2019届九年级数学单元测试(一)反比例函数新人教版

合集下载

专题01 反比例函数的概念、图像和性质(课后小练)-解析版

专题01 反比例函数的概念、图像和性质(课后小练)-解析版

专题01 反比例函数的概念、图像和性质(课后小练)满分100分 时间:45分钟 姓名:注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上第I 卷(选择题)一、单选题(共24分)1.(本题4分)(2022·河南三门峡·九年级期末)下列四个关系式中,y 是x 的反比例函数的是( )A .yx =B .21y x =C .6y x =+D 1y=2.(本题4分)(2022·安徽·九年级期末)下列四个点中,不在反比例函数2y x=图象上的是( )A .()1,2--B .()2,1C .1,42æö--ç÷D .33,2æöç÷3.(本题4分)(2022·重庆市育才中学二模)按如图所示的运算程序,能使输出y 值为3的是( )A .1x =B .2x =C .3x =D .4x =4.(本题4分)(2021·江苏淮安·一模)定义运算:a ⊕b =(0)(0)ab ba b b ì>ïïíï<ï-î,例如:4⊕5=45,4⊕(-5)=45,那么函数y =2⊕x (x ≠0)的图象大致是( )A .B .C .D .【答案】D【分析】根据题干中新运算定义,分两种情况分别求出y =2⊕x 的解析式,进而求解.5.(本题4分)(2022·全国·九年级单元测试)在平面直角坐标系中,点A (1,2)-、B (2,3)、C (6,)m -分别在三个不同的象限,若反比例函数(0)ky k x=¹的图象经过其中两点,则k 的值为( )A .2-B .6C .2-或6D .6-6.(本题4分)(2022·全国·九年级课时练习)反比例函数的图象如图所示,则这个反比例函数的表达式可能是( )A .2y x=-B .83y x=-C .3y x=-D .5y x=-【答案】B【分析】根据点A 、B 的坐标结合函数图象以及反比例函数图象上点的坐标特征,即可得出32k -<<-,再对照四个选项即可得出结论.【详解】解:观察函数图象可知:3(1)21k ´-<<-´,即32k -<<-.故选:B .【点睛】本题考查了反比例函数的图象以及反比例函数图象上点的坐标特征,观察函数图象利用反比例函数图象上点的坐标特征找出k 的取值范围是解题的关键.第II 卷(非选择题)二、填空题(共20分)7.(本题5分)(2022·浙江宁波·八年级期末)已知反比例函1k y x-=,在每个象限内y 随x 的增大而增大,则k 的取值范围为______.【答案】k <1##1>k8.(本题5分)(2022·河南·辉县市城北初级中学一模)从-1,2,-3,4这四个数中任取两个不同的数分别作为a ,b 的值,得到反比例函数aby x=,则这些反比例函数中,其图像在第二,四象限的概率是________.9.(本题5分)(2022·湖南·长沙市开福区青竹湖湘一外国语学校三模)若点M (3m -,1y )、N (2m +,2y )在双曲线ky x=(0k >)上,且12y y <,则m 的取值范围是________.【点睛】本题考查了反比例函数的图象与性质,熟练掌握反比例函数的图象与性质是解题关键.10.(本题5分)(2022·江苏泰州·八年级期末)如图,在平面直角坐标系xOy中,点A为反比例函数y=-4 x(x>0)的图象上一动点,AB⊥y轴,垂足为B,以AB为边作正方形ABCD,其中CD在AB上方,连接OA,则OA2-OC2=_______.三、解答题(共56分)11.(本题10分)(2021·广东·广州市黄埔区华实初级中学二模)如图,在平面直角坐标系中,O为坐标原点,Rt△OAB的直角边OB在x轴的正半轴上,点A的坐标为(6,4),斜边OA的中点D在反比例函数ykx=(x>0)的图象上,AB交该图象于点C,连接OC.(1)求k的值;(2)求△OAC的面积.12.(本题10分)(2022·江苏·苏州市吴江区铜罗中学八年级期中)已知y是x的反比例函数,并且当x=2时,y=6.(1)求y关于x的函数解析式;(2)当x=4时,求y的值.13.(本题12分)(2022·河南南阳·八年级期中)如图,一次函数y=﹣x+b的图象与x轴交于A点,与y轴交于B点,与反比例函数kyx=的图象交于点E(1,5)和点F(5,1).(1)求k,b的值;(2)求△EOF的面积;(3)请根据函数图象直接写出反比例函数值大于一次函数值时x的范围.反比例函数值大于一次函数值时x的范围为:【点睛】本题考查了反比例函数与一次函数综合,待定系数法求解析式,求直线围成的三角形面积,根据函数图象交点求不等式的解集,数形结合是解题的关键.14.(本题12分)(2022·河北唐山·一模)已知反比例函数y=3mx-(m为常数,且m≠3)(1)若在其图象的每一个分支上,y随x增大而减小,求m的取值范围;(2)若点A(2,32)在该反比例函数的图象上;①求m的值;②当x<﹣1时,直接写出y的取值范围.15.(本题12分)(2022·江苏扬州·八年级期末)如图,某养鸡场利用一面长为11m 的墙,其他三面用栅栏围成矩形,面积为260m ,设与墙垂直的边长为x m ,与墙平行的边长为y m .(1)直接写出y 与x 的函数关系式为______;(2)现有两种方案5x =或6x =,试选择合理的设计方案,并求此栅栏总长.。

第一章《反比例函数》(基础卷)(解析版)

第一章《反比例函数》(基础卷)(解析版)

2022-2023学年湘教版九年级上册期末真题单元冲关测卷(基础卷)第一章反比例函数一、选择题(每小题4分,共40分)1.(2021-2022·湖南·期末试卷)下列函数中,是反比例函数的是()A.y=5B.y=x2C.y=2x+1D.2y=xx【答案】A【解析】根据反比例函数的定义,可得答案.解:形如y=k(k≠0)的函数是反比例函数,故只有选项A符合题意.x2.(2021-2022·广东·单元测试)若函数y=(m2−1)x m2−m−3是反比例函数,则m的值是()A.±1B.2C.−1或2D.−1【答案】B【解析】因为函数y=(m2−1)x m2−m−3是反比例函数,所以m2−m−3=−1,m2−1≠0,所以m=2.3.(2021-2022·河南·月考试卷)下列关于反比例函数y=−3的结论中正确的是()xA.图象过点(1,3)B.图象在一、三象限内C.当x<0时,y随x的增大而增大D.当x>−1时,y>3【答案】C4.(2021-2022·河南·月考试卷)已知电流I(安培)、电压U(伏特)、电阻R(欧姆)之间的关系为I=U,当电压为定值时,关于R的函数图象是()RA. B. C. D.【答案】A5.(2021-2022·广东·单元测试)已知反比例函数y=kx的图象经过点P(3,−4),则这个反比例函数的解析式为()A.y=12x B.y=−12xC.y=3xD.y=4x【答案】B【解析】将P(3,−4)代入y=kx,得k=3×(−4)=−12.故反比例函数解析式为y=−12x.6.(2021-2022·安徽·期末试卷)若点A(−3,2)关于x轴的对称点A′恰好在反比例函数y=kx(k≠0)的图象上,则k的值为()A.−5B.−1C.6D.−6【答案】C7.(2021-2022·广东·同步练习)如图,点P在反比例函数y=kx(k≠0)的图象上,PA⊥x轴于点A ,△PAO的面积为2,则k的值为()A.1B.2C.4D.6【答案】C【解析】根据反比例函数系数k的几何意义可知,△PAO的面积=12|k|,再根据图象所在象限求出k的值既可.解:依据比例系数k的几何意义可得,△PAO的面积=1|k|,2即1|k|=2,解得,k=±4,由于函数图象位于第一、三象限,故k=4.28.(2021-2022·广东·月考试卷)若点A(−3,y1),B(−1,y2),C(3,y3)都在反比例函数y=k(k>0)的x图象上,则y1,y2,y3的大小关系是()A.y1>y2>y3B.y3>y1>y2C.y2>y1>y3D.y1>y3>y2【答案】B9.(2021-2022·安徽·月考试卷)已知正比例函数y=k1x和反比例函数y=k2,在同一直角坐标x系下的图象如图所示,其中符合k1⋅k2>0的是()A.①②B.①④C.②③D.③④【答案】B【解析】根据正比例函数和反比例函数的图象逐一判断即可.10.(2021-2022·广东·单元测试)如图,在直角坐标系中,正方形的中心在原点O,且正方形的一组对边与x轴平行,点P(4a,a)是反比例函数y=k(k>0)的图象上与正方形的一个交点,若x图中阴影部分的面积等于16,则k的值为( )A.16B.1C.4D.−16【答案】C【解析】根据正方形的对称性及反比例函数的的对称性,由割补法可以得出阴影部分的面积就是一个小正方形的面积,又阴影部分的面积是16,故一个小正方形边长为4,根据点的坐标与图形的性质即可得出|4a=4,求解得出a的值,再根据反比例函数图象上的点的坐标特点即可求出k的值.解:如图:∵图中阴影部分的面积等于16,∴正方形OABC的面积=16.∵P点坐标为(4a, a),∴OA=OC=4a,∴4a×4a=16,∴a=1(a=−1舍去),∴P点坐标为(4, 1).把P(4, 1)代入y=kx,得k=4×1=4.二、填空题(本题共计6小题,每题4分,共计24分)11.(2021-2022·广东·期末试卷)若函数y=mx m2+3m−1是反比例函数,则m=________.【答案】−3【解析】直接利用反比例函数的定义分析得出即可.【解答】解:∵函数y=mx m2+3m−1是反比例函数,∴m2+3m−1=−1且m≠0,解得:m=−3.12.(2020-2021·湖南·期中试卷)已知反比例函数y=(m−2)x m2−10的图象,在每一象限内y随x 的增大而减小,则反比例函数的解析式为________.【答案】y=1x【解析】根据反比例函数的定义得到得m−2≠0m2−10=−1,可解得m=3或−3,再根据反比例函数的性质得到m−2>0,则m=3,然后把m=3代入y=(m−2)x m2−10即可.解:根据题意得m−2≠0,m2−10=−1,解得m=3或−3,∵反比例函数在每一象限内y随x的增大而减小,∴m−2>0,∴m>2, ∴m=3,∴y=(3−2)x−1=1x,13.(2021-2022·全国·中考复习)计划修建铁路1200km,那么铺轨天数y(d)是每日铺轨量x的________比例函数解,其表达式为________.【答案】反,y=1200x【解析】本题考查反比例函数的定义.解:故答案为:反,y=1200x.14.(2021-2022·河南·中考复习)已知函数y=−1x,当自变量的取值为−1<x<0或x≥2时,函数值y的取值为________.【答案】y>1或−12≤y<0解:画出函数y=−1x的图象,如图所示:当x=−1时,y=1,当x=2时,y=−12.由图象可得:当−1<x<0时,y>1,当x≥2时,−12≤y<0.15.(2021-2022·河南·月考试卷)已知(−3, y1),(−2, y2),(1, y3)是抛物线y=3x2+12x+m上的点,则y1,y2,y3的大小关系为________.A.y2<y3<y1B.y1<y2=y3C.y2<y1<y3D.y3<y2<y1【答案】C【解析】利用二次函数解析式求出其对称轴,再利用二次函数的对称性可得到点(−3,y1)关于对称轴对称的点的坐标(−1y1);利用二次函数的增减性比较−2,−1,1的大小关系,就可得到y1,y2,y3的大小关系.解:A(−3,y1),B(−2,y2),C(1,y3)在二次函数y=3x2+12x+m的图象上,=−2,开口向上,y=3x2+12x++m的对称轴x=−b2a∴当x=−3与x=−1关于x=−2对称,:A在对称轴左侧,y随x的增大而减小,则y1>y2C在对称轴右侧,y随x的增大而增大,1>−1, ∵y3>y1, ∵y3>y1>y216.(2021-2022·河南·中考复习)如图,在平面直角坐标系中,菱形OBCD的边OB在x轴正半的图象经过菱形OB-CD对角线的交点A,若点D的坐标为(6,8),则k 轴上,反比例函数y=kx的值为________.【答案】32解:∵点D的坐标为(6, 8),∴OD==10,∵四边形OBCD是菱形,∴OB=OD=10,∴点B的坐标为:(10, 0),∵AB=AD,即A是BD的中点,∴点A的坐标为:(8, 4),的图象上,∵点A在反比例函数y=kx∴k=xy=8×4=32.三、解答题(本题共计8小题,每题10分,共计86分)17.(2021-2022·广东·单元测试)已知函数y=(m2+2m)x m2−m−1.(1)如果y是x的正比例函数,求m的值;(2)如果y是x的反比例函数,求出m的值,并写出此时y与x的函数关系式.解:(1)由y=(m2+2m)x m2−m−1是正比例函数,得m2−m−1=1且m2+2m≠0,解得m=2或m=−1;(2)由y=(m2+2m)x m2−m−1是反比例函数,得m2−m−1=−1且m2+2m≠0,解得m=1,.故y与x的函数关系式y=3x18.(2020·广东·单元测试)已知函数y=(k−2)x k2−5为反比例函数.(1)求k的值;(2)它的图象在第________象限内,在各象限内,y随x增大而________;(填变化情况)时,y的取值范围.(3)求出−2≤x≤−12解:由题意得:k2−5=−1,解得:k=±2,∵k−2≠0,∴k=−2;∵k=−2<0,∴反比例函数的图象在二、四象限,在各象限内,y随着x增大而增大;故答案为:二、四,增大;∵反比例函数表达式为y=−4,x时,y=8,∴当x=−2时,y=2,当x=−12时,2≤y≤8.∴当−2≤x≤−1219.(2021-2022·吉林·月考试卷)如图,在平面直角坐标系xOy中,一次函数y=x+b的图象与在第一象限内的图象交于点C,连接CO x轴交于点A(−4,0),与y轴交于点B,与反比例函数y=kx.(1)求b的值;(2)若S△OBC=2,则k的值是________.解:(1)∵一次函数y=x+b经过点A(−4,0)∴0=−4+b∴b=4.∴B(0,4).(2)∵S△OBC=2 ∴1×4×x C=2 ∴x C=12∴点C横坐标为1.把x=1代入y=x+4得,y=5 ∴C(1,5).∵反比例函数y=k过点C,∴k=1×5=5,x20.(2021-2022·甘肃·月考试卷)如图,一次函数y=kx+b与反比例函数y=m的图象相交于xA(−1, 4),B(2, n)两点,直线AB交x轴于点D.(1)求一次函数与反比例函数的表达式;(2)过点B 作BC ⊥y 轴,垂足为C ,连接AC 交x 轴于点E ,求△AED 的面积S · .解:(1)把A(−1, 4)代入反比例函数y =mx 得,m =−1×4=−4所以反比例函数的解析式为y =4x ;把B(2, n)代入y =−4x 得,2n =−4.解得n =−2,所以B 点坐标为(2, −2),把A(−1, 4)和B(2, −2)代入一次函数y =kx +b 得{−k +b =42k +b =−2,解得{k =−2b =2,所以一次函数的解析式为y =−2x +2;(2)∵ BC ⊥y 轴,垂足为C ,B(2, −2),∴ C 点坐标为(0, −2).设直线AC 的解析式为y =px +q ,∵ A(−1, 4),C(0, −2),∴ {−p +q =4q =−2,解得{p =−6q =−2∴ 直线AC 的解析式为y =−6x−2,当y =0时,−6x−2=0,解得x =−13,∴ E 点坐标为(−13, 0),∵ 直线AB 的解析式为y =−2x +2,∴ 直线AB 与x 轴交点D 的坐标为(1, 0)·∴ DE =1−(−13)=43,∴ △AED 的面积s =12×43×4=83.21.(2021-2022·山东·月考试卷)Rt△OAB在直角坐标系内的位置如图所示,BA⊥OA,反比例函数y=k(k≠0)在第一象限内的图像与AB交于点C(8,1)与OB交于点D(4,m).x(1)求该反比例函数的解析式及图像为直线OB的正比例函数解析式;(2)求BC的长., 解得:k=8,解:(1)将点C(8,1)代入反比例函数解析式中,得1=k8∴反比例函数解析式为y=8,x,解得:m=2,将点D(4,m)代入反比例函数解析式中,得m=84∴点D(4,2),设直线OB的正比例函数解析式为y=ax,将点D(4,2)代入,得2=4a,解得:a=1,2∴直线OB的解析式为y=1x;2(2)∵BA⊥OA即BC⊥x轴,∴点B的横坐标等于点C的横坐标8,将x=8代入y=1x中,解得y=4,∴点B的坐标为(8, 4),2∴AB=4,∵点C(8,1),∴AC=1,∴BC=AB−AC=3.22.(2021-2022·河南·月考试卷)如图,平行四边形OABC的边OA在x轴上,点D是对角线OB 的中点,反比例函数y=k(x>0)的图象经过点D.点B的坐标为(10,4),点C的坐标为(3,4)x(1)求反比例函数的解析式;(2)求平行四边形OABC 的周长.解:(1)过点D 作DE ⊥x 轴于点E ,过点B 作BF ⊥x 轴于点F ,∵ 点D 是OB 的中点∴ 点E 是OF 的中点,且DE =12BF ,∴ OE =5, DE =2 ∴ 点D 的坐标为(5,2).∵ 反比例函数y =k x (x >0)的图象经过点D ,∴ 2=k 5,解得k =10,∴ 反比例函数的解析式为y =10x .(2)∵ 点B 的坐标为 (10,4),点C 的坐标为 (3,4) ,∴ BC =10−3=7.由勾股定理易得OC ==5,所以平行四边形OABC 的周长为 (5+7)×2=24.23.(2021-2022·山东·月考试卷)如图,在平面直角坐标系中,直线y =x +2与双曲线y =k x 交于A ,B 两点,已知点A 的横坐标为1.(1)求k 的值; (2)求△OAB 的面积;(3)直接写出关于x 的不等式x +2>k x 的解集.解:(1)∵ 点A 的横坐标为1,∴ 将x =1二代入y =x +2中,得y =3,∴ 点A 的坐标为(1,3),∵ 直线y =x +2与双曲线y =k x 交于A ,B 两点∴ 将A (1,3)代入y =k x 中,得k =3.(2)∵直线y=x+2与双曲线y=3x交于A,B两点∴解y=x+2y=3x,得x=1x=−3∴点A的坐标为(1,3)点B的坐标为(−3,−1)∵如图,直线y=x+2与y轴交于点C∴点C的坐标为(0,2),∴OC=2,∴S△OAB=CO⋅(x A−x B)2=2×[1−(−3)]2=4,即△OAB的面积为4.(3)x>1或−3<x<0.24.(2021-2022·安徽·月考试卷)校园里的饮水机接通电源就进入自动程序,开机加热时每分钟上升10∘C,加热到100∘C停止加热,水温开始下降,此时水温y(∘C)与开机后用时x(min)成反比例关系,直至水温降至40∘C,饮水机关机,饮水机关机后即刻自动开机,重复上述自动程序.若在水温为40∘C时接通电源,水温y(∘C)与时间x(min)的关系如图所示:(1)分别写出图中水温上升和下降阶段y与x之间的函数关系式;(2)小明同学想喝高于50∘C的水,请问他最多需要等待多长时间?解:(1)观察图象,可知:当x=6(min)时,水温y=100(∘C),当0≤x≤6时,设y关于x的函数关系式为:y=kx+b,b=40,6k+b=100,得k=10,b=40,即当0≤x≤6时,y关于x的函数关系式为y=10x+40;当x>6时,设y=ax,100=a6,得a=600,即当x>6时,y关于x的函数关系式为y=600x,∴ y与x的函数关系式为:y=10x+40,600x.(2)将y=50代入y=10x+40,得x=1,∴P(1,50),将y=50代入y=600x,得x=12,∴M(12,50),当y=40时,x1=0,x2=15,∴Q(15,40),因为饮水机关机即刻自动开机,重复上述自动程序,如图,∴N(16,50),∴MN=4,∴他最多要等4分钟.。

