动量守恒定律(二)碰撞

合集下载

动量守恒与碰撞的弹性碰撞

动量守恒与碰撞的弹性碰撞

动量守恒与碰撞的弹性碰撞动量守恒与碰撞的弹性碰撞是物理学中重要的概念和定律。

本文将深入探讨动量守恒定律与弹性碰撞的概念、原理、应用以及实验验证等方面的内容。

一、动量守恒定律动量守恒是指在一个孤立系统中,总动量不变,即系统中所有物体的动量之和保持不变。

这是一个基本的物理定律,可以用公式来表示为:总动量 = m1v1 + m2v2 + ... + mnvn。

二、碰撞的分类碰撞分为完全弹性碰撞和非完全弹性碰撞两种情况。

1. 完全弹性碰撞:在完全弹性碰撞中,物体之间没有能量损失,碰撞前后物体的动能和动量都完全守恒。

2. 非完全弹性碰撞:在非完全弹性碰撞中,碰撞前后物体的动能和动量都不完全守恒。

此时,一部分动能可能会转化为其他形式的能量,如热能等。

三、弹性碰撞的实验验证为了验证弹性碰撞的动量守恒定律,可以进行实验。

实验装置通常包括光滑的平面、弹性小球等。

通过调整小球的初始动量和速度,观察碰撞前后的动量变化,可以验证碰撞过程中动量守恒的准确性。

四、动量守恒与碰撞的应用动量守恒与碰撞理论在众多领域都有广泛的应用。

1. 交通事故分析:利用碰撞理论可以分析车辆之间的相互碰撞情况,帮助研究交通事故的发生原因,并制定相应的安全措施。

2. 运动物体的动力学分析:通过碰撞理论可以研究运动物体之间的相互作用,分析和描述运动物体的加速度、速度变化等动力学参数。

3. 球类运动:在球类运动中,碰撞理论可以帮助解释球的弹跳、速度和方向的变化,进而提高球类运动的技能和策略。

4. 工程设计:动量守恒与碰撞理论在工程设计中有着广泛的应用,如防护墙的设计、物体坠落的撞击力分析等。

五、总结动量守恒与碰撞的弹性碰撞是物理学中的重要概念。

通过动量守恒定律,我们可以深入理解碰撞过程中的物体相互作用和动能转化的规律。

实验验证和应用案例进一步巩固了这一定律在物理学和工程学中的重要性。

深入研究与应用动量守恒和弹性碰撞定律,不仅可以推动科学技术的发展,也有助于解决实际问题,提高生活质量。

动量守恒定律及碰撞问题解析

动量守恒定律及碰撞问题解析

动量守恒定律及碰撞问题解析动量守恒定律是物理学中一个重要的基本原理,它在解决碰撞问题时发挥着重要的作用。

本文将对动量守恒定律进行详细的解析,并探讨碰撞问题的应用。

一、动量守恒定律的概念及原理动量是物体运动的一个重要物理量,它等于物体的质量与速度的乘积。

动量守恒定律指出,在一个孤立系统中,当没有外力作用时,系统的总动量保持不变。

动量守恒定律的数学表达为:∑mv = ∑mv'其中,m为物体的质量,v为物体的初速度,v'为物体的末速度。

∑mv表示碰撞前系统的总动量,∑mv'表示碰撞后系统的总动量。

二、弹性碰撞问题的解析弹性碰撞是指碰撞后物体能够恢复其原有形状和大小,并且动能守恒。

在弹性碰撞中,动量守恒定律可以用来解决碰撞前后物体的速度和质量之间的关系。

考虑两个物体A和B的弹性碰撞情况。

设它们的质量分别为m1和m2,初速度分别为v1和v2,碰撞后的速度分别为v1'和v2'。

根据碰撞前后的动量守恒定律可以得到以下方程组:m1v1 + m2v2 = m1v1' + m2v2' (1)(1/2)m1v1^2 + (1/2)m2v2^2 = (1/2)m1v1'^2 + (1/2)m2v2'^2 (2)通过解方程组(1)和(2),可以求解出碰撞后物体A和物体B的速度。

