华东师大初中数学中考总复习:实数--巩固练习(基础)[精选]

合集下载

华东师大初中数学八年级上册实数与实数的运算(基础)知识讲解

华东师大初中数学八年级上册实数与实数的运算(基础)知识讲解

实数与实数的运算(基础)【学习目标】1. 了解无理数和实数的概念,知道实数与数轴上的点一一对应.;2. 会用有理数估计一个无理数的大致范围.3. 会进行简单的实数四则运算,进一步认识近似数的概念.4. 能用实数的运算解决一些简单的实际问题.【要点梳理】【高清课堂:389317 立方根、实数,知识要点】要点一、有理数与无理数有限小数和无限循环小数都称为有理数.无限不循环小数又叫无理数.要点诠释:(1)无理数的特征:无理数的小数部分位数无限.无理数的小数部分不循环,不能表示成分数的形式.(2)常见的无理数有三种形式:①含π类.②看似循环而实质不循环的数,如:1.313113111…….. 要点二、实数有理数和无理数统称为实数.1.实数的分类按定义分:实数⎧⎨⎩有理数:有限小数或无限循环小数无理数:无限不循环小数 按与0的大小关系分:实数0⎧⎧⎨⎪⎩⎪⎪⎨⎪⎧⎪⎨⎪⎩⎩正有理数正数正无理数负有理数负数负无理数2.实数与数轴上的点一一对应.数轴上的任何一个点都对应一个实数,反之任何一个实数都能在数轴上找到一个点与之对应.要点三、实数大小的比较对于数轴上的任意两个点,右边的点所表示的实数总是比左边的点表示的实数大. 正实数大于0,负实数小于0,两个负数,绝对值大的反而小.要点四、实数的运算有理数关于相反数和绝对值的意义同样适合于实数.实数的运算顺序是:先算乘方和开方,再算乘除,最后算加减.如果遇到括号,则先进行括号里的运算.【典型例题】类型一、实数概念1、指出下列各数中的有理数和无理数:222,,0,,10.1010010001 (73)π- 【思路点拨】对实数进行分类时,应先对某些数进行计算或化简,然后根据它的最后结果进行分类,不能仅看到根号表示的数就认为是无理数.π是无理数,化简后含π的代数式也是无理数.【答案与解析】有理数有222,0,,73-,10.1010010001π……【总结升华】有限小数和无限循环小数都称为有理数.无限不循环小数又叫无理数.常见的无理数有三种形式:①含π类.②看似循环而实质不循环的数,如:0.1010010001…….③带有根号的数,但根号下的数字开方开不尽,如,1. 举一反三:【变式】(2015春•武昌区期中)下列说法正确的是( )A.无限小数都是无理数B.无理数都是无限小数C.带根号的数都是无理数D.π﹣3.14=0【答案】B ;解:A . 无理数指的是无限不循环小数,无限小数还包括无限循环小数,错误;B . 无理数是无限不循环小数,所以都是无限小数,正确;C 、开方开不尽的数是无理数,错误;D 、π近似值是3.14,但π﹣3.14≠0,错误;故选B.类型二、实数大小的比较2、(2015•成都)比较大小:.(填“>”,“<”或“=”) 【答案】<.【解析】 解:﹣ ==∵, ∴4, ∴, ∴﹣<0, ∴<. 【总结升华】此题主要考查了实数大小比较的方法,要熟练掌握,解答此题的关键是判断出﹣的差的正、负.举一反三:【变式】比较大小___ 3.14π--4__3 2 03___- |___(7)--- 【答案】<; >; <; <; <; >; <.3、(2016•通州区二模)如图,数轴上的A ,B ,C ,D 四点中,与表示数的点数接近的点是( )A .点AB .点BC .点CD .点D【思路点拨】先估算出与比较接近的两个整数,再根据数轴即可得到哪个点与最接近,本题得以解决. 【答案】C ;【解析】解:∵,∴4<<5, ∴数轴上与表示数的点数接近的点是C ,故选C .【总结升华】本题考查实数与数轴,解题的关键是明确数轴的特点,可以估算出与哪两个整数最接近.类型三、实数的运算4解:(1)原式=6-3-1=2.(2)原式≈3.1416-4.4721≈-1.331【总结升华】此题考查了实数的运算,涉及的知识有:平方根的定义,绝对值的代数意义,近似数,熟练掌握运算法则是解本题的关键.5、若2|2|(4)0a c --=,则a b c -+=________.【思路点拨】由有限个非负数之和为零,则每个数都应为零可得到方程中a ,b ,c 的值.【答案】3;【解析】解:由非负数性质可知:203040a b c -=⎧⎪-=⎨⎪-=⎩,即234a b c =⎧⎪=⎨⎪=⎩,∴ 2343a b c -+=-+=.【总结升华】初中阶段所学的非负数有|a |,2,a ,非负数的和为0,只能每个非负数分别为0 .举一反三:【变式】已知2(16)|3|0x y +++【答案】解:由已知得1603030x y z +=⎧⎪+=⎨⎪-=⎩,解得1633x y z =-⎧⎪=-⎨⎪=⎩.12=.。

实数(全章复习与巩固)(巩固篇)(专项练习)-七年级数学下册基础知识专项讲练(沪科版)

实数(全章复习与巩固)(巩固篇)(专项练习)-七年级数学下册基础知识专项讲练(沪科版)

专题6.12 实数(全章复习与巩固)(巩固篇)(专项练习)一、单选题1.在下列各数中,无理数是( ) A .237B 38-C 916D .4π 2.下列说法正确的是( ) A .117是无理数 B 5 C .π2是无理数D .22是有理数 3.下列等式正确的是( ) A .()255-- B 93=± C 382±D 3355--4.一个长、宽,高分别为50cm 、8cm 、20cm 的长方体铁块锻造成一个立方体铁块,则锻造成的立方体铁块的棱长是( )A .20cmB .200cmC .40cmD 80cm5.若32x =-( ) A .32x =-B .32x =-C .(-x)3=-2D .x=(-2)36.已知x ,y 为实数,且22994y x x --,则x y -=( ) A .﹣1B .﹣7C .﹣1或﹣7D .1或﹣77.若24,a =31b =-,则a b +的值是( ) A .1B .-3C .1或-3D .-1或38.已知x ,y 两个实数在数轴上位置如图所示,则化简()2y x x y --( )A .2xB .2yC .22x y -D .22y x -9.如图,在数轴上点A 表示的实数是( )A 5B 51C 31D 310.如图,数轴上表示12A 、B ,点B 关于点A 的对称点是C ,设C 点表示的数为x ,则2x )A .12B .1+2C 21D .2二、填空题1149的算术平方根是______64______. 128x -3x ____________.13()2460x y -+=,那么2x y -的平方根为_______. 14.已知:23+m ,小数部分为n ,则2m n -=_____.15.已知实数a 、b 在数轴上的对应点如图,化简||a a b c b -++-=_________.16101-89.(填“>”或“<”)17.设 a 、b 是有理数,且满足等式2322152a b b ++=-则a+b=___________. 18.对于能使式子有意义的有理数,a b ,定义新运算:a △b 22a ba b+=-.如果1230x y xz -++=则x △(y △z )= _____ .三、解答题19.在数轴上表示下列各数,并将这些数按从小到大的顺序用“<”连接起来. 2,52,038-π-.20.求下列各式中x 的值: (1) 240x -=;(2) 3(1)8x +=.21.化简求值:(1) 已知a 1713b =54ab +(2) 已知:实数a ,b 323(1)2(1)||a b a b -----.22.计算:(1) 2338125(2)---(2) 2722(7)π-(3) 331631270.1251464--(4) 233416(3)22--.23.如图,每个小正方形的边长均为1.(1) 图中阴影部分的面积是______;阴影部分正方形的边长a 是______. (2) 估计边长a 的值在两个相邻整数______与______之间.(3) 我们知道π是无理数,而无理数是无限不循环小数,因此π的小数部分我们不可能全部写出来,我们可以用3来表示它的整数部分,用()3π-表示它的小数部分.设边长a 的整数部分为x ,小数部分为y ,求()x y -的相反数.24.数轴是一个非常重要的数学工具,它使数和数轴上的点建立起对应关系,揭示了数与点之间的内在联系,它是“数形结合”的基础.小白在草稿纸上画了一条数轴进行操作探究:操作一:(1)折叠纸面,若使表示的点1与﹣1表示的点重合,则﹣2表示的点与表示的点重合;操作二:(2)折叠纸面,若使1表示的点与﹣3表示的点重合,回答以下问题:3表示的点与数表示的点重合;②若数轴上A、B两点之间距离为8(A在B的左侧),且A、B两点经折叠后重合,则A、B两点表示的数分别是__________________;操作三:(3)在数轴上剪下9个单位长度(从﹣1到8)的一条线段,并把这条线段沿某点折叠,然后在重叠部分某处剪一刀得到三条线段(如图). 若这三条线段的长度之比为1:1:2,则折痕处对应的点所表示的数可能是_________________________.参考答案1.D【分析】先对个选项进行化简,再由无理数的概念进行判断即可. 解:237是有理数,故选项A 不符合题意; 382--是有理数,故选项B 不符合题意;93164=是有理数,故选项C 不符合题意; 4π符合无理数的概念,故选项D 符合题意;. 故选:D .【点拨】此题考查的是算术平方根、立方根及无理数的概念,能够根据算术平方根的概念及立方根进行正确化简是解决此题关键.2.C【分析】根据有理数和无理数的定义,逐一判定即可,有理数包括整数和分数,无理数是无限不循环小数.解:A. 117是有理数,故A 选项说法错误; B. 5B 选项说法错误;C. π2是无理数,故C 选项说法正确; D.2D 选项说法错误. 故选:C .【点拨】本题主要考查了有理数和无理数,解决问题的关键是熟练掌握有理数和无理数的定义.3.D【分析】利用平方根与立方根的定义,逐个计算得结论.解: A 、()22555---,故选项错误,不符合题意;B 9=3,故选项错误,不符合题意;C 38=2,故选项错误,不符合题意;D 335=5--,故选项正确,符合题意. 故选:D .【点拨】本题考查了平方根、算术平方根和立方根的性质与化简,掌握平方根和立方根的定义解决本题的关键.4.A【分析】先求出体积,再求立方根即可. 解:∵铁块体积是3508208000(cm )⨯⨯=∴3800020(cm), 故选:A .【点拨】本题考查立方根的应用,会求立方根是解题的关键. 5.B【分析】利用立方根的定义分析得出答案. 解:∵3-2, ∴x 3=-2, 故选B .【点拨】本题考查立方根的定义,正确把握定义是解题关键. 6.C直接利用二次根式的性质得出x ,y 的值,然后讨论进而得出答案. 解:∵22994y x x --, ∴229090x x -≥-≥, ∴290x∴y =4, ∴3x =±,当3,4x y ==时,341x y -=-=-; 当3,4=-=x y 时,347x y -=--=-; ∴1x y -=-或7x y -=-, 故选:C .【点拨】本题考查了二次根式有意义的条件.解答本题的关键由二次根式有意义的条件求出x 、y 的值.7.C【分析】根据题意,利用平方根,立方根的定义求出a ,b 的值,再代入求解即可. 解:24,a =31,b =-2,a ∴=±1b,∴当2,a =-1b时,213a b +=--=-; ∴当2,a =1b 时,211a b +=-=.故选:C .【点拨】本题考查的知识点是平方根以及立方根的定义,根据定义求出a ,b 的值是解此题的关键.8.D【分析】根据点在数轴的位置判断式子的正负,然后化简. 解:根据图示可知:0x y <<∴0y x∴()2y x x y -+-y x y x 22y x =-故选:D .【点拨】此题的考查了数轴,绝对值的性质,合并同类项法则,解题的关键是根据点在数轴的位置判断式子的正负.9.B【分析】先根据勾股定理求出PQ 的长,即可求出点A 所表示的数. 解:如图,22125PQ =+由图可知5PA PQ ==, 所以点A 51, 故点A 51. 故选:B【点拨】本题考查勾股定理以及数轴表示数的意义和方法,掌握解答的方法是关键.。

实数(全章复习与巩固)(基础篇)-2022-2023学年七年级数学下册基础知识专项讲练(人教版)

实数(全章复习与巩固)(基础篇)-2022-2023学年七年级数学下册基础知识专项讲练(人教版)

