核外电子-原子物理学(1)
原子物理学教学大纲(1)

《原子物理学》教学大纲课程性质:专业基础课程先修课程:力学、电磁学、光学总学时:60 学分:3.5理论学时:60 实验学时:实验纳入《近代物理实验》课程开课学院:物电学院适用专业:物理学大纲执笔人:凤尔银大纲编写时间:2007年元月教研室主任审核:凤尔银教学院长审定:一、说明1、课程的性质、地位和任务原子物理学为物理学专业的必修课,是物理学专业的一门重要基础课。
本课程的主要目标和任务是:以原子结构为中心,以实验事实为线索,了解原子和原子核层次的物质结构及运动和变化规律,揭示宏观现象与规律的本质。
介绍有关问题所需要的量子力学基本概念,阐述物质微观结构三个层次的物理过程、研究方法,培养创新思维。
使学生对物质世界有更深入的认识,获得在本课程领域内分析和处理一些最基本问题的初步能力。
2、课程教学的基本要求通过本课程的学习,力图使学生初步建立描述微观世界的物理图像,理解适应微观世界的新概念,掌握处理微观世界物理问题的新方法,为后续《量子力学》课程的学习打下一定的基础;本课程涉及知识面较广,讲授时要针对实际情况,对内容加以选择,尽量做到详略得当,让学生既能较全面,又能较深刻地理解和掌握。
课程教学中,要结合有关内容,适当将一些背景材料和物理学史引入教学,以利于加深对新知识的理解和把握。
同时,通过介绍二十世纪初物理学家,在解决经典物理学应用于微观粒子体系遇到困难时的大胆探索、勇于出新的思想脉络,使学生受到创新意识和创新精神方面的熏陶和教育,提高学生分析问题和解决问题的能力。
使学生了解物理学家对物质结构的实践——理论——再实践的认识过程,引导学生养成严谨、活跃、创新的思维方式和学习方法。
3、本课程的重点与难点重点:培养学生初步建立微观世界的物理图像,掌握描述原子结构的基本概念、基本原理和方法;掌握认识原子世界的基本规律,以便从思想和方法上做好准备,为今后学习量子力学打下基础。
难点:由于原子物理学课程是学生第一次系统的接触到的近代物理学的理论体系,它的许多概念、观点与学生长期形成的观念不相符合。
原子物理学习题(参考答案)

【1-6】一束α 粒子垂直射到一重金属箔上,求α 粒子被金属箔散射后,散射角θ ≥600 的 α 粒子数与散射角θ ≥900 的α 粒子数之比。
Z Z e2 dN 1 2 sin 4 ( ) Nnt ( 1 2 2 ) 2 2 4 0 2Mv 解:由 d 可得散射角 90 的α 粒子数为
2
1 ) 180 0 sin 2
5.06 10 14 m
α 粒子与 7Li 核对心碰撞的最小距离(考虑质心系运动)
rm
1 4 0 1 4 0 1 4 0
Z1 Z 2 e 2 (1 v 2 Z1 Z 2 e 2 (1 2 Ec
2
1 sin 1 sin
2
)
2
原子物理学习题 一、选择10-8m ; C C、10-10m ;
D、10-13m 。 C
(2)原子核式结构模型的提出是根据 粒子散射实验中 A、绝大多数 粒子散射角接近 180 ; C、以小角散射为主也存在大角散射;
B、 粒子只偏 2 ~3 ; D、以大角散射为主也存在小角散射。
散射角 60 的α 粒子数
N dN (
1 4 0
) 2 Nnt (
Z1 Z 2 e 2 2 ) 2Mv 2
180
1 sin
4
2
d
散 射 角
60 的 α 粒子数与散 (
α 【2-2】 分别计算 H、 He+、 Li++: (1)第一波尔半径、第二波尔半径及电子在这些轨道上的速度; (2)电子在基态的结合能; (3)由基态到第一激发态所需的激发能量及由第一激发态到基态所辐射的光子的波长。 解: (1)由
