分治法求最大值最小值
C++分治法求最值

题目来源:□教材页题□教师补充□自选题目
主要功能描述:
(1)对一组数进行比较大小,求出其中的最大值和最小值,利用分治法的原理来实现。
(2)先对数组中元素个数进行判断,只有一个元素时,最大值max和最小值min都是它本身;当有两个元素时,比较两个数的大小,大者为最大值max,小者为最小值min;当数组中元素多于两个时,里用分治法原理,递归调用MaxMin函数,求出划分出的每组中的最值与另外一组最值比较,最后的得出最大值max和最小值min。
{
return maxSize;
}
void InputArray()//输入数组中元素
{
int i;
for(i=0;i<maxSize;i++)
{
cout<<"请输入"<<(i+1)<<"个元素:";
cin>>array[i];
}
}
void dispayAΒιβλιοθήκη ray()//输出数组中元素{
int i;
int maxSize;//定义数组长度
public:
SortableList(){};
void SetMaxSize()
{
cout<<"请输入数组中元素个数:";
cin>>maxSize;//输入数组长度
array=new T[maxSize];//定义存储空间
}
int GetMaxSize()//返回数组长度
if(max<max1)max=max1;//两表中最大元的大者为原表最大元
maxmin(分治法)

用分治法(二分法)可以用较少的比较次数解决上述问题。
问题可简化为如下三个步骤:(1)将数据等分为两组(两组数据可能差1),目的是分别选取其中的最大和最小值。
(2)递归分解直到每组元素的个数≤2,可简单地找到最大和最小值。
(3)回溯时合并子问题的解,在两个子问题的解中大者取大,小者取小,即合并为当前问题的解。
递归求取数组a中最大和最小元素的算法如下:maxmin(i, j , fmax, fmin)float A[n];maxmin(i, j, fmax, fmin)//最大和最小元素赋给fmax和fmin{ if (i==j){ fmax = A[i];fmin =A[i];}// 每组元素的个数=1时else if (i==j-1)if (A[i]<A[j]){ fmax ← A[j];fmin ← A[i]}// 每组元素的个数=2时else{ fmax ← A[i]; fmin ← A[j]; }else{ mid ← (i+j)/2;maxmin(i,mid,lmax,lmin)maxmin(mid+1,j,rmax,rmin)if (lmax > rmax)fmax = lmax;elsefmax = rmax;if (lmin > rmin)fmin = rmin;elsefmin = lmin;}}例2.3.3.2在下述9个元素上模拟递归求最大和最小元素的过程。
数组A[1..9]的各个元素如下:如果用T (n )表示maxmin 中元素比较次数,则所导出的递归关系式是: 0 n=1=)n (T 1 n=22)2n (T )2n (T +⎥⎥⎤⎢⎢⎡+⎥⎦⎥⎢⎣⎢ n>2 在最坏情况下,递归求最大最小元素比第一种算法要好一些,平均情况下两者差不多。
当n 是2的幂时,即对于某个正整数k ,k 2n =,可以证明,任何以元素比较为基础的找最大和最小元素的算法,其元素比较下界均为22n 3-⎥⎥⎤⎢⎢⎡次。
如何找出一组数据中的最大值和最小值

如何找出一组数据中的最大值和最小值数据处理在现代社会中扮演着重要的角色,如何高效地找出一组数据中的最大值和最小值是数据处理中常见的问题。
本文将介绍一些常用的方法,帮助读者轻松找到一组数据中的最大值和最小值。
一、直接遍历法直接遍历法是最直观、简单的一种方法。
具体步骤如下:1. 初始化最大值为数据中的第一个元素,最小值也为数据中的第一个元素。
2. 从数据的第二个元素开始,依次与最大值和最小值进行比较。
3. 如果当前元素大于最大值,则更新最大值;如果当前元素小于最小值,则更新最小值。
4. 继续依次比较下一个元素,直至遍历完成。
5. 最终得到的最大值和最小值即为所求。
直接遍历法虽然简单,但是在数据量较大时效率较低。
下面介绍更高效的方法。
二、分治法分治法是一种常用的高效算法,它将问题分解成若干个子问题,再将子问题的解整合得到最终解。
在找出一组数据中的最大值和最小值时,可以使用分治法来提高效率。
具体步骤如下:1. 将数据分成若干个大小相等的子数组,每个子数组包含相同数量的元素。
2. 对每个子数组分别找出最大值和最小值。
3. 将每个子数组的最大值和最小值与已知的最大值和最小值进行比较,更新最大值和最小值。
4. 继续将每个子数组进一步分割,重复步骤2和步骤3,直至每个子数组只包含一个元素。
5. 最终得到的最大值和最小值即为所求。
分治法通过分解问题,利用子问题的解来推导最终解,能够有效地减少比较次数,提高算法效率。
三、堆排序法堆排序法是一种常用的排序方法,通过构建最大堆和最小堆,可以方便地找到一组数据中的最大值和最小值。
具体步骤如下:1. 构建最大堆,将数据中的元素依次插入堆中。
2. 从堆顶取出最大值,即为所求的最大值。
