分子筛简介
分子筛简介

基本结构单元是硅氧四面体(SiO4)和铝氧四面体(AlO4) 硅(铝)氧四面体通过氧桥连接成环 环通过氧桥连接成三维空间的多面体(笼) 笼通过氧桥连接成分子筛
四面体
环
笼
分子筛
硅(铝)氧三维骨架结构具有大量的孔隙(晶穴、晶孔、孔道), 可以容纳金属阳离子和水分子 —— 阳离子交换与脱水
X、Y型分子筛(八面沸石分子筛)
骨架: 笼中的4个六元环通过氧桥按正四面体方式相互连接(连接处形成六方柱笼) 主晶穴(孔穴): 7个笼和9个六方柱笼围成一个八面沸石笼(最大窗孔: 十二元环,孔径 0.9 nm) 孔道: 八面沸石笼之间通过十二元环沿三个晶轴方向互相贯通,形成三维孔道 X、Y型分子筛间的区别: Si/Al = 1-1.5为X型,1.5-3.0为Y型
4.化学组成
由于 Al3+ 三价、AlO4 四面体有过剩负电荷, 金属阳离子(Na+ 、K+、Ca2+、Sr2+、Ba2+)的存在使其保持电中性
1 2 5
低硅 中硅 高硅分子筛
窗孔 决定分子能否进入分子筛晶体内部 空腔 决定进入分子的数量
笼 八面沸石笼(超笼)
二十六面体(6个八元环、8个六元环、12个四元环,48个顶点) 平均笼直径 1.14 nm,空腔体积 0.76 nm3 最大窗孔: 八元环,孔径 0.41 nm A型分子筛骨架的主晶穴(孔穴)
二十六面体(4个十二元环、4个六元环、18个四元环,48个顶点) 平均笼直径 1.25 nm,空腔体积 0.85 nm3 最大窗孔: 十二元环,孔径 0.9 nm X、Y型分子筛骨架的主晶穴(孔穴)
ZSM型分子筛(高硅沸石分子筛)
骨架: 与丝光沸石相似,由成对的五元环组成,没有笼、没有晶穴(孔穴) ZSM-5孔道: 十元环孔道(孔径 0.55-0.6 nm ) 两组交叉的三维孔道(直通形 “之”字形) 产品系列: ZSM-5 ZSM-8 ZSM-11;ZSM-21 ZSM-35 ZSM-38等 Si/Al: ZSM-5: 可高达 50 ZSM-8: 可高达100 全硅型沸石 Silicalite-1 和 Silicalite-2 憎水特性
分子筛简介

补充:
1、中空玻璃专用分子筛 2、XH系列制冷剂专用分子筛 3、13XAPG分子筛
分子筛生产方法
水热合成法: 用于制取纯度较 高的产品,以及合成自然界中 不存在的分子筛。将含硅化合 物(水 玻璃、硅溶胶等)、 含铝化合物(水合氧化铝、铝 盐等)、碱(氢氧化钠、氢氧 化钾等)和水按适当比例混合, 在热压釜中加热一定时间,即 析出分子筛晶体。
3A分子筛
3A分子筛的应用:
1、各种液体(如乙醇)的干燥 。 2、空气的干燥。 3、制冷剂的干燥 。 4、天然气、甲烷气的干燥。 5、不饱和烃和裂解气、乙烯、乙 炔、丙烯、丁二烯的干燥 。
4A分子筛简介:
• 化学式: Na2O·Al2O3·2SiO2·9/2H2O • 硅铝比:SiO2/ Al2O3≈2 • 有效孔径:约4A
富氧分子筛应用:
• 除具有一般5A分子筛的特性外, 主要用于变压吸附制氧。
活性氧化铝球
活性氧化铝球简介:
又名活性矾土,在催化剂 中使用氧化铝的通常专称为活 性氧化铝,它是一种多孔性、 高分散度的固体材料,有很大 的表面积,其微孔表面具备催 化作用所要求的特性,如吸附 性能、表面活性、优良的热稳 定性等,
5A脱蜡分子筛
5A脱蜡分子筛:
5A脱蜡分子筛用途:广泛 用于石油化工、化工等脱蜡装 置中。脱蜡后的油品质量具有 低冰点的航空煤油的优良性能, 分离出的石蜡可作为合成洗涤 剂的化工原料。
Cu-13X分子筛
Cu-13X分子筛应用:
用于脱除航空煤油中极微 量的有机硫(硫醇)
富氧分子筛简介:
• 化学式: 4/5CaO·1/5Na2O·Al2O3·2 SiO2 • 硅铝比:SiO2/Al2O3≈2 • 有效孔径:约5A
