试论列车定位技术在城市轨道交通中的应用

合集下载

城市轨道交通CBTC系统关键技术探讨

城市轨道交通CBTC系统关键技术探讨

城市轨道交通CBTC系统关键技术探讨作为CBTC系统的关键技术,其研究与发展对城市轨道交通系统的安全性、便捷性和效率等方面具有重要意义。

本文将对CBTC系统的关键技术进行探讨,包括无线通信技术、数据处理与传输技术、位置识别技术等方面的关键技术,分析其在CBTC系统中的作用与发展趋势。

一、无线通信技术CBTC系统基于先进的无线通信技术,实现对列车的实时监控与控制。

作为CBTC系统的关键技术之一,无线通信技术对于CBTC系统的运行安全性和稳定性具有重要意义。

目前,CBTC系统中较为常用的无线通信技术包括LTE、Wi-Fi等。

LTE技术具有高速传输、低时延等优势,适用于对CBTC系统中的关键数据进行实时传输;Wi-Fi技术则可以实现对列车之间、列车与地面控制中心之间的数据通信,为列车运行的实时监控提供了技术支持。

随着5G技术的逐渐成熟,5G技术有望在CBTC系统中得到广泛应用。

5G技术具有更高的传输速率和更低的时延,可以实现更高效、更稳定的数据传输,为CBTC系统的运行提供更加可靠的技术保障。

二、数据处理与传输技术CBTC系统的正常运行依赖于大量的数据处理与传输技术支持。

在CBTC系统中,数据处理与传输技术起着至关重要的作用,直接影响着系统的运行效率和安全性能。

在数据处理方面,CBTC系统需要对来自列车、轨道等各个方面的数据进行实时处理,包括位置数据、速度数据、故障数据等。

CBTC系统还需要对这些数据进行分析与存储,以便对列车进行实时监控与数据分析,为列车运行提供技术支持。

在数据传输方面,CBTC系统需要实现对大量实时数据的传输,包括列车之间的数据传输、列车与地面控制中心之间的数据传输等。

CBTC系统需要依靠先进的数据传输技术,实现对大量数据的高效传输。

当前,CBTC系统中广泛应用的数据处理与传输技术包括分布式存储技术、实时数据传输技术等。

分布式存储技术可以实现对大量数据的高效存储与管理,为列车监控提供了技术支持;实时数据传输技术则可以实现对实时数据的高效传输,确保列车运行的实时监控与控制。

试论列车定位技术在城市轨道交通中的应用

试论列车定位技术在城市轨道交通中的应用

试论列车定位技术在城市轨道交通中的应用【摘要】本文探讨了列车定位技术在城市轨道交通中的应用。

在首先介绍了城市轨道交通的现状,指出了列车定位技术的重要性,并明确了本文的研究目的。

在我们对列车定位技术进行了概述,包括基于卫星定位和地面信号的技术。

具体探讨了列车定位技术在城市轨道交通中的应用,以及其优势和局限性。

在我们分析了列车定位技术的发展趋势,探讨了其在城市轨道交通中的潜力,并总结了全文研究的收获。

本文旨在揭示列车定位技术在城市轨道交通中的重要性,并展望其未来的发展前景,为城市交通运输系统的升级和完善提供参考。

【关键词】城市轨道交通、列车定位技术、卫星定位、地面信号、应用、优势、局限性、发展趋势、潜力1. 引言1.1 城市轨道交通现状城市轨道交通是城市中重要的交通方式之一,随着城市化进程的加快和人口规模的不断增长,城市轨道交通在解决城市交通拥堵、减少交通事故、改善环境污染等方面扮演着重要的角色。

