原子物理学教学课件1

合集下载

《原子物理学》(褚圣麟)第一章 原子的基本状况

《原子物理学》(褚圣麟)第一章  原子的基本状况

4. 量子力学和现代原子物理学 (薛定谔、狄拉克)
第1章 原子的基本状况
原子物理学的地位、作用和研究前景
1.原子物理学在材料科学中的应用 2.原子物理学在宇观研究领域中应用:星际分子、宇宙 起源等 3.原子物理学在激光技术及光电子研究领域的应用 4.原子物理学在生命科学领域中的应用 5.原子物理学化学研究领域的应用 ……… 学习原子物理学应注意的问题 1.实践是检验真理的标准 2.科学是逐步地不断地发展的 3.对微观体系不能要求都按宏观规律来描述 4.要善于观察、善于学习、善于动脑、开拓进取,不断 创新
第1章 原子的基本状况
电子电荷的精确测定是在1910年由R.A.密立根 (Millikan)作出的,即著名的“油滴实验”。
e=1.60217733×10-19C, m=9.1093897×10-31kg。
质量最轻的氢原子:1.673×10-27kg 原子质量的数量级:10-27kg——10-25kg 原子的半径- 10-10 m(0.1nm)
3
3
3 A
元素 Li Al Cu S Pb 7
原子量
质量密度 ρ /(g/cm3) 0.7 2.7 8.9 2.07 11.34
原子半径 r/nm 0.16 0.16 0.14 0.18 0.19
10-10m=1Å=0.1nm数 量级。
27 63 32 207
第1章 原子的基本状况
2、电子 电子的发现并不是偶然的,在此之前已有丰富的积累。 1811年,阿伏伽德罗(A.Avogadno)定律问世,提出 1mol任何原子的数目都是N A个。 1833年,法拉第(M.Faraday)提出电解定律,1mol任何 原子的单价离子永远带有相同的电量-即法拉第常数, 1874年,斯迪尼(G.T.Stoney)综合上述两个定律,指 出原子所带电荷为一个电荷的整数倍,并用“电子”来命 名这个电荷的最小单位。但实际上确认电子的存在,却是 20多年后汤姆逊(J.J.Thomson)的工作; 1897年,汤姆逊(J.J.Thomson)发现电子:通过阴极 射线管中电子荷质比的测量,汤姆逊(J.J.Thomson)预 言了电子的存在。

原子物理第一章.ppt

原子物理第一章.ppt

在一个原子中,若有两个电子具有完全相
同的量子态,即
A (q1, q2 )
1 2
[

(q1
)

(q2
)


(q2
)

(q1
)]
交换反对称性波函数
A (q1, q2 )
1 2
[

(q1)

(q2
)


(q2
)

(q1
)]

1 2
[

(q1
)

(q2
)


(q2
)

总角动量 J L S ,根据上述耦合法则
J j( j 1)
其中 j l s,l s 1, l s
对于两个价电子的情形:s=0,1 . 当s=0时,j=l,s=1;s=1时,
j l 1,l,l 1
由此可见,在两个价电子的情形下,对于
给定的l ,由于s的不同,有四个j,而l的不同, 也有一组j,l的个数取决于l1l2; 可见, 一种 电子组态可以与多重原子态相对应。此外,由
,
r2
)




1 2
[ua
(r1
)ub
(r2
)

ua
(r2
)ub
(r1)]——对称
1 2
[ua
(r1
)ub
(r2
)

ua
(r2
)ub
(r1
)]——反对称
氦原子波函数 u
us (r1, r2 )00 ——S=0

(q1,
q2
)