专题6.11 实数(全章复习与巩固)(基础篇)(专项练习)一、单选题1.4的算术平方根是( ) A .2±B .2C .2D 22.下列实数是无理数的是( ) A 327-B .13C .3.14159D 63.下列说法不正确的是( ) A .0的平方根是0 B .一个负数的立方根是一个负数 C .﹣8的立方根是﹣2D .8的算术平方根是24.若3m x y -和35n x y 的和是单项式,则()3m n +的平方根是( ) A .8B .8-C .4±D .8±5.估计463 ) A .3与4之间B .4与5之间C .5与6之间D .6与7之间6.有一个数值转换器,原理如下:当输入的x 为64时,输出的y 是( )A .22B .32C .23D .87.如图,长方形内有两个相邻的正方形,面积分别为2和4,则阴影部分的面积为( )A .22-2B .2+2C .2D .28.若320a =10b =3c =,则a b c 、、的大小关系为( ) A .a c b <<B .a b c <<C .c<a<bD .c b a <<9.若a 、b 为实数,则下列说法正确的是( )A aB .有理数与无理数的积一定是无理数C .若a 、b 均为无理数,则a b +一定为无理数D .若a 为无理数,且()()220a b ++=,则2b =-10.下面是李华同学做的练习题,他最后的得分是( )姓名 李华 得分______填空题(评分标准,每道题5分) (1)16的平方根是4±(2)立方根等于它本身的数有0和1(3)38-的相反数是2(4)3=3--ππA .5分B .10分C .15分D .20分二、填空题11.16的平方根是___________. 12.计算327________.1321的相反数是__________,3.14π-=____________ 14.若实数a 、b 满足:2a b +,32a b.则()()a b a b +-的值是_____________.15.四个实数2-,023中,最小的实数是______. 16.实数a 在数轴上的位置如图,则|3a =_________.171032(填“>”,“<”或“=”)18.找规律填空:02,262103…,______(第n 个数).三、解答题19.求下列各式中的x : (1) 2481x =(2) ()3227x +=-20.计算(1) 20223113274-+-(2) 223(3)(3)1664---21.已知:9的平方根是3和5x +,y 13 (1) 求x y +的值;(2) 求22x y +的算术平方根.22.如图,长方形ABCD 的长为2cm ,宽为1cm .(1)将长方形ABCD 进行适当的分割(画出分割线),使分割后的图形能拼成一个正方形,并画出所拼的正方形;(标出关键点和数据)(2)求所拼正方形的边长.23.【观察】请你观察下列式子. 第111.第2132+=. 第31353++. 第413574+++=. 第5135795++++. 【发现】根据你的阅读回答下列问题: (1) 写出第7个等式 .(2) 135(21)n +++++= .(3) 利用(241220284452++++++24.阅读材料,完成下列任务:因为无理数是无限不循环小数,因此无理数的小数部分我们不可能全部地写出来比如:π2等,而常用的“…”或者“≈”的表示方法都不够百分百准确.材料一:479<273<<, ∵1712<. 71的整数部分为1. 7172.材料二:我们还可以用以下方法求一个无理数的近似值.我们知道面积是2221>21x =+,可画出如图示意图.由图中面积计算,2211S x x =+⨯⋅+正方形,另一方面由题意知2S =正方形,所以22112x x +⨯⋅+=.略去2x ,得方程212x +=,解得0.5x =2 1.5. 解决问题:(1) 85(2) 5(画出示意图,标明数据,并写出求解过程)参考答案1.C【分析】根据平方与开平方互为逆运算,可得一个正数的算术平方根. 解:∵22=4, ∵4的算术平方根是2;故选:C .【点拨】本题考查了求一个数的算术平方根,平方与开平方互为逆运算是求一个正数的算术平方根的关键.2.D【分析】无理数即为无限不循环小数,初中阶段接触的无理数的表现形式主要有:∵开方开不尽的数;∵含有π的数;∵0.010010001...(每两个1之间依次多个0)这样的数;据此解答即可.解:A 3273--,属于整数,不是无理数,不符合题意; B 、13为分数,不是无理数,不符合题意;C 、3.14159为有限小数,不是无理数,不符合题意;D 6 故选:D .【点拨】本题考查了无理数的定义以及求一个数的立方根,熟练掌握初中阶段无理数的主要表现形式是解本题的关键.3.D【分析】直接利用算术平方根、平方根、立方根的定义分析得出答案. 解:A 、0的平方根是0,原说法正确,故此选项不符合题意;B 、一个负数的立方根是一个负数,原说法正确,故此选项不符合题意;C 、﹣8的立方根是﹣2,原说法正确,故此选项不符合题意;D 、8的算术平方根是2 故选:D .【点拨】此题主要考查了算术平方根、平方根、立方根,熟练掌握算术平方根、平方根、立方根的定义是解题的关键.4.D【分析】根据题意可得3m x y -和35n x y 是同类项,从而得到3,1m n ==,再代入,即可求解.解:∵3m x y -和35n x y 的和是单项式, ∵3m x y -和35n x y 是同类项,∵3,1m n ==,∵()()333164m n +=+=, ∵()3m n +的平方根是8±. 故选:D .【点拨】本题主要考查了合并同类项,求一个数的平方根,熟练掌握根据题意得到3m x y -和35n x y 是同类项是解题的关键.5.C【分析】先把46332“夹逼法”即可求解. 解:463232== ∵253236<<, ∵5326<<, 故选:C【点拨】本题考查了无理数的估值问题,“夹逼法”的应用是解题的关键. 6.A解:由题中所给的程序可知:把64取算术平方根,结果为8, ∵8是有理数, ∵8 ∵y 82 故选A . 7.A2,2,再根据阴影部分的面积等于矩形的面积减去两个正方形的面积进行计算.解:∵矩形内有两个相邻的正方形面积分别为 4 和 2, ∵2,2,∵阴影部分的面积(22224222=⨯--=. 故选A .【点拨】本题主要考查了算术平方根的应用,解题的关键在于能够准确根据正方形的面积求出边长.8.C10320的值的范围,再进行比较即可得出答案. 解:82027<<, 32203∴<<,3104<<,320310<故选:A .【点拨】本题考查了实数大小比较,估算无理数的大小,熟练掌握估算无理数的大小是解题的关键.9.D【分析】A a B 、有理数与无理数的积不一定是无理数,举例说明; C 、a 、b 均为无理数,a b +不一定还是无理数,举例说明;D 、利用两数相乘积为0,两因式中至少有一个为0求出b 的值,即可做出判断. 解:A a 42=,错误;B 、有理数与无理数的积不一定是无理数,例如:020,错误;C 、a 、b 均为无理数,a b +不一定还是无理数,,例如:220-=,错误;D 、若a 为无理数,且()()220a b ++=,得到20a +≠,20b +=,解得:2b =-,正确,故选:D .【点拨】此题考查了实数的运算,熟练掌握运算法则是解本题的关键. 10.B【分析】直接利用平方根、立方根、绝对值、相反数的性质分别判断得出答案. 解:(1164=的平方根是2±,故此选项错误;(2)立方根等于它本身的数有0和1、 1-,故此选项错误;(3382--的相反数是2,故此选项正确;(4)()3=3=3----πππ,故此选项正确. 李华最后得分为10分, 故选:B .【点拨】此题主要考查了实数的性质,绝对值的性质,平方根和立方根概念,正确化简各数是解题关键.11.4±【分析】根据平方根的定义即可求解. 解:即:16的平方根是16=4± 故填:4±【点拨】此题主要考查平方根,解题的关键是熟知平方根的定义. 12.-3【分析】根据立方根的性质计算即可. 解:327--3, 故答案为:-3.【点拨】本题考查了立方根的性质,正数的立方根为正数,负数的立方根为负数,0的立方根为0,熟记立方根的性质是解题的关键.13. 12- 3.14π-【分析】根据相反数的定义及去绝对值符合号法则,即可求得. 21的相反数是)2112-=>3.14π,3.14<0π∴-,()3.14 3.14 3.14πππ∴-=--=-,故答案为:12 3.14π-.【点拨】本题考查了相反数的定义及去绝对值符合号法则,掌握和灵活运用相反数的定义及去绝对值符合号法则是解决本题的关键.14.32【分析】根据算术平方根和立方根的性质得到a +b =4,a -b =8,进而直接代入求解即可.解:∵实数a 、b 2a b +=32a b ,∵a +b =4,a -b =8, ∵()()a b a b +-=4×8=32, 故答案为:32.【点拨】本题考查了算式平方根、立方根、代数式求值,理解算式平方根和立方根的性质是解答的关键.15.-2【分析】根据实数大小比较的方法解答即可. 解:∵2-2<3, ∵最小的实数是-2 故答案为:-2.【点拨】本题考查了实数的大小比较,正数大于0,负数小于0,正数大于一切负数,两个负数,绝对值大的反而小.163a【分析】根据数轴上点的位置判断出3a 利用绝对值的代数意义化简即可得到结果.解:∵a <0,∵30a <,则原式3a , 3a 17.>103>,进而即可求解. 解:∵109>, 103>, 1032>, 故答案为:>.10 18()21n -【分析】除第一个数外,其他数变成二次根式后,根号下面的数都是2的倍数,第二个数为2的1倍,第三个数为2的2倍,依此类推,第n 个数为2的()1n -倍,从而得出答案.解:由题意得:由题意得: 第一项:00200==⨯=; 2212⨯ 第三项:24224=⨯= 6236=⨯……第n ()()2121n n ⨯-=-()21n -【点拨】本题考查了算术平方根,解题的关键是发现题目中数据的变化规律,要熟练掌握.19.(1)92x =± (2)5x =-【分析】(1)利用平方根解方程即可;(2)利用立方根解方程.(1)解:2481x =,∵2814x =, ∵81942x =±=±; (2)解:()3227x +=-,∵3227x +=-23x,解得:5x =-.【点拨】本题考查开方法解方程.熟练掌握平方根和立方根的定义,是解题的关键. 20.33 (2)8-【分析】(1)先计算乘方与开方,并去绝对值符号,再计算加减即可.(2)先计算开方与乘方,再计算加减即可.(1)解:原式13132=-+++33;(2)解:原式3344=---8=-.【点拨】本题考查实数的混合运算,求绝对值,平方根和立方根,熟练掌握实数运算法则是解题的关键.21.(1)5- 73【分析】(1)先根据平方根的意义可得350x ++=,从而求出x 的值,13值的范围,从而求出y 的值,然后代入式子中进行计算即可解答;(2)把x ,y 的值代入式子中求出22xy +的值,然后再利用算术平方根的意义,进行计算即可解答.(1)解:9的平方根是3和5x +, 350x ∴++=,解得:8x =-,91316<<,3134∴<<,y 133y ∴=,835x y ∴+=-+=-,x y ∴+的值为5-;(2)当8x =-,3y =时,2222(8)364973x y +=-+=+=,22x y ∴+73【点拨】本题考查了估算无理数的大小,平方根,熟练掌握估算无理数的大小是解题的关键.22.(1)分割方法不唯一,如图,见分析;(22cm .【分析】(1)根据AB=2AD ,可找到CD 的中点,即可分成两个正方形,再沿对角线分割一次,即可补全成一个新的正方形;(2)设拼成的正方形边长为cm x ,根据面积相等得到方程,即可求解.解:(1)如图,∵AB=2AD ,找到CD,AB 的中点,如图所示,可把矩形分割成4个等腰直角三角形,再拼成一个新的正方形;(2)设拼成的正方形边长为cm x ,根据题意得2122x =⨯=,∵2x2cm .【点拨】此题主要考查实数性质的应用,解题的关键是根据图形的特点进行分割. 23.135791113++++++7 (2)n +1(3)14 【分析】(1)根据规律直接写出式子即可;(2135(21)n +++++n +1个式子,根据规律即可得; (3)41220283644524(1357891113)+++++++++++++利用规律即可得.(1)解:根据材料可知,第七个式子的被开方数为1+3+5+7+9+11+13, ∵第7135711137+++++,135711137+++++=; (2(21)1135(21)12n n n +++++++=+,故答案为:1n +;(3)解:根据(2)中的规律知, 11341220283644524(1357891113)4142++++++++++++++=. 【点拨】本题考查了数字变化规律类,解题的关键是掌握是式子的规律.24.859 (2)2.25【分析】(1)根据材料一中的方法求解即可;(2)利用材料二中的方法画出图形,写出过程即可.(1)解:8185100<98510<<,859. 85859.(2)解:我们知道面积是5552>,52x =+,可画出如图示意图.由图中面积计算,2224S x x =+⨯+正方形,另一方面由题意知5S =正方形,所以2445x x ++=.略去2x ,得方程410x -=,解得0.25x =5 2.25.【点拨】本题考查了无理数的估算,解题关键是准确理解题目给出的方法,熟练进行计算.。

【精编版】华东师大初中数学中考总复习:实数--知识讲解(基础)

【精编版】华东师大初中数学中考总复习:实数--知识讲解(基础)