分子筛制氧机原理简介

1、分子筛简介分子筛是一种具有立方晶格的硅铝酸盐化合物。
分子筛具有均匀的微孔结构,它的孔穴直径大小均匀,这些孔穴能把比其直径小的分子吸附到孔腔的内部,并对极性分子和饱和分子具有优先吸附能力,因而能把极性程度不同,饱和程度不同,分子大小不同及沸点不同的分子分离开来,即具有“筛分”分子的作用,故称分子筛。
由于分子筛具有吸附能力高,热稳定性强等其它吸附剂所没有的优点,使得分子筛获得广泛的应用。
分子筛结构图2、制氧分子筛5A小型制氧分子筛是一种特制的5A分子筛,是专为医疗保健制氧机而生产的,该分子筛具有制氧纯度高、速度快、使用寿命长的特点,是5A分子筛在医疗保健行业的一个重要应用。
化学式:4/5CaO·1/5Na2O·Al2O3·2 SiO2硅铝比:SiO2/Al2O3≈2有效孔径:约5A应用:除具有一般5A分子筛的特性外,主要用于变压吸附制氧。
3、小型分子筛制氧机的发展历程1962年美国联合碳化物公司(UCC)发现了分子筛对气体的选择性特性,并在实验设备上实现了对少数不同气体的分离;随即研制成功了世界上第一台制氢工业装置;随着分子筛材料与工艺的不断提升,70年代中期美国和德国首先将PSA技术应用于空气分离并在化工领域得到应用,到80年代中期化学工业的发展为分子筛的性能提高起到了关键作用,这使设备小型化成为可能,1985年美国的Praxair公司研制的第一台小型制氧机的问世标志着PSA技术小型化的开始,90年代初产品意义上的医用小型制氧机开始出现,美国材料实验学会(ASTM)于1993年颁布了医用小型制氧机标准规范(F1464-1993),国际标准组织于1996年发布了医用小型制氧机的安全性标准(ISO8359:1996)。
目前我国只有国家药品管理局颁布的《YY/T0298—1998医用分子筛制氧设备通用技术规范》,还没有相应的与国际接轨的医用小型制氧机行业或产品标准。
美国《F1464—1993》标准及国际标准《ISO8359:1996》两个标准的一个共同特点是对制氧机做了以下几点强制性规范,而我国《YY/T0298—1998》则没有强制性要求:A.产品必须设计有不可更改的累计计时功能。
分子筛的hs编码

分子筛的hs编码摘要:分子筛的hs 编码I.分子筛简介- 分子筛的定义- 分子筛的种类II.HS 编码简介- HS 编码的定义- HS 编码的作用III.分子筛的HS 编码- 分子筛的HS 编码是什么- 分子筛HS 编码的监管条件IV.分子筛HS 编码的应用- 分子筛HS 编码在出口报关中的作用- 分子筛HS 编码与关税税率的关系正文:分子筛的HS 编码I.分子筛简介分子筛是一种具有特定孔径和孔道结构的晶体材料,能够筛选和分离不同分子大小的物质。
它主要用于催化剂、吸附剂、离子交换剂等领域。
分子筛的种类繁多,常见的有A 型分子筛、T 型分子筛、ZSM-34 等。
II.HS 编码简介HS 编码,即海关编码,是用于对商品进行分类和编码的一种国际标准。
它的全称是“Harmonized System Code”,中文名称为“协调制度编码”。
HS 编码共有10 位数字,由国际海关组织(WCO)制定,全球通用。
HS 编码的作用是方便国际贸易中的商品分类、报关、征税等环节。
III.分子筛的HS 编码分子筛的HS 编码是2842100000。
这个编码由10 位数字组成,其中前6 位数字“284210”表示分子筛所属的税则号列,后4 位数字“0000”表示分子筛的具体商品名称。
分子筛的HS 编码监管条件为B,这意味着在出口报关时,需要提供通关单,并且不能享受退税政策。
IV.分子筛HS 编码的应用在出口报关过程中,分子筛的HS 编码起着至关重要的作用。