目前,许多大中城市都建设了地铁、轻轨等城市轨道交通系统,为市民提供了便捷、快捷、安全的出行方式。

城市轨道交通系统也面临着诸多挑战。

由于城市规划、人口密集度、交通流量等因素的影响,城市轨道交通系统容易出现晚点、拥挤、安全隐患等问题,给乘客出行带来不便。

为了解决城市轨道交通系统存在的问题,提高列车的运行效率和安全性,列车定位技术应运而生。

通过准确、实时地获取列车的位置信息,可以帮助城市轨道交通系统提高运行效率,减少事故发生的概率,提升乘客出行体验。

在本文中,我们将探讨列车定位技术在城市轨道交通中的应用及其优势和局限性。

1.2 列车定位技术的重要性列车定位技术在城市轨道交通中具有重要性,主要表现在以下几个方面:列车定位技术可以提高城市轨道交通系统的运行效率和安全性。

通过实时监测列车位置和运行状态,可以及时发现和处理列车运行中出现的问题,避免交通事故的发生,保障乘客的安全。

列车定位技术可以提升城市轨道交通系统的服务质量。

LZB700M型城市轨道交通信号系统列车定位技术浅析

LZB700M型城市轨道交通信号系统列车定位技术浅析
关键 词 :列 车定位 ;城轨 交通 ;原 理分 析
Abs t r ac t :I t i s a p r e r e q u i s i t e o f e n s u in r g t r a i n o p e r a t i o n s a f e t y a n d e n ha n c i n g o pe r a t i o na l e ic f i e n c y t o d e t e r mi ne t he l o c a t i o n o f t he t r a i n o n t h e l i n e a c c u r a t e l y i n a r e a l — t i me ma n n e r .LZB 7O OM s i g n a l s y s t e m u s e s F TGS 9 1 7 s e c t i o n o f t r a c k c i r c ui t a s f r e e /o c c up a n c y d e t e c t i o n d e v i c e,a n d s e n d s p e c i ic f me s s a g e s t o a c h i e v e a c o a r s e p o s i t i o n i n g t hr o u g h t h e t r a i n t r a c k c i r c u i t ,us i n g s p e e d mo t o r f o r pr e c i s e p o s i t i o n i n g,a l s o u s i n g c o nd u c t s i t e or f s e c t i o n s s y nc h r o n o u s l o o p o f a s s i s t e d p o s i t i o n i n g.Th i s a r t i c l e f o c u s e s o n p r i n c i p l e o f t he s e t h r e e p in r c i p l e s po s i t i o n i n g t e c hn o l o g y . Ke y wor ds:Tr a i n p o s i t i o n i n g;Ur b a n r a i l ; An a l y s i s o f p in r c i p l e

