七年级数学从算式到方程1
人教版数学七年级上册优秀教案:3.1《从算式到方程》

3.1 从算式到方程(第1课时)教学目标:1.了解方程、一元一次方程、方程的解等概念,会估算方程的解,会检验一个数是否是方程的解.2.根据实际问题中的数量关系,列出相等关系,列出方程,体会数学建模思想.3.让学生体会我们的生活处处有数学,对数学产生亲近感,提高学生学习数学的兴趣. 教学重点:方程、一元一次方程和方程的解的概念.教学难点:从实际问题中找出相等关系,列出方程.教法: 指导法学法: 小组研讨法教学过程:一、情境引入问题1:一辆客车和一辆卡车同时从A 地出发沿同一公路同方向行驶,客车的行驶速度是车70km/h ,卡车的行驶速度是60km/h ,客车比卡车早1h 经过B 地,A ,B 两地间的路程是多少?学生合作探究:小组讨论各个数量之间的运算关系,尝试列出算式.教师总结:由于客车比卡车早1h 经过B 地,则可计算出卡车行驶的时间:()76070170=-÷⨯(h ),则A ,B 两地的路程:420607=⨯(km )上述计算过程中的数量关系不是特别明显,我们是否能找到一种更加直接的求解方法呢?问题2:如果设A 、B 两地的路程是x km ,你能分别列出表示客车和卡车从A 地到B 地的行驶时间吗?从两车的时间相差1 h ,你能列出关于x 的方程吗?学生活动:小组合作探究,确定各个量之间的运算关系.师生合作探究:我们可知两车的时间相等关系:卡车行驶时间-客车行驶时间=1h 教师总结:本题主要数量关系是速度路程时间÷=. 可列出方程:17060=-x x ① 问题3:你还能列出其他方程吗?如果能,你依据的是哪个相等关系?学生活动:小组合作探究.师生合作探究:能否利用路程相等列出方程?教师总结:客车行驶路程=卡车行驶路程可以设客车行驶时间为x h ,则卡车行驶时间为(x +1)h , 则()16070+=x x .也可以设卡车行驶的时间为x h ,则客车行驶的时间为(x -1)h.则()x x 60170=-.以上的利用列方程的解题过程告诉我们:列方程时,要先设字母表示未知数,然后根据问题中的相等关系写出含有未知数的等式——方程.二、范例学习例1.根据下列问题,设未知数并列出方程:(1)用一根长20cm 的铁丝围成一个正方形,正方形的边长是多少?(2)一台计算机已使用1700h ,预计每月再使用150h 小时,经过多少月这台计算机的使用时间达到规定的检修时间2450小时?(3)某校女生占全体学生数的52℅,比男生多80人,这个学校有学生多少个?学生活动:小组合作探究找出问题中的相等关系,列出方程.师生合作探究:(1)正方形的周长与边长是什么关系?(2)规定时间=已使用时间+月数 每月再使用时间(3)女生人数+男生人数=总人数教师总结:(1)设正方形的边长为x cm.列方程:244=x .(2)设x 个月后这台计算机使用时间达到2450 h 。
人教版七年级数学上册《从算式到方程》教学设计 (1)

《从算式到方程》教学设计课题 3.1.1从算式到方程
重难点重点:设未知数、列出方程
难点:找等量关系,会用方程解决简单的实际问题
教学目标基础知
识
了解方程及一元一次方程的概念.
基本技
能
根据等量关系,会列方程
思想方
法
学习过程中体会转化和建模的数学思想
德育目
标
通过学习,培养学生分析问题,解决问题的能力。
环节内容个人备
课
复案与
集备
情境导入一、创设情境、引入课题:
1.看微课
2.归纳方程的定义
学习目标根据实际问题,能找到等量关系,从而设未知数列方程解决问题
教学环节3.巩固练习,总结判定方程的关键条件
二、探索一元一次方程的定义
例1 根据下列问题,设未知数并列出方程: (1)用一根长24 cm 的铁丝围成一个正方形,正方形的边长是多少?
(2)一台计算机已使用1700 h ,预计每月再使用150 h ,经过多少月这台计算机的使用时间达到规定 的检修时间2450 h ?