首先,它可以帮助海关人员快速准确地识别商品,从而进行分类、征税和统计。
其次,HS 编码与关税税率密切相关,不同编码的商品对应不同的税率。
分子筛简介解读

Na+
交换度 % =
交换度
交换下来的 Na2O 量 原来分子筛含的Na2O 的量 100%
Me x/n [ (AlO2) x (SiO2) y ] m H2O 人工合成分子筛时,多以Na+来平衡三 维阴离子骨架的负电荷,然而 Na型分 子筛无酸性,其催化性能不好
交换度影响因素
CO2(0.28nm)
分子筛:人工合成的结晶型硅铝酸盐
主要的天然沸石及其物理性质
现已发现天然沸石40多种,人工合成的多达一二百种
3、发展史
1756年发现第一个天然沸石-辉沸石
20世纪50年代,沸石的人工合成工业化
干燥剂(产品含水可脱到 1-10 ppm)
净化剂(天然气、裂解气脱H2S、CO2比硅胶净化度提高10-20倍)
窗孔 决定分子能否进入分子筛晶体内部 空腔 决定进入分子的数量
笼
二十六面体(6个八元环、8个六元 环、12个四元环,48个顶点)
平均笼直径 1.14 nm,空腔体积 0.76 nm3
最大窗孔:八元环,孔径 0.41 nm
A型分子筛骨架的主晶穴(孔穴)
八面沸石笼(超笼) 二十六面体(4个十二元环、4个六
ZSM型分子筛(高硅沸石分子筛)
骨架:
与丝光沸石相似,由成对的五元环组成,没有笼、没有晶 穴(孔穴)
ZSM-5孔道:
十元环孔道(孔径 0.55-0.6 nm ) 两组交叉的三维孔道(直通形 “之”字形)
产品系列:
ZSM-5 ZSM-8 ZSM-11;ZSM-21 ZSM-35 ZSM-38等
3a分子筛孔径

3A分子筛孔径简介分子筛是一种具有高度有序孔道结构的晶体材料,可以通过选择性吸附和分离分子。
其中,3A分子筛是指孔径为3埃的分子筛。
分子筛孔径的大小对其吸附和分离性能有着重要影响。
本文将从分子筛的定义、孔径的概念、3A分子筛的特点和应用等方面详细介绍3A分子筛孔径。
分子筛的定义分子筛是一类具有规则孔道结构的晶体材料,由硅酸盐或氧化铝等无机物组成。
它的结构类似于蜂窝状,具有许多微孔和介孔。
这些孔道可以吸附和分离分子,因此被广泛应用于催化剂、吸附剂、分离膜等领域。
孔径的概念孔径是指分子筛孔道的直径或有效直径。
它是一个关键参数,决定了分子筛的吸附和分离性能。
通常使用埃(Angstrom,1埃=0.1纳米)作为孔径的单位。
分子筛的孔径可以分为大孔、介孔和微孔三个范围。
其中,3A分子筛属于微孔范围。
3A分子筛的特点3A分子筛的孔径为3埃,属于微孔范围。
它具有以下特点:1.吸附能力强:3A分子筛可以吸附小分子,如水、甲醇等。
由于其孔径较小,可以有效吸附这些分子,并实现分离。
2.热稳定性好:3A分子筛具有良好的热稳定性,可以在高温条件下使用。
3.化学稳定性好:3A分子筛对酸、碱等化学物质具有较好的稳定性,不易受到腐蚀。
4.高度有序结构:3A分子筛具有高度有序的孔道结构,孔道之间的相互作用力较强,可以实现高效的吸附和分离。
3A分子筛的应用由于3A分子筛具有微孔范围的孔径和良好的吸附性能,因此在许多领域都有广泛的应用。
以下是一些典型的应用:1.气体分离:3A分子筛可以用于气体分离,如空气中的氮气和氧气的分离。
由于氧气分子比氮气分子小,可以通过3A分子筛的孔道选择性吸附氮气,实现氧气的分离。
2.水分吸附:由于3A分子筛对水分具有较强的吸附能力,因此可以用于湿度控制和水分的去除。
在一些工业和生活中,需要控制湿度的场合,可以使用3A分子筛吸附水分。
3.甲醇和水的分离:3A分子筛可以选择性吸附甲醇,而不吸附水分。
因此,可以将甲醇和水分进行有效分离。
第四节 分子筛简介