九年级数学下册《第二十六章反比例函数》单元测试卷附答案解析-人教版

九年级数学下册《第二十六章反比例函数》单元测试卷附答案解析-人教版

九年级数学下册《第二十六章反比例函数》单元测试卷附答案解析-人教版班级:___________姓名:___________考号:____________一、单选题1.如果反比例函数的图象经过点P (﹣3,﹣1),那么这个反比例函数的表达式为( ) A .y =3xB .y =﹣3xC .y =13xD .y =﹣13x2.若反比例函数2y x=的图像经过(),n n ,则n 的值是( )A .2±B .CD .3.如图,点A 在x 轴正半轴上,B (5,4).四边形AOCB 为平行四边形,反比例函数y =8x的图象经过点C和AB 边的中点D ,则点D 的坐标为( )A .(2,4)B .(4,2)C .(83,3)D .(3,83)4.对于反比例函数4y x=,下列说法错误的是( ) A .它的图象与坐标轴永远不相交 B .它的图象绕原点旋转180°能和本身重合 C .它的图象关于直线y x =±对称D .它的图象与直线y x =-有两个交点5.如图是同一直角坐标系中函数12y x =和22y x=的图象.观察图象可得不等式22x x >的解集为( )A .11x -<<B .1x <-或1x >C .1x <-或01x <<D .10x -<<或1x >6.如图,在平面直角坐标系中直线y mx =(0m ≠,m 为常数)与双曲线ky x=(0k ≠,k 为常数)交于点A ,B ,若()1,A a -和(),3B b -,过点A 作AM x ⊥轴,垂足为M ,连接BM ,则ABM ∆的面积是( )A .2B .1m -C .3D .67.如图,在平面直角坐标系中函数()0ky x x=>的图象经过点P 、Q 、R ,分别过这个三个点作x 轴、y 轴的平行线,阴影部分图形的面积从左到右依次为若OE ED DC ==,1310S S +=则k 的值为( )A .6B .12C .18D .24二、填空题8.平面直角坐标系xOy 中已知点(,6),(3,2),(3,2)--A m m B m n C m n 是函数(0)ky k x =≠图象上的三点.若2ABC S =△,则k 的值为___________.9.如图,△AOB 中AO =AB ,OB 在x 轴上C ,D 分别为AB ,OB 的中点,连接CD ,E 为CD 上任意一点,连接AE ,OE ,反比例函数y k x=(x >0)的图象经过点A .若△AOE 的面积为2,则k 的值是___.10.在平面直角坐标系xOy 中过一点分别作坐标轴的垂线,若垂线与坐标轴围成矩形的周长的值与面积的值相等,则这个点叫做“和谐点”.已知直线y =﹣2x +k 1与y 轴交于点A ,与反比例函数y 2k x=的图象交于点P (52-,m ),且点P 是“和谐点”,则△OAP 的面积为___.11.不透明的袋子里装有除标号外完全一样的四个小球,小球上分别标有-1,2,3,4四个数,从袋子中随机抽取一个小球,记标号为k ,不放回,将袋子摇匀,再随机抽取一个小球,记标号为b ,两次抽取完毕后,则直线y kx =与反比例函数by x=的图象经过的象限相同的概率为______. 12.如图,点()2,A m ,B 分别在双曲线()60y x x =>和()0ky x x=>上,AB x ∥轴,作AC x ⊥轴于点C ,交OB 于点D .若2OD BD =,则k 的值是______.13.如图所示,过y 轴正半轴上的任意一点P ,作x 轴的平行线,分别与反比例函数y =﹣6x(x <0)和y=8x(x >0)的图象交于点A 和点B ,若点C 是x 轴上任意一点,连接AC 、BC ,则△ABC 的面积为__.14.一定质量的二氧化碳,其密度()3kg /m ρ=是体积()3m V 的反比例函数,请你根据图中的已知条件,写出反比例函数的关系式___________,当33m V =时,则ρ=_______3kg /m .三、解答题15.如图1,反比例函数()0my x x=>的图象过点()4,3M .(1)求反比例函数my x=的表达式,判断点()2,8在不在该函数图象上,并说明理由; (2)反比例函数()16my x x=≤≤的图象向左平移2个单位长度,平移过程中图象所扫过的面积是______; (3)如图2,直线:8l y x =-+与x 轴、y 轴分别交于点A 、点B ,点P 是直线l 下方反比例函数my x=图象上一个动点,过点P 分别作PC x ∥轴交直线l 于点C ,作PD y ∥轴交直线l 于点D ,请判断AC BD ⋅的值是否发生变化,并说明理由,如果不变化,求出这个值. 16.阅读下列材料定义运算min ,a b ,当a b ≥时,则min ,a b b =;当a b <时,则min ,a b a =.例如:min 1,31-=-与min 1,22--=-.完成下列任务(1)①()0min 3,2-= _________;②min 4--=_________ (2)如图,已知反比例函数1ky x=和一次函数22y x b =-+的图像交于A 、B 两点.当20x -<<时,则()()2min,213kx b x x x x-+=+--.求这两个函数的解析式. 17.在如图平面直角坐标系中矩形OABC 的顶点B 的坐标为(4,2),OA 、OC 分别落在x 轴和y 轴上,OB 是矩形的对角线.将△OAB 绕点O 逆时针旋转,使点B 落在y 轴上,得到△ODE ,OD 与CB 相交于点F ,反比例函数y =kx(x >0)的图象经过点F ,交AB 于点G .(1)求k 的值和点G 的坐标;(2)连接FG ,则图中是否存在与△BFG 相似的三角形?若存在,请把它们一一找出来,并选其中一种进行证明;若不存在,请说明理由;(3)在线段OA 上存在这样的点P ,使得△PFG 是等腰三角形.请直接写出点P 的坐标.18.我们不妨约定:在平面直角坐标系中若某函数图象上至少存在不同的两点关于直线x n =(n 为常数)对称,则把该函数称之为“()X n 函数”.(1)在下列关于x 的函数中是“()X n 函数”的是________(填序号); ①6y x=,②4y x =,③225y x x =-- (2)若关于x 的函数y x h =-(h 为常数)是“()3X 函数”,与my x=(m 为常数,0m >)相交于A (A x ,A y )、B (B x ,B y )两点,A 在B 的左边,5B A x x -=,求m 的值;(3)若关于x 的“()X n 函数”24y ax bx =++(a ,b 为常数)经过点(1-,1),且1n =,当1t x t -≤≤时,则函数的最大值为1y ,最小值为2y ,且1212y y -=,求t 的值. 19.如图,在平面直角坐标系中四边形ABCD 为正方形,已知点A (0,﹣6)、D (﹣3,﹣7),点B 、C 在第三象限内.(1)求点B 的坐标;(2)在y 轴上是否存在一点P ,使ABP 是AB 为腰的等腰三角形?若存在,求点P 的坐标;若不存在,请说明理由.(3)将正方形ABCD 沿y 轴向上平移,若存在某一位置,使在第二象限内点B 、D 两点的对应点B '、D 正好落在某反比例函数的图象上,求该反比例函数的解析式.参考答案与解析1.【答案】A【分析】根据点P 的坐标,利用待定系数法即可得.【详解】解:设这个反比例函数的表达式为(0)ky k x =≠ 由题意,将点(3,1)P --代入得:3(1)3k =-⨯-= 则这个反比例函数的表达式为3y x =故选:A .【点睛】本题考查了求反比例函数的解析式,熟练掌握待定系数法是解题关键. 2.【答案】B【分析】将(),n n 代入解析式中即可求出n 的值. 【详解】解:将(),n n 代入2y x =中得2n n=解得:n =故选B.【点睛】此题考查的是根据点所在的图像求点的坐标,将点的坐标代入解析式求点的坐标是解决此题的关键.3.【答案】B【分析】作CE ⊥OA 于E ,依据反比例函数系数k 的几何意义求得OE ,即可求得C 的坐标,从而求得点A 坐标,再根据中点坐标公式即可求得D 的坐标. 【详解】解:作CE ⊥OA 于E ,如图∵B(5,4),四边形AOCB为平行四边形∴CE=4∵反比例函数y=8x的图象经过点C∴S△COE=12OE•CE=12×8∵CE=4∴OE=2∴C(2,4),OA=BC=5-2=3 ∴A(3,0)∵点D是AB的中点∴点D的坐标为(3+50+422,),即D(4,2)故选:B.【点睛】本题考查了平行四边形的性质,反比例函数系数k的几何意义等,求得点C和点A的坐标是解题的关键.4.【答案】D【分析】当k>0,双曲线的两支分别位于第一、第三象限,在每一象限内y随x的增大而减小,根据反比例函数的性质对四个选项进行逐一分析即可.【详解】解:A.∵反比例函数4yx=中4>0,∴此函数图象在一、三象限,故本选项正确;B.∵反比例函数4yx=的图象双曲线关于原点对称,故本选项正确;C.反比例函数的图象可知,图象关于直线y x=±对称,故本选项正确;D.∵反比例函数4yx=的图象位于第一、三象限,直线y x=-经过第二、四象限,所以直线y x=-与双曲线4yx=无交点,故本选项错误;故选D.【点睛】本题考查了反比例函数的性质,熟知反比例函数的增减性是解答此题的关键. 5.D【分析】根据图象进行分析即可得结果; 【详解】解:∵22x x> ∴12y y >由图象可知,函数12y x=和22y x =分别在一、三象限有一个交点,交点的横坐标分别为11x x ==-, 由图象可以看出当10x -<<或1x >时,则函数12y x=在22y x =上方,即12y y >故选:D .【点睛】本题主要考查一次函数和反比例函数的应用,掌握一次函数和反比例函数图象的性质是解本题的关键. 6.【答案】C【分析】根据直线y mx =与双曲线k y x =都经过点A ,得出1a mk a =-⎧⎪⎨=⎪⎩-,进而得到k m =,再由直线y mx =与双曲线k y x =都经过点B ,得到33k b bm ⎧-=⎪⎨⎪-=⎩,进而得到2b m k =,进而求出b 的值,得到点A 的坐标,即可得到答案.【详解】由题,直线y mx =与双曲线ky x=都经过点A ∴1a m k a =-⎧⎪⎨=⎪⎩- ,得:k m =直线y mx =与双曲线ky x=都经过点B 33bm k b -=⎧⎪∴⎨-=⎪⎩,得:2b m k = 21b ∴=0b >1b ∴=13B ∴-(,)将点B 代入y mx =,得:3m -=3y x ∴=-13A ∴-(,)111313322ABM S ∆∴=⨯⨯+⨯⨯=故选:C【点睛】本题考查一次函数与反比例函数的图像问题,根据两者的交点结合解析式求出点的坐标是解题关键.7.【答案】B【分析】设未知数,表示出点P 、Q 、R 的坐标,进而表示S 1、S 2、S 3,由S 1+S 3=10列方程求解即可. 【详解】解:设OE =ED =DC =a ∵函数ykx =(x >0)的图象经过点P 、Q 、R∴点P (3k a ,3a ),Q (2k a ,2a ),R (ka ,a )∴OF 3k a =,OG 2k a =,OA k a =∴S 1=OF •CD 3k a =⨯a 3k =S 3=AG •OE =(2k k a a -)×a 2k =又∵S 1+S 3=10 ∴32k k +=10 解得k =12 故选:B .【点睛】本题考查反比例函数系数k 的几何意义以及反比例函数图象上点的坐标特征,用坐标表示线段的长是解决问题的关键. 8.【答案】34##0.75 【分析】由点A 、B 、C 的坐标可知260k m =>,m =n ,点B 、C 关于原点对称,求出直线BC 的解析式,不妨设m >0,如图,过点A 作x 轴的垂线交BC 于D ,根据2ABC S =△列式求出2m ,进而可得k 的值. 【详解】解:∵点(,6),(3,2),(3,2)--A m m B m n C m n 是函数(0)ky k x=≠图象上的三点 ∴260k m => 6k mn = ∴m =n∴(3,2)B m m (3,2)C m m -- ∴点B 、C 关于原点对称∴设直线BC 的解析式为()0y kx k =≠ 代入(3,2)B m m 得:23m mk = 解得:23k =∴直线BC 的解析式为23y x =不妨设m >0,如图,过点A 作x 轴的垂线交BC 于D 把x =m 代入23y x =得:23y m =∴D (m ,23m )∴AD =216633m m m -=∴()11633223ABCSm m m =⨯⋅+= ∴218m =∴2136684k m ==⨯=而当m <0时,则同样可得34k =故答案为:34【点睛】本题考查了反比例函数与几何综合,中心对称的性质,待定系数法求函数解析式,熟练掌握反比例函数的图象和性质,学会利用数形结合的数学思想解答是解题的关键.9.【答案】4【分析】根据等腰△AOB,中位线CD得出AD⊥OB,S△AOE=S△AOD=2,应用|k|的几何意义求k.【详解】解:如图:连接AD△AOB中AO=AB,OB在x轴上,C、D分别为AB,OB的中点∴AD⊥OB,AO∥CD∴S△AOE=S△AOD=2∴k=4.故答案为:4.【点睛】本题考查了反比例函数图象、等腰三角形以及中位线的性质、三角形面积,解题的关键是灵活运用等腰三角形的性质.10.【答案】254或754【分析】先根据“和谐点”的定义求出m的值,进而可求出点A的坐标,根据三角形的面积可求出△OAP的面积.