与乙醇反应生成乙酸乙酯的酯化反应可以作为酯化反应的机理示例。
1. 酸催化机制首先,乙酸醋酸中的羧基会受到硫酸催化剂的质子化作用,生成乙酸阳离子。
然后,乙醇中的氧原子通过质子化,生成亲核剂。
此时,醇中的氧原子与乙酸中的羰基碳原子形成键融合,生成中间体。
接下来,乙酸醋酸中的硫酸作为副产物失去一个质子,并与水生成硫酸乙酯。
最后,中间体中的氧碳键断裂,生成乙酸乙酯和水。
总的反应方程式可以表示为:CH3COOH + CH3CH2OH →CH3COOCH2CH3 + H2O2. 醇缺失机制首先,乙酸醋酸中的羧基会受到质子化作用,生成乙酸阳离子。
然后,乙醇中的氧原子形成亲核剂。
醇中的氧原子与乙酸中的羰基碳原子形成键融合,生成中间体。
最后,中间体中的氧碳键断裂,生成乙酸乙酯和水。
总的反应方程式可以表示为:CH3COOH + CH3CH2OH →CH3COOCH2CH3 + H2O三、酯化反应的应用酯化反应在化学和生物化学中具有广泛的应用,例如:1.合成香精和香料:酯类化合物是香精和香料的主要成分之一,酯化反应可以合成各种具有芳香性的酯类化合物,为香精和香料的合成提供了重要的方法。
2.合成药物:许多药物的制造过程中都需要酯化反应。
酯化反应概念

酯化反应概念引言酯化反应是一种有机化学中常见的重要反应,它涉及到酸和醇之间的反应,通常是通过加热和酸催化剂的存在来进行。
酯化反应广泛应用于合成各种有机化合物,如酯类、脂肪酸、香料、染料等。
本文将探讨酯化反应的基本概念、机理及其应用。
一、酯化反应的定义酯化反应是指醇(化合物中的-OH官能团)和酸(化合物中的-COOH官能团)发生反应生成酯(化合物中的-COOR官能团)。
酯化反应是一个酸催化的反应,常见的酸催化剂有硫酸、磷酸和三氯化铝等。
二、酯化反应的机理酯化反应的机理主要分为两个步骤:酸催化的醇质子化和质子化醇的亲电进攻。
具体步骤如下:1. 酸催化的醇质子化酸催化剂通过给予醇分子一个质子,使其氧原子负电荷增加。
这种质子化的醇分子更容易进行下一步的亲电进攻。
2. 质子化醇的亲电进攻质子化的醇分子通过氧原子上富余的电子,攻击酸中的羧基碳上的碳氧双键。
经过断裂和重组,生成酯分子和一个水分子。
三、酯化反应的应用酯化反应在有机合成中有广泛的应用,以下是一些常见的应用领域:1. 酯类的合成酯化反应是合成酯类的主要方法之一。
酯具有较好的稳定性和挥发性,因此在食品工业、香料工业、制药工业等领域有着广泛的应用。
例如,苹果香味的主要成分苹果酸乙酯就是通过酯化反应合成的。
2. 脂肪酸的合成脂肪酸是酯化反应的重要产物之一。
通过脂肪酸的酯化反应,可以合成脂肪酸甲酯(一种生物柴油的成分),从而实现能源的可再生和环境友好。
3. 染料的合成某些染料也是通过酯化反应合成的。
酯基团可以通过基团的选择和取代,在染料分子中引入各种颜色和功能基团,从而实现染料的定制。
4. 化妆品的合成化妆品中常见的油脂和香料也是通过酯化反应合成的。
酯类化合物在化妆品中可以作为溶剂、增稠剂和香料等。
结论酯化反应是一种重要的有机合成反应,通过酸催化下的醇质子化和亲电进攻,可以合成各种酯类化合物。
酯化反应在食品工业、化妆品工业、药物工业等领域有着广泛的应用,不仅为我们提供了美味的食品和香气的化妆品,还为可再生能源的发展做出了贡献。
有机化学基础知识酯的合成和反应

有机化学基础知识酯的合成和反应酯的合成和反应酯是一类有机化合物,由羧酸和醇经过酯化反应生成的产物。