(3)某校女生占全体学生数的52%,比男生多80人,这个学校有多少学生? 1.归纳一元一次方程的定义:
_____________________________________________
2.练习:下列式子____________是方程, ____________是一元一次方程?
3.解方程:求方程的解的过程。
4.方程的解:使方程中等号左右两边相等的
121
() x +22153() m +=33554
() -=+x x 24260() +-x x =53915
() a +>24
65x π
+
=()。
2024人教版七年级上册数学第五单元《一元一次方程》课件PPT

C.4x=5(x+4)
D.4(x+4)=5x
例3:如图,轩轩将一个正方形纸片剪去一个宽为4 cm的长条后,
再从剩下的长方形纸片上剪去一个宽为5 cm的长条(图中阴影部
分).若分两次剪下的长条面积正好相等,则每一个长条的面积
为多少?为解决这个问题,轩轩设正方形的边长为x cm,根据题
意,可列方程为( ) A
情境导入
同学们,你们知道老师的年龄吗? 我是4月出生的,我年龄的2倍减去2,正好是我出生的那个月总天数 的2倍. 请你们猜猜我的年龄是多少?
年龄是31岁
故事导入
同学们,你们知道丢番图是谁吗? 丢番图是古希腊数学家,人们对他的生平事迹知道的很少, 但流传着一篇墓志铭叙述了他的生平:坟中安葬着丢番图, 多么令人惊讶,它忠实地记录了其所经历的人生旅程. 上帝赐予他的童年占六分之一,又过了十二分之一他两颊长出来胡须,再过七分 之一,点燃了新婚的蜡烛,五年之后喜得贵子,可怜迟到的宁馨儿,享年仅其父 之半便入黄泉,悲伤只有用数字研究去弥补,又过四年,他也走完了人生的旅 途.——出自《希腊诗文选》 你能求出丢番图去世时的年龄吗?
【题型二】根据实际问题列方程
例2:根据下列条件列出方程: (1)一个数x比它的 23大45 :_____x_-__23_x_=__45; (2)一个数x的一半比它的3倍大4:___12_x_-__3_x_=__4_; (3)一个数x比它的平方小24:____x_2-__x_=__2_4__; (4)一个数x的40%与25的差等于30:____4_0_%_x_-__2_5_=_3_0.
6是等式,但不是方程
2x-6=6等
-3y=10等
注:判断一个式 子是不是方程:
知识点2:列方程(难点)
人教版七年级数学上册一元一次方程《从算式到方程(第1课时)》示范教学设计

从算式到方程(第1课时)教学目标1.感受运用代数法解决问题的必要性,体会“方程”是解决实际问题的有效工具.2.理解方程的定义,会设未知数,列方程.3.感受用方程解决实际问题的优越性,体会从算式到方程是数学的进步.教学重点会设未知数,列方程.教学难点分析实际问题中的相等关系,并利用相等关系正确列出方程.教学过程新课导入【思考】小明向小蓝询问年龄,小蓝说:“我的年龄乘2减5得21”.小明立刻说出了小蓝的年龄,你会吗?【师生活动】学生回答:年龄=(21+5)÷2=13.教师提问:问题中蕴含的数量关系是什么?学生回答:年龄×2-5=21.【设计意图】从学生熟知的问题入手,引出用算式解决问题的本质是找出问题中的数量关系,为进一步根据具体问题列方程做好铺垫.新知探究一、探究学习【问题】一辆客车和一辆卡车同时从A地出发沿同一公路同方向行驶,客车的行驶速度是70 km/h,卡车的行驶速度是60 km/h,客车比卡车早1 h经过B地.A,B两地间的路程是多少?你会用算术方法解决这个问题吗?列算式试试.