【详解】解:∵点P(52-,m)是“和谐点”∴5+2|m|52=|m|,解得m=±10当m=10时,则P(52-,10)把点P的坐标代入一次函数和反比例的解析式得:k1=5,k2=﹣25∴A(0,5)∴S△OAP15255224=⨯⨯=.当m =﹣10时,则P (52-,﹣10)∴k 1=﹣15,k 2=25 ∴A (0,﹣15) ∴S △OAP 12=⨯1557524⨯=. 故答案为:254或754. 【点睛】本题考查反比例函数系数k 的几何意义,过双曲线上的任意一点分别向两条坐标轴作垂线,与坐标轴围成的矩形面积就等于|k |,读懂题意,明确和谐点的定义是解题的关键. 11.【答案】12【分析】画树状图,共有12个等可能的结果,直线y kx =与反比例函数by x=的图象经过的象限相同的结果有6个,再由概率公式求解即可. 【详解】解:画树状图如图:∵从袋子中随机抽取一个小球,记标号为k ,不放回后将袋子摇匀,再随机抽取一个小球,记标号为b ,共有12个数组∴直线y kx =与反比例函数by x=的图象经过的象限相同的数组有(2,3),(2,4),(3,2),(3,4),(4,2),(4,3),共有6组∴k ,b 直线y kx =与反比例函数b y x=的图象经过的象限相同的概率为61122=.故答案为:12【点睛】此题考查了用列表法或树状图法求概率及一次函数与反比例函数的性质,熟练掌握利用列表法或树状图列出所有等可能的结果以及一次函数与反比例函数的性质是解题的关键. 12.【答案】9【分析】先求解A 的坐标,再表示B 的坐标,再证明,ABD COD ∽利用相似三角形的性质列方程求解即可.【详解】解: 点()2,A m ,B 分别在双曲线()60y x x =>和()0ky x x=>上,AB x ∥轴 63,,3,23kmB2,3,AAC x ⊥轴2,0,CAB x ∥轴,ABD COD ∽,ABBDOC OD而2OD BD = 213,22k 解得:9,k = 故答案为:9【点睛】本题考查的是反比例函数的性质,相似三角形的判定与性质,掌握“反比例函数的图像与性质”是解本题的关键. 13.【答案】7【分析】连接OA ,OB ,利用同底等高的两三角形面积相等得到三角形AOB 面积等于三角形ACB 面积,再利用反比例函数k 的几何意义求出三角形AOP 面积与三角形BOP 面积,即可得到结果. 【详解】解:如图,连接OA ,OB∵△AOB 与△ACB 同底等高 ∴S △AOB =S △ACB ∵AB ∥x 轴∴AB ⊥y 轴∵A 、B 分别在反比例函数y =﹣6x (x <0)和y =8x (x >0)的图象上∴S △AOP =3,S △BOP =4∴S △ABC =S △AOB =S △AOP +S △BOP =3+4=7. 故答案为:7.【点睛】本题考查的是反比例函数系数k 的几何意义,即在反比例函数y =kx的图象上任意一点向坐标轴作垂线,这一点和垂足以及坐标原点所构成的三角形的面积是12|k |,且保持不变.也考查了三角形的面积. 14.【答案】10V ρ=103【分析】由函数图像信息可得反比例函数过点(5,2),根据待定系数法求解析式;将3V =代入即可求得ρ. 【详解】反比例函数过点(5,2) 设反比例函数解析式为kVρ= 则10k =∴反比例函数解析式为10Vρ=当3V =时,则103ρ= 故答案为:10V ρ=103【点睛】本题考查了反比例函数的应用,待定系数法求反比例函数的解析式,根据解析式求函数值,从图像获取信息是解题的关键.15.【答案】(1)不在,理由见解析 (2)20 (3)不变化,24【分析】对于(1),利用待定系数法求出函数关系式,再代入判断即可;对于(2),设点E 的横坐标和点F 的横坐标,再分别表示出点E ,F ,G ,H 的坐标,进而得出线段的长度,再根据平行四边形面积公式得出答案;对于(3),设点P 的横坐标为t ,分别表示点C ,点D 的坐标,再根据两点之间的距离公式得出AC 和BD 的长,进而得出答案.(1)将点()4,3M 代入m y x =得34m= 12m =∴12y x=;当2x =时,则6y = ∵68≠∴点()2,8不在函数图象上;(2)设点E 的横坐标是1,点F 的横坐标是6,点G ,H 分别对应点E ,F ,如图所示.图形扫过的面积即为平行四边形EFHG 的面积.令12y x=中1x =,则12y = 所以(112)E , -1,12G ()令12y x=中6x =,则2y = 所以(62)F ,,(4,2)H . 因为EG FH ∥,且EM FH = 所以四边形EGHF 为平行四边形所以=()2(122)20E F S EG y y ⋅-=⨯-=. 故答案为:20;(3)不变化,理由如下:因为直线l :8y x =-+与x 轴,y 轴分别交于点A ,点B 所以点A (8,0),B (0,8). 设点P 的横坐标是t 所以12(,)P t t.因为PC x ∥轴交直线l 于点C ,PD y ∥轴交直线l 于点D 所以1212(8,)C tt-+ (,8)D t t -+所以AC =BD =即24AC BD ⋅=⋅=所以AC BD ⋅为定值,为24..【点睛】本题主要考查了反比例函数图象上点的坐标特征,待定系数法求函数关系式,求平行四边形面积等,掌握数形结合思想是解题的关键.16.【答案】(1)①1;②4- (2)12y x=- 223y x =--【分析】(1)根据材料中的定义进行计算,即可求出答案; (2)由函数图像可知当20x -<<时,则2kx bx ,则min ,22k x b x b x-+=-+,结合已知可得()()2213x b x x x -+=+--,即可求出b ,得到一次函数解析式,求出点A 的坐标,再利用待定系数法求出反比例函数解析式. (1)解:根据题意∵min ,a b ,当a b ≥时,则min ,a b b =;当a b <时,则min ,a b a = ∴①()0min 3,21-=;∵4-∴②min 44-=-; 故答案为:①1;②4-;(2)解:由函数图像可知当20x -<<时,则2k x bx∴min,22kx b x b x-+=-+ 又∵()()2min,213kx b x x x x-+=+-- ∴()()2213x b x x x -+=+-- ∴3b =-∴一次函数223y x =-- 当x =-2时21y = ∴A (-2,1) 将A (-2,1)代入1ky x=得212k =-⨯=-∴反比例函数12y x=-.【点睛】本题考查了新定义的运算法则,零次幂,反比例函数与一次函数的综合问题,解题的关键是掌握题意,正确的运用数形结合的思想求解.17.【答案】(1)k =2,点G 的坐标为(4,12);(2)△COF ∽△BFG ;△AOB ∽△BFG ;△ODE ∽△BFG ;△CBO ∽△BFG ,证明详见解析;(3)点P 的坐标为(40)或(158,00). 【分析】(1)证明△COF ∽△AOB ,则CF OCAB OA=,求得:点F 的坐标为(1,2),即可求解; (2)△COF ∽△BFG ;△AOB ∽△BFG ;△ODE ∽△BFG ;△CBO ∽△BFG .证△OAB ∽△BFG :43AO BF = 24332AB BG ==即可求解.(3)分GF =PF 、PF =PG 、GF =PG 三种情况,分别求解即可. 【详解】解:(1)∵四边形OABC 为矩形,点B 的坐标为(4,2) ∴∠OCB =∠OAB =∠ABC =90°,OC =AB =2,OA =BC =4 ∵△ODE 是△OAB 旋转得到的,即:△ODE ≌△OAB ∴∠COF =∠AOB ,∴△COF ∽△AOB ∴CF OC AB OA =,∴2CF =24,∴CF =1∴点F 的坐标为(1,2) ∵y =kx(x >0)的图象经过点F∴2=1k ,得k =2 ∵点G 在AB 上 ∴点G 的横坐标为4对于y =2x ,当x =4,得y =12∴点G 的坐标为(4,12);(2)△COF ∽△BFG ;△AOB ∽△BFG ;△ODE ∽△BFG ;△CBO ∽△BFG . 下面对△OAB ∽△BFG 进行证明: ∵点G 的坐标为(4,12),∴AG =12 ∵BC =OA =4,CF =1,AB =2∴BF=BC﹣CF=3BG=AB﹣AG=32.∴43AOBF=24332ABBG==∴AO AB BF BG=∵∠OAB=∠FBG=90°∴△OAB∽△FBG.(3)设点P(m,0),而点F(1,2)、点G(4,12)则FG2=9+94=454,PF2=(m﹣1)2+4,PG2=(m﹣4)2+14当GF=PF时,则即454=(m﹣1)2+4,解得:m;当PF=PG时,则同理可得:m=158;当GF=PG时,则同理可得:m=4综上,点P的坐标为(40)或(158,00).【点睛】本题考查的是反比例函数综合运用,涉及到旋转的性质、三角形相似、等腰三角形的性质等,其中(3),要注意分类求解,避免遗漏.18.【答案】(1)②③( 2)4 (3)t=2或t=1【分析】(1)根据定义分析判断即可;(2)作出图形,y=x﹣3与x轴交于C点,与y轴交于D点,作AM⊥x轴交于M点,BN⊥x轴交于N点,由xB﹣xA=5,设CN=x,则MC=5﹣x,则B(3+x,x),A(x﹣2,5﹣x),根据轴对称的性质以及反比例函数的性质可得(3+x)x+(x﹣2)(5﹣x)=0,继而求得x的值,即可求得B的坐标,根据反比例函数的意义即可求得m的值;(3)根据题意以及二次函数的性质,待定系数求二次函数解析式,进而分类讨论,根据121 2y y-=,即可求得t的值.(1)解:根据定义,函数关于直线x n=(n为常数)对称,即该函数图象是轴对称图形①6yx=的图象是中心对称图象,不符合题意;②4y x=,③225y x x=--的图象是轴对称图形,符合题意故答案为:②③(2)∵y=|x-h|是“X(3)”函数∴h=3如图,y=x﹣3与x轴交于C点,与y轴交于D点,作AM⊥x轴交于M点,BN⊥x轴交于N点∴C(3,0),D(0,﹣3)∴∠BCN=∠OCD=45°由对称性可知,∠ACM=∠OCD=45°∴AM=CM,BN=CN∵xB﹣xA=5∴MN=5设CN=x,则MC=5﹣x∴B(3+x,x),A(x﹣2,5﹣x)∴(3+x)x+(x﹣2)(5﹣x)=0∴x=1∴B(4,1)∴m=4;(3)由题意得4112a bba-+=⎧⎪⎨-=⎪⎩解得12 ab=-⎧⎨=⎩∴此“X(n)函数”为y=﹣x2+2x+4①当t<1时x=t时,则y1=﹣t2+2t+4x=t﹣1时,则y2=﹣(t﹣1)2十2(t﹣1)+4y1﹣y2=(﹣t2+2t+4)﹣[﹣(t﹣1)2+2(t﹣1)+4]=﹣2t+3=12∴t=54(舍);②当t﹣1≥1,即t≥2时x=t﹣1时,则y1=﹣(t﹣1)2十2(t﹣1)+4x=t时,则y2=﹣t2+2t+4y1-y2=﹣(t﹣1)2+2(t﹣1)+4﹣(﹣t2+2t+4)=2t﹣3=12∴t=74(舍);③当1≤t<32时x=1时,则y1=5x=t﹣1时,则y2=﹣(t﹣1)2十2(t﹣1)+4y1﹣y2=5﹣[﹣(t﹣1)2+2(t﹣1)+4]=t2﹣4t+4=12∴t=2±,又因为1≤t<3 2∴t=2-④32≤t<2时x=1时,则y1=5x=t时,则y2=﹣t2十2t+4y1﹣y2=5﹣(﹣t2+2t+4)=t2﹣4t+4=12∴t=1,又因为32≤t<2∴t=1综上所述:t=2-t=1【点睛】本题考查了新定义,一次函数的性质,反比例函数的性质,二次函数的性质,根据新定义以及轴对称的性质求解是解题的关键.19.【答案】(1)B (-1,-3)(2)存在,(06-,或(06-,或()00,(3)6y x =-【分析】(1)过点B 作BE ⊥y 轴于点E ,过点D 作DF ⊥y 轴于点F ,证明ADF BAE ≅得出BE 与OE 的长度便可求得B 点坐标;(2)先求出AB 的值,再根据题意可得分类讨论,分为当AB =AP 时有两种情况和当AB =BP 时有一种情况进行求解即可;(3)先设向上平移了m 表示B '和D 的坐标,再根据B 、D 两点的对应点B '、D 正好落在某反比例函数的图象上得B '和D 点的横、纵坐标的积相等,列出关于m 的方程即可求解.(1)过点B 作BE ⊥y 轴于点E ,过点D 作DF ⊥y 轴于点F ,如下图则90AFD AEB ∠=∠=︒∵点A (0,-6),D (-3,-7)∴DF =3,AF =1∵四边形ABCD 是正方形∴AB =AD 90BAD ∠=︒∴90DAF BAE DAF ADF ∠+∠=∠+∠=︒∴ADF BAE =∠∠∵ADF BAE F EAD BA ∠=∠⎧⎪∠=∠⎨⎪=⎩∴ADF BAE ≅∴DF =AE =3,AF =BE =1∴OE=OA-AE=6-3=3∴B(-1,-3).(2)存在3种情况由(1)得ADF BAE≅且在Rt AFD中AB=AD①当AB=AP时的等腰三角形,如图则AP∵A为(0,-6)∴P点的坐标为(0,);②当AB=AP时,则如下图则AP∵A 为(0,-6)∴P 点的坐标为(0,);③当AB =BP 时,则如下图则BP ,且过B 作BE ⊥AP 于点E∵AB BP BE AP =⊥,∴3PE AE ==∴P 点在原点上则P 为(0,0).综上所述点P 的坐标为(06-,或(06-,或()00,. (3)设向上平移了m 可得B '为(-1,-3+m ),D 为(-3,-7+m ) 反比例函数关系式为k y x=()0k ≠ ∴()()1337k m m =-⨯-+=-⨯-+解得m =9∴k =()13166m -⨯-+=-⨯=- ∴反比例函数解析式为:6y x=- 【点睛】此题是反比例函数与正方形结合的综合体,主要考查了反比例函数的性质、待定系数法、全等三角形的性质和判定和等腰三角形的性质和判定,解决本题的关键是证明全等三角形和分类讨论.。