酯分子中含有一个酯基(即酯键),通常具有芳香或水果香味,因此在日常生活中被广泛应用于食品、香精、溶剂等领域。
本文将介绍酯的合成方法和反应机理。
一、酯的合成方法1. 酸催化酯化反应酸催化酯化反应是常用的合成酯的方法之一。
该反应通过加入酸催化剂,如硫酸和磷酸,促进羧酸与醇之间的酯化反应。
反应中产生的水可以通过采用过剩的醇或使用分子筛等方法去除,以达到更高的产率。
例如,乙酸与乙醇发生酯化反应,可以得到乙酸乙酯。
2. 醇缩酯化反应醇缩酯化反应是另一种合成酯的方法。
该反应通过在酸性条件下,使两个醇分子发生缩酯化反应,生成酯化物。
相比于酸催化酯化反应,醇缩酯化反应可同时合成两个不同的酯。
例如,甲醇和乙醇在酸性条件下缩酯化,可以得到甲酸甲酯和甲酸乙酯。
3. 酰氯与醇的反应酰氯是具有高反应活性的化合物,可与醇直接发生反应生成对应的酯。
例如,乙酰氯与甲醇反应,可以得到乙酸甲酯。
二、酯的反应1. 水解反应酯可以与水反应发生水解反应,生成相应的羧酸和醇。
该反应常被酶催化,也可以通过加入碱性催化剂或加热来促进。
例如,乙酸乙酯与水反应,可以得到乙酸和乙醇。
2. 加成反应酯可与带有活泼亲核基团的物质发生加成反应。
例如,苯甲酸乙酯可以与氨反应,生成苯甲酰胺和乙醇。
3. 酯交换反应酯交换反应是酯分子间的一种常见反应,其中一个酯的酯基会与另一个酯的醇基发生交换。
该反应在催化剂存在下进行,并伴有生成相应的醇和酯的产物。
例如,甲酸乙酯和乙酸甲酯在酸性条件下发生酯交换反应,可以得到乙酸乙酯和甲酸甲酯。
总结:本文介绍了酯的合成方法和反应机理。
酯的合成可通过酸催化酯化反应、醇缩酯化反应和酰氯与醇的反应等多种途径实现。
酯的反应包括水解反应、加成反应和酯交换反应。
了解酯的合成方法和反应机理有助于深入理解有机化学中的酯反应,并为相关领域的研究和应用提供基础知识。
酯化反应归纳

酯化反应归纳关于酯的考点常出现在高考试题中,成为测试的热点;现归纳例举如下:1、反应条件:一般需加热,用浓硫酸作催化剂和吸水剂。
2、反应物:醇是任意的醇,酸可以是有机酸,也可以是无机含氧酸。
3、反应机理:一般是羧酸脱羟基醇脱氢,且羧基与醇羟基数目比为1:1。
4、反应方式:⑴无机含氧酸与醇形成的酯如:CH 3CH 2OH+HO —NO 2 CH 3CH 2—O —NO 2+H 2O⑵羧酸酯:①一元酸与一元醇生成的酯如:CH 3COOH+CH 3CH 2OH CH 3COOC 2H 5+H 2O 此类酯的结构特点是含有一个“—C —O —”酯基结构的链酯,结构简单。
生成酯时,一定是羧酸脱羟基。
②二元酸与一元醇生成的酯如:HOOC —COOH+2CH 3CH 2OH CH 3CH 2OOC —COOCH 2CH 3+2H 2O 此类酯的结构特点是含有两个“—C —O —”结构的二元链酯。
书写此酯结构式时, 即两个羧基为同一碳链相连,两个醇的羟基分列两端。
③一元酸与二元醇生成的酯 如:HOCH 2—CH 2OH+2CH 3COOH CH 3COOCH 2—CH 2COOCH 3+2H 2O 此类酯的结构特点也是含有两个“—C —O —”结构的二元链酯。
书写万不可将羧基碳和羟基碳换位。
如写成CH 3COOCH 2—COOCH 2CH 3等就错了。
④环酯a 、二元酸与二元醇生成环酯如:b 、由两个同一种羟基酸分子生成的环酯 如:上面两种环酯的结构也比较相似,都是含有两个酯基结构的六元环酯。