中考总复习:实数—知识讲解 (基础)【考纲要求】1.了解有理数、无理数、实数的概念;借助数轴理解相反数、绝对值的概念及意义,会比较实数的大小;2.知道实数与数轴上的点一一对应,会用科学记数法表示有理数,会求近似数和有效数字;了解乘方与开方、平方根、算术平方根、立方根的概念,并理解这两种运算之间的关系,了解整数指数幂的意义和基本性质;3.掌握实数的运算法则,并能灵活运用.【知识网络】【考点梳理】考点一、实数的分类1.按定义分类:⎧⎧⎫⎧⎫⎪⎪⎪⎬⎪⎪⎨⎪⎭⎪⎪⎪⎪⎪⎨⎬⎩⎪⎪⎪⎪⎧⎨⎪⎪⎨⎪⎪⎪⎩⎭⎩⎪⎪⎫⎧⎪⎪⎨⎬⎪⎪⎩⎭⎩正整数自然数整数零有理数有限小数或无限循环小数负整数实数正分数分数负分数正无理数无理数无限不循环小数负无理数 2.按性质符号分类:⎧⎧⎧⎪⎨⎪⎨⎩⎪⎪⎪⎩⎪⎪⎨⎪⎧⎧⎪⎨⎪⎪⎨⎩⎪⎪⎪⎩⎩正整数正有理数正实数正分数正无理数实数零负整数负有理数负实数负分数负无理数 有理数:整数和分数统称为有理数或者“形如n m (m ,n 是整数n≠0)”的数叫有理数. 无理数:无限不循环小数叫无理数.实数:有理数和无理数统称为实数.要点诠释:常见的无理数有以下几种形式:(1)字母型:如π是无理数,24ππ、等都是无理数,而不是分数; (2)构造型:如2.10100100010000…(每两个1之间依次多一个0)就是一个无限不循环的小数;(3)根式型:3256、、,…都是一些开方开不尽的数;(4)三角函数型:sin35°、tan27°、cos29°等.考点二、实数的相关概念1.相反数(1)代数意义:只有符号不同的两个数,我们说其中一个是另一个的相反数.0的相反数是0;(2)几何意义:在数轴上原点的两侧,与原点距离相等的两个点表示的两个数互为相反数;(3)互为相反数的两个数之和等于0.a 、b 互为相反数⇔a+b=0.2.绝对值(1)代数意义:正数的绝对值是它本身;负数的绝对值是它的相反数;0的绝对值是0. 可用式子表示为:⎪⎩⎪⎨⎧<-=>=)0()0(0)0(a a a a a a (2)几何意义:一个数a 的绝对值就是数轴上表示数a 的点与原点的距离.距离是一个非负数,所以绝对值的几何意义本身就揭示了绝对值的本质,即绝对值是一个非负数.用式子表示:若a 是实数,则|a|≥0.要点诠释: 若,a a =则0a ≥;-,a a =则0a ≤;-a b 表示的几何意义就是在数轴上表示数a 与数b 的点之间的距离.3.倒数(1)实数(0)a a ≠的倒数是a1;0没有倒数; (2)乘积是1的两个数互为倒数.a 、b 互为倒数1a b ⇔⋅=.4.平方根(1)如果一个数的平方等于a ,这个数就叫做a 的平方根.一个正数有两个平方根,它们互为相反数;0有一个平方根,它是0本身;负数没有平方根.a (a ≥0)的平方根记作a ±.(2)一个正数a 的正的平方根,叫做a 的算术平方根.a (a ≥0)的算术平方根记作a .5.立方根如果x 3=a ,那么x 叫做a 的立方根.一个正数有一个正的立方根;一个负数有一个负的立方根;0的立方根仍是0.考点三、实数与数轴规定了原点、正方向和单位长度的直线叫做数轴,数轴的三要素缺一不可.每一个实数都可以用数轴上的一个点来表示,反过来,数轴上的每一个点都表示一个实数. 要点诠释:(1)数轴的三要素:原点、正方向和单位长度.(2)实数和数轴上的点是一一对应的.考点四、实数大小的比较1.对于数轴上的任意两个点,靠右边的点所表示的数较大.2.正数都大于0,负数都小于0,正数大于一切负数;两个负数;绝对值大的反而小.3.对于实数a 、b , 若a-b>0⇔a>b ;a-b=0⇔a=b ;a-b<0⇔a<b.4.对于实数a ,b ,c ,若a>b ,b>c ,则a>c.5.无理数的比较大小:利用平方转化为有理数:如果a>b>0, a 2>b 2⇔a>b b a >⇔; 或利用倒数转化:如比较417-与154-.要点诠释:实数大小的比较方法:(1)直接比较法:正数都大于0,负数都小于0,正数大于一切负数;两个负数,绝对值大的反而小.(2)数轴法:在数轴上,右边的数总比左边的数大.考点五、实数的运算1.加法同号两数相加,取相同的符号,并把绝对值相加;绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值;互为相反数的两个数相加得0;一个数同0相加,仍得这个数.满足运算律:加法的交换律a+b=b+a ,加法的结合律(a+b)+c=a+(b+c).2.减法减去一个数等于加上这个数的相反数.3.乘法两数相乘,同号得正,异号得负,并把绝对值相乘.几个非零实数相乘,积的符号由负因数的个数决定,当负因数有偶数个时,积为正;当负因数有奇数个时,积为负.几个数相乘,有一个因数为0,积就为0.乘法运算的运算律:(1)乘法交换律ab=ba ;(2)乘法结合律(ab)c=a(bc);(3)乘法对加法的分配律a(b+c)=ab+ac .4.除法(1)除以一个数,等于乘上这个数的倒数.(2)两个数相除,同号得正,异号得负,并把绝对值相除.0除以任何一个不等于0的数都得0.5.乘方与开方(1)求n 个相同因数的积的运算叫做乘方,a n 所表示的意义是n 个a 相乘.正数的任何次幂是正数,负数的偶次幂是正数,负数的奇次幂是负数.(2)正数和0可以开平方,负数不能开平方;正数、负数和0都可以开立方.(3)零指数与负指数011(0)(0).p p a a a a a-==≠,≠ 要点诠释:加和减是一级运算,乘和除是二级运算,乘方和开方是三级运算.这三级运算的顺序是三、二、一.如果有括号,先算括号内的;如果没有括号,同一级运算中要从左至右依次运算.考点六、有效数字和科学记数法一个近似数,四舍五入到哪一位,就说这个近似数精确到哪一位.一个近似数,从左边第一个不是0的数字起,到精确到的数位为止,所有的数字,都叫做这个近似数的有效数字.精确度的形式有两种:(1)精确到哪一位;(2)保留几个有效数字.把一个数用±a ×10n (其中1≤<10,n 为整数)的形式记数的方法叫科学记数法. 要点诠释:(1)当要表示的数的绝对值大于1时,用科学记数法写成a ×10n ,其中1≤a <10,n 为正整数,其值等于原数中整数部分的数位减去1;(2)当要表示的数的绝对值小于1时,用科学记数法写成a ×10n ,其中1≤a <10,n 为负整数,其值等于原数中第一个非零数字前面所用零的个数的相反数(包括小数点前面的零).【典型例题】类型一、实数的有关概念1.(1)a 的相反数是15-,则a 的倒数是_______.(2)实数a 、b 在数轴上对应点的位置如图所示: 则化简2()a b +=______. 0a b(3)(泉州市)去年泉州市林业用地面积约为10200000亩,用科学记数法表示为约____________.【答案】(1)5 ; (2)-a-b ; (3)1.02×107亩.【解析】(1)注意相反数和倒数概念的区别,互为相反数的两个数只有性质符号不同,互为倒数的两个数要改变分子分母的位置;或者利用互为相反数的两个数之和等于0,互为倒数的两个数乘积等于1来计算.(2)此题考查绝对值的几何意义,绝对值和二次根式的化简.注意要去掉绝对值符号,要判别绝对值内的数的性质符号.由图知:20 0 |||| 0 ()||().a b a b a b a b a b a b a b ><<∴+<∴+=+=-+=--,,,,(3)考查科学记数法的概念.【点评】本大题旨在通过几个简单的填空,让学生加强对实数有关概念的理解.举一反三:【变式】据市旅游局统计,今年“五·一”小长假期间,我市旅游市场走势良好,假期旅游总收入达到8.55亿元,用科学记数法可以表示为( )A .8.55×106B .8.55×107C .8.55×108D .8.55×109【答案】C.类型二、实数的分类与计算2.下列实数227、sin60°、3π、()02、3.14159、-9、()27--、8中无理数有( )个 A .1 B .2 C .3 D .4 【答案】C.【解析】无理数有sin60°、3π、8. 【点评】对实数进行分类不能只看表面形式,应先化简,再根据结果去判断.举一反三:【高清课程名称: 实数 高清ID 号: 369214关联的位置名称(播放点名称):经典例题1】【变式】在,30cos ,2π,)23(,4,8,14.30 --,45tan ,712,1010010001.0 ,51-13.0%,3 中,哪些是有理数? 哪些是无理数? 【答案】03.14,4,(32),-,45tan ,712,51-13.0%,3 都是有理数; π8,,cos30,2-0.1010010001,都是无理数.3.(2015•梅州)计算:+|2﹣3|﹣()﹣1﹣(2015+)0. 【答案与解析】解:原式=2+3﹣2﹣3﹣1=﹣1.【点评】该题是实数的混合运算,包括绝对值,0指数幂、负整数指数幂等.只要准确把握各自的意义,就能正确的进行运算.举一反三:【高清课程名称:实数 高清ID 号:369214关联的位置名称(播放点名称):经典例题8-9】【变式1】计算:(2015•甘南州)计算:|﹣1|+20120﹣(﹣)﹣1﹣3tan30°.【答案】解:原式=﹣1+1﹣(﹣3)﹣3×=+3﹣=3.【变式2】计算:12004200320022001+⨯⨯⨯【答案】设n=2001,则原式=1)3)(2)(1(++++n n n n1)23)(3(22++++=n n n n (把n 2+3n 看作一个整体) =1)3(2)3(222++++n n n n=n 2+3n+1=n(n+3)+1=2001×2004+1=4010005.类型三、实数大小的比较4.比较下列每组数的大小:(1)417-与154- (2)a 与a 1(a ≠0) 【答案与解析】(1)11740174-=>+,14150415-=>+, 而174+与415+可以很容易进行比较得到:1744150+>+>, 所以174415-<-;(2)当a<-1或O<a<1时,a<a1; 当-1<a<0或a>1时,a>a1; 当a=1±时,a=a1.【点评】(1)有时无理数比较大小,通过平方转化以后也无法进行比较,那么我们可以利用倒数关系比较; (2)这道题实际上是互为倒数的两个数之间的比较大小,我们可以利用数轴进行比较,我们知道,0没有倒数,±1的倒数等于它本身,这样数轴就被这3个数分成了4部分,下面就可以分类讨论每种情况.我们还可以利用函数图象来解决这个问题,把a1的值看成是关于a 的反比例函数,把a 的值看成是关于a 的正比例函数,在坐标系中画出它们的图象,可以很直观的比较出它们的大小.举一反三:【变式】比较下列每组数的大小:(1)817-和511- (2)52+和23+ 【答案】(1)将其通分,转化成同分母分数比较大小,1785840= ,1188540=, 171185<, 所以171185->-. (2)()2257210740+=+=+,()232743748+=+=+, 因为4048<, 所以2532+<+.类型四、平方根的应用5.已知:x ,y 是实数,234690x y y ++-+=,若axy-3x=y ,则实数a 的值是_______. 【答案】14. 【解析】234690x y y ++-+=,即234(3)0x y ++-=两个非负数相加和为0,则这两个非负数必定同时为0, ∴340x +=,(y-3)2=0, ∴ x=43-, y=3 又∵axy-3x=y , ∴ a=43()33134433x y xy ⨯-++==-⨯. 【点评】此题考查的是非负数的性质.类型五、实数运算中的规律探索6.细心观察图形,认真分析各式,然后解答问题()()()2122231112,22213,23314,2S S S +==+==+== S 1S 2S 3S 4S 5OA 1A 2A 3A 4A 5A 611111 (1)请用含有n (n 是正整数)的等式表示上述变化规律;(2)推算出OA 10的长;(3)求出S 12+ S 22+ S 32+…+ S 102的值.【答案与解析】(1)由题意可知,图形满足勾股定理,()2,112n S n n n =+=+ (2)因为OA 1=1,OA 2=2,OA 3=3…, 所以OA 10=10(3)S 12+ S 22+ S 32+…+ S 102 =2222)210()23()22()21(++++ =)10321(41++++=455. 【点评】近几年各地的中考题中越来越多的出现了一类探究问题规律的题目,这些问题素材的选择、文字的表述、题型的设计不仅考察了数学的基础知识,基本技能,更重点考察了创新意识和能力,还考察了认真观察、分析、归纳、由特殊到一般,由具体到抽象的能力. 举一反三:【变式】图中是一幅“苹果图”,第一行有1个苹果,第二行有2个,第三行有4个,•第四行有8个,……你是否发现苹果的排列规律?猜猜看,第十行有______个苹果.【答案】29(512).。