中国轨道交通列车运行控制技术及应用

中国轨道交通列车运行控制技术及应用

中国轨道交通列车运行控制技术及应用宁滨;刘朝英【摘要】中国的轨道交通在近十年中获得了飞速发展,城市轨道交通有效解决了市内交通供需矛盾,高速铁路的发展则给城市间的交通带来了同城效应和零换乘的理念.但无论如何,轨道交通的安全运营是其发展的重中之重.列车运行控制系统是确保轨道交通安全的关键技术之一,在我国得到了快速地自主创新发展.本文详细介绍了中国铁路列车运行控制系统(CTCS)技术和城市轨道交通基于通信的列车运行控制系统(CBTC)技术.为实现综合轨道交通网络的互联互通,轨道交通的低碳节能运营、自动化和智能化运营,实现资源共享的网络化运营模式,轨道交通列车运行控制系统将向着系统化、网络化、智能化、通信信号一体化和标准化、开放化的方向发展,通过降低系统复杂性、缩短列车追踪间隔、提高系统防护水平等技术降低成本,提高运能和旅客满意度,保证轨道交通的安全性和可靠性,最终实现安全、高效、绿色出行.%With the rapid development of rail transit system in China in recent ten years , the problem of heavy traffic in cities has been solved effectively . The development of high-speed railway in China has resulted in none-transfer between the cities and changed the traditional concepts of time and space . However , safe opera-tion is the most important for the development of rail transit . The train control system ,as one of the key tech-nologies to ensure the safety of the rail transit , has beenunder rapid development in China through independent innovation . The train operation control system used in China railway (CTCS) and the communication-based train control system used in China urban rail transit (CBTC) were described in this paper . In order to satisfy the requirementsof connectivity for integrated rail transit network , low carbon energy efficient , automated and intelligent operation of rail transit system , and the network operation mode based on resource sharing , the train operation control system of the rail transit will developtowards systematization ,information networking , intelligence ,communication & signal integration , standardization andopenness . The reduction of the com-plexity of the system , the shortening of the train tracking interval , and the improvement of system protection level will lead to the reduction of the cost and carbon footprint and the improvement of transport capacity and passenger satisfaction ,which will ensure the safety and reliability of rail transit ,and ultimatelyachieve safe , efficient and green travel .【期刊名称】《铁道学报》【年(卷),期】2017(039)002【总页数】9页(P1-9)【关键词】高速铁路;城市轨道交通;列车运行控制系统【作者】宁滨;刘朝英【作者单位】北京交通大学,北京 100044;中国铁路总公司,北京 100844【正文语种】中文【中图分类】U284中国的轨道交通在近十年中获得了飞速发展,城市地铁、轻轨等轨道交通系统有效解决了市内交通供需矛盾,高铁成网、同城效应、高铁零换乘理念等给旅客出行带来了极大方便,拉近了城市间的距离,加快推进了城乡一体化发展,提升了中国的现代化水平。

城市轨道交通列车定位方法分析

城市轨道交通列车定位方法分析
地面信标属于列车控制系统的地面 (轨旁 )设 备,地 面信 标通常安装在正线走行轨两轨道 中心 ,
铁路通信信 号工 程技术(RSCE) 2012年2月 ,第9卷第 1期
0姗鞠晦 匆麟

霪 善 期嘲嘲覆
水 平 放置 ,用 于与 车 载 信标 天 线实 现 通 信 。车 载信
无 线 波 导 天 线 的 使 用 , 让 ATC轨 旁 设 备 与
Keywords:rail t ransit;train positioning;slotted waveguide
DOI:10.3969 ̄.issn.1673—4440.2012.01.018
城市轨道 交通系统承担着庞大的城市公共交通 客流的运送任务 ,因此城市轨道交通无论地铁或轻 轨 ,都 非 常 注 重运 营 效 率 。轨 道 交 通 运 营效 率 的 一 个 重要影 响因素就 是列车追踪 间隔,需要高密度 、 小 间隔的列车持续运行 ,列车定位技术是实现这一 要求的基础和关键 。
标 天 线 悬挂 在 列 车 司机 室 下方 第 一 轮对 后方 ,水 平 ATC车 载设备 之 间的通 信连 续 ,可 以通 过报 文形 式
安 装 。车 载 信 标 天 线具 备 无 线发 射 和接 收 功 能 ,通 持 续的向地面传递列车运营的速度、模式、车辆指
过 无线 电磁 波 信 号激 活 地 面 信标 ,并将 被激 活 的地 标 等具 体 数据 信 息 ,又 能 够 实时 刷 新列 车 定位 ,将
1 列车定位的概念
列车定位就是通过 已有的技术设备 ,实 时准确 地 掌握运营线路上 列车实 际地理方 位、运行状态 、 行 驶速度等关键信息 ,并能够将列车实时位置信息 通过传输线缆传送到轨道交通指挥控制终端界面上 , 供 轨 道 交 通行 车指 挥 与调 度 工作 人 员 掌握 线路 运 行 信 息 。