原子物理学完整--第一章ppt课件

原子物理学完整--第一章ppt课件

散射角
瞄准距离 碰撞参数
.
1-3-1 库仑散射公式的推导(2)
• 库仑散射公式 b a ctg 22
a Z1Z 2e2 4 0E
库仑散射因子
.
1-3-1 库仑散射公式的推导(3)
• 假定:
1. 单次散射 2. 点电荷,库仑相互作用 3. 核外电子的作用可略 4. 靶原子核静止(靶核重,晶体结构牢固)
p m v0 m 4000
电子引起α粒子的偏转角非常小 可以说几乎没有什么贡献
.
1-2-3 解释 粒子散射实验(6)
• 带正电物质散射(汤氏模型)(6)
– 粒子对金的散射角
E 5MeV Z=79
p 3 1 0 5Zra d < 1 0 4Zra d < 1 0 3 ra d
p
E
E
–散射角
F 1 2Ze2
40 R2
p p
p’
p
p
–动量的变化~力乘以粒子在原子度过的时间2R/v
.
1-2-3 解释 粒子散射实验(3)
• 带正电物质散射(汤氏模型)(3)
–相对动量的变化
e2
p 2FR/v 2Ze2 /(40R)
p mv
12mv2
E
R
4 0 2Z1.44fmMeV/0.1nm3105 Z rad
原子物理学
• 第一章 原子的位型: 卢瑟福原子模型 • 第二章 原子的量子态: 玻尔模型 • 第三章 原子的精细结构: 电子自旋 • 第四章 多电子原子:泡利原理 • 第五章 X射线 • 第六章 原子核物理概论
.
第一章 原子的位型: 卢瑟福原子模型
1-1 背景知识 1-2 卢瑟福模型的提出 1-3 卢瑟福散射公式 1-4 卢瑟福公式的实验验证 1-5 行星模型的意义及困难

原子物理学-第一章PPT课件

原子物理学-第一章PPT课件

,但是随着社会生产的发展,如:冶金,内燃机,蒸汽机
等的采用,促进了科学的迅速发展,一方面提出了新的科
学问题,另一方面也为科学工作提供了更好的条件.因此
,物理学在这个时期以后得到了迅速发展.
①.光谱资料的大量积累.
②.许多重大发现产生.
1885年 巴耳末发现光谱线规律。
1887年 赫兹发现光电效应
.
2
.
18
高高等 等学学校校试试用用教教材材
粒子受原子作用后动量发生变化:
pFmaxt
4Ze2
40RV
最大散射角: tg p p40 4 R Z2V eV M 40 4 R Z2 M eV2 ~104
大角散射不可能在汤姆逊模型中发生,散射角大于3°的比1%少 得多;如果考虑多次小角散射合成, 散射角大于90°的概率约为10-3500. 必须重 新寻找原子的结构模型。
α粒子:放射性元素发射出的高速带电粒子,其速度约为光速 的千分之几,带+2e的电荷,质量约为4MH。 散 射 :一个运动粒子受到另一个粒子的作用而改变原来的运动 方向的现象。粒子受到散射 时,它的出射方向与原入射 方向之间的夹角叫做散射角。
( a) 侧视图 (b) 俯视图。 R:放射源;F:散射箔; S:闪烁屏;B:金属匣
§1.1 原子的质量和大小 原子质量 1. 相对质量--原子量
把碳在自然界中最丰富的一种同位素12 C的质量定为 12.0个单位作为原子质量的标准,其它原子的质量同 其相比较,定出质量值,这个数值称为原子量. 例, H:1.0079 O : 15.999 Cu :63.54 原子量可以用化学方法测得.
说是:
(1) 实践理论再实践再理论......,或者说:实
践是检验真理的标准.

《原子物理学总结》课件

《原子物理学总结》课件

基本粒子
1
质子、中子、电子
探索了质子、中子和电子的性质,包括
其他粒子
2
电荷、质量和作用。
介绍了其他与原子相互作用的基本粒子, 如光子、中微子等。
原子核结构
核子结构
揭示了原子核的内部结构,包括 质子和中子的排列方式。
质子和中子的区别
核反应
对比了质子和中子的性质和功能, 以及它们在原子核中的地位。
讨论了核反应的过程,以及其在 核能产业和医学影像学中的应用。
医学影像学
介绍了原子物理学在医学影 像学中的应用,如X射理学的核 能技术在能源和医学领域的 重要性。
结论
1 原子物理学的重要性
总结了原子物理学在科学研究和应用领域所 扮演的关键角色。
2 未来发展趋势
展望了原子物理学领域的未来发展,以及对 人类社会的潜在影响。
原子光谱学
1 原子光谱
研究原子在光谱中的频率 和能量变化,探索了光的 发射和吸收。
2 量子力学
解释了原子光谱背后的量 子力学原理,引入了波粒 二象性和波函数概念。
3 能级图解析
分析了原子能级图的结构 和解读方法,为光谱分析 提供了理论基础。
应用
建筑材料
探讨了利用原子物理学的知 识开发新材料和改进建筑技 术的潜力。
《原子物理学总结》PPT 课件
原子物理学是研究原子及其构成要素的科学,本课件将总结原子模型、基本 粒子、原子核结构、原子光谱学等内容,展示原子物理学的重要性与应用。
概述
原子模型
探讨原子的结构和特征,介绍玻尔模型和多电子原子的研究进展。
基本粒子
介绍质子、中子、电子等基本粒子,并介绍其他具有重要作用的粒子。
原子核结构

