高中数学竞赛训练题目二
高中数学竞赛模拟题(十六套)

模拟试题一 2010年全国高中数学联赛模拟试题一 试一、填空题(每小题8分,共64分)1.方程错误!未找到引用源。
2.如图,在错误!未找到引用源。
错误!未找到引用源。
=错误!未找到引用源。
,则m+2n 的值为错误!未找到引用源。
3.错误!未找到引用源。
4.单位正方体错误!未找到引用源。
错误!未找到引用源。
这八个面截这个单位正方体,则含正方体中心的那一部分的体积为 .5.设数列错误!未找到引用源。
6.已知实数x ,y ,z 满足xyz=32,x+y+z=4,则|x|+|y|+|z|的最小值为错误!未找到引用源。
7.若错误!未找到引用源。
8.空间有100个点,任4点不共面,用若干条线段连结这些点,如果不存在三角形,最多可连错误!未找到引用源。
条线段. 二、解答题(共56分) 9.(16分)设错误!未找到引用源。
错误!未找到引用源。
之和为21,第2项、第3项、第4项之和为33.(1)求数列错误!未找到引用源。
的通项公式; (2)设集合错误!未找到引用源。
错误!未找到引用源。
, 求证:错误!未找到引用源。
. 10.(20分)过抛物线错误!未找到引用源。
错误!未找到引用源。
错误!未找到引用源。
的距离均不为整数.11.(20分)已知二次函数错误!未找到引用源。
有两个非整数实根,且两根不在相邻两整数之间.试求a , b 满足的条件,使得一定存在整数k ,有错误!未找到引用源。
成立.二 试一.(40分)如图,已知错误!未找到引用源。
错误!未找到引用源。
求证:错误!未找到引用源。
N DCAMBPEFA二.(40分)设错误!未找到引用源。
.三. (50分)已知n 个四元集合错误!未找到引用源。
错误!未找到引用源。
,试求n 的最大值.这里错误!未找到引用源。
四.(50分)设错误!未找到引用源。
为正整数错误!未找到引用源。
的二进制表示数的各位数字之和,错误!未找到引用源。
为数列错误!未找到引用源。
的前n 项和. 若存在无穷多个正整数n ,满足错误!未找到引用源。
2013全国中学生高中数学竞赛二试模拟训练题(2)

加试模拟训练题(2)1、 设(1,2,3,4)i x i =为正实数,满足11212312341,5,14,30,x x x x x x x x x x ≤+≤++≤+++≤ 求1234111234U x x x x =+++的最大值.2、设 ,,,,21a a a k为两两各不相同的正整数,求证: 对任何正整数n,均有∑∑==≥nk n K k k k a 11213、 一个俱乐部中有3n +1个人,每两个人可以玩网球、象棋或乒乓球,如果每个人都有n 个人与他打网球,n 个人与他下棋,n 个人与他打乒乓球,证明俱乐部中有3个人,他们之间玩的游戏是三种俱全.4.证明:若正整数b a ,满足b b a a +=+2232,则b a -和122++b a 都是完全平方数。
加试模拟训练题(2)1、 设(1,2,3,4)i x i =为正实数,满足11212312341,5,14,30,x x x x x x x x x x ≤+≤++≤+++≤ 求1234111234U x x x x =+++的最大值. 解:令112123123412341,5,14,30,y x y x x y x x x y x x x x =-⎧⎪=+-⎪⎨=++-⎪⎪=+++-⎩ 则 0(1,2,3,4)i y i ≤=,112123234341,4,9,16,x y x y y x y y x y y =+⎧⎪=-++⎪⎨=-++⎪⎪=-++⎩ 于是 ()()()()112223411114916234U y y y y y y y =++-+++-+++-++ 123411*********10.y y y y =++++≤ 当 1121231234123410,50,140,300,y x y x x y x x x y x x x x =-=⎧⎪=+-=⎪⎨=++-=⎪⎪=+++-=⎩即12341,4,9,16x x x x ====时,max 10.U = 2、设 ,,,,21a a a k为两两各不相同的正整数,求证: 对任何正整数n,均有∑∑==≥nk n K k k k a 1121 证明: 设a a ab b b n n ,,,,,,2121 是的从小到大的有序排列,即 b b b n ≤≤21,因为b i是互不相同的正整数.