【师生活动】教师提问1:如何表示客车和卡车“同时同向行驶”?教师提问2:如何表示“客车比卡车早1 h经过B地”?教师提问3:如何用算术方法求“A,B两地间的路程”?学生思考并回答:行驶1 km 的路程,客车所用时间是170h ;行驶1 km 的路程,卡车所用时间是160h ; 行驶1 km 的路程,客车比卡车少用170160⎛⎫- ⎪⎝⎭h ;行驶1170160⎛⎫÷- ⎪⎝⎭km 的路程,客车比卡车少用1 h .教师总结:可见,列算式比较困难,不容易想.教师追问4:如果设A ,B 两地相距x km ,你能分别列式表示客车和卡车从A 地到B 地的行驶时间吗?教师分析,学生回答. (1)列表:(2)在上面的表格中,有一些未知的量,根据设A ,B 两地相距x km ,分别列式表示客车和卡车从A 地到B 地的行驶时间,完成表格.教师提问5:如何用式子表示两车的行驶时间之间的关系? 学生分作讨论并回答,教师总结:寻找相等关系,列方程. 卡车行驶时间-客车行驶时间=1,列方程:16070x x -=. 教师总结:我们已经知道,方程是含有未知数的等式,上面的等式中的x 是未知数,这个等式是一个方程.【新知】方程必须满足两个条件: (1)是等式;(2)化简后含有未知数.注意:方程是等式,但等式不一定是方程,如3+1=4是等式,但不含未知数,所以不是方程.教师提问6:用算术方法和用列方程法解决这个问题,各有什么特点?学生回答:用算术方法解题时,列出的算式表示用算术方法解题的计算过程,其中只包含已知数.用列方程法解题时,方程中既含有已知数,又含有用字母表示的未知数.教师提问7:对于上面的问题,你还能列出其他方程吗?如果能,你依据的是哪个相等关系?学生回答:设卡车从A地到B地的行驶时间为t h,则客车从A地到B地的行驶时间为(t-1) h,依据路程相等可得:70(t-1)=60t.求出t之后,60t就是路程.【归纳】列方程的一般步骤如下:(1)设未知数,一般求什么就设什么为x.(2)分析题意,找相等关系.(3)根据相等关系列方程.【设计意图】教师引导学生采用不同设未知数的方法列方程,让学生体会解题策略的多样性.二、典例精讲【例1】根据下列问题,设未知数并列出方程:(1)用一根长24 cm的铁丝围成一个正方形,正方形的边长是多少?(2)一台计算机已使用1 700 h,预计每个月再使用150 h,经过多少个月这台计算机的使用时间达到规定的检修时间2 450 h?(3)某校女生占全体学生数的52%,比男生多80人,这个学校有多少学生?【答案】解:(1)设正方形的边长为x cm.列方程为4x=24.(2)设x个月后这台计算机的使用时间达到2 450 h,那么在x个月里这台计算机使用了150x h.列方程为1 700+150x=2 450.(3)设这个学校的学生数为x,那么女生数为0.52x,男生数为(1-0.52)x.列方程为0.52x-(1-0.52)x=80.【设计意图】将简单的列方程题目大胆地放给学生自主、合作学习,学生通过展示自己的学习成果,进一步激发学习兴趣.通过例题1的练习与讲解,让学生学会如何列方程解决实际问题.课堂小结板书设计一、方程的定义二、列方程的一般步骤课后任务完成教材第80页练习1~4题.。
5.1.1从算式到方程教学设计2024-2025学年人教版(2024版)初中数学七年级上册

4. 小明的年龄比小红大3岁,两人年龄之和为35岁。请问小明和小红各几岁?
5. 甲、乙两地相距120公里,一辆汽车从甲地出发,以每小时60公里的速度行驶,同时一辆自行车从乙地出发,以每小时20公里的速度相向而行。问多少时间后两车相遇?