这种方法在解决弹性碰撞问题时非常实用。

三、非弹性碰撞问题的解析非弹性碰撞是指碰撞后物体不能完全恢复其原有形状和大小,动能不守恒。

在非弹性碰撞中,可以利用动量守恒定律解决碰撞前后物体的速度和质量之间的关系。

考虑两个物体A和B的非弹性碰撞情况。

设它们的质量分别为m1和m2,初速度分别为v1和v2,碰撞后的速度为v。

根据碰撞前后的动量守恒定律可以得到以下方程:m1v1 + m2v2 = (m1 + m2)v (3)通过解方程(3),可以求解出碰撞后物体的速度。

需要注意的是,非弹性碰撞中动能不守恒,所以无法通过动量守恒定律求解出速度的具体数值。

第2讲 动量守恒定律 碰撞 爆炸 反冲运动

第2讲 动量守恒定律 碰撞 爆炸 反冲运动
二、碰撞 爆炸 反冲运动
1.碰撞 (1)特点:物体间的相互作用时间极短,内力⑥ 远大于 外力。
基础过关
(2)分类
动量是否守恒
机械能是否守恒
弹性碰撞
守恒
守恒
非弹性碰撞
守恒
有损失
完全非弹性碰撞
守恒
(3)分析碰撞现象的三个依据
损失最大
A.动量守恒:p1+p2=p1'+p2'。
B.动能不增加:即Ek1+Ek2≥Ek1'+Ek2' 或
考点突破 栏目索引
2.碰撞模型类型 (1)弹性碰撞 碰撞结束后,形变全部消失,动能没有损失,不仅动量守恒,而且初、末动能相 等。
m1v1+m2v2=m1v1'+m2v2'
1 2
m1v12
+1
2
m2v22
=1
2
m1v1'2+1
2
m2v2'2
v1'=
(m1
-m2 )v1 m1
2m2v2 m2
v2'=
1 4
mv12
=
1 2
mgh2

联立④⑤⑥⑦式得,烟花弹上部分距地面的最大高度为
h=h1+h2=
2E mg

考点突破 栏目索引
考点突破 栏目索引
考向1 动量守恒的条件判断
1.如图所示,甲木块的质量为m1,以v的速度沿光滑水平地面向前运动,正前方 有一静止的、质量为m2的乙木块,乙上连有一轻质弹簧。甲木块与弹簧接触 后(C) A.甲木块的动量守恒 B.乙木块的动量守恒 C.甲、乙两木块所组成系统的动量守恒 D.甲、乙两木块所组成系统的动能守恒

动量守恒定律(二)碰撞

动量守恒定律(二)碰撞

动量守恒定律(二) 碰撞 1在光滑水平地面上有两个相同的弹性小球A 、B ,质量都为m ,现B 球静止,A 球向B 球运动,发生正碰。

已知碰撞过程中总机械能守恒,两球压缩最紧时的弹性势能为E P ,则碰前A 球的速度等于( )A.mE P B.mE P 2 C.mE P 2D. mE P222如图所示,在光滑水平面上有A 、B 两小球沿同一条直线向右运动,并发生对心碰撞.设向右为正方向,碰前A 、B 两球动量分别是p A =10kgm/s ,p B =15 kgm/s ,碰后动量变化可能是( )A .Δp A =5 kg ·m /s ΔpB =5 kg ·m /s B .Δp A =-5 kg ·m /s Δp B = 5 kg ·m /sC .Δp A =5 kg ·m /s Δp B =-5 kg ·in /s ·D .Δp A =-20kg ·m /s Δp B =20 kg ·m /s3甲物体以动量P 1与静止在光滑水平面上的乙物体对心正碰,碰后乙物体的动量为P 2,则P 2和P 1的关系可能是( ) A .P 2<P 1; B 、P 2= P 1 C . P 2>P 1; D .以上答案都有可能5如图2-10所示,轻质细绳的一端系一质量m=0.01kg 的小球,另一端系一光滑小环套在水平轴O 上,O 到小球的距离d=0.1m ,小球跟水平面接触无相互作用力,在球的两侧距球等远处,分别竖立一固定挡板,两挡板相距L=2m .水平面上有一质量为M=0.01kg 的小滑块,与水平面间的动摩擦因数μ=0.25,开始时,滑块从左挡板处,以v0= 10m /s 的初速度向小球方向运动,不计空气阻力,设所有碰撞均无能量损失,小球可视为质点,g=10m /s 2.则:(1)在滑块第一次与小球碰撞后的瞬间,悬线对小球的拉力多大?(2)试判断小球能否完成完整的圆周运动.如能完成,则在滑块最终停止前,小球能完成完整的圆周运动多少次?6如图2-4-7所示,滑块A 的质量m=0.01kg ,与水平地面间的动摩擦因素μ=0.2,用 细线悬挂的小球质量均为m=0.01kg ,沿x 轴排列,A 与第1只小球及相邻两小球间距离均为s=2m ,线长分别为L1、L2、L3……(图中只画出三只小球,且小球可视为质点),开始时,滑块以速度v 0=10m/s 沿x 轴正方向运动,设滑块与小球碰撞时不损失机械能,碰撞后小球均恰能在竖直平面内完成完整的圆周运动,重力加速度g=10m/s 2。