则n b b b n ≥≥≥,,2,121又因为n 222111132>>>>所以由排序不等式得:n a a a n 22212+++ (乱序) n bb b n22212+++≥ (倒序) n 1211+++≥即 ∑∑==≥n k n k k k k a 1121 成立. 3、 一个俱乐部中有3n +1个人,每两个人可以玩网球、象棋或乒乓球,如果每个人都有n 个人与他打网球,n 个人与他下棋,n 个人与他打乒乓球,证明俱乐部中有3个人,他们之间玩的游戏是三种俱全.【证】 将人看作平面上的点,得到一个有3n +1个点的图(假定任意三点都不在一直线上),当两个人玩网球或象棋或乒乓球时,我们就在相应的两点之间连一条红线或黄线或蓝线,需要证明的是,一定存在一个三条边的颜色互不相同的三角形.自一点引出的3n 条线段中,如果某两条线段的颜色不同,就称它们构成一个“异色角”.考虑异色角的个数.由于自每一点引出n 条红线,角形中有3个异色角.这个三角形的三条边颜色互不相同,即相应的三个人之间玩的游戏是三种俱全.4.证明:若正整数b a ,满足b b a a +=+2232,则b a -和122++b a 都是完全平方数。
高中数学竞赛二试题

高中数学竞赛二试题一、选择题(每题3分,共15分)1. 下列哪个选项不是有理数?A. √2B. πC. -1/3D. 02. 如果一个函数f(x)在x=a处可导,那么下列哪个选项是正确的?A. f(x)在x=a处一定连续B. f(x)在x=a处不一定连续C. f(x)在x=a处一定不连续D. 以上都不对3. 已知数列{an}的通项公式为an = 2n - 1,那么该数列的第10项是:A. 17B. 19C. 21D. 234. 在一个平面直角坐标系中,点A(1,2)和点B(4,6),直线AB的斜率是:A. 1B. 2C. 3D. 45. 一个圆的半径为5,圆心到直线的距离为3,那么这个直线与圆的位置关系是:A. 相切B. 相交C. 相离D. 无法确定二、填空题(每题4分,共20分)6. 已知等差数列的首项为3,公差为2,该数列的第5项是________。
7. 函数f(x) = x^3 - 3x^2 + 2的极值点是________。
8. 一个直角三角形的两条直角边分别为3和4,其外接圆的半径是________。
9. 已知直线l的方程为2x - 3y + 6 = 0,求直线l与x轴的交点坐标________。
10. 将圆x^2 + y^2 = 25沿着x轴正方向平移3个单位后,新的圆的方程是________。
三、解答题(每题10分,共30分)11. 证明:对于任意正整数n,n^5 - n 总是能被30整除。
12. 解不等式:|x - 2| + |x + 3| ≥ 5。
13. 已知椭圆的两个焦点分别为F1(-3,0)和F2(3,0),且椭圆上任意一点P到两个焦点的距离之和等于10。
求椭圆的方程。
四、证明题(每题15分,共30分)14. 证明:对于任意实数x和y,不等式(x + y)^2 ≤ 2(x^2 + y^2)总是成立。
15. 证明:如果一个三角形的三边长分别为a, b, c,且满足a^2 + b^2 = c^2,那么这个三角形是直角三角形。
高中数学竞赛试题及答案

高中数学竞赛试题及答案一、选择题(每题3分,共15分)1. 下列哪个数不是有理数?A. πB. √2C. 1/3D. -3.142. 若函数f(x) = 2x^2 + 3x + 1,求f(-2)的值。
A. -1B. 3C. 5D. 73. 一个圆的半径为5,它的面积是多少?A. 25πB. 50πC. 75πD. 100π4. 已知等差数列的首项为3,公差为2,求第5项的值。
A. 11B. 13C. 15D. 175. 以下哪个是二次方程x^2 - 5x + 6 = 0的根?A. 2B. 3C. -2D. -3二、填空题(每题4分,共20分)6. 一个三角形的内角和为______度。
7. 若a,b,c是三角形的三边,且a^2 + b^2 = c^2,则此三角形是______三角形。
8. 一个正六边形的内角为______度。
9. 将一个圆分成4个扇形,每个扇形的圆心角为______度。
10. 若sinθ = 1/2,且θ在第一象限,则cosθ = ______。