• 广义(Molecular sieve ):结构中有规整而均匀的
孔道,孔径为分子大小的数量级,它只允许直径比孔径 小的分子进入,因此能将混合物中的分子按大小加以筛 分。 分子筛通常是白色粉末,无毒、无味、无腐蚀性, 不溶于水和有机溶剂,溶于强酸和强碱。
2
Chapter 3
p区元素化学
§3-4
分子筛化学
21
Chapter 3
p区元素化学
§3-4
分子筛化学
四、分子筛的性能特点 • 离子可交换特性 • 表面酸碱性质 • 择形作用
22
Chapter 3
p区元素化学
§3-4
分子筛化学
离子可交换特性
由于分子筛结构中Si和Al的价态不同,造成分子筛 骨架的电荷不平衡,因此必须由金属阳离子来平衡。 分子筛合成时引入的是Na+, Na+很容易被其它金属
O O Oxygen Bridge
O O
四
14
员
环
六 员
环
Chapter 3 构 成 沸 石 骨 架 结 构 的 二 级 结 构 单 元
p区元素化学
§3-4
分子筛化学
15
Chapter 3
p区元素化学
§3-4
分子筛化学
(3)笼——主要结构单元
各种环通过氧桥相互连接成三维空间的多面体叫晶
穴或孔穴,也有称为空腔,通常以笼(cage)来称呼。由笼 再进一步排列即成各种沸石的骨架结构。
27
Chapter 3
p区元素化学
§3-4
分子筛化学
汽油的重整中,为提高汽油中异构烷烃的百分比, 就可利用适当孔径的分子筛限制异构烷烃进入孔道,也 就是说不让它们与分子筛的内表面接触,而正构烷烃却 可自由出入,并在内表面的酸性中心上发生裂解反应而 与异构烷烃分离。
表面化学(介孔分子筛)
二、介孔材料的优越性质
具有高度有序的孔道结构 孔径呈单一分布 可以具有不同的结构、孔壁组成和性质 无机组分的多样性 高比表面,高孔隙率
三、介孔分子筛的合成
水热合成法 室温合成 微波合成 湿胶合成法 相转变法 非水体系中合成等方法 。
介孔分子筛材料的合成流程图
介孔机构生成机理
液晶模板机理 协同作用机理
广义模板机理等
液晶模板机理
下图是Moil公司科学家提出液晶模板机理,
协同作用机理
四、介孔分子筛的应用
在化工中的应用 催化剂、化工分离、高分子合成 在生物和医药中的应用 酶和蛋白质等的固定和分离 在环境保护中的应用 降解有机废物、气体吸附剂、水质进化 等
介孔分子筛
内容提要
1 2 3 4
简介
优越性
合成
应用
一、介孔分子简介
18世纪中叶,人们通过对天然沸石(硅铝酸盐)的 研究,提出了”分子筛”的概念 。
按孔径大小分为三类,其中介于2nm~50nm之 间的称之为介孔分子筛。 1992年,Mobil石油公司的科学家合成了介孔 系列材料M41S 该系列材料包括六方状的MCM一41、立 方状的MCM一48和层状的MCM一50等
分子筛生产工艺技术及应用简介
分子筛生产工艺技术及应用简介1、分子筛简介分子筛是一种具有立方晶格的硅铝酸盐化合物,其品种达到数十种。
分子筛有很大的比表面积,达300~1000m2/g,内晶表面高度极化,为一类高效吸附剂,也是一类固体酸,表面有很高的酸浓度与酸强度,能引起正碳离子型的催化反应。
当组成中的金属离子与溶液中其他离子进行交换时,可调整孔径,改变其吸附性质与催化性质,从而制得不同性能的分子筛催化剂。
分子筛具有均匀的微孔结构,它的孔穴直径大小均匀,这些孔穴能把比其直径小的分子吸附到孔腔的内部,并对极性分子和不饱和分子具有优先吸附能力,因而能把极性程度不同,饱和程度不同,分子大小不同及沸点不同的分子分离开来,即具有“筛分”分子的作用,故称分子筛。
由于分子筛具有吸附能力高,热稳定性强等其它吸附剂所没有的优点,使得分子筛获得广泛的应用。