北师大版九年级上数学第五章反比例函数单元测试题

北师大版九年级上数学第五章反比例函数单元测试题

九年级上数学第五章《反比例函数》测试题(一)一、精心选一选,相信自己的判断!(每题2分共20分)1、下列函数中,反比例函数是( )A 、1)1(=-y xB 、11+=x y C 、21xy = D 、x y 31= 2、函数x k y =的图象经过点(-4,6),则下列各点中在xky =图象上的是( )A 、(3,8)B 、(3,-8)C 、(-8,-3)D 、(-4,-6) 3、若y 与-3x 成反比例,x 与z4成正比例,则y 是z 的( ) A 、正比例函数 B 、反比例函数 C 、一次函数 D 、不能确定 4、如果反比例函数xky =的图像经过点(-3,-4),那么函数的图像应在( ) A 、第一、三象限 B 、第一、二象限 C 、第二、四象限 D 、第三、四象限5、在同一坐标系中,函数ky =和3+=kxy 的图像大致是 ()6、正方形ABOC 的边长为2,反比例函数ky x=过点A ,则k 的值是( ) A .2B .2-C .4D .4-7、已知反比例函数的图像经过点(a ,b ),则它的图像一定也经过( ) A 、 (-a ,-b ) B 、 (a ,-b ) C 、 (-a ,b ) D 、 (0,0) 8、如上图,A 为反比例函数xky =图象上一点,AB 垂直x 轴于B 点,若S △AOB =3,则k 的值为( ) A 、6B 、3C 、23D 、不能确定9、若反比例函数22)12(--=m xm y 的图像在第二、四象限,则m 的值是( A 、-1或1 B 、小于21的任意实数 C 、-1 D、不能确定10、在同一直角坐标平面内,如果直线x k y 1=与双曲线xky 2=没有交点,那么1k 和2k 的关系一定是( )A 、1k <0,2k >0B 、1k >0,2k <0C 、1k 、2k 同号D 、1k 、2k 异号二、耐心填一填:(30分) 1、函数1y x a=-,当2x =时没有意义,则a 的值为 2、某物体对地面的压力为定值,物体对地面的压强p (Pa )与受力面积S (㎡)之间的函数关系如图所示.这一函数表达式为p=________3、反比例函数xky =的图像经过(-23,5)点、(a ,-3)及(10,b )点,则k = ,a = ,b = ;4、已知正比例函数kx y =与反比例函数3y x=的图象都过A (m ,1),则m = ,正比例函数与反比例函数的解析式分别是 、 ;5、反比例函数()0>=k xky 在第一象限内的图象如图,点M 是图像上一点,MP 垂直x 轴于点P ,如果 △MOP 的面积为1,那么k 的值是 ;6.在下列函数表达式中,表示y 是x 的反比例函数的有 。