解答题:
6. 解方程4x - 9 = 3x + 5。
7. 小华买了3本书和2支笔花了54元,如果一支笔5元,求一本书的价格。
- 教学视频:收集一些专业的数学教学视频,如“方程的起源”、“一元一次方程的解法”等,帮助学生更直观地理解方程。
- 数学游戏:设计或推荐一些包含方程元素的数学游戏,如“方程求解大挑战”、“数学侦探”等,提高学生的学习兴趣。
- 网络资源:选取一些教育网站上的高质量教学资源,如方程相关课件、习题库等,丰富学生的学习材料。
1. 课前自主探索
- 教师活动:
发布预习任务:通过学校教学管理系统,发布预习资料(PPT、视频、文档),明确预习目标和要求。
设计预习问题:围绕“从算式到方程”课题,设计问题,如“算式和方程有什么区别?”、“方程是如何表示未知数的?”等,引导学生自主思考。
监控预习进度:通过系统跟踪和学生的反馈,确保预习效果。
针对以上问题,我制定了以下改进措施:
1. 在课前自主探索环节,我将明确预习任务的要求,并提供具体的指导,以提高学生的预习效果。
2. 在课中强化技能环节,我将设计更有趣的小组讨论题目,并加强对小组讨论的引导和监督,以提高学生的参与度。
3. 在课后拓展应用环节,我将更加重视拓展资源的提供,并鼓励学生充分利用这些资源进行深入学习。
2. 拓展建议:
- 鼓励学生阅读数学故事书和期刊文章,了解方程的背景知识,增强数学学习的兴趣和动力。
七年级数学上册《从算式到方程》教案、教学设计

3.突破重难点,循序渐进:针对重难点,设计梯度性的问题和练习,帮助学生逐步掌握方程求解的方法和技巧。
4.拓展思维,提升能力:通过变式练习和拓展性问题,培养学生的逻辑思维和数学思维能力,提高他们解决实际问题的能力。
5.课堂小结,巩固提升:在课堂小结环节,引导学生总结本节课所学内容,强化对方程概念和求解方法的理解,提高学生的归纳总结能力。
1.导入新课:以一个简单的实际问题的视频引入,如“小明的年龄问题”,让学生从算式的角度解决问题,进而引导学生思考如何用方程来表示这个问题。
2.探究新知:
(1)让学生回顾算式的知识,引导他们发现算式与方程的关系。
3.讲解一元一次方程的求解步骤,包括移项、合并同类项、化简等。
4.结合具体例子,让学生了解未知数在方程中的意义,以及如何求解未知数。
5.强调一元一次方程在实际问题中的应用,让学生体会数学的实用价值。
(三)学生小组讨论,500字
在学生小组讨论环节,我将:
1.将学生分成若干小组,每组选择一个实际问题进行讨论。
(2)通过小组合作,让学生尝试将实际问题转化为方程,并讨论求解方程的方法。
(3)教师引导学生总结一元一次方程的求解步骤,并强调未知数在方程中的意义。
3.实践应用:
(1)设计不同类型的实际问题,让学生独立完成方程的建立和求解。
(2)针对学生的解答,进行点评和指导,强调解题过程中的注意事项。
4.知识拓展:
(1)引入一元一次方程的复杂情境,如含括号、分数等,培养学生的思维灵活性。
(2)设计开放性问题,让学生尝试用方程解决更多实际问题,提高他们的创新意识。
初中七年级上册数学《从算式到方程》教案

初中七年级上册数学《从算式到方程》教案五篇初中七年级上册数学《从算式到方程》教案一1、通过对多种实际问题的分析,感受方程作为刻画现实世界有效模型的意义;2、了解什么是方程,什么是一元一次方程及什么是方程的解。
1、认识列方程解决问题的思想以及用字母表示未知数,用方程表示相等关系的符号化的方法2、结合从实际问题中得出的方程,学会用“去分母”解一元一次方程,进一步体会化归的思想。
体验数学与日常生活密切相关,认识到许多实际问题可以用数学方法解决,激发学习数学的热情。
建立一元一次方程的概念。
问题与情境师生活动设计意图一、创设情境,展示问题:问题1:世界最大的动物是蓝鲸,一只蓝鲸重124吨,比一头大象体重的25倍少一吨,这头大象重几吨? 问题2:章前图中的汽车匀速行驶途经王家庄、青山、秀水三地的时间如表所示,翠湖在青山、秀水之间,距青山50千米,距秀水70千米,王家庄到翠湖有多远? 地名时间王家庄10:00 青山13:00 秀水15:00 教师展示问题,要求用算术解法,让学生充分发表意见。
算术方法:(124+1)25=5(吨)方程方法:可设大象重为`吨,则124=25`-1 学生独立思考,小组交流,代表发言,解释说明。