但前者是二元酸与二元醇生成,其结构特点是两个羰基碳连在一个碳链上,浓H 2SO 4 浓H 2SO 4 △ O浓H 2SO 4 △ O 浓H 2SO 4 △ O COOH COOH HOCH 2 HOCH 2 + O==C —O —CH 2 O==C —O —CH 2 + 2H 2O COOH COOH HOCH 2 HOCH 2 + O==C —O —CH 2 O==C —O —CH 2 + 2H 2O即“—C —C —”;两个羟基碳连在另一个碳链上,即“—CH 2—CH 2—”。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
12
C6H5COOH
13
p-(CH3)C6H4COOH
61.69 44.36 41.18 33.25 29.03 21.50 8.28 3.45 48.82 40.26 11.55 8.62 6.64
•① 1h后的转化率可表示相对酯化速度。
•行业倾力
64.23 67.38 68.70 69.52 69.51 73.73 72.65 74.15 73.87 72.02 74.61 72.57 76.52
序
羧酸
号
转 化 率/%
平衡常数K
1h后①
平衡极限
1
HCOOH
2
CH3COOH
3
C2H5COOH
4
C3H7COOH
5
(CH3)2CHCOOH
6
CH3)(C2H5)CHCOOH
7
(CH3)3CCOOH
8
(CH3)2(C2H5)CCOOH
9
(C6H5)CH2COOH
10
(C6H5)C2H4COOH
11
(C6H5)CH=CHCOOH
(C4H9)3COH (CH9)2(C2H5)COH (CH3)2(C3H7)COH C6H5OH (CH3)(C3H7)C6H3OH
55.59 46.95 46.92 46.85 35.72 38.64 26.53 22.59 16.93 21.19 10.31 1.43 0.81 2.15 1.45 0.55
• ③ 反应过程中,进攻的亲核试剂是水,离去基团是醇。 即,
• RCOORˊ + H2O
RˊOH + RCOOH
H+ / OH¯
•行业倾力
•7
(二)主要影响因素
• 1 反应物的结构
• (1)醇或酚结构的影响
• 酯化反应活性: • 甲醇 ≻ 伯醇 ≻ 仲醇 ≻ 叔醇 ≻ 酚。
•空间位阻
• (见表5.1 醇或酚的结构对酯化反应影响的结果 )
第五章 酯化技术
5.1概述 5.2 酯化反应的基本原理(主 要介绍以醇为原料的酯化、 以酯为原料的酯化、水解和 皂化) 5.3 酯化方法(主要介绍以醇 为原料的酯化、酯化技术)
5.4 应用实例。
•行业倾力
•1
5.1 概 述
• 定义:
• 酯化反应通常是指醇或酚与含氧的酸(包括有机和无 机酸)作用生成酯和水的反应。
•行业倾力
69.59 66.57 66.85 67.30 59.41 60.75 60.52 59.28 58.66 62.03 50.12 6.59 2.53 0.83 8.64 9.46
平衡常数K
5.24 3.96 4.07 4.24 2.18 2.39 2.35 2.12 2.01 2.67 1.01 0.0049 0.00067 0.0089 0.0192
OH H2O R C O R/ H2O
O H R C O R/ H
•行业倾力
返回
•6
• (3)酯的水解反应机理:
• 酯的水解是羧酸与醇进行酯化反应的逆反应。