三、解答题(每题10分,共65分)11. 证明:对于任意实数x,等式e^x ≥ x + 1成立。
12. 解不等式:2x^2 - 5x + 3 > 0。
13. 已知数列{an}的通项公式为an = 3n - 2,求前n项和Sn。
14. 求函数y = x^3 - 3x^2 + 2x的极值点。
15. 已知椭圆的方程为x^2/a^2 + y^2/b^2 = 1(a > b > 0),求椭圆的焦点坐标。
四、附加题(10分)16. 一个圆内接正六边形的边长为a,求圆的半径。
答案一、选择题1. A2. B3. B4. C5. A二、填空题6. 1807. 直角8. 1209. 9010. √3/2三、解答题11. 证明:设g(x) = e^x - (x + 1),则g'(x) = e^x - 1。
当x < 0时,g'(x) < 0,当x > 0时,g'(x) > 0。
高中数学竞赛试题及答案

高中数学竞赛试题及答案一、选择题(每题5分,共20分)1. 下列哪个数是无理数?A. 2B. πC. 0.5D. √4答案:B2. 已知函数f(x) = x^2 - 4x + 4,求f(2)的值。
A. 0B. 4C. -4D. 8答案:A3. 一个等差数列的前三项分别为1, 4, 7,求第四项的值。
A. 10B. 11C. 13D. 15答案:A4. 计算复数z = 1 + i的模。
A. √2B. 2C. 1D. √3答案:A二、填空题(每题5分,共20分)5. 已知等比数列的公比为2,首项为1,求第5项的值。
答案:326. 已知向量a = (3, -4),向量b = (-2, 3),求向量a与向量b的点积。
答案:-67. 计算函数y = x^3 - 6x^2 + 11x - 6在x = 2处的导数值。
答案:18. 已知圆的方程为(x - 2)^2 + (y - 3)^2 = 9,求圆心坐标。
答案:(2, 3)三、解答题(每题10分,共60分)9. 求证:对于任意正整数n,n^2 + 3n + 2总是能被3整除。
证明:设n = 3k, 3k + 1, 3k + 2,其中k为整数。
当n = 3k时,n^2 + 3n + 2 = 9k^2 + 9k + 2 = 3(3k^2 + 3k + 1),能被3整除。
当n = 3k + 1时,n^2 + 3n + 2 = 9k^2 + 6k + 1 + 9k + 3 + 2 =3(3k^2 + 5k + 2),能被3整除。
当n = 3k + 2时,n^2 + 3n + 2 = 9k^2 + 12k + 4 + 9k + 6 + 2 = 3(3k^2 + 7k + 4),能被3整除。
因此,对于任意正整数n,n^2 + 3n + 2总是能被3整除。
10. 已知函数f(x) = x^3 - 3x^2 + 2x,求f(x)的单调区间。
解:首先求导数f'(x) = 3x^2 - 6x + 2。
高中数学竞赛赛题精选(带答案)

高中数学竞赛赛题精选一、选择题(共12题)1.定义在R 上的函数()y f x =的值域为[m,n ],则)1(-=x f y 的值域为( ) A .[m,n ]B .[m-1,n-1]C .[)1(),1(--n f m f ]D .无法确定解:当函数的图像左右平移时,不改变函数的值域.故应选A.2.设等差数列{n a }满足13853a a =,且n S a ,01>为其前n 项之和,则)(*∈N n S n 中最大的是( ) A. 10S B. 11S C. 20S D. 21S 解:设等差数列的公差为d,由题意知3(1a +7d)=5(1a +12d),即d=-3921a , ∴n a = 1a +( n-1)d= 1a -3921a (n-1)= 1a (3941-392n),欲使)(*∈N n S n 最大,只须n a ≥0,即n ≤20.故应选C.3.方程log 2x=3cosx 共有( )组解.A .1B .2C .3D .4解:画出函数y=log 2x 和y=3cosx 的图像,研究其交点情况可知共有3组解.应选C .4.已知关于x 的一元二次方程()02122=-+-+a x a x 的一个根比1大,另一个根比1小,则()A.11<<-a B.1-<a 或1>aC.12<<-aD.2-<a 或1>a解:令f(x)= ()2122-+-+a x a x ,其图像开口向上,由题意知f(1)<0,即 ()211122-+⨯-+a a <0,整理得022<-+a a ,解之得12<<-a ,应选C .5.