分子筛按照其用途主要分为两个大的领域:一个是作为吸附材料(吸附剂),应用领域包括石油炼制、石油化工、煤化工、化肥、冶金、电子等行业,用做气体的分离、干燥、净化,主要品种有3A、4A、5A、13X分子筛;另一个是作为固体酸催化剂用于石油炼制和石油化工,主要品种有HZSM-5、USY等。
2、分子筛生产分子筛的生产过程分为两个阶段:一个是分子筛原粉的合成;另一个就是分子筛的成型。
2.1分子筛的合成分子筛是用硅的化合物(例如硅溶胶、硅酸钠等)、铝的化合物(例如活性氧化铝、铝盐等)、碱(例如氢氧化钠等)以及模板剂在水热条件下合成的,由此制备的产品称为分子筛原粉,是一种极其细小的硅铝酸盐晶体材料,晶体直径在100纳米左右,不能直接用于工业生产过程,必须加工成一定形状和大小的颗粒才具有实用价值。
分子筛的合成过程需要消耗大量的基础化学品和净化水,并产生大量的废液和污水,需要配备有原水净化和污水处理装置。
2.2 分子筛成型分子筛按照其用途不同需要加工成不同的形状。
目前,工业上常用的分子筛有三种形状:条状、球状和微球状。
分子筛氮气吸附量
分子筛氮气吸附量
1分子筛氮气吸附量简介
分子筛是一种多孔材料,具有很强的吸附能力。
它的结构可以通过控制孔径大小来调控各种分子的吸附性能。
分子筛在气体分离、催化剂载体等领域有着广泛的应用。
其中,分子筛对于氮气的吸附量表现出较为突出的性能。
2分子筛对氮气的吸附量
分子筛的孔径大小与氮气的分子大小相当,使得氮气在分子筛内容易被吸附。
在吸附过程中,分子筛通过对氮气的催化作用,实现对氮气的富集。
其吸附量的大小与分子筛的孔径大小、孔道的形状和表面性质等密切相关。
在实际应用中,要根据氮气的用途和纯度的要求等因素来选择合适的分子筛。
比如,在制氮机中,通常采用4A分子筛,其孔径约为4埃,能够去除氧气和水蒸气等杂质气体,而对氮气的吸附量较高。
3分子筛与其他吸附材料的比较
相对于活性炭、硅胶等吸附材料,分子筛更为优越。
首先,分子筛的孔径更加均匀且尺寸可控,对分子的吸附更加选择性。
其次,在高温等恶劣环境下,分子筛的稳定性和耐受性更优。
最后,分子筛可以通过再生来循环使用,降低了成本。
4结语
分子筛在氮气吸附方面有着极佳的性能,其流行应用于制氮机等场合。
与其他吸附材料相比,分子筛更加先进,更具有活力,是分子分离和杂质去除领域的不可或缺的技术。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
M41s(MCM-41、MCM-22等)介孔分子筛 HMS介孔分子筛
SBA介孔分子筛
……
4、化学组成
Me x/n [ (AlO2) x (SiO2) y ] m H2O Me — 金属阳离子(人工合成分子筛一般为 Na+)
n
x y m
— 金属阳离子价态
— Al 原子的数目 — Si 原子的数目 — 水分子数目
每个顶点代表一个硅原 子或者铝原子 每条边代表一个氧桥
由4个四面体形成四元环,5个四面体形成五元环,依此类推还有
六元环、八元环、十元环、十二元环和十八元环等
注意:多元环上的原子可能不在同一平面上,有扭曲和褶皱, 因此同种氧环的孔口的大小是有一定变化的
3、笼结构
环通过氧桥连接成三维空间的多面体(笼)
四、分子筛的性质
1、吸附特性
高效吸附
分子筛骨架内孔体积占总体积的
40-50%,比表面积很大(5001000m2/g),而且主要为晶内表 面(外表面占总表面不足1%)
不同吸附剂对水的吸附等温线
分子筛内部具有强静电场,吸附
作用力除色散力外,还有静电 力 —— 对极性分子或易极化分 子(不饱和烃、含苯基的分子等) 而言
Na+
交换度 % =
交换度
交换下来的 Na2O 量 原来分子筛含的Na2O 的量 100%
Me x/n [ (AlO2) x (SiO2) y ] m H2O 人工合成分子筛时,多以Na+来平衡三 维阴离子骨架的负电荷,然而 Na型分 子筛无酸性,其催化性能不好