问题1的算术解法:(50+70)2=60(千米/时) 605-70=230(千米) 问题1用算术法较容易解决,但问题2却不容易解决,这样产生矛盾冲突,使学生认识到进一步学习的必要性。
示意图有助于分析问题。
二、寻找关系,列出方程1、对于问题1,如果设王家庄到翠湖的路程是`千米,则:路程时间速度王家庄-青山王家庄-秀水根据汽车匀速前进,可知各路段汽车速度相等,列方程。
2、比一比:列算式与列方程有什么不同?哪一个更简便?3、想一想:对于问题1,你还能列出其他方程吗?如果能,你根据的是哪个相等关系?你认为列方程的关键是什么? 结合图形,引导学生分析各路段的路程、速度、时间之间的关系,填写表格。
学生思考回答:1、王家庄-青山(`50)千米,王家庄-秀水(`+70)千米。
人教版七年级数学上第3章:3.1.1从算式到方程(教案)

-系数化为1时,学生可能会对分数的运算处理不当,导致解题失误。
举例:难点在于让学生理解为何在解方程时可以同时加减或乘除等式两边,可以通过具体示例,如3x + 5 = 14,演示如何将等式性质应用于方程求解。对于将实际问题抽象为方程的难点,可以设计一些贴近生活的题目,如“小华买了3本书和5支笔,一共花了14元,求每本书的价格”,帮助学生找到等量关系并建立方程。
3.发展学生的数据分析素养,通过分析方程的解,对数据进行比较和判断,提高数据分析和处理能力。
4.激发学生的数学抽象思维,掌握用字母表示数的代数表达方法,培养从具体到抽象的数学思维能力。
5.增强学生的数学应用意识,将所学方程知识应用于解决实际问题,体会数学与现实生活的联系,提高数学应用能力。核心素养目标与新教材要求相符,注重培养学生的综合能力和实际应用能力。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了方程的基本概念、重要性和应用。同时,我们也通过实践活动和小组讨论加深了对方程的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
五、教学反思
今天我们在课堂上一起探讨了《从算式到方程》这一章节的内容。回顾整个教学过程,我觉得有几个地方值得反思和总结。
人教版七年级数学上第3章:3.1.1从算式到方程(教案)
一、教学内容
人教版七年级数学上第3章:3.1.1从算式到方程。本节课主要内容包括:
1.理解等式和方程的概念,掌握等式的性质和方程的解法。
2.学习用字母表示数,掌握代数式的书写和简化。
3.掌握一元一次方程的解法,包括移项、合并同类项、系数化为1等基本步骤。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
C. x=500 25%
D.(1 25%)x=500
19.根据下列条件列方程: (1)把一条带子剪去 5 厘米后,再对折一次,此时带 子的长度正好是原带子长的 1 ,求这条带子的原长,设
3 带子原长为 x 厘米. (2)彩票发行者预计将发行额的 35%作为奖金,若奖 金总数为 70000 元,彩票每张 5 元,问卖出多少张彩票 时,刚好等于这笔奖金?
设小刚的年龄是 x 岁,根据题意, 得3x 2 38.解得 x 12.
本课作业
15.小明的妈妈今年 44 岁,是小明年龄的 3 倍还大 2 岁,设小明今年戈岁,则可列出方程: 3x24 4 .
16.方程 x 1 1的解是( D ). A. x 1 B. x 0 C. x 1 D. x 2
(1)某数 x 的相反数比它的 3 大 1,列方程
x 3 x 1
4
得
4
;
(2)某数 x 的 2 倍比它的一半小 6,列方程
得
2x 6 1 x 2
.
4.下列各方程:(1)4x 17 5x;(2)x2 9 6;
( 3 ) 6x 18 8x 3 ;( 4 ) 2x y 1 ;( 5 )
17.下列方程是一元一次方程的是( A ).
A. 3 x 2 3x 7 2
C. x y 5
B. x2 2 3 D. 2 1
y
18.某农场今年粮食总产量为 500 吨,比去年增
产 25%,求去年粮食总产量,设去年粮食总产量
为 x 吨,则可列出方程( B ).
A.25%x=500
B.(1+25%)x =500
略
【问题 2】已知关于戈的方程3x 2a 2的解是 a 1,求a 的值.
略
题组训练
最基本题组: 5.设某数为 x 它的 4 倍是它的 3 倍与 7 的差,则 列出的方程为 4 x3 x 7.