2.15 实数全章复习与巩固专项练习20212022学年八年级数学上册基础知识专项讲练北师大版

2.15 实数全章复习与巩固专项练习20212022学年八年级数学上册基础知识专项讲练北师大版

专题2.15 《实数》全章复习与巩固(专项练习)一、单选题1.实数1-,0.4,27,p -中,无理数的个数是( )A .2B .3C .4D .52.若a +1和-5是实数m 的平方根,则a 的值是( ).A .1B .2C .3D .4或-632=- )A .1B .2C .3D .44.无理数A .2和3之间B .3和4之间C .4和5之间D .5和6之间5.实数a 、b 、c 在数轴上对应点的位置如图所示.如果0a b +=,那么下列结论正确的是()A .a c>B .0a c +<C .0abc <D .1a b=6.下列二次根式中是最简二次根式的是( )A B C D7.若Rt ABC V 的两边长a ,b 满足()240a -=,则第三边的长是( )A .5B C .5或7D .58的算术平方根等于( )A .9B .9±C .3D .3±9.若9的整数部分为a ,小数部分为b ,则2a +b 等于( )A .12B .13C .14D .1510.已知}2min,x x 表示取三个数中最小的那个数,例如:当9x =,}}22min ,min ,93x x ==.当}21min ,16x x =时,则x 的值为()A .14-B .14C .116D .125611.已知:a ,b ,则a 与b 的关系是( )A .a -b =0B .a +b =0C .ab =1D .a 2=b 212的结果为( )A B .C D .二、填空题13.在220,,0.101001,7p -中无理数的个数是_______个.14.计算:112-æö-+=ç÷èø_________.15.方程380x -=的根是__________.16小的整数_____________17.实数a ,b ,c c +=__________.18的结果为______.19.在每个小正方形的边长为1的网格图形中,每个小正方形的顶点称为格点,顶点都是格点的三角形和矩形分别称为格点三角形和格点矩形.如图,已知Rt ABC V 是55´网格图形中的格点三角形,则在该网格图形中,与ABC V 面积相等的格点矩形的周长所有可能值是_________.20.81256的四次方根是__________.21.一个正数a 的两个平方根是21b -和4b +,则a b +的立方根为_______.22.公元3世纪,2ra a=+得到无理数的近似值,131 1.5212»+==´,若利用此公式计算的近似值时,r 取正整数,且a »____________.23.我们知道,同底数幂的除法法则为m n m n a a a -¸=(其中a ≠0,m ,n 为正整数),类似地,我们规定关于任意正整数m ,n 的一种新运算:()()()f m n f m f n -=¸其中f (m ),f (n )都为正数),请根据这种新运算填空:(1)若f (2)=4,f (3)=8,则f (1)=_______;(2)若f (2000)=k ,f (2)=4,那么f (500)=______(用含k 的代数式表示,其中k >0).24.观察下列各等式:①=②=③=根据以上规律,请写出第5个等式:______.三、解答题25.对于一个实数m (m 为非负实数),规定其整数部分为a ,小数部分为b ,例如:当3m =时,则3a =,0b =;当 4.5m =时,则4a =,0.5b =.(1)当m p =时,b =;当=m 时,a =;(2)若5a =,6=-b ,则m = ;(3)当9=+m 时,求-a b 的值.26.计算:(1)-(22122-æö--ç÷èø;(31128-æö-+ç÷èø;(4;(5)((22-.27.观察下列等式:1a ==2a ==3a ==4a ==按照上述规律,回答以下问题:(1)请写出第6个等式:________________;(2)请写出第n 个等式:________________;(3)求12320a a a a +++¼+的值.28.阅读下面的解题过程:化简:===.请回答下列问题.(1)(2)请认真分析化简过程,然后找出规律,写成一般形式.参考答案1.A 【分析】分别根据无理数、有理数的定义即可判定各项.【详解】−1,是整数,不是无理数,0.4,是小数,不是无理数,27,是分数,不是无理数,−π,是无理数,共2个,故选:A .【点拨】本题主要考查了无理数的定义,注意带根号的要开不尽方才是无理数,无限不循环小数为无理数.如π0.8080080008L (每两个8之间依次多1个0)等形式.2.D 【分析】根据平方根的定义可得两个关于a 的一元一次方程,解方程即可得.【详解】解:由题意得:15a +=-或1(5)0a ++-=,解得6a =-或4a =,故选:D .【点拨】本题考查了平方根、一元一次方程的应用,熟练掌握平方根的定义是解题关键.3.C 【分析】先根据立方根的定义求出a 的值,再根据算术平方根的定义即可得.【详解】解:2=-,18a \-=-,解得9a =,3==,故选:C .【点拨】本题考查了立方根与算术平方根、一元一次方程的应用,熟练掌握立方根与算术平方根的定义是解题关键.4.C 【分析】先计算出(2的值为24,把24夹逼在两个相邻正整数的平方之间,再写出围即可.【详解】解:(2=22×)2=4×6=24,∵16<24<25,∴4<<5.故选:C .【点拨】本题考查了无理数的估算,无理数的估算常用夹逼法,求出(2是解题的关键.5.C 【分析】根据a +b =0,确定原点的位置,根据实数与数轴即可解答.【详解】解:∵a +b =0,∴原点在a ,b 的中间,如图,由图可得:|a |<|c |,a +c >0,abc <0,1ab=-,故选:C .【点拨】本题考查了实数与数轴,解决本题的关键是确定原点的位置.6.D【分析】根据最简二次根式的概念:(1)被开方数不含分母;(2)被开方数中不含能开得尽方的因数或因式逐一判断即可得.【详解】解:ABC ||xD 是最简二次根式,符合题意;故选:D .【点拨】此题考查了最简二次根式,熟练掌握最简二次根式定义是解本题的关键.7.D 【分析】先求出a 和b 的值,再设第三边为x ,讨论斜边情况,利用勾股定理建立方程求解即可.【详解】解:∵()240,a -³³又∵()240a -+=,∴40,30,a b -=-=∴4,3,a b ==设第三边长为x ,由,a b >则共有以下两种情况:①当222a b x +=时,5,x =②当222b x a +=时,由0,x >所以x =,∴第三边长是5;故选:D .【点拨】本题考查了平方和算术平方根的非负性特点、利用平方根解方程以及勾股定理的应用,解题关键是牢记它们的“非负性”,理解并能运用勾股定理求直角三角形的边等,该题属于中等难度题目,易错点是学生容易误选A,该题蕴含了分类讨论的思想方法等.8.C【分析】根据立方根、算术平方根的定义求解即可.【详解】=,解:因为39729=9,的算术平方根就是9的算术平方根,=,又因为9的算术平方根为33的算术平方根是3,答案:C.【点拨】本题考查了立方根、算术平方根的定义,理解立方根、算术平方根的意义是得出答案的关键.9.C【分析】9的大小,进而确定a、b的值,最后代入计算即可.【详解】解:∵34,∴﹣4<﹣3,∴5<96,又∵9a,小数部分为b,∴a=5,b=9﹣5=4,∴2a+b=10+(414,故选:C.【点拨】本题考查估算无理数,掌握无理数估算的方法是解决问题的前提,理解无理数的整数部分和小数部分的表示方法是得出正确答案的关键.10.B 【分析】116=,2116x=,116x=的x值,找到满足条件的x值即可.【详解】116=时,1256x=,x<当2116x=时,14x=±,当14x=-时,2x x<,不合题意;当14x=12=,2x x<<当116x=时,21256x=,2x x<,不合题意,故选B.【点拨】本题主要考查实数大小比较,算术平方根及其最值问题,解决此题时,注意分类思想的运用.11.C【分析】先分母有理化求出a、b,再分别代入求出ab、a+b、a-b、a2、b2各个式子的值,即可得出选项.【详解】解:分母有理化,可得a b∴a-b=()-()A选项错误,不符合题意;a+b=()+()=4,故B选项错误,不符合题意;ab=()×(=4-3=1,故C选项正确,符合题意;∵a2=()2,b2=(2,∴a2≠b2,故D选项错误,不符合题意;故选:C.【点拨】本题考查了分母有理化的应用,能求出每个式子的值是解此题的关键.12.C【详解】, 故选C .点睛:此题主要考查了二次根式的化简,解题关键是利用分数的通分求和,然后把其分母有理化即可求解,比较简单,但是易出错,是常考题.13.1【分析】根据无理数的概念结合有理数的概念逐一进行判断即可.【详解】解:0整数,是有理数;227是分数,是有理数;0.101001-是有限小数,是有理数;p 是是有理数,所以无理数有1个.故答案为:1【点拨】本题考查了无理数的定义,辨析无理数通常要结合有理数的概念进行:初中范围内学习的无理数主要有三类:①含p 的一部分数,如2,3p p 等;②开方开不尽的数,等;③虽有规律但是无限不循环的数,如0.1010010001…,等.14.1【分析】根据负整数指数幂运算法则、算术平方根的运算进行计算即可.【详解】解:112-æö-=ç÷èø﹣2+3=1,故答案为:1.【点拨】本题考查负整数指数幂、算术平方根,熟练掌握运算法则是解答的关键.15.x =2【分析】首先整理方程得出x 3=8,进而利用立方根的性质求出x 的值.【详解】解:x 3-8=0,x 3=8,解得:x =2.故答案为:x =2.【点拨】此题主要考查了立方根的性质,正确由立方根定义求出是解题关键.16.答案不唯一,2或3均可【分析】的整数部分,在选择符合条件的整数即可.【详解】解:12Q ,34,\小的整数是2或3,故答案为:2或3.【点拨】本题主要考查估算无理数的大小,估算无理数大小要用逼近法.思维方法:用有理数逼近无理数,求无理数的近似值.17.b c--【分析】结合数轴判断a-b 和a +c 的正负,去根号和绝对值化简即可.【详解】由题意可得:0a b ->,<0a c +,c+=a b a c---=b c --;故答案为:-b -c ;【点拨】此题考查的是算术平方根和绝对值的性质,掌握绝对值的性质和算术平方根的非负性是解题的关键.18【分析】先计算乘方,再计算减法即可得到答案.【详解】【点拨】此题考查二次根式的化简,正确掌握有理数的乘方计算法则是解题的关键.19.10或【分析】由图可得AB 、BC 、AC 的长度,判定三角形ABC 是直角三角形,在计算ABC V 面积,再求格点矩形长和宽,再计算出周长.【详解】解:由题干可得:2225126AC =+=,2223318BC =+= ,222228AB =+= ,即222AC AB BC =+ ,11622ABC S AB BC =´´==△ ,令矩形的长为a (0<a <5),宽为b (0<b <5),即ab=6,当a=1时,则b=6,不符合题意;当a=2时,则b=3,符合题意,格点矩形的周长=2+2+3+3=10;当a=3时,则b=2,符合题意,格点矩形的周长=2+2+3+3=10;当a=4时,则b=1.5,不符合题意;当时,则,符合题意,格点矩形的周长;当a=5时,则b=1.2,不符合题意.故答案为:10或.【点拨】本题考查了勾股定理和格点矩形的周长,理解格点矩形的含义是解题的关键.20.34±【分析】根据分数指数幂的定义直接求解即可【详解】解:∵4381=4256æö±ç÷èø∴81256的四次方根是:34±故答案为:34±【点拨】本题考查开方运算的概念,乘方与开方的关系,熟练进行乘方的计算是关键21.2【分析】根据一个正数的平方根互为相反数,将21b -和4b +相加等于0,列出方程,解出b ,再将b 代入任意一个平方根中,进行平方运算求出这个正数a ,将a b +算出后,求立方根即可.【详解】∵21b -和4b +是正数a 的平方根,∴2140b b -++=,解得1b =- ,将b 代入212(1)13b -=´--=-,∴正数2(3)9a =-= ,∴198a b +=-+=,∴a b +2==,故填:2.【点拨】本题考查正数的平方根的性质,求一个数的立方根,解题关键是知道一个正数的两个平方根互为相反数.22.4.125【分析】2r a a=+1424=+´,然后进行计算即可得出答案.【详解】1334 4.125248»+==´故答案为:4.125.2raa=+是解题的关键.23.27504k【分析】(1)由新运算法则直接求解;(2)同过新定义的运算法则,推导出前几项的结果,同过前几项发现规律,利用规律来解答.【详解】解:(1)根据新运算:()()()f m n f m f n-=¸,(1)(32)(3)(2)842f f f f\=-=¸=¸=,故答案是:2.(2)(1998)(20002)44kf f k=-=¸=Q2(1996)(200022)(19982)4kf f f=-´=-=3(1994)(200023)(19962)4kf f f=-´=-=M750(500)(20002750)(5022)4kf f f=-´=-=根据规律得:750(500)4kf=,故答案是:7504k.【点拨】本题考查了新定义运算法则,解题的关键是:理解新定义的运算法则,从运算中找到规律,用来解答.24.=【分析】根据左边根号外的因数与根号内的分子相同,根号内的分母为分子平方与1的差,右边根号内为左边根号外与根号内两数之和,即可找到其中规律,从而写出第n个等式,再将n=6代入即可求出答案.【详解】解:猜想第n个为:n=n为大于等于2的自然数);理由如下:∵n≥2,∴n==添项得:n=,提取公因式得:n=分解分子得:n=;即:n=第5个式子,即n=6,代入得:=故填:=.【点拨】本题考查二次根式的计算,需要通过观察分析和寻求规律、归纳和论证的抽象思维能力,得出一般性的结论;解答此题的关键是仔细观察、细致分析,局部找规律,整体找关系.25.(1)3p -;3;(2)11;(3)13.【分析】(1)由3π4<<,可得a =3,b =π-3,由91116<<<<,可求34<<,可得a =3,b -3;(2)由5a =,6=-b , 可得5611m a b =+=+=-;(3)由479<<, 可得23<<,可求1112<<,可求112a b ==-,,代入计算即可.【详解】解:(1)当m =π时,∵3π4<<,∴a =3,b =π-3,当 m 时,∵91116<<,<<,∴34<<,∴a =3,b -3,故答案为:b =π-3;3;(2)当5a =,6=-b ,∴5611m a b =+=+=,故答案为:11-;(3)当 m = 时,∵479<<,<<,∴23<<,∴9+29+3<<,∴1112<<,∴119112a b ==+-=-,,∴)11213a b -=--=【点拨】本题考查了估算无理数的大小的应用,解此题的关键是求出各无理数的范围.26.(1)(22-;(3)6+;(4)4-;(5)【分析】(1)利用二次根式的加减乘除运算法则计算即可;(2)先计算负整指数幂、绝对值、化简二次根式然后合并即可;(3)先计算负整指数幂、绝对值、立方根然后合并即可;(4)利用二次根式的加减乘除运算法则计算即可;(5)利用平方差公式计算即可;【详解】解:(1)原式(22122-æö--ç÷èø24=+2=-;(31128-æö-+ç÷èø)28=+-+6=;(4)原式=-=4-(5)原式=(==【点拨】本题考查了二次根式的加减乘除运算、负整指数幂、平方差公式等知识,熟练掌握法则是解题的关键.27.(1)6a ==;(2)n a ==;(3【分析】(1)(2)从等式中找出规律,比如第三个等式:3×2-1=5,3×2+1=7,3就是a 3的3,5就7,即可得出答案;(3)根据上面的规律得出12320a a a a ++++L=++L 通分,观察分子中的项,互为相反数相加得0便可解出.【详解】解:(1)观察,如3a 的下标3中被开方数,5和7得出:3×2-1=5,3×2+1=7,即7等于下标的2倍加1,5等于下标的2倍减1;\6a ==,(2)由(1)知,第n 个等式的下标是n ,被开方数分别为2n +1,2n -1,所以第n 个等式n a ==,;(3)12320a a a a ++++L =++=L .【点拨】本题主要考查二次根式的运算和化简,掌握分母有理化是解题的关键.28.;(2)见解析.【分析】(1)参照例子进行化简;(2) 根据上面的解题思路分析可得出这个式子的值.(1)原式===+. (2)=(a >0,b >0).【点拨】考查了分母有理化,二次根式有理化主要利用了平方差公式,所以一般二次根式的有理化因式是符合平方差公式的特点的式子.即一项符号和绝对值相同,另一项符号相反绝对值相同.。