交换度影响因素
CO2(0.28nm)
不同吸附剂对水的吸附等压线
择形(选择)吸附
根据分子大小和形状的选择吸附
根据分子极性和不饱和度的选择吸附
极性越大或
越易被极化 (不饱和度 越大)的分 子,越易被 分子筛吸附
不同气体在4A上的吸附等温线 乙炔在不同吸附剂上的吸附等温线
§ 2. 离子交换特性
沸石分子筛由于结构中Si和Al的价数不一,造成的电荷不 平衡必须由金属阳离子来平衡。 合成时是引入钠离子,钠离子很容易被其他金属离子交换 下来。由于金属离子在沸石分子筛骨架中占据不同的位置 ,所引起的催化性能也就不一样。通过离子交换,可以调 节沸石分子筛晶体内的电场和表面酸度等参数。 在制备催化剂时可以将金属离子直接交换到沸石分子筛上 ,也可以将交换上去的金属离子,还原为金属形态。这比 用一般浸渍法所得的分散度要高得多。
正丁烷 (0.49nm)
分子筛类型、阳离子性质 交换条件(交换温度、交换时间、
交换次数、交换液浓度、PH值和用量等)
离子交换对分子筛性质的影响
异丁烷 (0.56nm)
对分子筛晶体内静电场的影响 对分子筛酸性的影响 对分子筛孔径的影响 对分子筛热稳定性的影响
吸附水,
25oC, 933.3kPa
Si/Al:
ZSM-5:可高达 50 ZSM-8:可高达100
全硅型沸石 Silicalite-1 和 Silicalite-2
憎水特性
ZSM-5
ZSM-11
其他分子筛
晶格取代杂原子沸石分子筛 P、Ti、V、Cr 等原子部分同晶取代 Si 或 Al 如,钛硅分子筛 —— TS-1与 ZSM-5 结构相同 TS-2与 ZSM-11结构相同 中(介)孔分子筛 M41s(MCM-41、MCM-22等)介孔分子筛 HMS介孔分子筛 SBA介孔分子筛 ……
孔道: 笼之间通过八元环沿三个晶轴方向 互相贯通,形成三维孔道
孔径 4 Å 孔径 5 Å
4A(NaA):Na96[ (AlO2)96(SiO2)96 ] 216 H2O 5A(CaA):70% Na+ 被 Ca2+交换
3A(KA) :70% Na+ 被 K+ 交换
孔径 3 Å
X、Y型分子筛(八面沸石分子筛)
烃类分离(异构烷中分离正构烷、混合二甲苯中分离对二甲苯 )
20世纪60年代,第一代分子筛催化剂
A型、X型、Y型、M型 分子筛属于固体酸催化剂,在炼油工业和石油化工中有着广泛
应用,如催化裂化、加氢裂化、催化重整、芳烃及烷烃异构化、
烷基化过程、歧化过程等
20世纪70年代,第二代分子筛催化剂
三、分子筛的制备工艺
水热合成法 用于制取纯度较高的产品,以及合成自然界 中不存在的分子筛。将含硅化合物(水 玻璃、硅溶胶等 )、含铝化合物(水合氧化铝、铝盐等)、碱(氢氧化钠 、氢氧化钾等)和水按适当比例混合,在热压釜中加热一 定时间,即析出分子筛晶体。 水热转化法 在过量碱存在时,使固态铝硅酸盐水热转化 成分子筛。所用原料有高岭土、膨润土、硅藻土等,也可 用合成的硅铝凝胶颗粒。此法成本低,但产品纯度不及水 热合成法 离子交换法 通常在水溶液中将Na-分子筛转变为含有 所需阳离子的分子筛
Si/Al
1
1 1 1-1.5
孔径(nm)
0.3
0.4 0.5 0.8-0.9
10X
Y M ZSM-5
Ca35Na16 [ (AlO2)86(SiO2)106 ] 264H2O
Na56 [ (AlO2)56(SiO2)136 ] 264H2O Na8 [ (AlO2)8(SiO2)40 ] 24H2O Na3 [ (AlO2)3(SiO2)93 ] 16H2O
以ZSM-5为代表的高硅、三维交叉直孔道的新结构分子筛 催化剂具有更高的活性及选择性,不易结炭,稳定性良好