九年级数学人教版单元测试

九年级数学人教版单元测试

九年级数学下册 第一单元检测题 人教新课标版温馨提示:抛物线2(0)y ax bx c a =++≠的顶点坐标公式为(ab 2-,abac 442-)一、选择题:(本大题10个小题,每小题4分,共40分)每个小题都给出了代号为A 、B 、C 、D 的四个答案,其中只有一个是正确的,请将正确答案的代号填涂在答题卷中对应的位置.1.在0,-2,1,-3这四个数中,绝对值最小的数是 ( )A .-3B .1C .-2 D.0 2.计算2232x x -的结果是( )A .1B .xC .2x D .2x -3.下列图案中,既是轴对称图形又是中心对称图形的是( )4.如图,直线AB 、CD 交于点O ,OE ⊥AB ,//B E C D ,若∠COE =550, 则∠OBE 的度数是( )A .300B .350C .400D .450 5.下列调查中,适宜采用普查方式的是( )A .审查一本书稿有哪些科学性错误所做的调查B .为了了解我市小学生的身体肥胖问题的调查C .广电总局对各电视台电视节目收视率的调查D .为了了解某一地区市民对房地产价格认可度的调查6.如图所示,⊙O 是A B C ∆的外接圆.若︒=∠35ACB ,则O B A ∠ 的度数等于( )A .350B .550C .700D .1100 7.函数2-=x x y 的自变量x 的取值范围是( )A .x ≠2B .x ≠0 C.x ≠0 且x ≠2 D .x>28.将一些半径相同的小圆按如图所示的规律摆放:第1个图形有6个小圆,第2个图形有10个小圆,第3个图形有16个小圆,第4个图形有24个小圆,……,依此规律,第10个图形有小圆的个数是( )A .51个 B. 121个 C. 114个 D. 60个9.解放军某部队乘车..前往灾区抗震救灾.前进一段路程后,由于道路受阻,汽车无法通行,部队通过短暂休整后决定步行..前往.若部队离开驻地的时间为t (小时),离开驻地行驶的路程为S (千米),则能反映S 与t 之间函数关系的大致图象是( )10.如图,二次函数2y ax bx c =++的图象的顶点为D ,其图象与x 轴的交点A 、B 的横坐标分别为-1,3,与y 轴交于点C ,下面五个结论:①0abc <;②20a b +=; ③0a b c ++<;④3c a =-;⑤只有12a =时,ABD ∆是等腰直角三角形,其中正确的结论有( ) A.2个B.3个C.4个D.5个二、填空题:(本大题6个小题,每小题4分,共24分)在每小题中,请将正确答案的代号填入答题卷中对应的位置.11.《重庆市国民经济和社会发展第十二个五年规划纲要>提出:到2015年,逐步形成西部地区的重要增长极,地区生产总值达到15000亿元.将数据15000亿用科学记数法表示为_________ 亿.12.业务员小王今年1月至6月的手机话费(单位:元)是:60,68,78,70,66,80,则这组数据的中位数是__________. 13.若△ABC∽△DEF,△ABC 与△DEF 的面积比为9∶25,则△ABC 与△DEF 的周长比为__________. 14.在半径为6的圆中,1200的圆心角所对的弧长等于_________.(结果保留π)15.从1,2,3,……,1 4,1 5这1 5个整数中任取一个数记作a ,那么关于x 的方程1524ax x =-的解为整数的概率为___________. 16.甲、乙、丙三人拿出同样多的钱,合伙订购同静规格的若干件商品,商品买来后,甲、乙分别比丙多拿了12、9件商品,最后结算时,乙付给丙20元,那么,甲应付给丙_________元.三、解答题:(本大题4个小题,每小题6分,共24分)解答时每小题必须给出必要的演算过程或推理步骤. 17.计算:2201101(1)(53π-⎛⎫--+-⨯- ⎪⎝⎭-.18.解一元一次不等式: 2213x x +-≥,并把解集在数轴上表示出来.19.如图,在A B C ∆与ABD ∆中,,.BC BD ABC ABD =∠=∠点E 为BC 中点,点F 为BD 中点,连接AE ,AF .求证:AE=AF.4题图6题图22题图20.如图,在ABC ∆中,AD 是B C 边上的高,∠C=300 ,AC=6,AB=4,求BD 的长. (结果保留根号)四、解答题:(本大题4个小题,每小题10分,共40分)解答时每小题必须给出必要的演算过程或推理步骤.21.先化简,再求值:1)1212(2-÷+--+a a a aa ,其中a 是方程121=--xx x 的解.22.已知:如图,在平面直角坐标系xOy 中,直线AB 分别与x 、y 轴交于点A 、B ,与反比例函数在第一象限内的图象交于点C ,CD ⊥x 轴于点D ,OD=3,点A 为OD 的中点,3tan 2O B D ∠=.(1)求直线AB 和该反比例函数的解析式; (2)求四边形O B D C 的面积.23.交警对“餐饮一条街”旁的一个路口在某一时段内来往车辆的车速情况进行了统计,并制成了如下两幅不完整的统计图:(1)这些车辆行驶速度的平均速度是 千米/时; (2)并将该条形统计图补充完整;(3)该路口限速60千米/时.经交警逐一排查,在超速的车辆中,车速为80千米/时的车辆中有2位驾驶员饮酒,车速为70千米/时的车辆中有1位驾驶员饮酒,若交警不是逐一排查,而是分别在车速为80千米/时和70千米/时的车辆中各随机拦下一位驾驶员询问,请你用列表法或画树状图的方法求出所选两辆车的驾驶员均饮酒的概率.24.已知:如图,四边形ABCD 中AC 、BD 相于点D ,AB=AC ,AB AC ⊥,BD 平分A B C ∠且B D C D ⊥OE BC⊥ 于E ,OA=1. (1)求OC 的长;(2)求证:BO=2CD .五、解答题:(本大题2个小题,第25小题10分,第26小题12分,共22分)解答时每小题必须给出必要的演算过程或推理步骤. 25.我市某服装厂生产的服装供不应求,A 车间接到生产一批西服的紧急任务,要求必须在12天内完成。

第26章反比例函数单元测试(含答案)2024-2025学年数学人教版九年级下册

第26章反比例函数单元测试(含答案)2024-2025学年数学人教版九年级下册

第26章反比例函数一、选择题:本题共10小题,每小题3分,共30分。

在每小题给出的选项中,只有一项是符合题目要求的。

1.如图是反比例函数的图象,它的函数表达式是( ).A. y=5xB. y=2x C. y=−1xD. y=−2x2.对于反比例函数y=−5x,下列说法错误的是( )A. 图象经过点(1,−5)B. 图象位于第二、四象限C. 当x<0时,y随x的增大而减小D. 当x>0时,y随x的增大而增大3.如图,点A在双曲线y=kx上,B在y轴上,且AO=AB.若△ABO的面积为6,则k的值为 ( )A. 6B. −6C. 12D. −124.如图,直线y1=kx+1与反比例函数y2=2x的图象在第一象限交于点P(1,t),与x轴、y轴分别交于A,B 两点,则下列结论错误的是 ( )A. t=2B. △AOB是等腰直角三角形C. k=1D. 当x>1时,y2>y15.当x<0时,函数y=(k−1)x与y=2−k的y值都随x的增大而增大,则k的取值范围是( ).3xA. k>1B. 1<k<2C. k>2D. k<16.函数y=k和y=−kx+2(k≠0)在同一平面直角坐标系中的大致图象可能是( )xA. B.C. D.7.若点A(−3,y1),B(−1,y2),C(2,y3)都在反比例函数y=k(k<0)的图象上,则y1,y2,y3的大小关系是( )xA. y3<y1<y2B. y2<y1<y3C. y1<y2<y3D. y3<y2<y18.在大棚中栽培新品种的蘑菇,在18℃的条件下生长最快,因此用装有恒温系统的大棚栽培,如图是某天恒温系统从开启升温到保持恒温及关闭,大棚内温度y(℃)随时间x(时)变化的函数图象,其中BC段是函数(k>0)图象的一部分.若该蘑菇适宜生长的温度不低于12℃,则这y=kx天该品种蘑菇适宜生长的时间为( )A. 18小时B. 17.5小时C. 12小时D. 10小时9.设A,B,C,D是反比例函数y=k图象上的任意四点,现有以下结论:x①四边形ABCD可以是平行四边形;②四边形ABCD可以是菱形;③四边形ABCD不可能是矩形;④四边形ABCD不可能是正方形.其中正确的是( ).A. ①②B. ①④C. ②③D. ③④10.如图,点P、Q是反比例函数y=k(k≠0)图象上的两点,PA⊥y轴于点A,QN⊥x轴于点N,作PM⊥xx轴于点M,QB⊥y轴于点B,连接PB、QM.记SΔABP=S1,SΔQMN=S2,则S1与S2的大小关系为 ( )A. S1>S2B. S1<S2C. S1=S2D. 无法判断二、填空题:本题共6小题,每小题3分,共18分。

《反比例函数》单元测试题(含答案)

反比例函数基础练习1. 双曲线ky x=经过点(2-,3),则_____=k ; 2. 已知y 与x 成反比例,当1=y 时,4=x ,则当2=x 时,_____=y ;3. 反比例函数和正比例函数的图象都经过点A(1-,2-),则这两个函数的解析式分别是_________和_________;4. 某厂有煤1500吨,求这些煤能用的天数y 与每天用煤的吨数x 之间的函数关系式为_________;5. 若点(3,6)在反比例函数xky =(k ≠0)的图象上,那么下列各点在此图象上的是( ) (A )(3-,6) (B ) (2,9) (C )(2,9-) (D )(3,6-)6. 已知反比例函数的图象过(2,-2)和(-1,n ),则n 等于 ( ) (A )3 (B )4(C )6(D )127. 反比例函数xk y =的图像经过(-23,5)点、(a ,-3)及(10,b )点,则k = ,a = ,b = ;8. 已知2-y 与x 成反比例,当x =3时,y =1,则y 与x 间的函数关系式为 ; 9. 如果函数22(1)m y m x -=-是反比例函数,那么m 的值是_________ ;10. 反比例函数xky =(k ≠0)的图象是__________,当k >0时,图象的两个分支分别在第__________、__________象限内,在每个象限内,y 随x 的增大而__________;当k <0时,图象的两个分支分别在第__________、__________象限内,在每个象限内,y 随x 的增大而__________; 11. 已知函数1k y x+=的图象两支分布在第二、四象限内,则k 的范围是_________ 12. 反比例函数 2k y x= (0≠k )的图象的两个分支分别位于 ( )(A ) 第一、二象限 (B ) 第一、三象限 (C ) 第二、四象限 (D ) 第一、四象限 13. 若反比列函数1232)12(---=k k xk y 的图像经过二、四象限,则k = _______14. 已知反比例函数的图像经过点(a ,b ),则它的图像一定也经过 ( ) (A ) (a -,b -) (B ) (a ,b -) (C ) (a -,b ) (D ) (0,0) 15. 反比例函数422)1(---=m mx m y ,当x <0时,y 随x 的增大而增大,则m 的值是( )(A ) 1- (B ) 3(C ) 1-或3 (D ) 216. 若A (x 1,y 1),B (x 2,y 2),C (x 3,y 3)都是反比例函数xy 1-=的图象上的点,且 x 1<0<x 2<x 3,则y 1,y 2,y 3由小到大的顺序是 ; 17. 设有反比例函数y k x=+1,(,)x y 11、(,)x y 22为其图象上的两点,若x x 120<<时,y y 12>,则k 的取值范围是___________18. 点A 为反比例函数图象上一点,它到原点的距离为5,到x 轴的距离为3,若点A 在第二象限内.则这个反比例函数的解析式为 ( )(A ) 12y x =(B ) 12y x =- (C ) 112y x= (D ) 112y x =- 19. 反比例函数()0>=k xky 在第一象限内的图象如图,点M 是图像上一点,MP 垂直x 轴于点P ,如果△MOP 的面积为1,那么k 的值是 ;20. 如图2所示,A 、B 是函数xy 1-=的图象上关于原点O 对称的任意两点,AC ∥x 轴,BC ∥y 轴,△ABC 的面积为S ,则 ( ) (A ) S =1 (B ) S =2(C ) 1<S <2(D ) S <221. 已知12y y y =+,其中1y 与1x成反比例且比例系数为1k ,2y 与2x 成正比例且比例系数为2k ,若1-=x 时,0=y ,则1k 与2k 的关系为 ( )(A ) 12k k =- (B ) 12k k ≠ (C ) 121k k =- (D ) 12k k = 22. 若ab <0,则函数ax y =与xby =在同一坐标系内的图象大致可能是下图中的 ( )(A ) (B ) (C ) (D )23. 函数2x y -=和函数xy 2=的图像有 个交点; 24. 已知正比例函数kx y =与反比例函数3y x=的图象都过A (m ,1),则m = ,正比例函数与反比例函数的解析式分别是 、 ; 25. 直线x y 2=与双曲线xy 1=的交点为_________; yO PM26. 如图1,正比例函数)0(>=k kx y 与反比例函数xy 1=的图象相交于 A 、C 两点,过A 作x 轴的垂线交x 轴于B ,连结BC ,则△ABC 的面积S =_________. 27. 在同一坐标系中,函数x ky =和3+=kx y 的图像大致是 ( )A B C D28. 已知12y y y =+,1y 与x 成正比例,2y 与x 成反比例,且当x=1时,y=-2;当x =2时,y=-7,求y 与x 间的函数关系式.29. 反比例函数y =-x6与直线y =-x +2的图象交于A 、B 两点,点A 、B 分别在第四、二象限,求:(1)A 、B 两点的坐标; (2)△ABO 的面积.30. 如图2,第一象限的角平分线OM 与反比例函数的图象相交于点A ,已知OA =22. (1)求点A 的坐标; (2)求此反比例函数的解析式.如图,Rt ⊿ABO 的顶点A 是双曲线xky =与直线)1(+--=k x y 在第二象限的交点,AB ⊥x 轴于B 且S △ABO =23 (1)求这两个函数的解析式(2)求直线与双曲线的两个交点A ,C 的坐标和△AOC 的面积。