2024中考数学复习核心知识点精讲及训练—实数(含解析)

2024中考数学复习核心知识点精讲及训练—实数(含解析)

2024中考数学复习核心知识点精讲及训练—实数(含解析)1.理解有理数的意义,能用数轴上的点表示有理数,会比较有理数的大小.2.借助数轴理解相反数和绝对值的意义,会求有理数的相反数与绝对值(绝对值符号内不含字母).3.理解乘方的意义,掌握有理数的加、减、乘、除、乘方及简单的混合运算(以三步为主).4.理解有理数的运算律,并能运用运算律简化运算.5.能运用有理数的运算解决简单的问题.6.了解无理数和实数的概念,知道实数与数轴上的点一一对应.能求实数的相反数与绝对值.7.能用有理数估计一个无理数的大致范围.考点1:实数的分类考点2:实数的相关概念1.数轴:规定了原点、单位长度和正方向的直线叫做数轴.数轴上所有的点与全体实数一一对应. 2.相反数:只有符号不同,而绝对值相同的两个数称为互为相反数,若a、b互为相反数,则a+b=0. 3.倒数:1除以一个不等于零的实数所得的商,叫做这个数的倒数.若a、b互为倒数,则ab=1.4.绝对值:数轴上表示数a的点与原点的距离,记作|a|.5.科学记数法:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.当原数绝对值大于10时,写成a×10n的形式,其中1≤|a|<10,n等于原数的整数位数减1;当原数绝对值小于1时,写成a×10−n 的形式,其中1≤|a|<10,n等于原数左边第一个非零的数字前的所有零的个数(包括小数点前面的零). 6.近似数:近似数与准确数的接近程度通常用精确度来表示,近似数一般由四舍五入取得,四舍五入到哪一位,就说这个近似数精确到哪一位.7.平方根:(1)算术平方根的概念:若x2=a(x>0),则正数x叫做a的算术平方根.(2)平方根的概念:若x2=a,则x叫做a的平方根.(3)表示:a的平方根表示为,a的算术平方根表示为.(4)8.立方根:(1)定义:若x3=a,则x叫做a的立方根.(2)表示:a的立方根表示为.(3).考点3:实数的大小比较(1)数轴比较法:数轴上两个点表示的数,右边的点表示的数总比左边的点表示的数大;(2)类别比较法:正数>0>负数;两个负数比较大小,绝对值大的反而小;(3)差值比较法:a-b >0⇔a >b;a-b=0⇔a=b;a-b <0⇔a <b(4)平方比较法:)>>>0(b b a 2b a ⇒考点4:实数的运算1.数的乘方:求n 个相同因数a 的积的运算叫做乘方,乘方的结果叫幂.在a n 中,a 叫底数,n 叫指数.2.实数的运算:(1)有理数的运算定律在实数范围内都适用,常用的运算定律有加法结合律、加法交换律、乘法交换律、乘法结合律、乘法分配律.(2)运算顺序:先算乘方(开方),再算乘除,最后算加减;有括号的先算括号里面的.3.零次幂;a ≠0,则a 0=14.负整数指数幂:若a ≠0,n 为正整数,则.5.-1的奇偶次幂:n 1n 1=-(为偶数)();n 1((1)n =-为奇数)【题型1:实数的概念】【典例1】(2023•攀枝花)﹣3的绝对值是()A .3B .C .D .﹣3【答案】A【分析】根据一个负数的绝对值是它的相反数即可求解.【解析】解:﹣3的绝对值是3.故选:A .1.(2023•南充)如果向东走10m 记作+10m ,那么向西走8m 记作()A.﹣10m B.+10m C.﹣8m D.+8m【答案】C【分析】首先审清题意,明确“正”和“负”所表示的意义;再根据题意作答.【解析】解:如果向东走10m记作+10m,那么向西走8m记作﹣8m.故选:C.2.(2023•青岛)的相反数是()A.﹣B.C.﹣7D.7【答案】A【分析】根据实数a的相反数是﹣a进行求解.【解析】解:的相反数是﹣,故选:A.3.(2023•娄底)2023的倒数是()A.2023B.﹣2023C.D.【答案】D【分析】乘积是1的两数互为倒数,由此即可得到答案.【解析】解:2023的倒数是.故选:D.4.(2023•吉林)月球表面的白天平均温度零上126℃记作+126℃,夜间平均温度零下150℃应记作()A.+150℃B.﹣150℃C.+276℃D.﹣276℃【答案】B【分析】正数和负数是一组具有相反意义的量,据此即可得出答案.【解析】解:零上126℃记作+126℃,则零下150℃应记作﹣150℃,故选:B.【题型2:实数的分类】【典例2】(2023•荆州)在实数﹣1,,,3.14中,无理数是()A.﹣1B.C.D.3.14【答案】B【分析】无理数即无限不循环小数,据此进行判断即可.【解析】解:实数﹣1,,,3.14中,无理数是,故选:B.1.(2023•怀化)下列四个实数中,最小的数是()A.﹣5B.0C.D.【答案】A【分析】正数>0>负数;一个正数越大,其算术平方根越大;据此进行判断即可.【解析】解:∵1<2,∴<,即1<,则<,那么﹣5<0<<,则最小的数为:﹣5,故选:A.2.(2023•浙江)下面四个数中,比1小的正无理数是()A .B .﹣C .D .【答案】A 【分析】无理数即无限不循环的小数,结合实数比较大小的方法进行判断即可.【解析】解:A .∵1>,∴>,即1>,且是正无理数,则A 符合题意;B .﹣是负数,则B 不符合题意;C .是分数,不是无理数,则C 不符合题意;D .∵π>3,∴>1,则D 不符合题意;故选:A .3.(2023•凉山州)下列各数中,为有理数的是()A .B .3.232232223…C .D .【答案】A【分析】运用有理数和无理数的概念进行逐一辨别、求解.【解析】解:∵=2,∴选项A 符合题意;∵3.232232223…,,是无理数,∴选项B,C,D不符合题意,故选:A.【题型3:数轴】【典例3】(2023•南通)如图,数轴上A,B,C,D,E五个点分别表示数1,2,3,4,5,则表示数的点应在()A.线段AB上B.线段BC上C.线段CD上D.线段DE上【答案】C【分析】根据算术平方根的定义,估算无理数的大小,再根据数轴上A,B,C,D,E五个点在数轴上的位置进行判断即可.【解析】解:∵3<<4,而数轴上A,B,C,D,E五个点分别表示数1,2,3,4,5,∴表示数的点应在线段CD上,故选:C.1.(2023•通辽)二次根式在实数范围内有意义,则实数x的取值范围在数轴上表示为()A.B.C.D.【答案】C【分析】直接利用二次根式有意义的条件得出x的取值范围,进而在数轴上表示即可.【解析】解:二次根式在实数范围内有意义,解得:x≤1,则实数x的取值范围在数轴上表示为:.故选:C.2.(2023•自贡)如图,数轴上点A表示的数是2023,OA=OB,则点B表示的数是()A.2023B.﹣2023C.D.﹣【答案】B【分析】结合已知条件,根据实数与数轴的对应关系即可求得答案.【解析】解:∵OA=OB,点A表示的数是2023,∴OB=2023,∵点B在O点左侧,∴点B表示的数为:0﹣2023=﹣2023,故选:B.3.(2023•济南)实数a,b在数轴上对应点的位置如图所示,则下列结论正确的是()A.ab>0B.a+b>0C.a+3<b+3D.﹣3a<﹣3b【答案】D【分析】从图中判断a的值和b的取值范围,再根据有理数的运算及不等式的性质来计算.【解析】解:从图中得出:a=2,﹣3<b<﹣2.(1)a和b相乘是负数,所以ab<0,故A选项错误;(2)a和b相加是负数,所以a+b<0,故B选项错误;(3)因为a>b,所以a+3>b+3,故C选项错误;(4)因为a是正数,所以﹣3a<0,又因为b是负数,所以﹣3b>0,即﹣3a<﹣3b,故选项D正确,答案为:D.【题型4:科学记数法】【典例4】(2023•淮安)健康成年人的心脏每分钟流过的血液约4900mL.数据4900用科学记数法表示为()A.0.49×104B.4.9×104C.4.9×103D.49×102【答案】C【分析】根据科学记数法表示较大的数,一般形式为a×10n,其中1≤|a|<10,n为整数,由此可得答案.【解析】解:4900=4.9×103.故选:C.1.(2023•北京)截至2023年6月11日17时,全国冬小麦收获2.39亿亩,进度过七成半,将239000000用科学记数法表示应为()A.23.9×107B.2.39×108C.2.39×109D.0.239×109【答案】B【分析】用科学记数法表示绝对值较大的数时,一般形式为a×10n,其中1≤|a|<10,n为整数,且n比原来的整数位数少1,据此判断即可.【解析】解:239000000=2.39×108,故选:B.2.(2023•绍兴)据报道,2023年“五一”假期全国国内旅游出游合计274000000人次.数字274000000用科学记数法表示是()A.27.4×107B.2.74×108C.0.274×109D.2.74×109【答案】B【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.【解析】解:274000000=2.74×108.故选:B.【题型5:实数的大小比较】【典例5】(2023•扬州)已知a=,b=2,c=,则a、b、c的大小关系是()A.b>a>c B.a>c>b C.a>b>c D.b>c>a【答案】C【分析】一个正数越大,其算术平方根越大,据此进行判断即可.【解析】解:∵3<4<5,∴<<,即<2<,则a>b>c,故选:C.1.(2023•潍坊)在实数1,﹣1,0,中,最大的数是()A.1B.﹣1C.0D.【答案】D【分析】根据正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小可得答案.【解析】解:∵﹣1<0<1<,∴在实数1,﹣1,0,中,最大的数是,故选:D.2.(2023•青海)写出一个比﹣大且比小的整数﹣1(或0或1).【答案】﹣1(或0或1).【分析】估算出的取值范围即可求解.【解析】解:∵1<2<4,∴,∴﹣2<﹣<﹣1,∴比﹣大且比小的整数有﹣1,0,1.故答案为:﹣1(或0或1).3.(2023•甘孜州)比较大小:>2.(填“<”或“>”)【答案】>.【分析】先把2写成,然后根据被开方数大的算术平方根也大即可得出比较结果.【解析】解:∵,又∵,∴,故答案为:>【题型6:平方根、算术平方根和立方根】【典例6】(2023•浙江)﹣8的立方根是()A.﹣2B.2C.±2D.不存在【答案】A【分析】根据立方根的定义求出的值,即可得出答案.【解析】解:﹣8的立方根是==﹣2,故选:A1.(2023•无锡)实数9的算术平方根是()A.3B.±3C.D.﹣9【答案】A【分析】根据算术平方根的定义,即可解答.【解析】解:实数9的算术平方根是3,故选:A.2.(2023•郴州)计算=3.【答案】3.【分析】如果x3=a,那么x叫做a的立方根.