已知βα,为锐角,,cos ,sin y x ==βα53)cos(-=β+α,则y 与x 的函数关系为( ) A .1)x 53( x 54x 153y 2<<+--= B .1)x (0 x 54x 153y 2<<+--=C .)53x (0 x 54x 153y 2<<---= D .1)x (0 x 54x 153y 2<<---= []xx y 54153sin )sin(cos )cos()(cos cos 2+-⋅-=⋅+++=-+==αβααβααβαβ解: 而)1,0(∈y 15415302<+-⋅-<∴x x , 得)1,53(∈x .故应选A. 6.函数sin y x =的定义域为[],a b ,值域为11,2⎡⎤-⎢⎥⎣⎦,则b a-的最大值是( )A. πB. π2C.34πD. 35π解:如右图,要使函数sin y x =在定义域[],a b 上,值域为11,2⎡⎤-⎢⎥⎣⎦,则b a -的最大值是74()663πππ--=.故应选C. 7.设锐角使关于x 的方程x 2+4x cos+cot =0有重根,则的弧度数为 ( )A .6B .12或512C .6或512D .12解:由方程有重根,故14=4cos 2-cot =0,∵ 0<<2,2sin2=1,=12或512.选B . 8.已知M={(x ,y )|x 2+2y 2=3},N={(x ,y )|y=mx+b }.若对于所有的m ∈R ,均有M ∩N ,则b 的取值范围是 ( )A .[-62,62] B .(-62,62) C .(-233,233] D .[-233,233] 解:点(0,b )在椭圆内或椭圆上,2b 2≤3,b ∈[-62,62].选A .9.不等式log 2x -1+12log 12x 3+2>0的解集为A .[2,3)B .(2,3]C .[2,4)D .(2,4] 解:令log 2x=t ≥1时,t -1>32t -2.t ∈[1,2),x ∈[2,4),选C .10.设点O 在ABC 的内部,且有+2+3=,则ABC 的面积与AOC 的面积的比为( )A .2B .32C .3D .53解:如图,设AOC=S ,则OC 1D=3S ,OB 1D=OB 1C 1=3S ,AOB=OBD=1.5S .OBC=0.5S ,ABC=3S .选C .11.设三位数n=,若以a ,b ,c 为三条边长可以构成一个等腰(含等边)三角形,则这样的三位数n 有( )A .45个B .81个C .165个D .216个 解:⑴等边三角形共9个;⑵ 等腰但不等边三角形:取两个不同数码(设为a ,b ),有36种取法,以小数为底时总能构成等腰三角形,而以大数为底时,b <a <2b .a=9或8时,b=4,3,2,1,(8种);a=7,6时,b=3,2,1(6种);a=5,4时,b=2,1(4种);a=3,2时,b=1(2种),共有20种不能取的值.共有236-20=52种方法,而每取一组数,可有3种方法构成三位数,故共有523=156个三位数即可取156+9=165种数.选C .12.顶点为P 的圆锥的轴截面是等腰直角三角形,A 是底面圆周上的点,B 是底面圆内的点,O 为底面圆圆心,AB ⊥OB ,垂足为B ,OH ⊥PB ,垂足为H ,且PA=4,C 为PA 的中点,则当三棱锥O -HPC 的体积最大时,OB 的长为 ( )A .53 B .253 C .63 D .263解:AB ⊥OB ,PB ⊥AB ,AB ⊥面POB ,面PAB ⊥面POB .OH ⊥PB ,OH ⊥面PAB ,OH ⊥HC ,OH ⊥PC ,又,PC ⊥OC ,PC ⊥面OCH .PC 是三棱锥P -OCH 的高.PC=OC=2.而OCH 的面积在OH=HC=2时取得最大值(斜边=2的直角三角形).当OH=2时,由PO=22,知∠OPB=30,OB=PO tan30=263.又解:连线如图,由C 为PA 中点,故V O -PBC =12V B -AOP ,S B 11OABCABPO H C而V O -PHC ∶V O -PBC =PH PB =PO 2PB2(PO 2=PH ·PB ).