(新)人教版九年级数学下册第26章《反比例函数》单元检测及答案

人教版数学九年级下学期第26章《反比例函数》单元测试卷(满分120分,限时120分钟)一、选择题(共10小题,每小题3分,共30分) 1.下列函数是反比例函数的是( )A .y=xB .y=kx ﹣1 C .y=-8x D .y=28x2.如果直角三角形的面积一定,那么下列关于这个直角三角形边的关系中,正确的是( )A .两条直角边成正比例B .两条直角边成反比例C .一条直角边与斜边成正比例D .一条直角边与斜边成反比例3.在双曲线y=1-kx的任一支上,y 都随x 的增大而增大,则k 的值可以是( )A .2B .0C .﹣2D .14.函数y=﹣x +1与函数y= -2x在同一坐标系中的大致图象是( )C BAy yy y5.若正比例函数y=﹣2x 与反比例函数y=kx图象的一个交点坐标为(﹣1,2),则另一个交点的坐标为( ) A .(2,﹣1) B .(1,﹣2)C .(﹣2,﹣1)D .(﹣2,1)6.如图,过反比例函数y=kx(x >0)的图象上一点A 作AB ⊥x 轴于点B ,连接AO ,若S △AOB =2,则k 的值为( )xC .4D .5 k ≠0)的图象经过点(﹣1,2),则这个函数的图象一定经过点( )A.(1,﹣1) B.(﹣12,4)C.(﹣2,﹣1) D.(12,4)8.图象经过点(2,1)的反比例函数是()A.y=﹣2xB.y=2xC.y=12xD.y=2x9.若一次函数y=mx+6的图象与反比例函数y=nx在第一象限的图象有公共点,则有()A.mn≥﹣9 B.﹣9≤mn≤0 C.mn≥﹣4 D.﹣4≤mn≤010.一个三角形的面积是12cm2,则它的底边y(单位:cm)是这个底边上的高x(单位:cm)的函数,它们的函数关系式(其中x>0)为()A.y=12xB.y=6x C.y=24xD.y=12x二、填空题(共6小题,每小题3分,共18分)11.若反比例函数y=(m+1)22mx-的图象在第二、四象限,m的值为.12.若函数y=(3+m)28mx-是反比例函数,则m=.13.已知反比例函数y=kx(k>0)的图象与经过原点的直线L相交于点A、B两点,若点A的坐标为(1,2),14.反比例函数y=kx的图象过点P(2,6),那么k的值是.15.已知:反比例函数y=kx的图象经过点A(2,﹣3),那么k=.16.如图,点A在双曲线y=4x上,点B在双曲线y=kx(k≠0)上,AB∥x轴,分别过点A、B向xD、C,若矩形ABCD的面积是8,则k的值为.x72分)取何值时,函数y=2m113x+是反比例函数?OABC中,OA=3,OC=2,F是AB上的一个动点(F不与A,B重合),过点F的反比例函数y=kx(k>0)的图象与BC边交于点E.当F为AB的中点时,求该函数的解析式;、y 2在第一象限的图象,1y =4x,过y 1上的任意一点A ,作x 轴S △AOB =1,求双曲线y 2的解析式. =4xy=kx的图象上,过点C 作CD ⊥y 轴,交y 轴负半轴于y 轴对称的点的坐标是 .(2)反比例函数y=x 关于y 轴对称的函数的解析式为 .(3)求反比例函数y=kx(k ≠0)关于x 轴对称的函数的解析式.22.(本题10分)如图,Rt △ABC 的斜边AC 的两个顶点在反比例函数y=1kx的图象上,点B 在反比例函数y=2kx的图象上,AB 与x 轴平行,BC=2,点A 的坐标为(1,3).(1)求C 点的坐标;(2)求点B 所在函数图象的解析式.y=x+b的图象与反比例函数y=kx(k为常数,k≠0)的图象交b的值;(2)若A、O两点关于直线l对称,请连接AO,并求出直线l与线段AO的交点坐标.O为坐标原点,△ABO的边AB垂直与x轴,垂足AO的中点C,且与AB相交于点D,OB=4,AD=3,(1)求反比例函数y=kx的解析式;(2)求cos∠OAB的值;(3)求经过C、D两点的一次函数解析式.第26章《反比例函数》单元测试卷解析一、选择题1. 【答案】A 、y=x 是正比例函数;故本选项错误;B 、y=kx ﹣1当k=0时,它不是反比例函数;故本选项错误; C 、符合反比例函数的定义;故本选项正确;D 、y=28x的未知数的次数是﹣2;故本选项错误.故选C .2.【答案】设该直角三角形的两直角边是a 、b ,面积为S .则 S=12ab . ∵S 为定值,∴ab=2S 是定值,则a 与b 成反比例关系,即两条直角边成反比例. 故选:B .3.【答案】∵y 都随x 的增大而增大, ∴此函数的图象在二、四象限, ∴1﹣k <0, ∴k >1.故k 可以是2(答案不唯一), 故选A .4.【答案】函数y=﹣x +1经过第一、二、四象限,函数y=﹣2x分布在第二、四象限.故选A .5.【答案】∵正比例函数与反比例函数的图象均关于原点对称, ∴两函数的交点关于原点对称, ∵一个交点的坐标是(﹣1,2), ∴另一个交点的坐标是(1,﹣2). 故选B .6.【答案】∵点A 是反比例函数y=kx图象上一点,且AB ⊥x 轴于点B ,∴S △AOB =12|k |=2,解得:k=±4.∵反比例函数在第一象限有图象, ∴k=4. 故选C .7.【答案】∵反比例函数y=kx(k ≠0)的图象经过点(﹣1,2),∴k=﹣1×2=﹣2,A 、1×(﹣1)=﹣1≠﹣2,故此点不在反比例函数图象上;B 、﹣12×4=﹣2,故此点,在反比例函数图象上;C 、﹣2×(﹣1)=2≠﹣2,故此点不在反比例函数图象上;D 、12×4=2≠﹣2,故此点不在反比例函数图象上. 故选B .8.【答案】设反比例函数解析式y=kx,把(2,1)代入得k=2×1=2,所以反比例函数解析式y=2x.故选B .9.【答案】依照题意画出图形,如下图所示.x+6x ﹣n=0, 故选A .10.【答案】由题意得y=2×12÷x=24x.故选C .二、填空题11.【答案】由题意得:2﹣m 2=﹣1,且m +1≠0, 解得:m=∵图象在第二、四象限, ∴m+1<0, 解得:m <﹣1, ∴m=故答案为:12.【答案】根据题意得:8-m 2= -1,3+m ≠0,解得:m=3.故答案是:3. 13.【答案】∵点A (1,2)与B 关于原点对称, ∴B 点的坐标为(﹣1,﹣2). 故答案是:(﹣1,﹣2).14.【答案】:∵反比例函数y=kx 的图象过点P (2,6),∴k=2×6=12,故答案为:12.15.【答案】根据题意,得﹣3=k2,解得,k=﹣6.16. 【答案】过点A 作AE ⊥y 轴于点E ,∵点A 在双曲线y=4x上,∴矩形EODA 的面积为:4, ∵矩形ABCD 的面积是8,∴矩形EOCB 的面积为:4+8=12, 则k 的值为:xy=k=12.x2m 113x 是反比例函数,∴2m +1=1,解得:m=0.OABC 中,OA=3,OC=2,∴B (3,2), F (3,1),∵点F 在反比例函数y=k x (k >0)的图象上,∴k=3,∴该函数的解析式为y= 3x(x >0);19.【解答】设双曲线y 2的解析式为y 2=kx,由题意得:S △BOC ﹣S △AOC =S △AOB ,k 2﹣42=1,解得;k=6;则双曲线y 2的解析式为y 2=6x . 20.【解答】(1)设C 点坐标为(x ,y ),∵△ODC 的面积是3,∴12 OD •DC=12x •(﹣y )=3,∴x •y=﹣6,而xy=k ,∴k=﹣6,∴所求反比例函数解析式为y=﹣6x;(2)∵CD=1,即点C ( 1,y ),把x=1代入y=﹣6x,得y=﹣6.∴C 点坐标为(1,﹣6),设直线OC 的解析式为y=mx ,把C (1,﹣6)代入y=mx 得﹣6=m ,∴直线OC 的解析式为:y=﹣6x . 21.【解答】(1)由于两点关于y 轴对称,纵坐标不变,横坐标互为相反数; 则点(3,6)关于y 轴对称的点的坐标是(﹣3,6);(2)由于两反比例函数关于y 轴对称,比例系数k 互为相反数;则k=﹣3,即反比例函数y=3x 关于y 轴对称的函数的解析式为y=﹣3x;(3)由于两反比例函数关于x 轴对称,比例系数k 互为相反数;则反比例函数y=k x (k ≠0)关于x 轴对称的函数的解析式为:y=﹣kx.22.【解答】(1)把点A (1,3)代入反比例函数y=1kx 得k 1=1×3=3,所以过A 点与C 点的反比例函数解析式为y=3x,∵BC=2,AB 与x 轴平行,BC 平行y 轴,∴B 点的坐标为(3,3),C 点的横坐标为3,把x=3代入y=3x得y=1,∴C 点坐标为(3,1);(2)把B (3,3)代入反比例函数y=2kx 得k 2=3×3=9,所以点B 所在函数图象的解析式为y=9x.23.【解答】(1)∵点A (﹣1,4)在反比例函数y=kx(k 为常数,k ≠0)的图象上,∴k=﹣1×4=﹣4,∴反比例函数解析式为y=﹣4x. 把点A (﹣1,4)、B (a ,1)分别代入y=x +b 中,解得:a= -4,b=5. (2)连接AO ,设线段AO 与直线l 相交于点M ,如图所示.OA 的中点,12,2).,2).24..【解答】(1)设点D 的坐标为(4,m )(m >0),则点A 的坐标为(4,3+m ),∵点C 为线段AO 的中点,∴点C 的坐标为(2,3m2+).∵点C 、点D 均在反比例函数y=kx 的函数图象上,解得:m=1,k=4.∴反比例函数的解析式为y=4x.(2)∵m=1,∴点A 的坐标为(4,4),∴OB=4,AB=4. 在Rt △ABO 中,OB=4,AB=4,∠ABO=90°,∴cos ∠OAB=AB OA ==. (3))∵m=1,∴点C 的坐标为(2,2),点D 的坐标为(4,1). 设经过点C 、D 的一次函数的解析式为y=ax +b ,解得:a= -12,b=3.∴经过C 、D 两点的一次函数解析式为y=﹣12x +3.。