记作:,由此即可得到答案.【解析】解:=3.故答案为:3.3.(2023•邵阳)的立方根是2.【答案】2.【分析】先求出的值,再根据立方根的定义解答即可.【解析】解:=8,=2.故答案为:2.【题型7:实数的运算】【典例7】(2023•上海)计算:+﹣()﹣2+|﹣3|.【答案】﹣6.【分析】根据立方根定义,二次根式的化简,负整数指数幂,绝对值的性质进行计算即可.【解析】解:原式=2+﹣9+3﹣=2+﹣2﹣9+3﹣=﹣61.(2023•广西)计算:(﹣1)×(﹣4)+22÷(7﹣5).【分析】先算括号里面的,再算乘方,乘除,最后算加减即可.【解析】解:原式=(﹣1)×(﹣4)+4÷2=4+2=62.(2023•北京)计算:4sin60°+()﹣1+|﹣2|﹣.【答案】5.【分析】根据特殊角的三角函数值、负整数指数幂的运算法则、绝对值的性质、二次根式的性质计算.【解析】解:原式=4×+3+2﹣2=2+3+2﹣2=5.3.(2023•娄底)计算:(π﹣2023)0+|1﹣|+﹣tan60°.【答案】2.【分析】利用零指数幂,绝对值的性质,二次根式的运算法则,特殊锐角的三角函数值进行计算即可.【解析】解:原式=1+﹣1+2﹣=2.1.某校仪仗队队员的平均身高为175cm,如果高于平均身高2cm记作+2cm,那么低于平均身高2cm应该记作()A.2cm B.﹣2cm C.175cm D.﹣175cm【答案】B【分析】正数和负数是一组具有相反意义的量,据此即可求得答案.【解析】解:由题意,高于平均身高2cm记作+2cm,高于平均身高和低于平均身高具有相反意义,所以低于平均身高2cm记作﹣2cm.故选:B.2.﹣3的相反数是()A.﹣B.3C.﹣3D.【答案】B【分析】根据相反数的概念解答求解.【解析】解:﹣3的相反数是﹣(﹣3)=3.故选:B.3.第19届亚运会将于2023年9月23日在杭州举行,其主体育场及田径项目比赛场地——杭州奥体中心体育场,俗称“大莲花”,总建筑面积约216000平方米,将数216000用科学记数法表示为()A.216×103B.21.6×104C.2.16×105D.0.216×106【答案】C【分析】把一个大于10的数记成a×10n的形式,其中a是整数数位只有一位的数,n是正整数,这种记数法叫做科学记数法,由此即可得到答案.【解析】解:216000用科学记数法表示为2.16×105.故选:C.4.若|a|=﹣a,a一定是()A.正数B.负数C.非正数D.非负数【答案】C【分析】根据负数的绝对值等于他的相反数,可得答案.【解析】解:∵非正数的绝对值等于他的相反数,|a|=﹣a,a一定是非正数,故选:C.5.若a和b互为相反数,则a+b+3的值为()A.2B.3C.4D.5【答案】B【分析】运用互为相反数的两数相加为0进行求解.【解析】解:∵a和b互为相反数,∴a+b+3=0+3=3,故选:B.6.将﹣3﹣(+6)﹣(﹣5)+(﹣2)写成省略括号的和的形式是()A.﹣3+6﹣5﹣2B.﹣3﹣6+5﹣2C.﹣3﹣6﹣5﹣2D.﹣3﹣6+5+2【答案】B【分析】原式利用减法法则变形即可得到结果.【解析】解:﹣3﹣(+6)﹣(﹣5)+(﹣2)=﹣3﹣6+5﹣2.故选:B.7.4的算术平方根是()A.±2B.﹣2C.2D.【答案】C【分析】根据算术平方根的概念:一般地,如果一个正数x的平方等于a,即x2=a,那么这个正数x叫做a的算术平方根,记为,求出4的算术平方根即可.【解析】解:4的算术平方根是:,故选:C.8.如图,在数轴上,手掌遮挡住的点表示的数可能是()A.0.5B.﹣0.5C.﹣1.5D.﹣2.5【答案】B【分析】设小手盖住的点表示的数为x,则﹣1<x<0,再根据每个选项中实数的范围进行判断即可.【解析】解:设小手盖住的点表示的数为x,则﹣1<x<0,则表示的数可能是﹣0.5.故选:B.9.实数a,b在数轴上对应点的位置如图所示,下列结论中错误的是()A.a<﹣2B.b<1C.a>b D.﹣a>b【答案】B【分析】由数轴可得a<﹣2<0<b<1,|a|>|b|,然后将各项进行判断即可.【解析】解:由数轴可得a<﹣2<0<b<1,|a|>|b|,则A,C均不符合题意,B符合题意;由|a|>|b|可得a+b<0,则﹣a>b,那么D不符合题意;故选:B.10.在数﹣1、0、、中,为无理数的是()A.﹣1B.0C.D.【答案】D【分析】根据无理数的三种形式:①开方开不尽的数,②无限不循环小数,③含有π的数,进行判断即可.【解析】解:数﹣1、0、、中,为无理数的是.故选:D.11.在﹣2,3,,0,﹣1.7五个数中,正数有()A.1个B.2个C.3个D.4个【答案】B【分析】根据正数大于0,负数小于0判断即可.【解析】解:在﹣2,3,,0,﹣1.7五个数中,正数有3,,共2个.故选:B.12.64的平方根是()A.±4B.4C.±8D.8【答案】C【分析】±8的平方都等于64,可得64的平方根是±8.【解析】解:∵±8的平方都等于64;∴64的平方根是±8.故选:C.13.比较大小:3>(填写“<”或“>”).【答案】>【分析】将3转化为,然后比较被开方数即可得到答案.【解析】解:∵3=,且9>7,∴3>,故答案为:>.14.实数a,b在数轴上对应点的位置如图所示,则﹣a>b.(填“>”,“=”,“<”)【答案】>.【分析】根据数轴得出﹣2<a<﹣1,0<b<1,继而得出1<﹣a<2,即可求解.【解析】解:根据数轴可知﹣2<a<﹣1,0<b<1,∴1<﹣a<2,∴﹣a>b,故答案为:>.15.代数式在实数范围内有意义,则x的取值范围是x≥5.【答案】x≥5【分析】根据二次根式有意义的条件列出不等式,解不等式得到答案.【解析】解:由题意得,x﹣5≥0,解得x≥5,故答案为:x≥5.16.的平方根是±2.【答案】±2.【分析】根据平方根、算术平方根的定义进行计算即可.【解析】解:由于=4,所以的平方根是=±2,故答案为:±2.17.计算(3﹣π)0=1.【答案】1【分析】直接利用零指数幂:a0=1(a≠0)求解可得.【解析】解:(3﹣π)0=1,故答案为:1.18.计算:(﹣1)10×2+(﹣2)3÷4.【答案】0.【分析】先计算乘方,再计算乘除,后计算加减.【解析】解:(﹣1)10×2+(﹣2)3÷4=1×2﹣8×=2﹣2=0.19.计算:.【答案】3+6.【分析】直接利用二次根式的性质、负整数指数幂的性质、零指数幂的性质分别化简,进而得出答案.【解析】解:原式=3+9﹣1﹣2=3+6.20.计算:.【答案】﹣3.【分析】根据特殊角的三角函数值,零次幂,负整数指数幂,化简绝对值进行计算即可求解.【解析】解:===﹣3.1.下列各数中,是负数的是()A.|﹣1|B.﹣22C.D.(﹣3)0【答案】B【分析】利用绝对值的意义,有理数的乘方法则,二次根式的性质和零指数幂的意义对每个选项进行逐一判断即可得出结论.【解析】解:∵|﹣1|=1>0,是正数,∴A选项不符合题意;∵﹣22=﹣4<0,是负数,∴B选项符合题意;∵=3>0,是正数,∴C选项不符合题意;∵(﹣3)0=1>0,是正数,∴D选项不符合题意.故选:B.2.若ab≠0,那么+的取值不可能是()A.﹣2B.0C.1D.2【答案】C【分析】由ab≠0,可得:①a>0,b>0,②a<0,b<0,③a>0,b<0,④a<0,b>0;分别计算即可.【解析】解:∵ab≠0,∴有四种情况:①a>0,b>0,②a<0,b<0,③a>0,b<0,④a<0,b>0;①当a>0,b>0时,+=1+1=2;②当a<0,b<0时,+=﹣1﹣1=﹣2;③当a>0,b<0时,+=1﹣1=0;④当a<0,b>0时,+=﹣1+1=0;综上所述,+的值为:±2或0.故选:C.3.如图,检测4个篮球,其中质量超过标准的克数记为正数,不足的克数记为负数,从轻重的角度看,最接近标准的球是()A.B.C.D.【答案】D【分析】由已知和要求,只要求出超过标准的克数和低于标准的克数的绝对值,绝对值小的则是最接近标准的球.【解析】解:通过求4个篮球的绝对值得:|+10|=10,|+8|=8,|﹣12|=12,|﹣5|=5,﹣5的绝对值最小.所以这个球是最接近标准的球.故选:D.4.实数a与b在数轴上对应点的位置如图所示,则正确的结论是()A.a<0B.a<b C.b+5>0D.|a|>|b|【答案】C【分析】根据数轴可以发现b<a,且,由此即可判断以上选项正确与否.【解析】解:A.∵2<a<3,a>0,答案A不符合题意;B.∵2<a<3,﹣4<b<﹣3,∴a>b,∴答案B不符合题意;C.∵﹣4<b<﹣3,∴b+5>0,∴答案C符合题意;D.∵2<a<3,﹣4<b<﹣3,∴|a|<b|,∴答案D不符合题意.故选:C.5.如图,数轴上被墨水遮盖的数的绝对值可能是()A.B.C.D.【答案】C【分析】明确被覆盖数的范围,根据负数的绝对值取其相反数,得出答案.【解析】解:由图可知,设被覆盖的数为a,则﹣4<a<﹣3,∵当a<0时,|a|=﹣a,∴3<|a|<4,∵3<<4,满足题意,故选:C.6.大多数红绿灯都是固定时间设置,某市正在逐步推行智能感应红绿灯,这种红绿灯可以自动搜集车流量信息,根据通行车辆的多少自动调节红绿灯的时长,若某十字路口某时间段自动搜集的车流量中,东西走向直行与左转车辆分别约占总流量的,;南北走向直行与左转车辆分别约占总流量的,.因右转车辆不受红绿灯限制,所以在设置红绿灯时,按东西走向直行、左转,南北走向直行、左转的次序依次亮起绿灯作为一个周期时间(当某方向绿灯亮起时,其他3个方向全为红灯),若一个周期时间为2分钟,则此时南北走向左转绿灯时长为()A.32秒B.24秒C.18秒D.16秒【答案】A【分析】先重新计算南北走向直行流量占比,再用120乘以占比可得一个周期时间为2分钟南北走向直行绿灯时长.【解析】解:∵右转车辆不受红绿灯限制,∴南北走向直行占题四种走向流量的比例为:=,∴一个周期时间为2分钟,设置南北走向直行绿灯时长为120×=32s,故选:A.7.我国南宋数学家杨辉用三角形解释二项和的乘方规律,称之为“杨辉三角”,如图,这个三角形给出了的展开式的系数规律(按n的次数由大到小的顺序):请依据上述规律判断:若今天是星期三,则经过1510天后是()A.星期四B.星期五C.星期六D.星期天【答案】A【分析】结合一个星期7天,即相应的尾数是7个数一循环,利用所给的规律求得1510天的尾数即可判断.【解析】解:∵1510=(14+1)10∴(14+1)10=1410+10×149×1+…+10×14×19+110,∴(14+1)10÷7的余数为:1,即1510÷7的余数为:1,∴若今天是星期三,则经过1510天后是星期四.故选:A.8.在算式中的“□”里填入一个运算符号,使得它的结果最小()A.+B.﹣C.×D.÷【答案】D【分析】分别填入四个运算符号,计算出每个算式的结果,然后进行比较即可.