记PO=OA=22=R ,∠AOB=,则V P —AOB =16R 3sin cos =112R 3sin2,V B -PCO =124R 3sin2. PO 2PB 2=R 2R 2+R 2cos 2=11+cos 2=23+cos2.V O -PHC =sin23+cos2112R 3. ∴ 令y=sin23+cos2,y=2cos2(3+cos2)-(-2sin2)sin2(3+cos2)2=0,得cos2=-13,cos =33, ∴ OB=263,选D .二、填空题(共10题)13. 设n S 为等差数列{}n a 的前n 项和,若510S =,105S =-,则公差为 解:设等差数列{}n a 的首项为1a ,公差为d .由题设得⎩⎨⎧-=+=+,,545101010511d a d a 即 ⎩⎨⎧-=+=+,,1922211d a d a 解之得1-=d .14. 设()log ()a f x x b =+(0a >且1)a ≠的图象经过点(21),,它的反函数的图象经过点(28),,则b a +等于 4 .解:由题设知 log (2)1log (8)2a a b b +=⎧⎨+=⎩,, 化简得 2(2)(8).b a b a +=⎧⎨+=⎩,解之得 1131a b =⎧⎨=⎩,; 2224.a b =-⎧⎨=-⎩,(舍去). 故a b +等于4.15.已知函数()y f x =的图象如图,则满足22221()(lg(620))021x x f f x x x x --⋅-+≤-+的 x 的取值范围为 [21)x ∈-, .解: 因为 ()()22lg 620lg (3)11lg111x x x -+=-+≥>,所以()2lg 6200x x -+<. 于是,由图象可知,2111x x +≤-,即 201x x +≤-,解得 21x -≤<. 故x 的取值范围为 [21)x ∈-,.16.圆锥曲线0|3|102622=+--+-++y x y x y x 的离心率是 2 .解:原式变形为|3|)1()3(22+-=-++y x y x ,即=2|3|2+-y x .所以动点),(y x 到定点(31)-,的距离与它到直线03=+-y x 的距离之比为2.故此动点轨迹为双曲线,离心率为2.17.在ABC ∆中,已知3tan =B ,322sin =C ,63=AC ,则ABC ∆的面积为ABC S ∆=解:在ABC ∆中,由3tan =B 得︒=60B .由正弦定理得sin 8sin AC CAB B⋅==.因为︒>60322arcsin,所以角C 可取锐角或钝角,从而31cos ±=C .sin sin()sin cos cos sin A B C B C B C =+=+=sin 2ABC AC ABS A ∆⋅== 18. 设命题P :2a a <,命题Q : 对任何x ∈R ,都有2410x ax ++>. 命题P 与Q 中有 且仅有一个成立,则实数a 的取值范围是 021≤<-a 或 121<≤a . 解:由a a <2得10<<a .由0142>++ax x 对于任何x ∈R 成立,得04162<-=∆a ,即2121<<-a .因为命题P 、Q 有且仅有一个成立,故实数 a 的取值范围是 021≤<-a 或 121<≤a .19.22cos 75cos 15cos75cos15++⋅的值是 . 解:22cos 75cos 15cos75cos15++⋅ =cos²75°+sin²75°+sin15°·cos15° =1+°30sin 21=5420.定义在R 上的函数()f x 满足(1)2f =,且对任意的x R ∈,都有1()2f x '<,则不等式22log 3(log )2x f x +>的解集为 . 解:令g ﹙x ﹚=2f ﹙x ﹚-x ,由f '(x ) <1/2得,2f '(x ) -1<0,即'g ﹙x ﹚<0,g(x)在R 上为减函数,且g(1)=2f(1)-1=3,不等式f(log2X)>2log 2X化为2f(log2X)—log2X≥3,即g(log2X)>g(1),由g(x)的单调性得:log2X<1,解得,0<x<2. 21.圆O 的方程为221x y +=,(1,0)A ,在圆O 上取一个动点B ,设点P 满足()AP OB R λλ=∈且1AP AB ⋅=.则P 点的轨迹方程为 .解:设P(x,y), AB =λOB (λϵR)得B(k(x —1),ky),(λ=k1)。
高中的数学竞赛试题及答案