• 工业上最重要的酯类水解是由油脂与苛性钠共热生产 肥皂,此碱性水解又称皂化。
• 特点:
• ① 酯的水解反应也是一个可逆平衡反应;
• ② 可在酸或碱催化下进行;
RCOORˊ + H2O
RCOORˊ+ RCOOH
RCOORˊ + HCl
RCOO R″ + RˊOH R ″COORˊ + RCOOH RCOOR ‴ + R″COORˊ
•行业倾力
•3
• 用途:
• 工业上酯化是将羧酸与醇在催化剂存在下进行 的反应生产羧酸酯;羧酸酯最重要的用途是溶 剂及增塑剂,
• 其他的用途还包括有树脂、涂料、合成润滑油、 香料、化妆品、表面活性剂、医药等。
•9
(2)羧酸的结构
• 酯化反应活性:
•空间位阻
• 甲酸 ≻ 直链羧酸 ≻ 有侧链羧酸 ≻ 芳香族羧酸。
• (见表5-2 异丁醇与各种羧酸的酯化反应影响的结果 )
• 如:以苯甲酸为例,当邻位有取代基时,酯化反应速度 减慢;当两个邻位均有取代基时,酯化更难,而且形成 的酯不易皂化。
•行业倾力
•10
• 表5-2 异丁醇与各种羧酸的酯化反应转化率、平衡常数(等摩尔混合,155℃)
• 本章着重学习羧 酸与醇的反应
•行业倾力
•4
5.2 酯化反应原理
• (一)反应机理 -最常用、最重要的是羧酸与醇在酸 催化下的酯化
• (1) 酸催化酯化反应机理:
• 醇和羧酸的酸催化酯化是双分子反应机理。
• 即,首先质子加成到羧酸中羧基的氧原子上,
• 然后,醇分子对羰基碳原子发生亲核进攻,这一步是 整个反应最慢的阶段。
• 由于它是在醇或酚羟基的氧原子上引入酰基的过程, 故又称为O-酰化反应。
• 其通式为:
• RˊOH + RCOZ
RCOORˊ + HZ
•Rˊ可以是脂肪族或芳香烃基;
•RCOZ为酰化剂,其中的Z可以代表OH,X, OR″,
OCOR″,NHR″等。
•行业倾力
•2
• 即,主要有以下几种: • ① 羧酸与醇或酚作用: • RˊOH + RCOOH • ② 酸酐与醇或酚作用: • RˊOH +(RCO)2O • ③ 酰氯与醇或酚作用: • RˊOH + RCOCl • ④ 酯交换: • R″OH + RCOORˊ • R″COOH + RCOORˊ • R″COOR‴ + RCOORˊ
•通常,叔醇和酚的酯化要 选用活泼的酸酐或酰化剂。
•行业倾力
•8
表5.1 乙 酸 与 各 种 醇 的 酯 化 反 应 情 况
序号
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
醇或酚
转化率/%
1h 后
极限
CH3OH C2H5OH C3H7OH C4H9OH CH2=CHCH2OH C6H5CH2OH (CH3)2CHOH (C4H9)(C2H5)CHOH (C2H5)2CHOH (CH3)(C6H13)CHOH (CH2=CHCH2)2CHO H
3.22 4.27 4.82 5.20 5.20 7.88 7. 06 8.23 7.99 7.60 8.63 7.00 10.62
•11
(3) 催 化 剂
• 作用:可降低反应活化能,加快反应的速度。
• (2)特点:所有的各步反应均处于平衡中。 • 酯化反应平衡常数为:
K
RCOO RH 2O RCOOH ROH
•行业倾力
•5
• 双分子反应机理:
H
R C OH
R C OH
O
OH
第一步(快)
亲核进 攻
R/OH
R
R/OH
第二步(最慢)
OH C O R/ OH H
OH2
重排
R C O R/ OH H