动量守恒定律的应用碰撞与炸

动量守恒定律的应用碰撞与炸

动量守恒定律的应用碰撞与炸动量守恒定律的应用:碰撞与炸动量是物体运动的重要物理量,而动量守恒定律是描述物体碰撞过程中动量守恒的基本法则。

本文将探讨动量守恒定律在碰撞与炸的应用,并以实例来说明。

一、碰撞过程中的动量守恒碰撞是物体之间发生的相互作用,而动量守恒定律指出在没有外力作用下,碰撞过程中物体的总动量保持不变。

无论是完全弹性碰撞还是非完全弹性碰撞,动量守恒定律都适用。

以两个物体A、B的碰撞为例,设A的质量为m1,速度为v1,B 的质量为m2,速度为v2。

在碰撞前,动量总和为m1v1 + m2v2;碰撞后的动量总和为m1v1' + m2v2'。

根据动量守恒定律,碰撞前后动量总和相等,即m1v1 + m2v2 = m1v1' + m2v2'。

在完全弹性碰撞中,物体碰撞后具有完全弹性,没有能量损失,速度和动能都得以保持。

在非完全弹性碰撞中,物体碰撞后会发生能量损失,速度和动能会改变。

以弹性碰撞为例,设A、B碰撞前的速度分别为v1、v2,碰撞后的速度分别为v1'、v2'。

根据碰撞前后动能守恒的原理,可以得到以下方程:(1/2)mv1^2 + (1/2)mv2^2 = (1/2)mv1'^2 + (1/2)mv2'^2其中m为物体的质量。

通过求解该方程组,可以计算出碰撞后物体的速度。

二、实例:两个小球的碰撞假设有两个小球A和B,质量分别为m1和m2,初速度分别为v1和v2。

假设碰撞是弹性的,没有能量损失。

首先,根据动量守恒定律:m1v1 + m2v2 = m1v1' + m2v2'其次,根据动能守恒定律:(1/2)m1v1^2 + (1/2)m2v2^2 = (1/2)m1v1'^2 + (1/2)m2v2'^2通过以上两个方程组,可以求解出碰撞后两个小球的速度v1'和v2'。

三、炸的动量守恒应用在爆炸的过程中,也可以应用动量守恒定律。

第十六章 3 动量守恒定律(二)

第十六章 3 动量守恒定律(二)

A.若mA>mB,则小车向右运动
B.若mA>mB,则小车静止 图 16-3-2
C.若mA>mB,且α>β,则小车运动方向无法确定 D.若mA<mB,且α=β,则小车一定向左运动
【解析】小车的最终运动情况与 A、B 在水平方向的分动
量有关, 如果无法确定 pA水平与pB水平的大小关系.就无法
确定小车的运动情况,故选 C、D. 【答案】CD
3
动量守恒定律(二)
动量守恒定律与牛顿定律
分析两个小球在光滑水平桌面上的碰撞,如图 16-3-1 所
示. 第二个小球追碰第一个小球,碰后的速度 v1′、v2′,碰撞 过程中相互作用力为 F1 与 F2.
图 16-3-1
(1)动量守恒定律认为:两个小球组成的系统所受的合外力 为零.这个系统的总动量保持不变.
【答案】(1)5.2 m/s
(2)172.8 J
2.(单选)如图 16-3-4 所示,三辆完全相同的平板小车 a、 b、c 成一直线排列,静止在光滑水平面上.c 车上有一小孩跳 到 b 车上,接着又立即从 b 车跳到 a 车上.小孩跳离 c 车和 b 车时对地的水平速度相同.他跳到 a 车上相对 a 车保持静止, 此后(
乙迅速把它抓住,若不计冰面的摩擦力,求:
(1)甲至少要以多大的速度(相对地面)将箱子推出,才能避
免与乙相撞?
(2)甲推出箱子时对箱子做了多少功?
【解析】(1)设三个物体的共同速度为 v,根据系统动量守 恒,有:(M+m)v0-Mv0=(M+m+M)v, 15×2.0 mv0 v= = m/s=0.40 m/s. 2M+m 2×30+15 设箱子被推出的速度为 v′,根据箱子、乙二者动量守恒有: mv′-Mv0=(M+m)v, M+mv+Mv0 15+30×0.40+30×2.0 v′= = m/s=5.2 m/s. m 15 (2)根据动能定理,甲对箱子所做的功为: 1 1 22 1 2 W=2mv′ -2mv0 =2×15×(5.22-2.02) J=172.8 J.