高中的数学竞赛试题及答案高中数学竞赛试题一、选择题(每题5分,共20分)1. 下列哪个数不是有理数?A. πB. √2C. 0.333...(无限循环)D. 1/32. 如果函数f(x) = 2x^2 - 5x + 3在x = 2时取得最小值,那么f(2)的值是多少?A. -1B. 1C. 3D. 53. 已知等差数列的前三项分别为3, 8, 13,求第10项的值。
A. 43B. 48C. 53D. 584. 若sinx = 1/2,求cosx的值(假设x在第一象限)。
A. √3/2B. -√3/2C. 1/2D. -1/2二、填空题(每题4分,共12分)5. 计算(2x^3 - 3x^2 + 4x - 5) / (x - 1)的商式和余数。
商式为:________余数为:______6. 已知复数z = 3 + 4i,求其共轭复数。
共轭复数为:______7. 一个圆的半径为5,求其内接正六边形的边长。
边长为:______三、解答题(每题18分,共54分)8. 证明:对于任意正整数n,n^5 - n 总是能被30整除。
9. 已知函数g(x) = x^3 - 6x^2 + 11x - 6,求其导数g'(x),并找出g(x)的极值点。
10. 解不等式:|x + 2| + |x - 3| > 4。
四、证明题(每题10分,共10分)11. 证明:对于任意实数a和b,(a^2 + b^2)(1/a^2 + 1/b^2) ≥ 2。
五、附加题(每题15分,共15分)12. 一个圆的半径为r,圆内接正n边形的边长为s。
证明:s =2r*sin(π/n)。
高中数学竞赛试题答案一、选择题1. A(π是无理数)2. B(f(2) = 4 - 10 + 3 = -3,但题目要求最小值,故应为B)3. C(公差d = 13 - 8 = 5,第10项a_10 = 3 + 9*5 = 53)4. A(根据勾股定理,cosx = √3/2)二、填空题5. 商式为:2x^2 - x - 5,余数为:-36. 共轭复数为:3 - 4i7. 边长为:10三、解答题8. 证明略。
数学竞赛试题及答案高中生

数学竞赛试题及答案高中生试题一:代数问题题目:已知\( a, b \) 是方程 \( x^2 + 5x + 6 = 0 \) 的两个实根,求 \( a^2 + 5a + 6 \) 的值。
解答:根据韦达定理,对于方程 \( x^2 + bx + c = 0 \),其根\( a \) 和 \( b \) 满足 \( a + b = -b \) 和 \( ab = c \)。
因此,对于给定的方程 \( x^2 + 5x + 6 = 0 \),我们有 \( a + b =-5 \) 和 \( ab = 6 \)。
由于 \( a \) 是方程的一个根,我们可以将 \( a \) 代入方程得到 \( a^2 + 5a + 6 = 0 \)。
所以 \( a^2 + 5a + 6 = 0 \)。
试题二:几何问题题目:在一个直角三角形中,已知直角边长分别为 3 厘米和 4 厘米,求斜边的长度。
解答:根据勾股定理,直角三角形的斜边长度 \( c \) 可以通过直角边 \( a \) 和 \( b \) 计算得出,公式为 \( c = \sqrt{a^2 + b^2} \)。
将给定的边长代入公式,我们得到 \( c = \sqrt{3^2 + 4^2} =\sqrt{9 + 16} = \sqrt{25} = 5 \) 厘米。
试题三:数列问题题目:一个等差数列的首项 \( a_1 = 3 \),公差 \( d = 2 \),求第 10 项 \( a_{10} \) 的值。
解答:等差数列的通项公式为 \( a_n = a_1 + (n - 1)d \),其中\( n \) 是项数。
将给定的值代入公式,我们得到 \( a_{10} = 3 + (10 - 1) \times 2 = 3 + 9 \times 2 = 3 + 18 = 21 \)。
试题四:组合问题题目:从 10 个不同的球中选取 5 个球,求不同的选取方式有多少种。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中数学竞赛训练题二姓名:________________ (训练时间80分钟) 得分:___________________一、填空题(本题满分64分,每小题8分。