城轨列车定位技术

城轨列车定位技术


无线扩频通信定位技术
ห้องสมุดไป่ตู้
利用无线扩展频谱通信技术确定列车在 线路中的位置。利用车站、轨旁和列车 上的扩频电台; 一方面通过这些电台在列 车与轨旁控制室之间传递安全信息, 另一 方面也利用它们对列车进行定位。轨旁 电台的位置是固定不变的, 并经过精确测 量。所有的电台都由同步时钟精确同步。 轨旁计算机或车载计算机利用不同电台 传输信息的时间延时可以精确计算出列 车的位置。
电缆环线定位技术

在两根钢轨之间敷设交叉感应回线:一条线固 定在轨道中央的道床上,另一条线固定在钢轨 的颈部下方,它们每隔一定距离作交叉,中央 回线就像一个天线。当列车驶过一个交叉点时, 利用信号极性的变化引发地址码加l,由机车 控制中心,根据地址码计算出列车的地理位置, 并对从列车转速转化的里程记录进行误差修正。 由于感应回线是列车与地面之间的信息通道, 利用极性交叉这种方法一方面可实现列车的定 位,另一方面也起到了抗牵引电流干扰的作用。
城市轨道交通信号
城轨列车定位技术
前言

城市轨道交通车站间距近、列车运行密度高、 安全性要求高。列车自动控制系统需要实时了 解列车在线路中的准确位置。列车定位技术作 为轨道交通列控系统中的一项关键技术,为列 控系统进行实时控制提供可靠的实时速度和位 置,联锁系统和列车自动防护系统根据列车的 实时速度和位置信息进行运行间隔控制和移动 授权,保证列车运行的安全追踪间隔,车载信 号设备获得列车的位置和速度信息,根据速度 -模式曲线进行控制和优化,防止列车超速以 及实现到站精确定位。
裂缝波导定位技术

裂缝波导是52. 5mm ×105mm ×2mm 中 空的铝质矩形方管, 在其顶部每隔60mm 开有窄缝, 采用2. 715GH z 的连续波频率 通过裂缝耦合出不均匀的场强, 对连续波 的场强进行采集和处理, 并通过计数器确 定列车经过的裂缝数, 从而计算出列车走 行的距离, 确定列车在线路中的位置。

列车定位技术

列车定位技术

列车定位技术通信工程07-1班王帆学号:0702040116列车定位技术列车定位的意义实时、精确地确定列车在线路中的位置是保证安全、发挥效率、提供最佳服务的前提。

在轨道交通行车安全和指挥系统中,列车定位是一项关键性的技术。

准确、及时地获取列车位置信息,是列车安全、有效运行的保障。

1 城市轨道交通定位技术的基本功能和作用1)列车定位系统的基本功能:能够在任何时刻、任何地方按要求确定列车的位置,包括列车行车安全的相关间隔、速度;对轨旁设备和车载设备等资源进行分配和故障诊断;在局部出现故障时,能够在满足一定精度要求的前提下,降级运行。