3. 构建最小堆,将数据中的元素依次插入堆中。
4. 从堆顶取出最小值,即为所求的最小值。
堆排序法通过构建堆的方式,既可以找到最大值,也可以找到最小值,算法效率较高。
综上所述,通过直接遍历法、分治法和堆排序法,我们可以高效地找到一组数据中的最大值和最小值。
分治法寻找数组最大的两个数和最小的两个数

分治法寻找数组最⼤的两个数和最⼩的两个数分治法寻找数组最⼤的两个数和最⼩的两个数这个程序实现的结果:假如有两个并列最⼤或并列最⼩数,他们两个是有可能⼀起作为最⼤和次⼤(最⼩和次⼩)。
所以,应该尽量保证没有相同⼤⼩的数据。
但程序对相同的数据不是返回同⼀个下标的数,⽽是不同下标的数据本程序旨在练习分治法,其他的请参看最⼤和最⼩值的求法。
1 #include<stdio.h>2 #include<time.h>3 #include<stdlib.h>4int maxMin2(int *a,int i,int j,int *max1,int *max2,int *min1,int *min2);5int max(int a,int b);6int min(int a,int b);7int main()8 {9int *a;10int i,n;11int max1,max2,min1,min2;1213 scanf("%d",&n);14 a=(int *)malloc(sizeof(int)*n);15 srand((unsigned int)time(0));16for(i=0;i<n;i++) a[i]=rand()%91+10;17for(i=0;i<n;i++)18 {19 printf("%d ",a[i]);20if((i+1)%5==0) printf("\n");21 }22 printf("\n\n");23 maxMin2(a,0,n-1,&max1,&max2,&min1,&min2);24 printf("%d %d\n%d %d\n",max1,max2,min1,min2);/**/25return0;26 }27int maxMin2(int *a,int i,int j,int *max1,int *max2,int *min1,int *min2)28 {29int mid,t;30int lmax1,lmax2,lmin1,lmin2,rmax1,rmax2,rmin1,rmin2;31if(j-i==2)32 {33 *max1=max(a[j],max(a[i],a[i+1]));34 *min1=min(a[j],min(a[i],a[i+1]));35 t=a[i]+a[j]+a[i+1];36 *max2=t-*max1-*min1;37 *min2=*max2;38return0;39 }40else if(j-i==1)41 {42if(a[i]>a[j]){*max1=a[i];*max2=a[j]; *min1=a[j];*min2=a[i];return0;}43else{*max1=a[j];*max2=a[i]; *min1=a[i];*min2=a[j];return0;}44 }45else46 {47 mid=i+(j-i)/2;48 maxMin2(a,i,mid,&lmax1,&lmax2,&lmin1,&lmin2);49 maxMin2(a,mid+1,j,&rmax1,&rmax2,&rmin1,&rmin2);50if(lmax1>rmax1)51 {52 *max1=lmax1;53if(lmax2>rmax1) *max2=lmax2;54else *max2=rmax1;55 }56else57 {58 *max1=rmax1;59if(lmax1>rmax2) *max2=lmax1;60else *max2=rmax2;61 }62if(lmin1<rmin1)63 {64 *min1=lmin1;65if(lmin2<rmin1) *min2=lmin2;66else *min2=rmin1;67 }68else69 {70 *min1=rmin1;71if(lmin1<rmin2) *min2=lmin1;72else *min2=rmin2;73 }74 }75return0;76 }77int max(int a,int b)78 { return a>b?a:b; } 79int min(int a,int b)80 { return a<b?a:b; } View Code。
分治算法设计(求第K个最小数)

福建工程学院计算机与信息科学系实验报告2010 – 2011 学年第一学期任课老师:实验题目1.设计程序利用分治策略求n个数的最大值和最小值。
2.利用分治策略,在n个不同元素中找出第k个最小元素。
实验时间实验开始日期:报告提交日期:实验目的、要求一、算法设计技术当我们求解某些问题时,由于这些问题要处理的数据相当多,或求解过程相当复杂,使得直接求解法在时间上相当长,或者根本无法直接求出。
对于这类问题,我们往往先把它分解成几个子问题,找到求出这几个子问题的解法后,再找到合适的方法,把它们组合成求整个问题的解法。