) 1.已知复数m 满足11=+m m ,则=+200920081mm .2.设2cos sin 23cos 21)(2++=x x x x f ,]4,6[ππ-∈x ,则)(x f 的值域为____________________.3.设等差数列{}n a 的前n 项和为n S ,若0,01615<>S S ,则15152211,,,a S a S a S 中最大的是______________________.4.已知O 是锐角△ABC 的外心,10,6==AC AB ,若y x +=,且5102=+y x ,则=∠BAC cos _____________________.5.已知正方体1111D C B A ABCD -的棱长为1,O 为底面ABCD 的中心,M ,N 分别是棱A 1D 1和CC 1的中点.则四面体1MNB O -的体积为_________________________.6.设}6,5,4,3,2,1{=C B A ,且}2,1{=B A ,C B ⊆}4,3,2,1{,则符合条件的),,(C B A 共有 组.(注:C B A ,,顺序不同视为不同组.)7.设x x x x x x y csc sec cot tan cos sin +++++=,则||y 的最小值为________________________--.8.设p 是给定的正偶数,集合},3,22|{1N ∈=<<=+m m x x x A p pp 的所有元素的和是______________________.二、解答题(本题满分56分,第9题16分,第10题20分,第11题20分)9.设数列)0}({≥n a n 满足21=a ,)(2122n m n m n m a a n m a a +=+-+-+,其中n m n m ≥∈,,N .(1)证明:对一切N ∈n ,有2212+-=++n n n a a a ; (2)证明:1111200921<+++a a a .10.已知抛物线C :221x y =与直线l :1-=kx y 没有公共点,设点P 为直线l 上的动点,过P 作抛物线C 的两条切线,A ,B 为切点. (1)证明:直线AB 恒过定点Q ;(2)若点P 与(1)中的定点Q 的连线交抛物线C 于M ,N 两点,证明:QNQM PNPM =.11.设d c b a ,,,为正实数,且4=+++d c b a .证明:22222)(4b a ad d c c b b a -+≥+++.答案:(09湖北)1.0; 2.3[2,2]43.88S a 4. 13 5.7486. 160071.8.21122p p ---9证明 (1)在已知关系式)(2122n m n m n m a a n m a a +=+-+-+中,令n m =,可得00=a ; 令0=n ,可得m a a m m 242-= ① 令2+=n m ,可得)(212242222n n n a a a a +=-+++ ② 由①得)1(24122+-=++n a a n n ,62412=-=a a ,)2(24242+-=++n a a n n ,n a a n n 242-=,代入②,化简得2212+-=++n n n a a a . ------------7分(2)由2212+-=++n n n a a a ,得2)()(112+-=-+++n n n n a a a a ,故数列}{1n n a a -+是首项为201=-a a ,公差为2的等差数列,因此221+=-+n a a n n .于是∑∑==-+=+=+-=nk nk k kn n n k a a aa 1101)1(0)2()(.因为)1(111)1(11≥+-=+=n n n n n a n ,所以 1201011)2010120091()3121()211(111200921<-=-++-+-=+++ a a a --14分 10证明 (1)设11(,)A x y ,则21121x y =.由221x y =得x y =',所以11|x y x x ='=. 于是抛物线C 在A 点处的切线方程为)(111x x x y y -=-,即11y x x y -=.设)1,(00-kx x P ,则有11001y x x kx -=-.设22(,)B x y ,同理有22001y x x kx -=-. 