动量守恒定律碰撞中的能量转化

动量守恒定律碰撞中的能量转化

动量守恒定律碰撞中的能量转化动量守恒定律是力学中一个重要的基本定律,它描述了在没有外力作用下,一个系统的总动量保持不变。

在碰撞过程中,根据动量守恒定律,物体的动量可以转移或转化,而其中最常见的转化方式就是能量转化。

本文将探讨碰撞中的能量转化现象。

一、碰撞中的能量转化碰撞是物体之间直接接触并产生相互作用的过程。

在碰撞中,动量守恒定律可以写作:m1·v1 + m2·v2 = m1·v1' + m2·v2'其中,m1和m2分别为碰撞物体1和物体2的质量,v1和v2分别为碰撞前物体1和物体2的速度,v1'和v2'分别为碰撞后物体1和物体2的速度。

能量可以分为动能和势能。

在碰撞过程中,能量的转化通常表现为动能的转变。

根据动能的定义,动能Ek等于物体的质量m乘以速度v的平方再除以2:Ek = m·v^2/2碰撞前后物体的动能可以通过动能公式求得。

在碰撞中,物体的速度发生改变,因此碰撞前后的动能也会有所不同。

根据动量守恒定律,速度的变化将影响动能的转化。

二、弹性碰撞中的能量转化弹性碰撞是指碰撞中没有动能损失的一种情况。

在弹性碰撞中,物体的动能可以完全转化并保持不变。

考虑两个物体的完全弹性碰撞情况。

碰撞前后满足动量守恒定律的同时,动能也保持不变。

因此,在完全弹性碰撞中,物体的动能转化不发生损失。

例如,一个弹球在与墙面碰撞时,碰撞前具有一定的向前速度,碰撞后将反弹回来。

在碰撞后,弹球的动能完全转化为相反方向的动能,其速度的大小保持不变。

三、非弹性碰撞中的能量转化非弹性碰撞是指碰撞中有动能损失的情况。

在非弹性碰撞中,物体的动能转化为其他形式的能量,例如热能、声能等。

考虑两个物体之间的非弹性碰撞。

碰撞前后满足动量守恒定律,但动能的转化并非完全,部分动能会转化为其他形式的能量。

例如,当两个彈性球碰撞时,碰撞前后满足动量守恒定律。

然而,由于两个球之间相互作用力的存在,部分动能转化为热能和声能,导致碰撞后的动能小于碰撞前的动能。

动量守恒定律的应用之碰撞问题(解析版)

动量守恒定律的应用之碰撞问题(解析版)

动量守恒定律的应用之碰撞问题1.分析碰撞问题的三个依据(1)动量守恒,即p 1+p 2=p 1′+p 2′。

(2)动能不增加,即E k1+E k2≥E k1′+E k2′或p 212m 1+p 222m 2≥p 1′22m 1+p 2′22m 2。

(3)速度要合理①碰前两物体同向,则v 后>v 前;碰后,原来在前的物体速度一定增大,且v 前′≥v 后′。

②两物体相向运动,碰后两物体的运动方向不可能都不改变。

2.弹性碰撞的规律两球发生弹性碰撞时应满足动量守恒和机械能守恒。

以质量为m 1,速度为v 1的小球与质量为m 2的静止小球发生正面弹性碰撞为例,则有m 1v 1=m 1v 1′+m 2v 2′①12m 1v 21=12m 1v 1′2+12m 2v 2′2② 由①②得v 1′=(m 1-m 2)v 1m 1+m 2 v 2′=2m 1v 1m 1+m 2结论:(1)当m 1=m 2时,v 1′=0,v 2′=v 1,两球碰撞后交换了速度。