列车定位方式按照空间可用性分为离散方式、连续方式和接近连续方式。

按照产生定位信息的不同部分分为完全基于轨旁设备的方式、完全基于车载设备的方式和基于轨旁设备和车载设备的方式。

2)列车定位技术在现代轨道交通行车安全和指挥系统中的作用主要体现在以下几个方面:1为列车自动防护(ATP)子系统提供准确位置信息。

作为列车在车站停车后打开车门以及站内屏蔽门的依据。

2为列车自动运行(ATO)子系统提供列车精确位置信息,作为列车计算速度曲线,实施速度自动控制的主要参数。

3为列车自动监控(ATS)子系统提供列车位置信息,作为显示列车运行状态的基础信息。

国内外轨道交通主要的列车定位技术一:轨道电路定位轨道电路是以铁路线路的两根钢轨作为导体, 并用引接线连接信号发送、接收设备所构成的电气回路。

轨道电路有机械绝缘和电气绝缘两种类型。

采用机械绝缘的轨道电路, 需切断钢轨, 安装轨道绝缘节, 这对使用长钢轨线路妨碍很大, 不仅需经常维修, 还降低了安全性。

而采用电气绝缘, 则无需切断钢轨, 目前城市轨道交通系统中, 普遍采用“S 棒”进行电气隔离的数字音频轨道电路。

音频无绝缘轨道电路:音频无绝缘轨道电路采用自然衰耗、短路线法等电气方法实现轨道区段的分割。

目前广为采用的是S型连接音频轨道电路。

S型音频轨道电路确保相邻轨道区段的信号互不干扰,同时平衡两条钢轨的牵引回流。

城市轨道交通新技术-第6章城市轨道交通通信信号及列车控制新技术

城市轨道交通新技术-第6章城市轨道交通通信信号及列车控制新技术

6.1 概述
(三)列车控制系统中传统的车地无线通信中存在的缺陷
(1)列车在大部分时间内都是处于运行状态的,但是传统的车地无线通信不 能很好的配合列车的运行,无线通信和列车在大部分时间内都不会有很好的契 合度;
(2)标准的无线通信中适用的传输带宽相对比较宽,但是在列车的运行过程 中,信号很容易就会受到各种因素的干扰,比如:无线信号在传播过程中特别 容易衰落、多普勒效应以及隧道通信本身的传播特性等等;
也比原来多出很多。 (2)这种控制系统在一定程度上减少了城市轨道建设需要的通信设备,
减少了购买设备所需要的投资,而且,相对来说这种控制系统的设备更加 便于维修。
(3)在紧急状态下也可以利用这个系统的线路疏散人员,在一定程度 上降低了人员的伤亡。
6.4 城市轨道列车控制新技术
二、CBTC 控制系统的主要分类 CBTC控制系统根据不同的信息传输方式,可以分为以下几种: (1)电缆环线传输; (2)无线通信传输; (3)其他媒介传输等。
1.固定闭塞式的ATC系统:采用固定的方式来确定闭塞分区长度。 2.准移动闭塞式的ATC系统采用的是数字式音频无绝缘轨道电路,以此作 为传输媒介和轨道列车占用检测。 3.基于移动闭塞方式的ATC系统主要是依靠漏缆、交叉感应电缆、扩频电 台、裂缝波导管等方式传输数据。
6.1 概述
(二)城市轨道交通色灯信号控制系统
(5)实现列车运行过程中的间隔控制。根据列车自身特点及行车线路改变长度,既可以随着列
车的移动而移动,又不需要地面上的信号,在一定程度上减少定程度上保证了列车的行车安全。
(3)实现列车的检测。这种功能可以完善列车运行故障的诊断,便于及时进行列车的维修甚至报警。 (4)实现高速列车的快速定位。在列车的运行过程中,精确的定位技术是非常重要的,它可以有效
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

试论列车定位技术在城市轨道交通中的应用
城市轨道交通的优点是安全、可靠、速度快、舒适和节能环保等。

世界各国都通过城市轨道解决城市交通问题。

技术人员在控制列车的过程中,定位技术非常重要。

列车的准确定位关系到列车的安全运行,如果定位准确,运输效率会提升。

列车每个系统的运行都要考虑列车的位置信息,因为列车位置信息是重要的参数。

通过列车定位技术可以更好地控制和调度列车,因此获取列车速度和位置信息的重要保障就是技术人员以更加认真的态度面对工作。

现阶段,在我国城市轨道交通中,列车定位技术应用非常广泛。

1 我国城市轨道交通中列车定位技术概述
列车定位指的是技术人员通过已有的技术设备,对列车实际地理位置,掌握运行速度和运行状态等关键信息,并通过传输媒介向交通指挥部门传送相关信息。