核外电子-原子物理学

原子核 I
14N
1
15N
1/2
20Ne
0
23Na 3/2
39K
3/2
40K
4
41K
3/2
µ´I(核磁子)
+0.40365 - 0.28299
0 +2.21711 +0.309 -1.291 +0.215
上表给出了某些原子核的磁矩
' I
gI I
3.原子核的统计性
• (1)交换对称性:
•
两个相同的粒子互相交换时对波函数的影响
(r1,r2。。。ri。。。rj。。。rn)=± (r1,r2。。。rj。。。 ri。。。rn)
(“+”号交换对称) (“-”号交换反对称)
• (2)费米子和玻色子:
• 费米子:自旋为半整数的粒子,如电子、质子、中子
5、同量异位素:A相同,Z不同的核素。
6、目前已知的核素:约2000个,其中有300 多个是天然存在的,280个是稳定的, 30多 个是放射性的;1600多个是人 工制造的理论上预言能够制造出Z=114 的超重元素。
7、核素图:是以Z为横坐标,以N为纵坐标构 成的图。每一个核素在图中有一 确定的位置。
mp 1.007277 u
海森伯统称它们为核子,并认为质子和中子仅仅是核子
的两种不同状态(同位旋
1 2
)。
1、成分:原子核是由质子和中子组成的多粒子
系统。
2、核子:质子,中子统称为核子。用A表示一
个原子核中所含的核子数,N表示中子 数Z表示质子数,显然:
A =Z+N
电子行业核外电子-原子物理学

电子行业核外电子-原子物理学介绍原子物理学是研究原子及其组成部分的物理学分支。
在电子行业中,核外电子是一个重要的研究方向。
核外电子是指位于原子核外的电子,其行为和性质对于理解和应用电子设备和技术都具有重要意义。
本文将介绍电子行业核外电子-原子物理学的基础知识、研究方法和应用领域。
基础知识原子结构在原子物理学中,原子被认为是构成物质的基本单位。
原子由正电荷的原子核和绕核运动的电子组成。
原子核由质子和中子组成,而电子则带有负电荷。
质子和电子数量相等,使得原子整体电荷为零。
原子核的直径约为1/10,000个原子直径,因此整个电子云所占据的体积很大,原子的绝大部分是由电子云组成的。
电子云是由一系列不同能级的电子组成的,这些能级对应了不同的能量。
原子物理学的理论基础原子物理学的理论基础主要建立在量子力学的基础上。
量子力学是一种描述微观粒子行为的物理理论。
它允许我们通过波函数来描述和预测粒子的运动和性质。
在原子物理学中,量子力学的理论框架被广泛运用于描述原子的能级结构、电子云的分布和原子之间的相互作用。
研究方法光谱学光谱学是研究物质与电磁辐射相互作用的学科。
它通过分析物体发射或吸收辐射的光谱来获取关于物质性质的信息。
在原子物理学中,光谱学被广泛应用于研究原子的能级结构和电子激发态。
常见的光谱技术包括原子吸收光谱、原子发射光谱和拉曼光谱等。
散射实验散射实验是研究入射粒子与目标物质相互作用过程的一种实验方法。
在原子物理学中,散射实验被用于研究原子核外电子与入射粒子(如电子、中子或离子)的相互作用。
通过测量散射粒子的散射角度和能量变化,可以推断出目标物质的结构和性质。
计算模拟计算模拟是利用计算机模拟原子系统与电磁场的相互作用过程的方法。
通过在计算机上建立原子系统的数学模型,可以模拟和研究原子的运动、性质和相互作用。
计算模拟在原子物理学的研究中发挥着重要的作用,可以预测和解释实验结果,并为新材料和器件的设计和优化提供指导。
原子物理学各章节小结(1-4).