6.下列各式中,不属于方程的是( A ). A.2x 3 ( x 2) B.3x 1 4x 2 C.3x 1 4x 2 D. x 7
变式题组:
12.有 6 个班的同学在大会议室里听报告,如果每条
长凳坐 5 人,还缺 8 条长凳;如果每条长凳坐 6 人,
就多出 2 条长凳.设来听报告的同学有 x 人,会议室
里有 y 条长凳,则下列方程正确的是( A ).
① x 8 x 2;②5( y 8) 6( y 2);
5
6
③5( y 8) 6( y 2);④ x 8 x 2.
7年级上册
第三章
第三课 从算式到方程习题课(1)
1.课前小测 2.典型问题 3.题组训练 4.本课作业 5.考题链接
课前小测
1.方程中只含有 一 个未知数(元),未知数 的次数都是 1 ,这样的方程叫做一元一次 方程.
2.能使方程的等号两边 相等 的未知数的值, 叫做方程的解.
3.你能根据下列数量关系列出方程吗?
7.已知下列方程:① x 2 2 ;②0.3x 1;③ x
x 5x 1 ; ④ x2 4x 3 ; ⑤ x 6 ; ⑥ 2 x 2 y 0.其中一元一次方程的个数是( B ). A.2 个 B.3 个 C.4 个 D.5 个
8.下列四个方程中,以m 1为解的是( A ).
A.3(m 2) 3 B.3m 3
设我市三口之家每月的标准用水量为 x 立方米, 得1.3x 2.9(12 x) 22.
14.一天,小华在公园里认识了新朋友小刚,他们在 谈话时,小华说:“小刚,我能猜出你的年龄.”小刚 说:“我不信.”小华说:“你的年龄乘 3 加 2 得数是多 少?”小刚说:“38,”小华说:“你今年 12 岁.”小刚 心里嘀咕:他怎么知道我的年龄是 12 岁的呢?你知道 小华怎么知道小刚的年龄的吗?
11.下列各式中哪些是等式?哪些是整式?哪些是
方程?哪些是一元一次方程?
(1)3x 2;(2) 1 x 1 0;(3)1 2 3; 2
(4)2x 33 0;(5)(a b)2 a2 2ab b2;
(6)2x2 y 0;(6)ab ba;(8) 1 2. x
其中(2)(3)(5)(6)(7)(8)是等式; (1)是整式; (2)(6)(8)是方程; (2)是一元一次方程.
5
6
A.①③ B.②④
C.①② D.③④
13.水资源短缺令人担忧,为鼓励节约用水,我市制 定了居民用水标准,标准依一户的人口数定的,超过 标准部分加价收费.设三口之家用水标准内部分每立 方米水费为 1.3 元,超过标准部分每立方米水费为 2.9 元.某三口之家某月用水 12 立方米,交水费 22 元, 为求该市三口之家每月的标准用水量.请列出方程.
C.3(m 2) 3
D.m 1 0
基本题组:
9.某商场上月的营业额是 x 万元,本月比上月增长
15%,那么本月的营业额是( C ).
A.( x 1) 15%万元
B.15% x万元
C.(1 15%) x万元
D.(1 15%)2 x万元
10.买 3 支钢笔,5 支圆珠笔共用了 26.8 元,一支 钢笔是 3.6 元,请写出圆珠笔的价格 x 满足的方 程: 3 3 . 6 5 x 2 6 . 8 .
x 1 3x ;(6)2x 7 5 ;(7)5x 8;(8)a b.
3
32
其中方程有 (1)(2)(3)(4)(5)(6) ,
一元一次方程有 (1)(3)(5)(6)
(只填序号).
典型问题
【问题 1】小张去商店买练习本,回来后问同学 们:“店主告诉我,如果多买一些就给我八折优惠, 我就买了 20 本,结果便宜了 1.6 元,你猜原来 每本价格多少元?”这里如果设每本价格为 x 元, 则你能写出所列方程吗?
(1)x 5 1 x;(2)5x 35% 70000. 23
考题链接
20.一个长方形的长比宽多 2cm,若把它的长、宽分别 增加 2cm 后,则面积增加 m2,求长和宽,若设宽为
x cm,则列出的正确方程为( D ).
A. x( x 2)x2 24 B. x( x 2) 24 C.( x 4)( x 2) x2 24 D.( x 4)( x 2) x( x 20 24