原子物理学(原子的精细结构电子自旋)

原子物理学(原子的精细结构电子自旋)
通过调控材料中电子自旋的取向, 可以制备具有特殊磁学性质的自
旋极化材料。
自旋电子学
利用电子自旋的特性,开发新型 自旋电子学器件,如自旋晶体管
和自旋存储器等。
磁性材料研究
通过研究电子自旋的磁学性质, 有助于深入了解磁性材料的微观
结构和物理性质。
05 原子物理学的发展前景与 挑战
原子物理学与其他学科的交叉研究
原子核位于原子的中 心,电子围绕原子核 运动。
原子的电子排布
电子在原子核外的不同能级轨道 上运动,离原子核越远的轨道,
其能量越高。
电子按照一定的规律填充在不同 的能级轨道上,形成电子排布。
电子排布决定了原子的化学性质 和电子状态,是研究原子结构的
重要内容。
原子的能级与光谱
原子的能级是指原子内部电子 运动的能量状态,不同的能级 具有不同的能量。
原子物理学在新能源与技术中的应用
太阳能电池技术
01
原子物理学在太阳能电池技术中的应用,通过优化材料结构和
提高光电转换效率,为可再生能源的发展提供支持。
核聚变能源
02
通过原子物理学对核聚变反应过程的研究,实现可控核聚变能
源的开发,为未来能源供应提供可持续的解决方案。
磁约束核聚变装置
03
利用原子物理学的原理和技术,设计和建造磁约束核聚变装置,
当原子从一个能级跃迁到另一 个能级时,会吸收或释放一定 频率的光子,形成光谱。
光谱分析是研究原子能级结构 和性质的重要手段,可以用于 元素分析和化学分析等。
02 原子核的结构与性质
原子核的组成
01
02
03
质子和中子
原子核由质子和中子组成, 质子带正电荷,中子不带 电。

原子物理学褚圣麟课件

原子物理学褚圣麟课件

原子物理学的发展也促进了其他学科的 发展。例如,在化学、生物学和地球科 学等领域,原子物理学的理论和方法被
广泛应用。
原子物理学的研究有助于深入了解物质 的基本性质和行为,为解决一些重要的
科学问题提供了重要的思路和方法。
原子物理学的发展历程
• 原子物理学的发展始于19世纪末期,当时科学家开始研究原子的结构和性质。
确和更深入的方法。 • 当前,原子物理学的研究仍然是一个活跃的领域。随着新的理论和实验技术的不断出现,原子物理学的研究将继续取得更多的重要成果和进展。
02
原子的基本结构与性质
原子的粒子结构
原子由原子核和核外电子组成 ,原子核由质子和中子组成。
原子核位于原子的中心,电子 围绕原子核运动。
电子的数量决定了元素的种类 ,而质子和中子的数量决定了 同位素的种类。
原子光谱的特征
原子光谱的特征取决于原子的能级结构。不同的原子具有不 同的能级结构,因此它们的发射光谱和吸收光谱也各不相同 。
原子光谱的应用与实例
原子光谱的应用
原子光谱在多个领域都有应用,如化学分析、天文学、量子力学等领域。通过 分析原子光谱,可以确定物质的成分、结构和性质等。
原子光谱的实例
氢原子的发射光谱是最为人们所熟知的原子光谱之一。当氢原子被激发时,它 会发射出特定波长的光线,形成氢原子的发射光谱。通过对氢原子的发射光谱 进行分析,可以确定氢气的成分和浓度等参数。
原子核的衰变规律可以用半衰期来描述,其数值范围从微秒级到宇宙尺 度的亿年。
原子核的裂变与聚变
原子核的裂变是指重核在特定条件下分裂成两个较轻的原子核,同时释放出大量的能量。
原子核的聚变是指轻核在特定条件下结合成质量较大的原子核,同时释放出大量的能量。