(2)当m 1>m 2时,v 1′>0,v 2′>0,并且v 1′<v 2′,碰撞后两球都向前运动。

(3)当m 1<m 2时,v 1′<0,v 2′>0,碰撞后质量小的球被反弹回来。

【典例1】 两个小球A 、B 在光滑水平面上沿同一直线运动,其动量大小分别为5 kg·m/s 和7 kg·m/s ,发生碰撞后小球B 的动量大小变为10 kg·m/s ,由此可知:两小球的质量之比可能为( )A.m A m B=1 B.m A m B =12 C.m A m B =15D.m A m B =110 【答案】C(-5)22m A +722m B ≤1222m A +(-10)22m B。

(2)设A 、B 两小球同向运动而发生碰撞,且A 球在前,B 球在后,取两小球碰前的运动方向为参考正方向,即p A 0=5 kg·m/s ,p B 0=7 kg·m/s 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

动量守恒定律(二) 碰撞 1在光滑水平地面上有两个相同的弹性小球A 、B ,质量都为m ,现B 球静止,A 球向B 球运动,发生正碰。

已知碰撞过程中总机械能守恒,两球压缩最紧时的弹性势能为E P ,则碰前A 球的速度等于( )A.mE P B.mE P 2 C.mE P 2D. mE P222如图所示,在光滑水平面上有A 、B 两小球沿同一条直线向右运动,并发生对心碰撞.设向右为正方向,碰前A 、B 两球动量分别是p A =10kgm/s ,p B =15 kgm/s ,碰后动量变化可能是( )A .Δp A =5 kg ·m /s ΔpB =5 kg ·m /s B .Δp A =-5 kg ·m /s Δp B = 5 kg ·m /sC .Δp A =5 kg ·m /s Δp B =-5 kg ·in /s ·D .Δp A =-20kg ·m /s Δp B =20 kg ·m /s3甲物体以动量P 1与静止在光滑水平面上的乙物体对心正碰,碰后乙物体的动量为P 2,则P 2和P 1的关系可能是( ) A .P 2<P 1; B 、P 2= P 1 C . P 2>P 1; D .以上答案都有可能5如图2-10所示,轻质细绳的一端系一质量m=0.01kg 的小球,另一端系一光滑小环套在水平轴O 上,O 到小球的距离d=0.1m ,小球跟水平面接触无相互作用力,在球的两侧距球等远处,分别竖立一固定挡板,两挡板相距L=2m .水平面上有一质量为M=0.01kg 的小滑块,与水平面间的动摩擦因数μ=0.25,开始时,滑块从左挡板处,以v0= 10m /s 的初速度向小球方向运动,不计空气阻力,设所有碰撞均无能量损失,小球可视为质点,g=10m /s 2.则:(1)在滑块第一次与小球碰撞后的瞬间,悬线对小球的拉力多大?(2)试判断小球能否完成完整的圆周运动.如能完成,则在滑块最终停止前,小球能完成完整的圆周运动多少次?6如图2-4-7所示,滑块A 的质量m=0.01kg ,与水平地面间的动摩擦因素μ=0.2,用 细线悬挂的小球质量均为m=0.01kg ,沿x 轴排列,A 与第1只小球及相邻两小球间距离均为s=2m ,线长分别为L1、L2、L3……(图中只画出三只小球,且小球可视为质点),开始时,滑块以速度v 0=10m/s 沿x 轴正方向运动,设滑块与小球碰撞时不损失机械能,碰撞后小球均恰能在竖直平面内完成完整的圆周运动,重力加速度g=10m/s 2。