2
)
14
rm 3.07 10 m
上一页 下一页
目录
结束
玻尔氢原子理论小结
1、氢原子光谱的实验规律
1 1 RH ( 2 2 ) T ( m ) T ( n) m n m 1, 2, 3 n m 1, m 2, RH 1.0967758 107 m 1
总共有:2l+1个
上一页
下一页
目录
结束
6、夫兰克-赫兹实验
结果表明:原子体系的内部能量是量
子化的,原子能级确实存在。
上一页
下一页
目录
结束
例题:1、试计算一次电离的He+的第一玻尔轨道半 径,电离电势,第一激发电势和赖曼系第一条谱线 波长。
解:当不考虑原子核的运动时,由玻尔理论有 Z=2 ◆(1)第一玻尔轨道半径:
b ctg
2
Ze 2 2
代入数值,可得
b 64.8 fm
上一页
下一页
目录
结束
1.5 一个5MeV的α粒子射向金原子核,瞄准距离 b=260fm,试求散射角θ。
Mv 2 b ) 2 解:由公式 ctg 4 0 ( 2 2 Ze
1 5 1.6 1019 106 15 ctg 260 10 2 9 109 79 (1.6 1019 )2
原子物理学各章节小结
原子位形小结 玻尔氢原子理论小结
量子力学初步小结
碱金属原子光谱小结
塞曼效应小结
上一页
下一页
目录
结束
原子位形小结
一、原子的质量和大小 原子的线度 r 为10
原子物理学作业习题1

原子物理学作业习题1原子物理学习题第一章原子的核式结构1.选择题:(1)原子半径的数量级是:A .10-10cm; B.10-8m C. 10-10m D.10-13m(2)原子核式结构模型的提出是根据α粒子散射实验中A. 绝大多数α粒子散射角接近180?B.α粒子只偏2?~3?C. 以小角散射为主也存在大角散射D. 以大角散射为主也存在小角散射(3)进行卢瑟福理论实验验证时发现小角散射与实验不符这说明:A. 原子不一定存在核式结构B. 散射物太厚C. 卢瑟福理论是错误的D. 小角散射时一次散射理论不成立(4)用相同能量的α粒子束和质子束分别与金箔正碰,测量金原子核半径的上限. 问用质子束所得结果是用α粒子束所得结果的几倍?A. 1/4 B . 1/2 C . 1 D. 2(5)动能E K =40keV 的α粒子对心接近Pb(z=82)核而产生散射,则最小距离为(m ):A.5.91010-?B.3.01210-?C.5.9?10-12D.5.9?10-14(6)如果用相同动能的质子和氘核同金箔产生散射,那么用质子作为入射粒子测得的金原子半径上限是用氘核子作为入射粒子测得的金原子半径上限的几倍?A.2B.1/2C.1 D .4(7)在金箔引起的α粒子散射实验中,每10000个对准金箔的α粒子中发现有4个粒子被散射到角度大于5°的范围内.若金箔的厚度增加到4倍,那么被散射的α粒子会有多少?A. 16B..8C.4D.2(8)在同一α粒子源和散射靶的条件下观察到α粒子被散射在90°和60°角方向上单位立体角内的粒子数之比为:A .4:1 B.2:2 C.1:4 D.1:8(9)在α粒子散射实验中,若把α粒子换成质子,要想得到α粒子相同的角分布,在散射物不变条件下则必须使:A.质子的速度与α粒子的相同;B .质子的能量与α粒子的相同;C .质子的速度是α粒子的一半;D .质子的能量是α粒子的一半2.简答题:(1)简述卢瑟福原子有核模型的要点.(2)简述α粒子散射实验. α粒子大角散射的结果说明了什么?(3)什么是微分散射截面?简述其物理意义.(4)α粒子在散射角很小时,发现卢瑟福公式与实验有显著偏离,这是什么原因?(5)为什么说实验证实了卢瑟福公式的正确性,就是证实了原子的核式结构?(6)用较重的带负电的粒子代替α粒子作散射实验会产生什么结果?中性粒子代替α粒子作同样的实验是否可行?为什么?(7)在散射物质比较厚时,能否应用卢瑟福公式?为什么?