原子物理学PPT课件

原子物理学PPT课件

.
18
原子物理学
第九章 分子结构与分子光谱
9.2 分子光谱和分子能级
二、分子内部的运动状态及能级分类
3、分子的转动和转动能级
这是分子的整体转动,对双原子分子要考虑的转动是 转动轴通过分子质量中心并垂直于分子轴(原子核间的联线) 的转动。对多原子分子的转动,如果分子的对称性高,也 可以进行研究。转动能量也是量子化的,但比前二种能量 要小得多,转动能级的间隔只相当于波长是毫米或厘米的 数量级。
以上简单地叙述了原子结成分子的几种方式。
.
15
原子物理学
第九章 分子结构与分子光谱
9.2 分子光谱和分子能级
从分子的光谱可以研究分子的结构,分子光谱比原子 光谱要复杂得多。就波长的范围说,分子光谱可以有如下 三类别。
一、分子光谱的类别
(1)远红外光谱,波长是厘米或毫米的数量级。
(2)近红外光谱,波长是构与分子光谱
9.2 分子光谱和分子能级
二、分子内部的运动状态及能级分类
2、构成分子的诸原子之间的振动和振动能级
这也就是原子核带同周围的电子的振动,在9.1 节已 经提到双原子分子沿着轴线振动。多原子分子的振动就比 较复杂,是多种振动方式的叠加。振动的能量是量子化的, 振动能级的间隔比电子能级的间隔小。如果只有振动能级 的跃迁,而没有电子能级的跃迁,所产生的光谱是在近红 外区,波长是几个微米的数量级。
起着势能作用。这个“势能”随原子核距离的变化如果
出现最低值,分子就能构成,如果没有最低值,分子就
不能构成。
分子中的电子可以处在激发态,这也可以由分离原
子变到联合原子的相应激发态来考虑。同样也只有那些
“势能”随原子核距离的变化具有最低值的才是分子的
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一章 原子的位形: 卢瑟福模型
内容:
1、汤姆孙原子结构模型 2、原子的核式结构 3、卢瑟福散射理论 4、原子的组成和大小 5、卢瑟福核式结构的意义和困难
重点:原子的核式结构、卢瑟福散射理论
§1.1 背景知识
(1) 电子的发现 电子的发现直接与阴极射线的研究有关.阴极射线 是低压气体放电过程出现的一种奇特现象.1858年, 德国物理学家普吕克尔(Julius Plucker,1801 -1868)在 观察放电管中的放电现象时,发现正对阴极的管壁 发出绿色的荧光.阴极射线由什么组成? 1876年,德国物理学家哥尔茨坦 (EugenGoldstein,1850-1930)根据这一射线会引起化 学作用的性质,判断它是类似于紫外线的以太波. 1871年,英国物理学家瓦尔利(C.F.Varley,1828-1883) 从阴极射线在磁场中发生偏转的事实,提出这一射 线是由带负电的物质微粒组成的设想.
§1.5 行星模型的意义及困难 (1)意义 1、最重要意义是提出了原子的核式结构,即提出 了以核为中心的概念 ,认识到高密度的原子核的 存在,从而将原子分为核外与核内两部分,奠定了 原子物理学重要基础。 2、 粒子散射实验为人类开辟了一条研究微观粒 子结构的新途径。以散射为手段来探测,获得微观 粒子内部信息的方法,为近代物理实验奠定了基 础,对近代物理有着巨大的影响。 3 、 粒子散射实验还为材料分析提供了一种手段。
库仑散射公式的推导