试求:(1)滑块能与几个小球碰撞?(2)碰撞中第n 个小球悬线长Ln 的表达式?7两个小球A 和B 用轻质弹簧相连,在光滑的水平直轨道上处于静止状态。

在它们左边有一垂直于轨道的固定挡板P ,右边有一小球C 沿轨道以速度v 0射向B 球,如图所示。

C 与B 发生碰撞并立即结成一个整体D 。

在它们继续向左运动的过程中,当弹簧长度变到最短时,长度突然被锁定,不再改变,然后,A 球与挡板P 发生碰撞,碰后A 、D 都静止不动,A 与P 接触而不粘连。

过一段时间,突然解除锁定(锁定及解除锁定无机械能损失)。

已知A 、B 、C 三球的质量均为m 。

(1)求弹簧长度刚被锁定后A 球的速度。

( 2)求在A 球离开挡板P 之后的运动过程中,弹簧的最大弹性势能。

8图2中,轻弹簧的一端固定,另一端与滑块B 相连,B 静止在水平直导轨上,弹簧处在原长状态。

另一质量与B 相同滑块A ,从导轨上的P 点以某一初速度向B 滑行,当A 滑过距离l 1时,与B 相碰,碰撞时间极短,碰后A 、B 紧贴在一起运动,但互不粘连。

已知最后A 恰好返回出发点P 并停止,滑块A 和B 与导轨的滑动摩擦因数都为 ,运动过程中弹簧最大形变量为l 2,重力加速度为g ,求A 从P 出发时的初速度v 0。

10用轻弹簧相连的质量均为2kg 的A 、B 两物块都以sm v/6=的速度在光滑的水平地面上运动,弹簧处于原长,质量为4kg 的物体C 静止在前方,如图3所示,B 与C 碰撞后二者粘在一起运动。

求:在以后的运动中,(1)当弹簧的弹性势能最大时物体A 的速度多大? (2)弹性势能的最大值是多大? (3)A 的速度有可能向左吗?为什么?11如图4所示,在光滑水平长直轨道上,A 、B 两小球之间有一处于原长的轻质弹簧,弹簧右端与B 球连接,左端与A 球接触但不粘连,已知m m mm B A22==,,开始时A 、B 均静止。

在A 球的左边有一质量为m 21的小球C 以初速度0v 向右运动,与A球碰撞后粘连在一起,成为一个复合球D ,碰撞时间极短,接着逐渐压缩弹簧并使B 球运动,经过一段时间后,D 球与弹簧分离(弹簧始终处于弹性限度内)。

(1)上述过程中,弹簧的最大弹性势能是多少? (2)当弹簧恢复原长时B 球速度是多大?(3)若开始时在B 球右侧某位置固定一块挡板(图中未画出),在D 球与弹簧分离前使B 球与挡板发生碰撞,并在碰后立即将挡板撤走,设B 球与挡板碰撞时间极短,碰后B 球速度大小不变,但方向相反,试求出此后弹簧的弹性势能最大值的范围。

12如图19所示,水平地面上静止放置着物块B 和C ,相距l =1.0m 。

物块A 以速度0v =10m/s 沿水平方向与B 正碰。

碰撞后A 和B 牢固地粘在一起向右运动,并再与C 发生正碰,碰后瞬间C 的速度v =2.0m/s 。

已知A 和B 的质量均为m ,C 的质量为A 质量的k 倍,物块与地面的动摩擦因数μ=0.45.(设碰撞时间很短,g 取10m/s 2)(1)计算与C 碰撞前瞬间AB 的速度;(2)根据AB 与C 的碰撞过程分析k 的取值范围,并讨论与C 碰撞后AB 的可能运动方向。

13如图1所示,ABC 为一固定在竖直平面内的光滑轨道,BC 段水平,AB 段与BC 段平滑连接。

质量为1m 的小球从高位h 处由静止开始沿轨道下滑,与静止在轨道BC 段上质量为2m 的小球发生碰撞,碰撞后两球两球的运动方向处于同一水平线上,且在碰撞过程中无机械能损失。

求碰撞后小球2m 的速度大小2v ;(2)碰撞过程中的能量传递规律在物理学中有着广泛的应用。

为了探究这一规律,我们才用多球依次碰撞、碰撞前后速度在同一直线上、且无机械能损失的简化力学模型。

如图2所示,在固定光滑水平轨道上,质量分别为1231n m m m m -、、……、n m ……的若干个球沿直线静止相间排列,给第1个球初能1k E ,从而引起各球的依次碰撞。