如果这些子问题还较大,难以解决,可以再把它们分成几个更小的子问题,以此类推,直至可以直接求出解为止。
这就是分治策略的基本思想。
下面通过实例加以说明。
【例】在n个元素中找出最大元素和最小元素。
我们可以把这n个元素放在一个数组中,用直接比较法求出。
算法如下:void maxmin1(int A[],int n,int *max,int *min){ int i;*min=*max=A[0];for(i=2;i < n;i++){ if(A[i] > *max) *max= A[i];if(A[i] < *min) *min= A[i];}}上面这个算法需比较2(n-1)次。
能否找到更好的算法呢?我们用分治策略来讨论。
把n个元素分成两组:A1={A[1],...,A[int(n/2)]}和A2={A[int(N/2)+1],...,A[N]}分别求这两组的最大值和最小值,然后分别将这两组的最大值和最小值相比较,求出全部元素的最大值和最小值。
如果A1和A2中的元素多于两个,则再用上述方法各分为两个子集。
直至子集中元素至多两个元素为止。
例如有下面一组元素:-13,13,9,-5,7,23,0,15。
用分治策略比较的过程如下:图中每个方框中,左边是最小值,右边是最大值。
从图中看出,用这种方法一共比较了10次,比直接比较法的14次减少4次,即约减少了1/3。
最值问题的常用解法及模型

最值问题的常用解法及模型引言最值问题是数学中常见的问题之一,它要求在给定的一组数据中找出最大值或最小值。
在实际生活和工作中,最值问题有很多应用场景,比如找出一组数据中的最高分、最低温度、最大利润等。
本文将介绍最值问题的常用解法及模型,旨在为读者提供一些解决最值问题的思路和方法。
一、暴力法暴力法是最值问题的最简单直接的解法,也是最容易理解的方法之一。
暴力法的思路非常简单,就是遍历给定的一组数据,比较每个数据与当前最值的大小关系,更新最值的数值。
具体步骤如下: 1. 初始化最值变量,最大值设为负无穷大,最小值设为正无穷大。
2. 遍历给定的一组数据,对每个数据进行比较。
3. 如果当前数据大于最大值,则更新最大值。
4. 如果当前数据小于最小值,则更新最小值。
5. 遍历完所有数据后,最大值和最小值即为所求。
二、排序法排序法是解决最值问题的另一种常用方法,它的思路是先对给定的一组数据进行排序,然后直接取出排序后的第一个或最后一个元素作为最值。
具体步骤如下: 1. 对给定的一组数据进行排序,可以使用快速排序、归并排序等常见的排序算法。
2. 如果要找最大值,直接取排序后的最后一个元素作为最值;如果要找最小值,直接取排序后的第一个元素作为最值。
三、分治法分治法是解决最值问题的一种高效的方法,它通过将问题划分成小规模的子问题,并从子问题中找出最值,最后将子问题的最值合并得到整体的最值。
具体步骤如下:1. 将给定的一组数据划分成多个小规模的子问题。
2. 对每个子问题递归地应用分治法,求出子问题的最值。
3. 将子问题的最值合并,得到整体的最值。
四、动态规划法动态规划法是解决最值问题的一种常见方法,它通过定义状态和状态转移方程来逐步求解最值。
具体步骤如下: 1. 定义状态,通常用一个数组来表示状态,数组的元素表示子问题的最值。
2. 设置初始值,确定初始状态的值。
3. 定义状态转移方程,利用已知的子问题的最值推导出当前问题的最值。
分治算法实验(用分治法查找数组元素的最大值和最小值)

算法分析与设计实验报告第一次实验附录:完整代码(分治法)#include<iostream>#include<time.h>#include<iomanip>using namespace std;//当数组中的元素个数小于3时,处理最大值int compmax(int A[],int start,int end){int max;if(start<end) //有两个元素{if(A[start]<=A[end])max=A[end];elsemax=A[start];}else//有一个元素max=A[start];return max;}//当数组中元素的个数小于2时,处理最小值int compmin(int A[],int start,int end){int min;if(start<end) //有两个元素{if(A[start]<=A[end])min=A[start];elsemin=A[end];}else//有一个元素min=A[start];return min;}//分治法处理整个数组,求最大值与最小值void merge(int a[],int left,int right,int &Max,int &Min) //Max,Min用来保存最大值与最小值//之所以使用&引用,是由于如果只是简单的使用变量,并不会改变Max与Min的值,使用指针也可以{int max1=0,min1=0,max2=0,min2=0;if(right-left>2) //当数组中元素个数大于等于3时,进行分治{int