所以AB 的方程为y x x kx -=-001,即0)1()(0=---y k x x ,所以直线AB 恒过定点)1,(k Q . ----------------------7分(2)PQ 的方程为002()1kx y x k x k -=-+-,与抛物线方程221x y =联立,消去y ,得 02)22(42002002=---+---kx kx k x k x kx x .设),(33y x M ,),(44y x N ,则kx kx k x x k x kx x x ---=--=+0024300432)22(,42 ① 要证QNQM PNPM =,只需证明kx x k x x x x --=--430403,即02))((2043043=+++-kx x x x k x x ②由①知,②式左边=0000002242)(4)22(2kx k x kx x k k x k x k +--+----0)(2)42)((4)22(20000002=--+-+---=kx k x kx kx x k k x k .故②式成立,从而结论成立. -----------15分 11证明 因为4=+++d c b a ,要证原不等式成立,等价于证明d c b a b a d c b a a d d c c b b a +++-++++≥+++22222)(4 ① ----------------5分 事实上,)(2222d c b a ad d c c b b a +++-+++ )2()2()2()2(2222d a ad c d d c b c c b a b b a -++-++-++-+=2222)(1)(1)(1)(1a d ad c d c b c b a b -+-+-+-=②---10分由柯西不等式知2222()()()()[]()a b b c c d d a a b c d b c d a ----++++++2|)||||||(|a d d c c b b a -+-+-+-≥ ③----------15分又由||||||||a b a d d c c b -≥-+-+-知22)(4|)||||||(|b a a d d c c b b a -≥-+-+-+- ④由②,③,④,可知①式成立,从而原不等式成立. -------------20分14(2010广东理数)20.(本小题满分为14分)一条双曲线2212x y -=的左、右顶点分别为A 1,A 2,点11(,)P x y ,11(,)Q x y -是双曲线上不同的两个动点。
1)求直线A 1P 与A 2Q 交点的轨迹E 的方程式;(2)若过点H(0, h)(h>1)的两条直线l 1和l 2与轨迹E 都只有一个交点,且12l l ⊥ ,求h 的值。
10.求不定方程21533654321=+++++x x x x x x 的正整数解的组数. 10解 令x x x x =++321,y x x =+54,z x =6,则1,2,3≥≥≥z y x .先考虑不定方程2153=++z y x 满足1,2,3≥≥≥z y x 的正整数解.1,2,3≥≥≥z y x ,123215≤--=∴y x z ,21≤≤∴z .----------------------------------5分当1=z 时,有163=+y x ,此方程满足2,3≥≥y x 的正整数解为)4,4(),3,7(),2,10(),(=y x .当2=z 时,有113=+y x ,此方程满足2,3≥≥y x 的正整数解为)2,5(),(=y x . 所以不定方程2153=++z y x 满足1,2,3≥≥≥z y x 的正整数解为)2,2,5(),1,4,4(),1,3,7(),1,2,10(),,(=z y x . ------------------------------------------10分又方程)3,(321≥∈=++x N x x x x x 的正整数解的组数为21x C -,方程y x x =+54)2,(≥∈x N y 的正整数解的组数为11C -y ,故由分步计数原理知,原不定方程的正整数解的组数为81693036C C C C C C C C 1124132312261129=+++=+++. ------------------------------------------15分(本资料素材和资料部分来自网络,仅供参考。
请预览后才下载,期待您的好评与关注!)。