定义其中第n 个球经过依次碰撞后获得的动能k E 与1k E 之比为第1个球对第n 个球的动能传递系数1n k 。

a.求1n kb.若10004,,k m m m m m ==为确定的已知量。

求2m 为何值时,1n k 值最大14在绝缘水平面上放一质量m=2.0×10-3kg的带电滑块A,所带电荷量q=1.0×10-7C.在滑块A的左边l=0.3m处放置一个不带电的绝缘滑块B,质量M=4.0×10-3kg,B与一端连在竖直墙壁上的轻弹簧接触(不连接)且弹簧处于自然状态,弹簧原长S=0.05m.如图所示,在水平面上方空间加一水平向左的匀强电场,电场强度的大小为E=4.0×105 N/C,滑块A由静止释放后向左滑动并与滑块B发生碰撞,设碰撞时间极短,碰撞后两滑块结合在一起共同运动并一起压缩弹簧至最短处(弹性限度内),此时弹性势能E0=3.2×10-3J,两滑块始终没有分开,两滑块的体积大小不计,与水平面间的动摩擦因数均为μ=0.5,g取10m/s2 .求: (1)两滑块碰撞后刚结合在一起的共同速度v; (2)两滑块被弹簧弹开后距竖直墙壁的最大距离s.15质量为 M的小车静止于光滑的水平面上,小车的上表面和 4 1 圆弧的轨道均光滑,如图3如图所示,一个质量为m的小球以速度v0水平冲向小车,当小球返回左端脱离小车时,下列说法正确的是:A.小球一定沿水平方向向左做平作抛运动B.小球可能沿水平方向向左作平抛运动C.小球可能沿水平方向向右作平抛运动D.小球可能做自由落体运动16如图半径为R的光滑圆形轨道固定在竖直面内。

小球A、B质量分别为m、βm(β为待定系数)。

A球从左边与圆心等高处由静止开始沿轨道下滑,与静止于轨道最低点的B球相撞,碰撞后A、B球能达到的最大高度均为 1 4 R,碰撞中无机械能损失。

重力加速度为g。

试求:(1)待定系数β;(2)第一次碰撞刚结束时小球A、B各自的速度和B球对轨道的压力;(3)小球A、B在轨道最低处第二次碰撞刚结束时各自的速度,并讨论小球A、B在轨道最低处第n次碰撞刚结束时各自的速度。

17质量为m的小球B用一根轻质弹簧连接.现把它们放置在竖直固定的内壁光滑的直圆筒内,平衡时弹簧的压缩量为x0,如图所示,小球A从小球B的正上方距离为3 x0的P处自由落下,落在小球B上立刻与小球B粘在一起向下运动,它们到达最低点后又向上运动,并恰能回到O点(设两个小球直径相等,且远小于x0,略小于直圆筒内径),已知弹簧的弹性势能为1/2kx2 ,其中k为弹簧的劲度系数,x为弹簧的形变量.求: (1)小球A 的质量. (2)小球A与小球B一起向下运动时速度的最大值18如图所示,水平传送带AB长L=4.5m,质量为M=1kg的木块随传送带一起以v1=1m/s的速度向右匀速运动(传送带的传送速度恒定),木块与传送带间的动摩擦因数μ=0.5.当木块运动到传送带的最右端A点时,一颗质量为m=20g的子弹以v0=300m/s水平向左的速度正好射入木块并穿出,穿出速度u=50m/s,以后每隔1s就有一颗子弹射向木块,并从木块中穿出,设子弹穿过木块的时间极短,且每次射入点各不相同,g取10m/s2,求:(1)在被第二颗子弹击中前木块向左运动到离A点多远处?(2)木块在传送带上最多能被多少颗子弹击中?(3)试说明从第一颗子弹射入木块到第二颗子弹刚要射入的时间内,子弹、木块和传送带三者构成的系统是如何产生内能的?19如下图所示,光滑的曲面轨道的水平出口跟停在光滑水平面上的平板小车的上表面相平,质量为m的小滑块从光滑轨道上某处由静止开始滑下并滑下平板小车,使得小车在光滑水平面上滑动。

已知小滑块从光滑轨道上高度为H的位置由静止开始滑下,最终停到板面上的Q点。

若平板小车的质量为3m。

用g表示本地的重力加速度大小,求:(1)小滑块到达轨道底端时的速度大小v0 ?(2)小滑块滑上小车后,平板小车可达到的最大速度V ? (3)该过程系统产生的总内能Q20在光滑的水平面上有一质量M = 2kg的木板A,其右端挡板上固定一根轻质弹簧,在靠近木板左端的P处有一大小忽略不计质量m = 2kg的滑块B。

相关文档
最新文档