列车定位意义重大。

根据列车定位技术可以向控制中心提供列车的实时位置。

指挥人员和控制中心调度值班人员可以掌握列车的运行位置,恰当安排列车的运行密度。

如有必要,技术人员可以按照实时客流、通过扣车和跳停等方式控制列车的运行密度。

通过列车定位技术可以提供列车所处的位置,从而得到列车的准确位置,向信号控制系统和检测终端传输,以此为依据信号控制系统发出各种控制指令。

2 列车定位技术在城市轨道交通中的应用
技术人员科学使用列车定位技术,可以准确得到铁路网络中列车的位置。

现阶段,多种列车定位方式被广泛应用于国内外轨道交通列车自动控制系统中。

以下具体分析列车定位技术的类型:
2.1 通过轨道点位定位列车
现阶段,轨道电路定位法是我国常用的列车定位技术。

铁路线路上有两根钢轨,这两根钢轨是轨道电路的导体。

导体经过引线连接信号,设备接收信号,这样就形成了电气回路。

如果车没有占用轨道区段,接收端接收发送端的信息。

如果列车进入轨道区段,车轮可以造成两根钢轨短路。

接收端不能顺利接收发送的信息,接收端在失磁的情况下会落下,对列车进行检测。

在线路运行时,列车运行的轨道会出示“占用标示”,对轨道电路的占用情况进行连续跟踪,从而准确获得列车的位置。

2.2 通过电子计轴技术获得准确的列车定位
电子计轴定位可以对电磁感应信息进行检测,将计轴点安装在轨道区段的分界点上,通过计轴技术检测电磁感应信号。

技术人员能准
确判断列车的轮轴数量和运行方向。

如果车轮驶过计轴点位置,就会形成脉冲信号,将电缆作为介质向控制中心传输。

控制中心的技术装置检测车轮位置,最后按照计数,获取列车出清和占用状况,从而使列车在轨道运行中的定位更加准确。

2.3 通过信标技术对轨道交通中的列车进行定位
地面信标的安装非常重要,其安装位置有两根钢轨,有两种信标,包括无信源和有信源。

每个信标的编号都是唯一的,其位置信息也是特定的。

在车载上安装接收功能的信标,可以读取信标天线。

如果列车越过信标。

车载信标天线会在地面上传递信标能量,这个过程可以通过电磁感应传递。

地面信标在接收到能量后被激活,内部电路会展开工作。

技术人员通过调节电磁感应将存储位置传送至车载信息处理系统,通过解析数据获取列车的位置。

2.4 通过测速定位列车
测速定位建立在列车测量的基础上,通过测速定位可以及时获得列车运行距离。

测速定位包括多普勒雷达法和轮速法。

轮速法需要遵循一定的工作原理,将旋转式光栅安装在旋转式外侧。

在列车的运行过程中,旋转的轮轴可以带动光栅发生转动,在光栅两边安装发光装置。

光栅在旋转的过程中,光电传感器会接收“光脉冲信号”,这一
信号来自于发光装置,经过转化后这一信号会转为脉冲信号,在车载计数器上传送。

车载计数器可以计数这个脉冲信号。

技术人员检测这个信号可以判断车轮的转角。

通过车轮的转角,得出列车的位移。

多普勒效应是速度测量的原理,将多普勒雷达安装在车头位置,雷达向地面发送频率信号。

如果列车运行速度较快,两个信号的频率差也比较大。

技术人员测量两个信号频率差后,可以得到列车的运行方向和速度。

通过列车运行速度的积分,可以得到准确的列车运行距离,从而准确获得列车的位置。

测速定位包括雷达法和轮速法等。

测速法的原理指的是将旋转式光栅安装在列车外侧,并将光电传感器和发光器安装在两侧。

在光栅的旋转过程中。

发光装置会产生脉冲信号,光电传感器可以接收脉冲信号,并对脉冲信号进行转化,形成电脉冲信号,输送至车载计数器。

技术人员检测该信号后,准确确定车轮转角。

技术人员可以通过车轮转角得出列车运行的距离。