mid=(right+left)/2;merge(a,left,mid,max1,min1); //左半边递归调用自身,求出最大值最小值,分别保存在max1,min1中merge(a,mid+1,right,max2,min2); //右半边递归调用自身,求出最大值最小值,分别保存在max2,min2中if(max1>=max2) //子序列两两合并,求出最大值与最小值,保存在Max与Min中Max=max1;elseMax=max2;if(min1<=min2)Min=min1;elseMin=min2;}else//数组中元素个数小于3时的情况,直接赋值{Max=compmax(a,left,right);Min=compmin(a,left,right);}}void ran(int *input,int n) //随机生成数组元素函数{int i;srand(time(0));for(i=0;i<n;i++)input[i]=rand();input[i]='\0';}int a[1000000]; //定义全局变量用来存放要查找的数组int main(){int n;int i;int max;int min;cout<<"请输入要查找的序列个数:"<<endl;for(i=0;i<5;i++){cin>>n;ran(a,n);clock_t start,end,over; //计算程序运行时间的算法start=clock();end=clock();over=end-start;start=clock();merge(a,0,n-1,max,min); //调用分治法算法cout<<max<<" "<<min<<endl;end=clock();printf("The time is %6.3f",(double)(end-start-over)/CLK_TCK); //显示运行时间}system("pause"); //停止运行窗口return 0;}完整代码(非递归方法)#include<iostream>#include<time.h>#include<iomanip>using namespace std;void ran(int *input,int n) //随机生成数组元素函数{int i;srand(time(0));for(i=0;i<n;i++)input[i]=rand();input[i]='\0';}int a[1000000];int main(){int max=a[0],min=a[0];int i,j,n;cout<<"请输入数据规模:"<<endl;for(j=0;j<5;j++){cin>>n;ran(a,n);clock_t start,end,over; //计算程序运行时间的算法start=clock();end=clock();over=end-start;start=clock();for(i=1;i<n;i++){if(a[i]>max)max=a[i];if(a[i]<min)min=a[i];}cout<<max<<" "<<min<<endl;end=clock();printf("The time is %6.3f",(double)(end-start-over)/CLK_TCK); //显示运行时间}system("pause");return 0;}。
分治法求最大值和最小值

实验报告一、实验名称:分治法求最大值和最小值二、实验学时:4三、实验器材和环境:PC机一台四、实验内容和目的:1、实验目的:加深对分治算法原理及实现过程的理解。
2、实验任务:实现用分治算法解决问题。
3、实验内容:给定一个顺序表,编写一个求出其最大值和最小值的分治算法。
分析:由于顺序表的结构没有给出,作为演示分治法这里从简顺序表取一整形数组数组大小由用户定义,数据随机生成。
我们知道如果数组大小为 1 则可以直接给出结果,如果大小为 2则一次比较即可得出结果,于是我们找到求解该问题的子问题即: 数组大小 <= 2。
到此我们就可以进行分治运算了,只要求解的问题数组长度比 2 大就继续分治,否则求解子问题的解并更新全局解以下是代码。
五、实验原理:分治算法基本原理,将一个难以直接解决的大问题,分割成一些规模较小的相同问题,以便各个击破,分而治之。
大概分为“分治合“策略:分:将要求解的较大规模的问题分割成K个更小规模的子问题;治:对这K个子问题分别求解。
如果子问题的规模仍然不够小则再划分为K个子问题,如此递归的进行下去;划分到基础问题,则设计可行算法直接求解;合:将求出的小规模的问题的解合并为一个更大规模的问题的解,自底向上逐步求出原来问题的解。
一个分治法将规模为n的问题分成k个规模为n/m的子问题去解。
设分解阀值n0=1,且adhoc解规模为1的问题耗费1个单位时间。
再设将原问题分解为k个子问题以及用merge将k个子问题的解合并为原问题的解需用f(n)个单位时间。