湘教版数学九年级上学期《第1章反比例函数》单元测试

湘教新版数学九年级上学期《第1章反比例函数》单元测试一.选择题(共13小题)1.反比例函数y=的图象经过点(3,﹣2),下列各点在图象上的是()A.(﹣3,﹣2)B.(3,2)C.(﹣2,﹣3)D.(﹣2,3)2.函数y=ax﹣a与y=(a≠0)在同一直角坐标系中的图象可能是()A.B.C.D.3.已知点A(1,y1)、B(2,y2)、C(﹣3,y3)都在反比例函数y=的图象上,则y1、y2、y3的大小关系是()A.y1<y2<y3B.y3<y2<y1C.y2<y1<y3D.y3<y1<y2 4.已知点A(x1,y1),(x2,y2)是反比例函数y=图象上的点,若x1>0>x2,则一定成立的是()A.y1>y2>0B.y1>0>y2C.0>y1>y2D.y2>0>y15.已知反比例函数y=﹣,下列结论不正确的是()A.图象必经过点(﹣1,3)B.若x>1,则﹣3<y<0C.图象在第二、四象限内D.y随x的增大而增大6.函数y=﹣x+1与函数在同一坐标系中的大致图象是()A.B.C.D.7.已知一次函数y1=kx+b(k≠0)与反比例函数y2=(m≠0)的图象如图所示,则当y1>y2时,自变量x满足的条件是()A.1<x<3B.1≤x≤3C.x>1D.x<38.对于反比例函数y=,下列说法正确的是()A.图象经过点(2,﹣1)B.图象位于第二、四象限C.图象是中心对称图形D.当x<0时,y随x的增大而增大9.已知反比例函数的图象上有两点A(x1,y1)、B(x2,y2),且x1<x2,那么下列结论正确的是()A.y1<y2B.y1>y2C.y1=y2D.不能确定10.若函数y=(m﹣1)是反比例函数,则m的值是()A.±1B.﹣1C.0D.111.如图,已知直线y=k1x(k1≠0)与反比例函数y=(k2≠0)的图象交于M,N两点.若点M的坐标是(1,2),则点N的坐标是()A.(﹣1,﹣2)B.(﹣1,2)C.(1,﹣2)D.(﹣2,﹣1)12.下列四个函数:①y=2x﹣9;②y=﹣3x+6;③y=﹣;④y=﹣2x2+8x﹣5.当x <2时,y随x增大而增大的函数是()A.①③④B.②③④C.②③D.①④13.如图,矩形OABC的两边OA、OC在坐标轴上,且OC=2OA,M、N分别为OA、OC的中点,BM与AN交于点E,若四边形EMON的面积为2,则经过点B的双曲线的解析式为()A.y=﹣B.y=﹣C.y=﹣D.y=﹣二.填空题(共7小题)14.如图,四边形OABC是矩形,四边形ADEF是正方形,点A、D在x轴的负半轴上,点C在y轴的正半轴上,点F在AB上,点B、E在反比例函数y=(k为常数,k≠0)的图象上,正方形ADEF的面积为4,且BF=2AF,则k值为.15.如图,点A是反比例函数y=(x>0)的图象上任意一点,AB∥x轴交反比例函数y=﹣的图象于点B,以AB为边作平行四边形ABCD,其中C、D在x轴上,则S▱ABCD为.16.如图,B(3,﹣3),C(5,0),以OC,CB为边作平行四边形OABC,则经过点A的反比例函数的解析式为.17.写出一个图象位于第一、三象限的反比例函数的表达式:.18.在反比例函数y=的图象上有两点A(x1,y1),B(x2,y2),当x1<0<x2时,有y1<y2,则m的取值范围是.19.如图,反比例函数y=(x<0)的图象经过平行四边形OABC的两个顶点B,C,若点A的坐标为(1,2),AB=BC,则反比例函数的解析式为.20.若函数y=的图象在其所在的每一象限内,函数值y随自变量x的增大而减小,则m的取值范围是.三.解答题(共7小题)21.如图,双曲线y=经过Rt△BOC斜边上的点A,且满足=,与BC交于点D,S△BOD=21,求:(1)S△BOC(2)k的值.22.如图,一次函数y=k1x+b的图象经过A(0,﹣2),B(1,0)两点,与反比例函数y=的图象在第一象限内的交点为M(m,4).(1)求一次函数和反比例函数的表达式;(2)在x轴上是否存在点P,使AM⊥MP?若存在,求出点P的坐标;若不存在,说明理由.23.如图,已知一次函数y1=kx﹣2的图象与反比例函数y2=(x>0)的图象交于A点,与x轴、y轴交于C、D两点,过A作AB垂直于x轴于B点.已知AB=1,BC=2.(1)求一次函数y1=kx﹣2和反比例函数y2=(x>0)的表达式;(2)观察图象:当x>0时,比较y1、y2的大小.24.如图,四边形ABCD是正方形,点A的坐标是(0,1),点B的坐标是(0,﹣2),反比例函数y=的图象经过点C,一次函数y=ax+b的图象经过A、C两点,两函数图象的另一个交点E的坐标是(m,3).(1)分别求出一次函数与反比例函数的解析式.(2)求出m的值,并根据图象回答:当x为何值时,一次函数的值大于反比例函数的值.(3)若点P是反比例函数图象上的一点,△AOP的面积恰好等于正方形ABCD 的面积,求点P坐标.25.如图,一次函数y1=kx+b(k≠0)的图象与反比例函数y2=的图象交于点A (﹣2,﹣5),C(5,n),交y轴于点B,交x轴于点D.(1)求一次函数y1=kx+b与反比例函数y2=的函数关系式;(2)连结OA、OC,求△AOC的面积;(3)根据图象直接写出y1>y2时,x的取值范围.26.如图,在直角坐标系中,O为坐标原点,已知反比例函数y=(k>0)的图象经过点A(3,m),过点A作AB⊥x轴于点B,△AOB的面积为.求m的值及该反比例函数的表达式.27.某蔬菜生产基地的气温较低时,用装有恒温系统的大棚栽培一种新品种蔬菜.如图是试验阶段的某天恒温系统从开启到关闭后,大棚内的温度y (℃)与时间x(h)之间的函数关系,其中线段AB、BC表示恒温系统开启阶段,双曲线的一部分CD表示恒温系统关闭阶段.请根据图中信息解答下列问题:(1)求这天的温度y与时间x(0≤x≤24)的函数关系式;(2)求恒温系统设定的恒定温度;(3)若大棚内的温度低于10℃时,蔬菜会受到伤害.问这天内,恒温系统最多可以关闭多少小时,才能使蔬菜避免受到伤害?湘教新版数学九年级上学期《第1章反比例函数》单元测试参考答案与试题解析一.选择题(共13小题)1.【解答】解:∵反比例函数y=的图象经过点(3,﹣2),∴xy=k=﹣6,A、(﹣3,﹣2),此时xy=﹣3×(﹣2)=6,不合题意;B、(3,2),此时xy=3×2=6,不合题意;C、(﹣2,﹣3),此时xy=﹣3×(﹣2)=6,不合题意;D、(﹣2,3),此时xy=﹣2×3=﹣6,符合题意;故选:D.2.【解答】解:A、从反比例函数图象得a>0,则对应的一次函数y=ax﹣a图象经过第一、三、四象限,所以A选项错误;B、从反比例函数图象得a>0,则对应的一次函数y=ax﹣a图象经过第一、三、四象限,所以B选项错误;C、从反比例函数图象得a<0,则对应的一次函数y=ax﹣a图象经过第一、二、四象限,所以C选项错误;D、从反比例函数图象得a<0,则对应的一次函数y=ax﹣a图象经过第一、二、四象限,所以D选项正确.故选:D.3.【解答】解:∵点A(1,y1),B(2,y2),C(﹣3,y3)都在反比例函数y=的图象上,∵﹣2<3<6,∴y3<y2<y1,故选:B.4.【解答】解:∵k=2>0,∴函数为减函数,又∵x1>0>x2,∴A,B两点不在同一象限内,∴y2<0<y1;故选:B.5.【解答】解:A、将x=﹣1代入反比例解析式得:y=3,∴反比例函数图象过(﹣1,3),本选项正确;B、由反比例函数图象可得:当x>1时,y>﹣3,本选项正确,C、由反比例函数的系数k=﹣3<0,得到反比例函数图象位于第二、四象限,本选项正确;D、反比例函数y=﹣,在第二或第四象限y随x的增大而增大,本选项错误;综上,不正确的结论是D.故选:D.6.【解答】解:函数y=﹣x+1经过第一、二、四象限,函数y=﹣分布在第二、四象限.故选:A.7.【解答】解:当1<x<3时,y1>y2.故选:A.8.【解答】解:∵当x=2时,可得y=1≠﹣1,∴图象不经过点(2,﹣1),故A不正确;∵在y=中,k=2>0,∴图象位于第一、三象限,且在每个象限内y随x的增大而减小,故B、D不正确;又双曲线为中心对称图形,故C正确,故选:C.9.【解答】解:∵k=﹣1,∴反比例函数的图象经过第二、四象限,在每一个象限内,y随x的增大而增大;①当x1<x2<0时,y1>y2;②当0<x1<x2时,y1<y2;③当x1<0<x2时,y1>y2;综合①②③,y1与y2的大小关系不能确定.故选:D.10.【解答】解:∵y=(m﹣1)是反比例函数,解之得m=﹣1.故选:B.11.【解答】解:∵直线y=k1x(k1≠0)与反比例函数y=(k2≠0)的图象交于M,N两点,∴M,N两点关于原点对称,∵点M的坐标是(1,2),∴点N的坐标是(﹣1,﹣2).故选:A.12.【解答】解:①y=2x ﹣9,k=2>0当x <2时,y 随x 增大而增大;②y=﹣3x +6,k=﹣3<0,当x <2时,y 随x 增大而减小;③y=﹣,k=﹣3<0,当x <0时,y 随x 增大而增大,当0<x <2时,y 随x 增大而增大,故③错误;④y=﹣2x 2+8x ﹣5,当x <﹣2时,y 随x 增大而增大,故选:D .13.【解答】解:过M 作MG ∥ON ,交AN 于G ,过E 作EF ⊥AB 于F ,设EF=h ,OM=a ,由题意可知:AM=OM=a ,ON=NC=2a ,AB=OC=4a ,BC=AO=2a△AON 中,MG ∥ON ,AM=OM ,∴MG=ON=a ,∵MG ∥AB∴BE=4EM ,∵EF ⊥AB ,∴EF ∥AM ,∴FE=AM ,即h=a ,∵S △ABM =4a ×a ÷2=2a 2,S △AON =2a ×2a ÷2=2a 2,∴S △ABM =S △AON ,∴S △AEB =S 四边形EMON =2,S △AEB =AB ×EF ÷2=4a ×h ÷2=2,ah=1,又有h=a ,a=(长度为正数) ∴OA=,OC=2,因此B 的坐标为(﹣2,),经过B 的双曲线的解析式就是y=﹣. 二.填空题(共7小题)14.【解答】解:∵正方形ADEF的面积为4,∴正方形ADEF的边长为2,∴BF=2AF=4,AB=AF+BF=2+4=6.设B点坐标为(t,6),则E点坐标(t﹣2,2),∵点B、E在反比例函数y=的图象上,∴k=6t=2(t﹣2),解得t=﹣1,k=﹣6.故答案为﹣6.15.【解答】解:设点A的纵坐标为b,所以,=b,解得x=,∵AB∥x轴,∴点B的纵坐标为﹣=b,解得x=﹣,∴AB=﹣(﹣)=,∴S▱ABCD=•b=5.故答案为:5.16.【解答】解:设A坐标为(x,y),∵B(3,﹣3),C(5,0),以OC,CB为边作平行四边形OABC,∴x+5=0+3,y+0=0﹣3,解得:x=﹣2,y=﹣3,即A(﹣2,﹣3),设过点A的反比例解析式为y=,把A(﹣2,﹣3)代入得:k=6,则过点A的反比例解析式为y=,故答案为:y=17.【解答】解;设反比例函数解析式为y=,∵图象位于第一、三象限,∴k>0,∴可写解析式为y=,故答案为:y=.18.【解答】解:∵反比例函数y=的图象上有两点A(x1,y1),B(x2,y2),当x1<0<x2时,有y1<y2,∴1+2m>0,故m的取值范围是:m>﹣.故答案为:m>﹣.19.【解答】解:∵点A的坐标为(1,2),∴OA=,又∵四边形OABC是平行四边形,且AB=BC,∴OC=5,∵点C在双曲线y=上,∴设点C坐标为(x,),则x2+=25 ①,根据题意知点B的坐标为(x+1, +2),又∵点B在双曲线y=上,∴+2=②,由②可得,k=﹣2x2﹣2x,代入①整理得:5x2+8x﹣21=0,解得:x=﹣3或x=,当x=﹣3时,k=﹣2x2﹣2x=﹣12,当x=时,k=﹣2x2﹣2x=﹣,∴反比例函数的解析式为:y=﹣或y=﹣.故答案为:y=﹣或y=﹣.20.【解答】解:∵函数y=的图象在每一象限内y的值随x值的增大而减小,∴m﹣2>0,解得m>2.故答案为:m>2.三.解答题(共7小题)21.【解答】解:过点A作AE⊥OC于点E,交OD于点F∵AE∥BC,=由反比例函数图象性质S△AOE=S△ODC∵AE∥BC=25∴S△BOC(2)设A(a,b)∵点A在第一象限∴k=ab>0=25,S△BOD=21∵S△BOC=4 即ab=4∴S△OCD∴ab=8∴k=822.【解答】解:(1)把A(0,﹣2),B(1,0)代入y=k1x+b得,解得,所以一次函数解析式为y=2x﹣2;把M(m,4)代入y=2x﹣2得2m﹣2=4,解得m=3,则M点坐标为(3,4),把M(3,4)代入y=得k2=3×4=12,所以反比例函数解析式为y=;(2)存在.∵A(0,﹣2),B(1,0),M(3,4),∴AB=,BM==2,∵PM⊥AM,∴∠BMP=90°,∵∠OBA=∠MBP,∴Rt△OBA∽Rt△MBP,∴=,即=,∴PB=10,∴OP=11,∴P点坐标为(11,0).23.【解答】解:(1)对于一次函数y=kx﹣2,令x=0,则y=﹣2,即D(0,﹣2),∴OD=2,∵AB⊥x轴于B,∵AB=1,BC=2,∴OC=4,OB=6,∴C(4,0),A(6,1)将C点坐标代入y=kx﹣2得4k﹣2=0,∴k=,∴一次函数解析式为y=x﹣2;将A点坐标代入反比例函数解析式得m=6,∴反比例函数解析式为y=;(2)由函数图象可知:当0<x<6时,y1<y2;当x=6时,y1=y2;当x>6时,y1>y2;24.【解答】解:(1)∵点A的坐标为(0,1),点B的坐标为(0,﹣2),∴AB=1+2=3,∵四边形ABCD为正方形,∴BC=AB=3,∴C(3,﹣2),把C(3,﹣2)代入y=,得k=3×(﹣2)=﹣6,∴反比例函数解析式为y=﹣;把C(3,﹣2),A(0,1)代入y=ax+b,得,解得,∴一次函数解析式为y=﹣x+1;(2)∵反比例函数y=﹣的图象过点E(m,3),∴m=﹣2,∴E点的坐标为(﹣2,3);由图象可知,当x<﹣2或0<x<3时,一次函数落在反比例函数图象上方,即当x<﹣2或0<x<3时,一次函数的值大于反比例函数的值;(3)设P(t,﹣),∵△AOP的面积恰好等于正方形ABCD的面积,∴×1×|t|=3×3,解得t=18或t=﹣18,∴P点坐标为(18,﹣)或(﹣18,).25.【解答】解:(1)∵把A(﹣2,﹣5)代入代入y2=,得:m=10,∴y2=,∵把C(5,n)代入得:n=2,∴C(5,2),∵把A、C的坐标代入y1=kx+b得:解得:k=1,b=﹣3,∴y1=x﹣3,∴反比例函数的表达式是y2=,一次函数的表达式是y1=x﹣3;(2)∵把y=0代入y1=x﹣3得:x=3,∴D(3,0),OD=3,=S△DOC+S△AOD∴S△AOC=×3×2+×3×|﹣5|=10.5,即△AOC的面积是10.5;(3)根据图象和A、C的坐标得出,当﹣2<x<0或x>5时,y1=kx+b的值大于反比例函数y2=的值.26.【解答】解:∵A(3,m),AB⊥x,∴OB=3,AB=m,=OB•AB=×3m=,∴S△AOB∴m=,把点A(3,)代入y=,=,∴k=1,∴反比例函数的表达式y=.27.【解答】解:(1)设线段AB解析式为y=k1x+b(k≠0)∵线段AB过点(0,10),(2,14)代入得解得∴AB解析式为:y=2x+10(0≤x<5)∵B在线段AB上当x=5时,y=20∴B坐标为(5,20)∴线段BC的解析式为:y=20(5≤x<10)设双曲线CD解析式为:y=(k2≠0)∵C(10,20)∴k2=200∴双曲线CD解析式为:y=(10≤x≤24)∴y关于x的函数解析式为:y=(2)由(1)恒温系统设定恒温为20°C(3)把y=10代入y=中,解得,x=20∴20﹣10=10答:恒温系统最多关闭10小时,蔬菜才能避免受到伤害.。