【解析】解:若填入的符号为+,算式为:;若填入的符号为﹣,算式为:;若填入的符号为×,算式为:;若填入的符号为÷,算式为:,∵,,∴,∴若填入的符号为÷,算式的结果最小,故选:D .9.如图,已知矩形ABCD 的边长分别为6,4,进行如下操作:第一次,顺次连接矩形ABCD 各边的中点,得到四边形A 1B 1C 1D 1;第二次,顺次连接四边形A 1B 1C 1D 1各边的中点,得到四边形A 2B 2C 2D 2;…如此反复操作下去,则第n 次操作后,得到四边形A n B n ∁n D n 的面积是()A .B .C .D .【答案】B【分析】连接A 1C 1,D 1B 1,可知四边形A 1B 1C 1D 1的面积为矩形ABCD 面积的一半,则S 1=×4×6=12,再根据三角形中位线定理可得C 2D 2=C 1,A 2D 2=B 1D 1,则S 2=C 1×B 1D 1=ab ,依此可得规律.【解析】解:如图,连接A 1C 1,D 1B 1,∵顺次连接矩形ABCD各边的中点,得到四边形A1B1C1D1,∴四边形A1BCC1是矩形,∴A1C1=BC,A1C1∥BC,同理,B1D1=AB,B1D1∥AB,∴A1C1⊥B1D1,∴S1=×4×6=12,∵顺次连接四边形A1B1C1D1各边的中点,得到四边形A2B2C2D2,∴C2D2=C1,A2D2=B1D1,∴S2=C1×B1D1=×12=3,……依此可得S n=,故选:B.10.若,b=(﹣1)﹣1,,则a,b,c的大小关系是()A.a>b>c B.a>c>b C.c>a>b D.c>b>a 【答案】B【分析】利用零指数,负整数指数幂的运算法,计算a、b、c的值,再比较大小.【解析】解:∵,b=(﹣1)﹣1=﹣1,,∴a>c>b,故选:B.11.估计的值在()A.2和3之间B.3和4之间C.4和5之间D.5和6之间【答案】A【分析】首先得出,进而求出的估计值.【解析】解:∵,∴,∴,∴的值在2到3之间.故选:A.12.若a=﹣3,,则a,b的大小关系为()A.a>b B.a=b C.a<b D.无法判断【答案】C【分析】先将化简,再比较大小.【解析】解:,则3>﹣3,∴a<b.故选:C.13.实数a,b在数轴上的对应点的位置如图所示,下列关系式不成立的是()A.a+2<b+2B.a<1C.a+b>0D.﹣2a<﹣2b 【答案】D【分析】根据有数轴上的各点来确定﹣1<a<0,b>1>0,来判断数的大小.【解析】解:A选项中因为在数轴上得到a<b,左右两边同时加上2,所以a+2<b+2成立,符合题意故正确;B选项中,从数轴中直接观察到a<1,符合题意故正确;C选项中,因为a>﹣1,b>1,所以a+b>0,符合题意故正确;D选项中,从数轴中观察到a<0,b>0,a是负数,乘负数,结果为正数,b为负数,乘负数,结果为负数,所以﹣2a>﹣2b,故D选项不符合题意,是错误的.故答案为D.14.实数m、n在数轴上的位置如图所示,化简|n﹣m|﹣m的结果为()A.n﹣2m B.﹣n﹣2m C.n D.﹣n【答案】D【分析】根据实数m、n在数轴上的位置,可得到n﹣m<0,再化简绝对值,得出结果.【解析】解:由实数m、n在数轴上的位置可知,n﹣m<0,所以|n﹣m|﹣m=m﹣n﹣m=﹣n,故选:D.15.若a是不为1的有理数,则我们把称为a的差倒数.如2的差倒数为,﹣1的差倒数为.已知:a1=3,a2是a1差倒数,a3是a2的差倒数,a4是a3的差倒数,…,依次类推,a2023的值是()A.3B.C.D.【答案】A【分析】根据差倒数定义计算得出,依次推导3个数据为一组,,a2023=3.【解析】解:根据差倒数的定义知,以这3个数为一组,第2022个数为第674组数的第3个数据,则,那么a2023=3.故选:A.16.如图将一张纸片剪成4个正三角形,称为第一次操作;然后将其中一个正三角形再剪成4个小正三角形,共得到7个正三角形,称为第二次操作;将其中一个正三角形再剪成4个正三角形,共得到10个正三角形,称为第三次操作;….根据以上操作,若要得到2023个正三角形,则需要操作的次数为()A.671B.672C.673D.674【答案】D【分析】根据已知第一次操作后得到4个小正三角形,第二次操作后得到7个小正三角形;第三次操作后得到10个小正三角形;…继而即可求出剪m次时正三角形的个数为2023.【解析】解:∵第一次操作后得到4个小正三角形,第二次操作后得到7个小正三角形;第三次操作后得到10个小正三角形,……∴第m次操作后,总的正三角形的个数为3m+1.则:2023=3m+1,解得:m=674,故若要得到2023个小正三角形,则需要操作的次数为674次.故选:D.17.下列表格中的四个数都是按照规律填写的,则表中x的值是()A.135B.170C.209D.252【答案】C【分析】根据表格找出方格中每个对应数字的表示规律然后求解.【解析】解:根据表格可得规律:第n个表格中,左上数字为n,左下数字为n+1,右上数字为2(n+1),右下数字为2(n+1)(n+1)+n,∴20=2(n+1),解得n=9,∴a=9,b=10,x=10×20+9=209.故选:C.18.如M={1,2,x},我们叫集合M,其中1,2,x叫做集合M的元素.集合中的元素具有确定性(如x 必然存在),互异性(如x≠1,x≠2),无序性(即改变元素的顺序,集合不变).若集合N={x,1,2},我们说M=N.已知集合A={2,0,x},集合,若A=B,则x﹣y的值是()A.2B.C.﹣2D.﹣1【答案】B【分析】利用新定义,根据元素的互异性、无序性推出只有=0,从而得出两种情况.讨论后即可得解.【解析】解:由题意知A={2,0,x},由互异性可知,x≠2,x≠0.因为B={},A=B,由x≠0,可得|x|≠0,≠0,所以,即y=0,那么就有或者,当得x=,当无解.所以当x=时,A={2,0,},B={2,,0},此时A=B符合题意.所以x﹣y=.故选:B.19.我们知道,同一个平面内,1条直线将平面分成a1=2部分,2条直线将平面最多分成a2=4部分,3条直线将平面最多分成a3=7部分,4条直线将平面最多分成a4=11部分…n条直线将平面最多分成a n部分,则=()A.B.﹣C.D.﹣【答案】B【分析】根据一条直线、两条直线、三条直线的情况可总结出规律:n条直线最多可将平面分成S=1+1+2+3…+n=n(n+1)+1,依此求解即可.【解析】解:由题意得:有一条直线时,最多分成1+1=2部分;有两条直线时,最多分成1+1+2=4部分;有三条直线时,最多分成1+1+2+3=7部分;…,有n条直线时,分成的平面最多有m个.有以下规律:m=1+1+…+(n﹣1)+n=+1,∴a1=2,a2=4,a3=7,a4=11,a5=16,a6=22,a7=29,a8=37,a9=46,a10=56,∴=+++…+=﹣1﹣﹣﹣﹣﹣﹣﹣﹣﹣=﹣1﹣﹣﹣﹣﹣﹣﹣﹣﹣=﹣1﹣﹣﹣×+﹣×﹣×﹣=﹣1﹣﹣﹣﹣×﹣×﹣=﹣1﹣﹣﹣﹣=﹣1﹣﹣+﹣+﹣=﹣2+=﹣.故选:B.1.(2023•广西)若零下2摄氏度记为﹣2℃,则零上2摄氏度记为()A.﹣2℃B.0℃C.+2℃D.+4℃【答案】C【解析】解:由零下2摄氏度记为﹣2℃可知,零下记为“﹣“,零上记为“+”,∴零上2摄氏度记为:+2℃.故选:C.2.(2023•天津)据2023年5月21日《天津日报》报道,在天津举办的第七届世界智能大会通过“百网同播、万人同屏、亿人同观”,全球网友得以共享高端思想盛宴,总浏览量达到935000000人次,将数据935000000用科学记数法表示应为()A.0.935×109B.9.35×108C.93.5×107D.935×106【答案】B【解析】解:935000000=9.35×108,故选:B.3.(2023•广州)﹣(﹣2023)=()A.﹣2023B.2023C.D.【答案】B【解析】解:﹣(﹣2023)=2023,故选:B.4.(2023•淮安)下列实数中,无理数是()A.﹣2B.0C.D.5【答案】C【解析】解:A、﹣2是有理数,故此选项不符合题意;B、0是有理数,故此选项不符合题意;C、是无理数,故此选项符合题意;D、5是有理数,故此选项不符合题意;故选:C.5.(2023•温州)如图,比数轴上点A表示的数大3的数是()A.﹣1B.0C.1D.2【答案】D【解析】解:由数轴可得:A表示﹣1,则比数轴上点A表示的数大3的数是:﹣1+3=2.故选:D.6.(2022•安徽)下列为负数的是()A.|﹣2|B.C.0D.﹣5【答案】D【解析】解:A.|﹣2|=2,是正数,故本选项不合题意;B.是正数,故本选项不合题意;C.0既不是正数,也不是负数,故本选项不合题意;D.﹣5是负数,故本选项符合题意.故选:D.7.(2023•天津)计算的结果等于()A.B.﹣1C.D.1【答案】D【分析】根据有理数乘法法则计算即可.【解析】解:原式=+(×2)=1,故选:D.8.(2023•青岛)下列计算正确的是()A.B.C.D.【答案】C【解析】解:与无法合并,则A不符合题意;2﹣=,则B不符合题意;×==,则C符合题意;÷3==,则D不符合题意;故选:C.9.(2023•西藏)已知a,b都是实数,若(a+2)2+|b﹣1|=0,则(a+b)2023的值是()A.﹣2023B.﹣1C.1D.2023【答案】B【解析】解:∵(a+2)2+|b﹣1|=0,(a+2)2≥0,|b﹣1|≥0,∴a+2=0,b﹣1=0,解得a=﹣2,b=1,∴(a+b)2023=(﹣1)2023=﹣1.故选:B.10.(2023•海南)如图,数轴上点A表示的数的相反数是()A.1B.0C.﹣1D.﹣2【答案】A【解析】解:∵A点表示的数为﹣1,∴数轴上点A所表示的数的相反数是1.故选:A.11.(2023•西宁)算式﹣3□1的值最小时,□中填入的运算符号是()A.+B.﹣C.×D.÷【答案】B【解析】解:﹣3+1=﹣2,﹣3﹣1=﹣4,﹣3×1=﹣3,﹣3÷1=﹣3,∵﹣4<﹣3=﹣3<﹣2,∴算式﹣3□1的值最小时,“□”中填入的运算符号是﹣.故选:B.12.(2023•内蒙古)若a,b为两个连续整数,且a<<b,则a+b=3.【答案】3.【解析】解:∵1<3<4,∴1<<2,∴a=1,b=2,则a+b=1+2=3,故答案为:3.13.(2023•福建)某仓库记账员为方便记账,将进货10件记作+10,那么出货5件应记作﹣5.【答案】﹣5.【解析】解:∵进货10件记作+10,∴出货5件应记作﹣5,故答案为:﹣5.14.(2023•益阳)计算:|﹣1|﹣(﹣)2﹣12×(﹣).【答案】.【解析】解:原式=﹣1﹣3+4=.15.(2023•德阳)计算:2cos30°+(﹣)﹣1+|﹣2|+(2)0+.【答案】4.【解析】解:原式=2×﹣2+2﹣+1+3=4.。