请同学们自学教材15-19页的有关内容。
2.卢瑟福散射公式 瞄准距离在 b → b db 之间粒子 散射到立体角d内 → d
问题:环形面积和空心圆锥体 的立体角之间有何关系呢?
a 2 2 sin 环形面积:d 2b db 16 sin 4 d 2
~ 10
4
大角散射不可能在汤姆逊模型中发生,散射角大于 3° 的 比 1% 少 得 多 ; 散 射 角 大 于 90° 的 约 为 10-3500. 必须重新寻找原子的结构模型。 困难:作用力F太小,不能发生大角散射。 解决方法:减少带正电部分的半径R,使作用力增大。
(4)卢瑟福的核式模型
原子序数为 Z 的原子的中心,有一 个带正电荷的核 ( 原子核 ),它所带的 正电量 Ze , 它的体积极小但质量很 大 , 几乎等于整个原子的质量 , 正常 情况下核外有 Z 个电子围绕它运动。 定性地解释:由于原子核很小,绝大部分粒 子并不能瞄准原子核入射,而只是从原子核 周围穿过,所以原子核的作用力仍然不大, 因此偏转也很小,也有少数粒子有可能从原 子核附近通过,这时,r较小,受的作用力较 大,就会有较大的偏转,而极少数正对原子 核入射的 粒子,由于r很小,受的作用力很 大,就有可能反弹回来。所以卢瑟福的核式 结构模型能定性地解释α粒子散射实验。
(2)盖革-马斯顿实验
(a) 侧视图 (b) 俯视图。R:放射源; F:散射箔;S:闪烁屏;B:金属匣
α粒子:放射性元素发射 出的高速带电粒子,其速度 约为光速的十分之一,带 +2e的电荷,质量约为4MH。 散射:一个运动粒子受到 另一个粒子的作用而改变原 来的运动方向的现象。 粒子受到散射时,它的出 射方向与原入射方向之间的 夹角叫做散射角。
2
(3) 用同一个散射物,在同一个散射角, dN E C (4) 用同一个粒子源,在同一个散射角,对同一Nt值,
dN Z 2
1913年盖革-马斯顿用~5MeV的 粒子实验,证实散 射角在5°-150°范围内,前三个结论与实验相符。 1920查德维克改进了实验,测定了几种原子的Z值结果 与它们的原子序数相符,从而确立了原子的核式结构
2 Z Z e 1 )2 ( 1 2 )2 C ( ) ( 4 0 4E 4 sin 2
1


物理意义:粒子散射到θ方向单位立体角内每个原子 的有效散射截面
这样就可以由实验条件给定的参数(n,E,N,t,Z)得到 理论预期值,而通过实验测量散射粒子的数目,就可以 由实验验证公式的正确性。
1897年,汤姆逊通 过阴极射线管的实验发 现了电子,并进一步测 出了电子的荷质比:e/m 汤姆逊被誉为:“一位最 先打开通向基本粒子物 理学大门的伟人.”
图1汤姆逊(1856-1940)正在进行实验
1906年诺贝尔物理学奖 -由于对气体导电的理论和实验所作的贡献
他的学生有7人获诺贝尔物理学奖,他的儿子G·P·汤姆孙 (1937年)。由于他崇高的声誉,在他逝世后,骨灰被安葬在英 国西敏寺的中央,与牛顿,达尔文,开尔文等伟大科学家的骨灰 安放在一起.
(2)电子的电荷和质量 电子电荷的精确测定是在1910年由R.A.密立根 (Millikan)作出的,即著名的“油滴实验”。
e = 1.602176487(40)×10-19C, me = 9.10938215(45)×10-31kg。
E=mc2 me=0.511 MeV/c2 mp= 1.673×10-27kg=938 MeV/c2 质量最轻的氢原子:1.673×10-27kg 原子质量的数量级:10-27kg——10-25kg
(3) 阿伏加德罗常数
1811年意大利化学家阿伏加德罗提出了理想气体分子的假设, 得出了著名的阿伏加德罗常数,并在1865首次实验测定。