20世纪80年代,第三代分子筛催化剂
磷酸铝(AlPO4)系分子筛(非Si,P、Al骨架分子筛)
钛硅(TS)分子筛(Ti 原子同晶取代骨架中的Al)
微 孔 分 子 筛
20世纪90年代,中(介)孔分子筛
2、沸石(zeolite)与分子筛(molecular sieve)
沸石:自然界存在的结晶型硅铝酸盐(由于晶体中 含有大量结晶水,加热汽化,产生类似沸腾的现象, 故称为沸石) 沸石结构中有许多均匀的孔道,且孔径与一般分子 大小相当,进而具有筛分分子的作用,所以沸石又 称为分子筛 (自然界存在的常称沸石,人工合成的称为分子筛)
几种常见分子筛
型号
3A
4A 5A 13X
典型化学组成
K64Na32 [ (AlO2)96(SiO2)96 ] 216H2O
Na96 [ (AlO2)96(SiO2)96 ] 216H2O Ca34Na28 [ (AlO2)96(SiO2)96 ] 216H2O Na86 [ (AlO2)86(SiO2)106 ] 264H2O
分子筛:人工合成的结晶型硅铝酸盐
主要的天然沸石及其物理性质
现已发现天然沸石40多种,人工合成的多达一二百种
3、収展史
1756年収现第一个天然沸石-辉沸石
20世纪50年代,沸石的人工合成工业化
干燥剂(产品含水可脱到 1-10 ppm)
净化剂(天然气、裂解气脱H2S、CO2比硅胶净化度提高10-20倍)
硅(铝)氧三维骨架结构具有大量的孔隙(晶穴、晶孔、孔道), 可以容纳金属阳离子和水分子 —— 阳离子交换与脱水
四 面 体 环 笼
分 子 筛
1、基本结构单元
硅氧四面体(SiO4)和铝氧四面体(AlO4) (以 Si 或 Al 原子为中心的正四面体)
O2Si4+ 或 Al3+
2、环结构
硅(铝)氧四面体通过氧桥连接成环
分子筛
Molecular Sieves
一、分子筛概述
1、分子筛简介
分子筛具有均匀的微孔结构,它的孔穴直径大小均匀, 这些孔穴能把比其直径小的分子吸附到孔腔的内部,并对 极性分子和不饱和分子具有优先吸附能力,因而能把极性 程度不同,饱和程度不同,分子大小不同及沸点不同的分 子分离开来,即具有“筛分”分子的作用,故称分子筛。
元环、18个四元环,48个顶点) 平均笼直径 1.25 nm,空腔体积 0.85 nm3 最大窗孔:十二元环,孔径 0.9 nm X、Y型分子筛骨架的主晶穴(孔穴)
4、分子筛结构
不同结构的笼通过氧桥连接成各种结构的分子筛
A型分子筛
骨架: 笼的6个四元环通过氧桥相互连接 (连接处形成 笼) 主晶穴(孔穴): 8个 笼和8个 笼围成一个 笼(最 大窗孔:八元环,孔径 0.41 nm)
骨架: 笼中的4个六元环通过氧桥按正四面体方 式相互连接(连接处形成六方柱笼)
主晶穴(孔穴): 7个笼和9个六方柱笼围成一个八面沸石笼 (最大窗孔:十二元环,孔径 0.9 nm) 孔道: 八面沸石笼之间通过十二元环沿三个晶轴方 向互相贯通,形成三维孔道 X、Y型分子筛间的区别: Si/Al = 1-1.5为X型,1.5-3.0为Y型
窗孔 决定分子能否进入分子筛晶体内部 空腔 决定进入分子的数量
笼
二十六面体(6个八元环、8个六元 环、12个四元环,48个顶点)
平均笼直径 1.14 nm,空腔体积 0.76 nm3
最大窗孔:八元环,孔径 0.41 nm
A型分子筛骨架的主晶穴(孔穴)
八面沸石笼(超笼) 二十六面体(4个十二元环、4个六
X型、Y型 —— 八面沸石型分子筛
Si、Al 被其它原子取代:前加取代原子元素符号和连字符 P-L型 —— P原子同晶取代 L型分子筛中的部分Si
二、分子筛的结构构型
基本结构单元是硅氧四 面体(SiO4)和铝氧四 面体(AlO4) 硅(铝)氧四面体通过 氧桥连接成环