(8)普朗光量子假说的基本内容是什么?与经典物理有何矛盾?(9)为什么说爱因斯坦的光量子假设是普朗克的能量子假设的发展.(10)何谓绝对黑体?下述各物体是否是绝对黑体?(a)不辐射可见光的物体;(b)不辐射任何光线的物体;(c)不能反射可见光的物体;(d)不能反射任何光线的物体;(e)开有小孔空腔.3.计算题:(1)当一束能量为4.8Mev 的α粒子垂直入射到厚度为4.0×10-5cm 的金箔上时探测器沿20°方向上每秒记录到2.0×104个α粒子试求:①仅改变探测器安置方位,沿60°方向每秒可记录到多少个α粒子?②若α粒子能量减少一半,则沿20°方向每秒可测得多少个α粒子?③α粒子能量仍为4.8MeV,而将金箔换成厚度的铝箔,则沿20°方向每秒可记录到多少个α粒子?(ρ金=19.3g/cm 3 ρ铅=27g /cm 3;A 金=179 ,A 铝=27,Z 金=79 Z 铝=13)(2)试证明:α粒子散射中α粒子与原子核对心碰撞时两者之间的最小距离是散射角为900时相对应的瞄准距离的两倍.(3)10Mev 的质子射到铜箔片上,已知铜的Z=29, 试求质子散射角为900时的瞄准距离b 和最接近于核的距离r m .(4)动能为5.0MeV 的α粒子被金核散射,试问当瞄准距离分别为1fm 和10fm 时,散射角各为多大?(5)假设金核半径为7.0fm ,试问:入设质子需要多大能量,才能在对头碰撞时刚好到达金核表面?(6)在α粒子散射实验中,如果用银箔代替金箔,二者厚度相同,那么在同样的偏转方向,同样的角度间隔内,散射的α粒子数将减小为原来的几分之几?银的密度为10.6公斤/分米3,原子量为108;金的密度为19.3公斤/分米3,原子量197。
原子物理学课件第1-3章

1 2 1 2Ze 2 Mv Mv 2 2 4 0 rm
有心力场中,角动量守恒
2
Mvb Mvrm
2Ze2 1 14 rm (1 ) ~ 10 m 2 4 0 Mv sin 2
5.对a粒子散射实验的说明
(1)散射截面的问题
(2)大角散射和小角散射的问题 (3)核外电子的问题
的粒子所对应的一个原子的有效截面dσ。 一个粒子打在d 的可能性多大?
4 Mv
a
2 2 2
Ze 4 sin 4 0 2
d
1
Mv
2 2
sin
4
d
问题:
设:靶的面积为A,厚度 t 很小(前后不遮蔽) 单位体积内原子数为N。 靶子共有原子总数是 N A t N 对每个原子有一个---- dσ 总有效散射面积------- d N d N Atd
1896年,贝克勒耳发现放射性
1897年,汤姆逊发现电子 1900年,普朗克黑体辐射理论 1911年,卢瑟福原子模型 1913年,波尔氢原子理论
《原子物理》的研究内容: (1)原子.分子结构.性质. 运动规律及相互作用。 (2)以及由此如何决定物体宏观性质等问题. 重点:单(价)电子原子 双价电子原子
(1)单次散射 (2)靶核不动 (3)只有库仑力 (4)电子作用忽略
(2)卢瑟福公式 打在 b~b+db上
落在 d环内
散射截面:
db b
d
dR
R
d 2bdb b
d
2
b
r
2
1 1 dS 2 RdR 2 ctg d d 2 2 2 2 2 2 2 sin / 2 r r Mv
原子物理学

原子物理学原子和原子核佚名【电子】就是一种最轻的带电粒子。
它也就是最早被人们辨认出的基本粒子。
拎负电,电量为,1.602189×10-19库仑。
就是电量的最轻单元。
质量为9.10953×10-28克。
常用符号e则表示。
电子在原子中,紧紧围绕于原子核外,其数目与核内的质子数成正比,亦等同于原子序数。
导线中电流的产生即为就是电子流颤抖的结果。
一安培的电流相等于每秒通过6.24×1018个电子。