NA代表1 mol分子(原子)的分子(原子)数目 6.022 ×1023 阿氏常数是联系宏观和微观的一个物理量,它是 从宏观量的测量导出微观量时的桥梁。 1 u =1/NA g =1.660538782(83)×10-27 kg (4) 原子的大小
如果粒子打到薄靶上,靶的面积为A,厚度为t,单 位体积内的原子数为n。假设靶很薄,靶内的原子核 对射来的粒子前后不互相覆盖。则所有原子(nAt个) 的总有效散射截面为:dA nAtd 一个粒子打到薄靶上被散射到θ至θ- dθ之间d方 向立体角内的概率为: dA
A ntd
N个粒子打到薄靶上, 散射到d方向上的粒子数dN’:
作业 1-2,1-3,1-5,1-6,1-10
dN dA ntd N A
2 Z Z e 2 2 d 1 2 dN Nnt ( ) ( ) 4 0 4E sin 4 2
1
• 微分截面定义:
dN d C ( ) d Nntd

它代表对于单位面积内每个靶核,单位入射粒子、 单位立体角内的散射粒子数。 卢瑟福散射公式
§1.2 原子的核式结构 (卢瑟福模型)
(1)汤姆逊原子模型-布丁模型 1903年英国科学家汤姆逊提出 “葡萄干蛋糕” 式原子模型或称为“西瓜”模型-原子中正电荷和 质量均匀分布在原子大小的弹性实心球内,电子 就象西瓜里的瓜子那样嵌在这个球内。
该模型对原子发光现象的解释-电子在其平衡位 置作简谐振动的结果,原子所发出的光的频率就相 当于这些振动的频率。


他所测得的电子束的速度达光速的7.3 %~ 12%,电子的质荷比m/e是氢离子的质荷比的 1‰~1.5‰.可见,数量级的关系基本正确,但 结果不够精确. 让汤姆生不解的是,测量数据中当电子速度 大到3.6×107 m/s的情况下,电子的质荷比反 而小。这一点直到爱因斯坦在1905年提出 狭义相对论后,他才得知质量与速度的关系。 m0 m v2 1 2 c
3A 3 ) r ( 4N 0
1
原子的半径- 10-10 m(0.1nm)


到此为止,我们已了解到,原子中存在电 子,它的质量只是整个原子质量的很小一 部分,电于是带负电的,而原子是中性 的,那就意味着,原于中还有带正电的部 分,它负担了原子质景的大部份。 原子中带正电的部分,以及带负电的电 子,在大小约为埃的范围内是怎么分布、 怎么运动的呢?
(2) 原子核半径的估算 能量守恒定律
2 2 1 1 2 Ze MV 2 MV ' 2 2 4 0 rm
角动量守恒定律
MVb MV ' rm
由上两式及库仑散射公式可得
2 ze 2 1 rm (1 ) 2 4 0 Mv sin( / 2) 1
Rm=3×10-14 m Rm=1.2 ×10-14 m (金) (铜) 10-14 m 10-15 m
问题: (l) d的物理意义? (2) 库仑散射公式为什么不能直接检验? (3) 如果粒子以一定的瞄准距离接近原子核时,以90o 角散射,当粒子以更小的瞄准距离接近原子核时,散 射角的范围是什么? (4) 卢瑟福依据什么提出他的原子模型? (5) 卢瑟福模型与汤姆逊模型的主要区别是什么?

(2)困难
1、原子稳定性问题 2、原子线状光谱问题
原子的大小
核式结构-原子由原子核及核外电子组成 原子的半径- 10-10 m(0.1nm) 1、原子核半径- 10-14 m (fm) 2、电子半径- 10-18 m



一、电子的发现、汤姆逊原子模型 二、卢瑟福原子模型 三、 粒子散射实验及粒子散射理论 四、卢瑟福理论的实验验证 五、原子核半径的估算 六、对粒子散射实验的说明 七、 行星模型的意义及困难源自§1.4 卢瑟福理论的实验验证
dN 4 1 2 Ze 2 2 sin 2 ( ) ( ) nNt d 4 0 4E
从上式可以预言下列四种关系: (1)在同一 粒子源和同一散射物的情况下 (2) 用同一粒子源和同一种材料的散射物, 在同一散射角,
dN sin 4

2
C
dN t
d
空心锥体的立体角: d 2r sin rd 2 sind r2
2 d与d的对应关系 : d a d 4
微分散射截面公式
16 sin
2
d代表入射粒子被一个靶原子散射到-d之间的空心立体角 d内的概率,称为有效散射截面(靶中单个原子的),又称 为微分散射截面,具有面积的量纲,单位:靶恩(b).
相关文档
最新文档