用T(n)表示该分治法解规模为|P|=n的问题所需的计算时间,则有:11)()/()1()(>=⎩⎨⎧+=n n n f m n kT O n T通过迭代法求得方程的解:∑-=+=1log0log )/()(n m j jj k m m n f k n n T 六、实验步骤:1、设定参数: s 为当前分治段的开始下标,e 为当前分治段的结束下标,meter 表的地址,max 为存储当前搜索到的最大值,min 为存储当前搜索到的最小值2、获取局部解,并更新全局解,不是子问题的话就继续分治3、用一组随机数据填充数组并以表的形式输出4、用分治法获取最大值和最小值七、实验数据及结果分析:分治算法代码:#include <stdio.h>#include <stdlib.h>#include <limits.h>#include <time.h>#define M 40// 分治法获取最优解void PartionGet(int s,int e,int *meter,int *max,int *min){int i;if(e-s <= 1){// 获取局部解,并更新全局解if(meter[s] > meter[e]){if(meter[s] > *max)*max = meter[s];if(meter[e] < *min)*min = meter[e];}else{if(meter[e] > *max)*max = meter[s];if(meter[s] < *min)*min = meter[s];}return ;}i = s + (e-s)/2; // 不是子问题继续分治PartionGet(s,i,meter,max,min);PartionGet(i+1,e,meter,max,min);}int main(){int i,meter[M];int max = INT_MIN; // 用最小值初始化int min = INT_MAX; // 用最大值初始化printf("The array's element as followed:\n\n"); srand(time(0)); // 初始化随机数发生器for(i = 0; i < M; i ++){ // 随机数据填充数组meter[i] = rand()%10000;if(!((i+1)%10)) // 输出表的随机数据printf("%-6d\n",meter[i]);elseprintf("%-6d",meter[i]);}PartionGet(0,M - 1,meter,&max,&min); // 分治法获取最值printf("\nMax : %d\nMin : %d\n",max,min);system("pause");return 0;}实验结果:。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
分治法求最大值最小值
a.为一个分治算法编写伪代码,该算法同时求出一个n元数组的最大元素和最小元素的值。
b.假设n=2k,为该算法的键值比较次数建立递推关系式并求解。
c.请拿该算法与解同样问题的蛮力算法做一个比较。
解答:
a.同时求出原数组最大值和最小值,先将原数组一分为二,再找出划分的两个部分的最值,然后再合并最值,找划分的两个部分的最值就递归地在这两个部分中用同样的方法找最大值和最小值,然后只需要给出最小规模的确切解法作为递归出口就可以了。
算法MaxMin(A[f…l],Max,Min)
//该算法利用分治法求得数组A中的最大值和最小值
//输入:数值数组A[f..l]
//输出:最大值Max和最小值Min
if l−f=0 //只有一个元素时
Max←A[f];Min←A[f];
else
if l-f=1 //有两个元素时
if A[f]>A[l] //基本操作是作比较
Max←A[f] ,Min←A[l]
else Max←A[l] ,Min←A[f]
else //有大于两个元素时
MaxMin(A
[f…(f+l
2)]
,Max1,Min1);//递归解决前一部分
MaxMin(A
[(f+l
2)…l]
,Max2,Min2); //递归解决后一部分
Max←max {Max1,Max2};//从两部分的两个最大值中选择大值
Min←min {Min1,Min2};//从两部分的两个最小值中选择小值 return Max,Min;
b.假设n=2k,比较次数的递推关系式:
C(n)=2C(n
2
)+2 ,n>2
C(1)=0, C(2)=1
C(n)=C(2k)=2C(2k-1)+2
=2[2C(2k-2)+2]+2
=22C(2k-2)+22+2
=23C(2k-3)+23+22+2
...
=2k-1C(2)+2k-1+2k-2+...+2 //C(2)=2 =2k-1+2k-1+2k-2+...+2 //等比数列求和
=2k-1+2k-2 //2k=n, 2k-1=n
2
=3n
−2
2
b.蛮力法的算法如下:
算法ForceMaxMin(A[l..r])
//用蛮力法得到数组A的最大值和最小值
//输入:数值数组A[l…r]
//输出:最大值Max和最小值Min
Max=Min=A[l];
for i=l+1 to r do
if A[i]>Max Max←A[i];
else if A[i]<Min
Min←A[i]
return Max,Min
c.作比较
ForceMaxMin的时间复杂度T(n)=2n−2
算法MaxMin的时间复杂度为3n
−2,ForceMaxMin的时间复杂度为2n-2,都属于Θ(n),
2
但MaxMin的速度要比ForceMaxMin的稍快一点。