利用电场和磁场,能够按照人们的建议掌控电子的运动(特别是在真空中),从而生产出来各种电子仪器和元件,例如各种电子管,电子显像管、正电子的质量和电子相等,它的电量的数值和电子相等而符号相反,即带正电。
一个电子和一个正电子相遇会发生湮没而转化为一对光子,即一对正负电子,常称作正负电子对(电子偶)。
能量少于1.02mev(兆电子伏特)的光子沿着铅板时,可以产生电子一正电子对,这个反应则表示为电子的运动质量m与静止质量m0的关系为这里v就是电子运动速度,c就是光速,这就是相对论的公式。
【原子】组成单质和化合物分子的最小粒子。
不同元素的原子具有不同的平均质量和原子结构。
原子是由带正电的原子核和围绕核运动的、与核电荷核数相等的电子所组成。
原子的质量几乎全部集中在原子核上。
在物理化学反应中,原子核不发生变化。
只有在核反应中原子核才发生变化。
【汤姆逊的原子核模型】汤姆逊的原子核模型就是最早明确提出的原子核模型,他指出:形成原子的正电荷就是均匀分布于球状原子内,原子大小乃是此正电荷球之大小,电子则埋于此正电荷中,当电子受外界鞭策时,它即以平衡位置为中心并作振动而升空光。
当a粒子沿着此原子时,a粒子将受反射,因电子质量很小,这项散射之主要原因是正电荷之斥力作用。
由电磁理论预示加速的带电物体如振动的电子等会发射电磁辐射,故根据汤姆生模型,便可了解受激原子会发射电磁辐射的性质。
在实际计算其可能发射的辐射能谱,即发现此模型所导致的结果,与实验观察到的能谱在数值上并不相符。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
核素图
质子数
Z
已知核素半岛
可能的超重元素岛
不稳 定
Z=114
海
洋
N
核 素图
1、稳定核素集中在Z=N的直线上或紧靠 它的两侧,构成稳定核素区。
2、稳定核素中质子数与中子数之比:轻核 为1;最重的核 N / Z 1.6
PF = PJ + PI
PF的数值也是量子化的,其值为:
F=I+J,I+J-1,…I-J
如果JI, F有2I+1个值;如果IJ,F有2J+1个值。不同F 的状态具有不同能量,于是原来不考虑核自旋(F=J为定值 )的能级又分裂成(2I+1)或(2J+1)个子能级。
2. 原子核的磁矩
(1)核子的磁矩 原子核内的质子带电,它的“轨道”运动
二、原子核的质量与质量数
原子核的另一重要特征是它的质量。 MN = MA– Zme
原子质量单位:
原子质量 = 原子量×原子质量单位
核素 质量数
1H
1
2H
2
3H
3
12C
12
13C
13
14N
14
15N
15
核素质量
1.0078252 2.0141022 3.0160497 12.000000 13.003354 14.0030744 15.000108
(1)原子核的角动量
原子核和原子一样也具有角动量,这是因为每个核子都
有自旋,且自旋都为1/2,因此具有固有角动量(自旋角动
量),与电子一样,都是
。
核子在核内还有轨道运动,核子的自旋和轨道角动量的 矢量和就是原子核的角动量,习惯上也称它为原子核的自旋 ,并用PI表示, PI是量子化的。
I 称为核自旋量子数。
3、Z<84的核素有一个或几个稳定的同位素; Z>84的以及质子数或中子数过多的核都 是不稳定的放射性的同位素。
四、原子核的大小
1、半径:
多数原子核基本上是球形,实验测量出 原子核的半径,得到核半径的经验公式:
R = r0 A1/3 r0=1.4×10-15m=1.4fm
2、体积: 原子核的体积近似地与质量数成正比:
产生“轨道磁矩”,另外质子和中子本身还有 与自旋相关的磁矩,理论和实验都证明原子 核和核子都具有磁矩,中子和质子的磁矩为:
mN为核子质量,gp和gn是朗德因子。
(2)核磁子:
实验上测出 : 则可算出
=0.505038×10-27焦耳/特斯拉
μp=2.79276μN μn=-1.191315μN
玻尔磁子:
• (2)PI在某特殊方向投影的数值为;
MI称为核磁量子数。PIZ的最大值:PI=I 通常用来表示核角动量的大小.若以为单位, 则角动量的大小就可用I来表示。
根据角动量的相加规则,容易证明,A为奇 数的原子核,它的I一定是半整数,A为偶数的原 子核,它的I一定是整数。这和前面讲的,A为奇 数的原子核是费米子,A为偶数的原子核为玻色 子一致。下表列出了一些原子核的I值。
核外电子-原子物理学(1)
2020/8/14
§ 10.1 原子核的基本性质
一、原子核的电荷和电荷数 二、原子核的质量和质量数 三、原子核的成分 四、原子核的大小 五、原子核的自旋和磁矩 六、原子核的宇称、电四极矩、统计性和同位旋 七、原子核的结合能
一、原子核的电荷与电荷数
• 原子核的一个重要特征是它的电荷。由卢瑟福的原子 核式结构模型可知: • 原子序数为Z的原子的中心有一个带有正电量为Ze 的原子核。即a q=+Ze Z是原子序数,e是基本电荷,其数值为一个电子电量 的绝对值。
由于电子的质量
所以核磁子μN 比玻尔磁子 B 小了三个数量级。
3、原子核的磁矩:就是质子的轨道磁矩,质子、 中子的自旋磁矩的总和。
gI 因子 的数值不能通过公式计算,只能由实验测得 μ。I在给定正方向的投影值为:
1、成分:原子核是由质子和中子组成的多粒子
系统。
2、核子:质子,中子统称为核子。用A表示一
个原子核中所含的核子数,N表示中子 数Z表示质子数,显然:
A =Z+N
3、核素符号:
4、同位素:Z相同,N不同的核素。
5、同量异位素:A相同,Z不同的核素。
6、目前已知的核素:约2000个,其中有300 多个是天然存在的,280个是稳定的, 30多 个是放射性的;1600多个是人 工制造的理论上预言能够制造出Z=114 的超重元素。
3、密度:
u= 1.6610-27Kg ; r0 = 1.4 fm
1017 Kg / m3=1014 / m3
密度大得惊人!原子核是物质紧密集中之处! 核的质量密度是水的密度的1014倍,也是地球平 均密度的1014倍。
五、原子核的角动量和磁矩
1.原子核的角动量 2.原子核的磁矩
1. 原子核的角动量
原子核 I
n
1/2
1H
1/2
2H
1
4He
0
6Li
1
7Li
3/2
9Be
3/2
µ´I(核磁子)
-1.91280 +2.79255 +0.857348
0 +0.82189 +3.25586 -1.1774
原子核 I
14N
1
15N
1/2
20Ne
0
23Na 3/2
39K
3/2
40K
4
41K
3/2
µ´I(核磁子)
三、原子核的成分
早先人们只知电子和质子这两种基本粒子,当发现原子 核可放出电子(β衰变),自然使人们推测核是由电子和质子 组成的。但这引起许多矛盾。其中,不确定关系指出核“装不 下”电子。1932年查德威克发现了中子后,才知核是由质子和 不带电的中子组成的,它们的质量相近
海森伯统称它们为核子,并认为质子和中子仅仅是核子 的两种不同状态(同位旋 )。
+0.40365 - 0.28299
0 +2.21711 +0.309 -1.291 +0.215
(3)原子光谱的超精细结构
• 原子核的角动量(核自旋)可以从原子光谱的
超精细结构,或从分子光谱测得。例如,当用分辨
本领更高的光谱仪观察钠的光谱时,会发现钠主线
系第一条谱线D双线的D1线 (
)由相距为
0.023埃的两条线组成,D2线
由相距为0.021
埃的两条线组成.这就是原子光谱的超精细结构。
3P
3S (a)
5893A D
5896A D1
3S1/2
(b)
3P3/2 3P1/2
F2=I+1/2 FI=I-1/2
(c)
产生超精细结构的原因是因为原子核有角动量(核自 旋)。原子的角动量,在考虑了核自旋后,应当等于 电子的角动量与核自旋的矢量和,即