人教版九年级数学下册通关宝典(1) 26.1 反比例函数的概念(含答案)

人教版九年级数学下册通关宝典(1) 26.1 反比例函数的概念(含答案) 一、选择题(共6小题;共24分)1. 下列关系式中,哪个等式表示是的反比例函数A. B. C. D.2. 矩形的面积一定,则它的长和宽是下列哪种函数关系?A. 正比例函数B. 一次函数C. 反比例函数D. 二次函数3. 若函数是反比例函数,且它的图象在第一、三象限,则的值为A. B. C. D.4. 函数是反比例函数,则的值是A. B. C. D.5. 下列数表中分别给出了变量与之间的对应关系,其中是反比例函数关系的是A. B. C. D.6. 下列各变量之间的关系属于反比例函数关系的有①当路程一定时,汽车行驶的平均速度与行驶时间之间的关系;②当电压一定时,电路中的电阻与通过的电流强度之间的函数关系;③当矩形面积一定时,矩形的两边与之间的函数关系;④当受力一定时,物体所受到的压强与受力面积之间的函数关系.A. ①②③B. ②③④C. ①③④D.①②③④二、填空题(共4小题;共16分)7. 反比例函数中,比例系数,当时,.8. 设三角形的底边、对应高、面积分别为,,.(1)当时,与的关系式为,是函数;(2)当时,与的关系式为,是函数;9. 若函数是反比例函数,则.10. 已知反比例函数的图象在所在的每一个象限内随着的增大而增大,则.三、解答题(共6小题;共60分)11. 已知与成反比例,且时,,当时,求的值.12. 已知:与成反比例.且当时.(1)求与之间的函数关系式.(2)求当时,的值.13. 已知,与成正比例,与成反比例,且当时,,当时,.求与的函数关系式.14. 已知是反比例函数,求的值.15. (1)①京沪线铁路全程为,某列车平均速度为,全程运行时间为,那么是的反比例函数吗?②京沪线铁路全程为,某列车平均速度为,列车运行时的路程为,那么是的反比例函数吗?(2)在以上两个题目中涉及,,,你是否发现在什么情况下,有两个变量成正比例函数关系?又在什么情况下,有两个变量成反比例函数关系?请你再举一个类似的例子.16. 已知关于的一元二次方程.(1)求证:方程有两个不相等的实数根;(2)若方程的两个实数根分别为,(其中),设,试探究与之间的函数关系.答案第一部分1. D2. C3. A 【解析】是反比例函数,且它的图象在第一、三象限,解得:.4. D 【解析】函数是反比例函数,,.解得.5. D6. D第二部分7. ,8. ,正比例,,反比例.9.10.第三部分11. 由与成反比例,可设解析式为:.时,,,即..当时,.12. (1)设,把,代入得:,则即.(2)把代入解析式得:.13. 与成正比例,设,与成反比例,设,,,时,,当时,.解得:与的函数关系式为.14. 若是反比例函数,则有解得.15. (1)①,是的反比例函数;②,不是的反比例函数.(2)当一定时,是的正比例函数;当一定时,是的反比例函数.16. (1),,,方程有两个不相等的实数根.(2),由求根公式有,或.又,,,,故是的反比例函数.人教版九年级数学下第26章 反比例函数单元测试题及答案一、选择题(每小题3分,共30分)1、下列函数中 y 是x 的反比例函数的是( )A 21x y =B xy=8C 52+=x yD 53+=x y2、反比例函数y =xn 5+图象经过点(2,3),则n 的值是( ).A 、-2B 、-1C 、0D 、1 3、函数与在同一平面直角坐标系中的图像可能是( )。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

单元测试(一) 反比例函数
(时间:45分钟 满分:100分)
一、选择题(每小题3分,共30分)
1.下列函数中,变量y 是x 的反比例函数的是(B) A. y =1
x
2
B .y =x -1
C .y =2
x +3
D .y =1
x
-1
2.若反比例函数y =k
x 的图象经过点(2,-6),则k 的值为(A)
A .-12
B .12
C .-3
D .3
3.如图,点P 在反比例函数y =k
x
的图象上,PA ⊥x 轴于点A ,PB ⊥y 轴于点B ,且△APB 的面积为2,则k 等于(A)
A .-4
B .-2
C .2
D .4
4.对于函数y =4
x
,下列说法错误的是(C)
A .这个函数的图象位于第一、三象限
B .这个函数的图象既是轴对称图形又是中心对称图形
C .当x >0时,y 随x 的增大而增大
D .当x <0时,y 随x 的增大而减小
5.如图,在同一平面直角坐标系中,直线y =k 1x(k 1≠0)与双曲线y =k 2
x (k 2≠0) 相交于A 、B 两点,已知点A 的坐
标为(1,2),则点B 的坐标为(A)
A .(-1,-2)
B .(-2,-1)
C .(-1,-1)
D .(-2,-2)
6.面积为2的直角三角形一直角边长为x ,另一直角边长为y ,则y 与x 的变化规律用图象大致表示为(C)
7.函数y =
2
x +1
的图象可能是(C)
A B C D
8.如图,已知一次函数y =-x +b 与反比例函数y =1
x
的图象有2个公共点,则b 的取值范围是(C)
A .b >2
B .-2<b <2
C .b >2或b <-2
D .b <-2
9.已知二次函数y =(x +m)2
-n 的图象如图所示,则一次函数y =mx +n 与反比例函数y =mn x
的图象可能是(C)
A B C D
10.如图,A ,B 两点在反比例函数y =k 1x 的图象上,C ,D 两点在反比例函数y =k 2
x 的图象上,AC ⊥y 轴于点E ,BD ⊥
y 轴于点F ,AC =2,BD =1,EF =3,则k 1-k 2的值是(D)
A .6
B .4
C .3
D .2
二、填空题(每小题4分,共24分)
11.已知反比例函数y =k
x
(k ≠0)的图象如图所示,则k 的值可能是-1(答案不唯一).(写一个即可)
12.已知点A(1,m),B(2,n)在反比例函数y =-2
x
的图象上,则m 与n 的大小关系为m <n .
13.在对物体做功一定的情况下,力F(N)与此物体在力的方向上移动的距离s(m)成反比例函数关系,其图象如图所示,点P(4,3)在图象上,则当力达到10 N 时,物体在力的方向上移动的距离是1.2m. 14.直线y =kx(k>0)与双曲线y =6
x
交于A(x 1,y 1)和B(x 2,y 2)两点,则3x 1y 2-9x 2y 1的值为36.
15.如图,点A(m ,2),B(5,n)在函数y =k
x (k >0,x >0)的图象上,将该函数图象向上平移2个单位长度得到一
条新的曲线,点A 、B 的对应点分别为A ′、B ′,图中阴影部分的面积为8,则k 的值为2.
16.如图,已知点A(1,2)是反比例函数y =k
x 图象上的一点,连接AO 并延长交双曲线的另一分支于点B ,点P 是x
轴上一动点,若△PAB 是等腰三角形,则点P 的坐标是_(3,0),(5,0),(-3,0)或(-5,0).
三、解答题(共46分)
17.(8分)在如图所示的平面直角坐标系中,作出函数y =6
x 的图象,并根据图象回答下列问题:
(1)当x =-2时,求y 的值;
(2)当2<y <4时,求x 的取值范围;
(3)当-1<x <2,且x ≠0时,求y 的取值范围.
解:图象如图.
(1)当x =-2时,y =-3. (2)当2<y <4时,1.5<x <3.
(3)由图象可得:当-1<x <2且x ≠0时,y <-6或y >3.
18.(8分)如图,在平面直角坐标系中,点O 为原点,反比例函数y =k
x
的图象经过点(1,4),菱形OABC 的顶点A
在函数的图象上,对角线OB 在x 轴上.
(1)求反比例函数的解析式; (2)直接写出菱形OABC 的面积.
解:(1)∵反比例函数y =k
x 的图象经过点(1,4),
∴4=k
1
,即k =4.
∴反比例函数的解析式为y =4
x .
(2)8.
19.(9分)已知反比例函数y =m -8
x
(m 为常数).
(1)若函数图象经过点A(-1,6),求m 的值;
(2)若函数图象在第二、四象限,求m 的取值范围;
(3)当x >0时,y 随x 的增大而减小,求m 的取值范围. 解:(1)∵函数图象经过点A(-1,6), ∴m -8=xy =-1×6=-6,解得m =2. ∴m 的值是2.
(2)∵函数图象在第二、四象限,∴m -8<0,解得m <8. ∴m 的取值范围是m <8.
(3)∵当x >0时,y 随x 的增大而减小,∴m -8>0,解得m >8. ∴m 的取值范围是m >8.
20.(9分)如图,已知两点A(-4,2),B(n ,-4)是一次函数y =kx +b 和反比例函数y =m
x 图象的两个交点.
(1)求一次函数和反比例函数的解析式; (2)求△AOB 的面积;
(3)观察图象,直接写出不等式kx +b -m
x
>0的解集.
解:(1)把A(-4,2)代入y =m
x ,得m =2×(-4)=-8.
∴反比例函数的解析式为y =-8
x
.
把B(n ,-4)代入y =-8
x ,得-4n =-8,解得n =2.∴B(2,-4).
把A(-4,2)和B(2,-4)代入y =kx +b ,得
⎩⎪⎨⎪⎧-4k +b =2,2k +b =-4,解得⎩⎪⎨⎪⎧k =-1,b =-2.
∴一次函数的解析式为y =-x -2. (2)y =-x -2中,令y =0,则x =-2.
设直线y =-x -2与x 轴交于点C ,则C(-2,0). ∴S △AOB =S △AOC +S △BOC =12×2×2+1
2
×2×4=6.
(3)由图可得:不等式kx +b -m
x
>0的解集为x <-4或0<x <2.
21.
观察表中数据,发现可以用反比例函数刻画这种海产品的每天销售量y(千克)与销售价格x(元/千克)之间的关系.现假定在这批海产品的销售中,每天的销售量y(千克)与销售价格x(元/千克)之间都满足这一关系. (1)写出这个反比例函数的解析式,并补全表格;
(2)在试销8天后,公司决定将这种海产品的销售价格定为150元/千克,并且每天都按这个价格销售,那么余下的这些海产品预计再用多少天可以全部售出?
(3)在按(2)中定价继续销售15天后,公司发现剩余的这些海产品必须在不超过2天内全部售出,此时需要重新确定一个销售价格,使后面两天都按新的价格销售,那么新确定的价格最高不超过每千克多少元才能完成销售任务? 解:(1)函数解析式为y =12 000
x
.填表如上.
(2)余下的海产品为2 104-(30+40+48+50+60+80+96+100)=1 600(千克). 当x =150时,y =80. 1 600÷80=20(天).
答:余下的这些海产品预计再用20天可以全部售出. (3)1 600-80×15=400(千克), 400÷2=200(千克),
即如果正好用2天售完,那么每天需要售出200千克. 当y =200时,x =12 000
200
=60.
答:新确定的价格最高不超过60元/千克才能完成销售任务.。

相关文档
最新文档