多普勒测速原理是常用的列车速度测量原理,在车头位置安装多普勒雷达,雷达会向地面发送信号,并检测反射信号。

根据多普勒速度测量原理,如果列车的状态是运行的,反射信号频率较高。

如果列车状态不是前进,反射信号比发射信号频率低。

通过测量两个信号的频率差,就可以准确得到列车的运行速度、运行方向、运行距离和运行位置。

2.5 通过无线扩频定位列车
无线扩频定位可以准确定位和跟踪列车,通常采用的是伪码测距技术。

无线扩频要按照相关原理开展工作。

技术人员可以在地面沿线设立无线基站,无线基站发送带有位置信息的扩频信号。

列车接收扩频信息,技术人员求得列车信息和列车的时间差。

技术人员可以以时间差为参数,求出无线基站的距离,从而得到列车在轨道网络中的准确位置。

2.6 在交叉环线的基础上定位列车
技术人员可以将交叉感应线敷设在两根钢轨之间,在轨道中央的道床上固定一条线,在钢轨的颈部下方固定另一条线,它们每隔一段距离交叉。

中央回线和天线是相似的,列车每经过一个电缆交叉时,通过车载设备可以对环线内信号的相位变化进行检测,并计数相位变化次数,确定列车的运行距离,从而更准确地定位列车。

3 城市轨道交通中几种列车定位方式比较
轨道电路定位具有方便、经济和可靠性的优势,既可以定位列车,也可以对轨道的完好情况进行检测。

轨道电路的长度决定定位精度,如果定位精确度不够,无法构成移动闭塞。

计轴定位方式相似于轨道
定位,主要是对区段信息的检测,从而确定列车位置。

但是这种方式也有一定的缺点,即外界其他金属物品会对其产生干扰,显示占用状态。

列车定位测速是一种相对定位方式,这种定位方式是一种典型的增长式定位,有累计误差的缺点。

如果对定位精度有更高要求,可以通过其他方法校正位置信息。

查询应答器定位方式有自身优点,地面应答器安装点有较高的定位精度、较低的维修费用、较长的使用寿命,面对恶劣条件可以保持工作的稳定性。

但是也有一定的缺点,即只能获取点式定位信息,在投资规模和设置间距上存在矛盾。

技术人员可以根据实际情况将列车定位技术运用于城市轨道交通中。

4 列车定位技术在城市轨道交通中的应用
常用轨道交通和行车效率、行车安全密切相关。

传统的轨道电路对列车区段的占用情况进行监控,这种技术设备具有容易安装,技术原理简单,技术含量低和单套设备投资成本低的特点。

因此应用广泛。

但是轨道区段对行车效率有决定作用。

如果区段过长,会对行车的通过效率产生严重影响。

在区段过短的情况下,设备的安装数量会增加,也使维修作业和维护工作量增加。

传统的轨道电路极会被外界自然环境影响,可能会偏移电气指标。

轨道交通运营具有较高的车次密度。

区间户外发生故障,如果无法给维修人员足够的抢修时间,设备发生故障会影响运营。

在轨道交
通系统中点位信标技术的成功应用已经有多年,列车不论是自动驾驶还是人工驾驶,都要对站台屏蔽门和车门实现有效联动,保证乘降的方便性,在此发挥重要作用的是定位信标。

地面信标对信息量的存储较大,可以保证停车的准确性和高密度。

在轨道交通新建线路中普遍采用的是计轴设备,计轴设备可以克服轨道电路受恶劣环境影响的不足。

技术人员通过计算机对轴点发送的信息进行处理,从整体上保证了可靠性和安全性。

5 结语
综上所述,随着我国交通事业和科学技术的发展,列车定位技术已经被广泛应用于轨道交通中。

通过列车定位技术可以对列车位置进行准确定位。

文章首先简要概述列车定位;其次分析列车定位技术和定位方式;最后探究列车定位技术在城市道路轨道中的应用。

希望通过本文的研究对轨道交通中列车定位技术应用水平的提高有所帮助。

相关文档
最新文档