华东师大版初中数学知识内容概况总复习 知识点

华东师大版初中数学知识内容概况总复习 知识点

华东师大版初中数学知识内容概况总复习知识点华东师大版初中数学知识内容概况总复习-知识点华东师范大学版初中数学知识内容综述知识点(1)数与代数1、有理数(1)正数和负数(2)数轴(3)反数(4)绝对值(5)有理数的大小比较(6)有理数的运算(加、减、乘、除、幂及其混合运算)(7)近似数和有效数(8)零指数幂及负整指数幂;科学计数法阅读材料:(1)光年和纳米;(2) 10003和310002、数的开方(1)平方根和立方根(2)平方根公式(3)实数和数轴3、整式及其运算(1)列代数表达式阅读材料:有趣的“3x+1问题”(2)整数:单项式,多项式(3)整式的加减:① 类似项目;② 合并类似项目;③ 删除和添加括号;④ 整数的加减法阅读材料:(1)用分离系数法进行整式的加减运算;(2)供应站的最佳位置在哪里?(4)整数乘法:①幂的运算:同底数幂的乘法、幂的乘方、积的乘方;②整数乘法:单项式乘以单项式、单项式乘以多项式、多项式乘以多项式;③ 乘法公式:平方差公式、完全平方公式(5)因式分解:提公因式法、公式法阅读材料:(1)贾仙三角;(2)你会读书吗?主题研究:面积与代数恒等式(6)整式的除法:同底数幂的除法、单项式除以单项式一4、分式(1)分数的概念(2)分数的基本性质(3)分式的运算:分式的乘除法、分式的加减法5.方程式(1)一元一次方程:①一元一次方程的概念;②一元一次方程的解法;③ 可以简化为一元线性方程的分数阶方程阅读材料:(1)丢番图的墓志铭;(2)2=3?(2)二元基本方程:① 二元基本方程的概念;② 二元一阶方程的求解阅读材料:同笼中的鸡和兔(3)一元二次方程:①一元二次方程的概念;②一元二次方程的解法;③ 一元二次方程根的判别式;一元二次方程的根与系数的关系(4)实践与探索(应用)6.一元初等不等式(1)对不等式的理解(2)解一元初等不等式(3)一元一次不等式组及其解法(4)一元一次不等式的应用7.函数及其图像(1)变量和函数(2)一次函数的概念、图像及其性质(3)反比例函数的概念、图像及其性质(4)二次函数的概念、图像及其性质(5)实践与探索阅读材料:生活中的抛物线2华东师范大学版初中数学知识内容综述知识点(2)空间与图形1、图形的初步认识(1)生活中的立体图形阅读材料:欧拉公式(2)绘制三维图形:① 从三维图形到视图;② 从视图到立体图形(3)立体图形的表面展开图(4)图形阅读材料:七巧板(5)最基本的图形:点和线①点和线;②线段的长短比较(6)角度:① 角度比较与操作;② 特殊角度关系(7)相交线:①垂线;②相交线中的角(8)平行线:① 识别平行线;② 平行线的特性2、多边形(1)三角形(2)三角形内、外角及(3)瓷砖铺设(4)用正多边形拼地板阅读材料:多姿多彩的图案课题学习:图形的镶嵌3.图形的转换(1)平移:①图形的平移;②图形的特征(2)轮换:① 图形的旋转;② 旋转特性;③ 旋转对称图形;④ 中心对称图(3)轴对称性:① 生命中的轴对称;② 轴对称性知识;③ 等腰三角形阅读材料:(1)切割五角星;(2)对称拼图;(3) Timesanddates(4)有点像转换:① 图形的放大和缩小;② 画相似的图形4、命题与证明(1)定义、命题和定理(2)证明与认识35.图的同余(1)图的同余(2)全等三角形的识别及其性质(3)用直尺和量规绘制:① 画线段;② 画角;③ 画线段;④ 画一条角平分线6、图形的相似(1)相似图形及其特征(2)相似三角形:①相似三角形的识别;②相似三角形的特征(3)图形与坐标7.解三角形(1)测量(2)勾股定理(3)锐角三角函数(4)解直角三角形8、平行四边形(1)平行四边形:①平行四边形的概念;②平行四边形的识别;③平行四边形的特征(2)矩形:① 矩形的概念;② 矩形的识别;③ 矩形(3)菱形的特征:① 钻石的概念;② 钻石识别;③ 钻石的特性(4)正方形:①正方形的概念;②正方形的识别;③正方形的特征阅读材料:四边形的变身术课题学习:中点四边形9.圆形(1)圆的基本元素(2)圆的对称性(3)圆周角(4)与圆相关的位置关系:① 点与圆的位置关系;② 直线与圆的位置关系;③ 圆与圆的位置关系(5)圆中的有关计算问题:①弧长和扇形的面积;②圆锥的侧面积和全面积四华东师大版初中数学知识内容概况总复习知识点(3)《概率与统计》部分1.统计数字(1)数据的收集(2)数据表示:① 统计图表;②这样节省图的篇幅合适吗?阅读材料:赢在哪里?(3)统计的重要性:①人口普查和抽样调查;②从部分看全体(4)平均值、中值和模式(通过计算器计算平均值)(5)平均数、中位数和众数的使用(警惕平均数的误用)阅读材料:“均贫富”(6)数据分类和初步处理:① 选择合适的图表进行数据排序;② 范围、方差和标准差(7)简单的随机抽样:①简单随机抽样;②这样抽样合适吗?阅读材料:空气污染指数(8)用样本估计人口:① 抽样调查可靠吗?② 用样本估计人口(9)数据的分析与决策:①查询数据作决策;②全面分析媒体信息;③ 亲自调查决定;像这样打招呼;如何组织数据和阅读材料:关于评级的随机讨论5。

华师大版数学中考总复习(基础版)(知识点考点梳理、重点题型分类巩固练习)(家教、补习、复习用)

华师大版数学中考总复习(基础版)(知识点考点梳理、重点题型分类巩固练习)(家教、补习、复习用)

华师大版初中数学重难点突破中考总复习知识点梳理及重点题型举一反三巩固练习中考总复习:实数—知识讲解(基础)【考纲要求】1.了解有理数、无理数、实数的概念;借助数轴理解相反数、绝对值的概念及意义,会比较实数的大小;2.知道实数与数轴上的点一一对应,会用科学记数法表示有理数,会求近似数和有效数字;了解乘方与开方、平方根、算术平方根、立方根的概念,并理解这两种运算之间的关系,了解整数指数幂的意义和基本性质;3.掌握实数的运算法则,并能灵活运用.【知识网络】【考点梳理】考点一、实数的分类1.按定义分类:⎧⎧⎫⎧⎫⎪⎪⎪⎬⎪⎪⎨⎪⎭⎪⎪⎪⎪⎪⎨⎬⎩⎪⎪⎪⎪⎧⎨⎪⎪⎨⎪⎪⎪⎩⎭⎩⎪⎪⎫⎧⎪⎪⎨⎬⎪⎪⎩⎭⎩正整数自然数整数零有理数有限小数或无限循环小数负整数实数正分数分数负分数正无理数无理数无限不循环小数负无理数 2.按性质符号分类:⎧⎧⎧⎪⎨⎪⎨⎩⎪⎪⎪⎩⎪⎪⎨⎪⎧⎧⎪⎨⎪⎪⎨⎩⎪⎪⎪⎩⎩正整数正有理数正实数正分数正无理数实数零负整数负有理数负实数负分数负无理数 有理数:整数和分数统称为有理数或者“形如nm(m ,n 是整数n≠0)”的数叫有理数. 无理数:无限不循环小数叫无理数. 实数:有理数和无理数统称为实数. 要点诠释:常见的无理数有以下几种形式:(1)字母型:如π是无理数,24ππ、等都是无理数,而不是分数; (2)构造型:如2.10100100010000…(每两个1之间依次多一个0)就是一个无限不循环的小数;(3…都是一些开方开不尽的数;(4)三角函数型:sin35°、tan27°、cos29°等.考点二、实数的相关概念 1.相反数(1)代数意义:只有符号不同的两个数,我们说其中一个是另一个的相反数.0的相反数是0; (2)几何意义:在数轴上原点的两侧,与原点距离相等的两个点表示的两个数互为相反数; (3)互为相反数的两个数之和等于0.a 、b 互为相反数⇔a+b=0. 2.绝对值(1)代数意义:正数的绝对值是它本身;负数的绝对值是它的相反数;0的绝对值是0.可用式子表示为:⎪⎩⎪⎨⎧<-=>=)0()0(0)0(a a a a a a (2)几何意义:一个数a 的绝对值就是数轴上表示数a 的点与原点的距离.距离是一个非负数,所以绝对值的几何意义本身就揭示了绝对值的本质,即绝对值是一个非负数.用式子表示:若a 是实数,则|a|≥0. 要点诠释:若,a a =则0a ≥;-,a a =则0a ≤;-a b 表示的几何意义就是在数轴上表示数a 与数b 的点之间的距离. 3.倒数(1)实数(0)a a ≠的倒数是a1;0没有倒数; (2)乘积是1的两个数互为倒数.a 、b 互为倒数1a b ⇔⋅=. 4.平方根(1)如果一个数的平方等于a ,这个数就叫做a 的平方根.一个正数有两个平方根,它们互为相反数;0有一个平方根,它是0本身;负数没有平方根.a (a ≥0)的平方根记作a ±.(2)一个正数a 的正的平方根,叫做a 的算术平方根.a (a ≥0)的算术平方根记作a . 5.立方根如果x 3=a ,那么x 叫做a 的立方根.一个正数有一个正的立方根;一个负数有一个负的立方根;0的立方根仍是0.考点三、实数与数轴规定了原点、正方向和单位长度的直线叫做数轴,数轴的三要素缺一不可.每一个实数都可以用数轴上的一个点来表示,反过来,数轴上的每一个点都表示一个实数. 要点诠释:(1)数轴的三要素:原点、正方向和单位长度. (2)实数和数轴上的点是一一对应的.考点四、实数大小的比较1.对于数轴上的任意两个点,靠右边的点所表示的数较大.2.正数都大于0,负数都小于0,正数大于一切负数;两个负数;绝对值大的反而小.3.对于实数a 、b , 若a-b>0⇔a>b ;a-b=0⇔a=b ;a-b<0⇔a<b.4.对于实数a ,b ,c ,若a>b ,b>c ,则a>c.5.无理数的比较大小:利用平方转化为有理数:如果a>b>0, a 2>b 2⇔a>b b a >⇔;或利用倒数转化:如比较417-与154-.要点诠释:实数大小的比较方法:(1)直接比较法:正数都大于0,负数都小于0,正数大于一切负数;两个负数,绝对值大的反而小.(2)数轴法:在数轴上,右边的数总比左边的数大.考点五、实数的运算 1.加法同号两数相加,取相同的符号,并把绝对值相加;绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值;互为相反数的两个数相加得0;一个数同0相加,仍得这个数.满足运算律:加法的交换律a+b=b+a ,加法的结合律(a+b)+c=a+(b+c). 2.减法减去一个数等于加上这个数的相反数. 3.乘法两数相乘,同号得正,异号得负,并把绝对值相乘.几个非零实数相乘,积的符号由负因数的个数决定,当负因数有偶数个时,积为正;当负因数有奇数个时,积为负.几个数相乘,有一个因数为0,积就为0.乘法运算的运算律:(1)乘法交换律ab=ba ;(2)乘法结合律(ab)c=a(bc);(3)乘法对加法的分配律a(b+c)=ab+ac . 4.除法(1)除以一个数,等于乘上这个数的倒数.(2)两个数相除,同号得正,异号得负,并把绝对值相除.0除以任何一个不等于0的数都得0. 5.乘方与开方(1)求n 个相同因数的积的运算叫做乘方,a n所表示的意义是n 个a 相乘.正数的任何次幂是正数,负数的偶次幂是正数,负数的奇次幂是负数. (2)正数和0可以开平方,负数不能开平方;正数、负数和0都可以开立方. (3)零指数与负指数011(0)(0).pp a a aa a-==≠,≠ 要点诠释:加和减是一级运算,乘和除是二级运算,乘方和开方是三级运算.这三级运算的顺序是三、二、一.如果有括号,先算括号内的;如果没有括号,同一级运算中要从左至右依次运算.考点六、有效数字和科学记数法一个近似数,四舍五入到哪一位,就说这个近似数精确到哪一位.一个近似数,从左边第一个不是0的数字起,到精确到的数位为止,所有的数字,都叫做这个近似数的有效数字.精确度的形式有两种:(1)精确到哪一位;(2)保留几个有效数字.把一个数用±a ×10n (其中1≤<10,n 为整数)的形式记数的方法叫科学记数法.要点诠释:(1)当要表示的数的绝对值大于1时,用科学记数法写成a ×10n,其中1≤a <10,n 为正整数,其值等于原数中整数部分的数位减去1;(2)当要表示的数的绝对值小于1时,用科学记数法写成a ×10n,其中1≤a <10,n 为负整数,其值等于原数中第一个非零数字前面所用零的个数的相反数(包括小数点前面的零).【典型例题】类型一、实数的有关概念1.(1)a 的相反数是15-,则a 的倒数是_______.(2)实数a 、b 在数轴上对应点的位置如图所示: 2()a b +=______.0ab(3)(泉州市)去年泉州市林业用地面积约为10200000亩,用科学记数法表示为约____________.【答案】(1)5 ; (2)-a-b ; (3)1.02×107亩. 【解析】(1)注意相反数和倒数概念的区别,互为相反数的两个数只有性质符号不同,互为倒数的两个数要改变分子分母的位置;或者利用互为相反数的两个数之和等于0,互为倒数的两个数乘积等于1来计算.(2)此题考查绝对值的几何意义,绝对值和二次根式的化简.注意要去掉绝对值符号,要判别绝对值内的数的性质符号.由图知:20 0 |||| 0 ()||().a b a b a b a b a b a b a b ><<∴+<∴+=+=-+=--,,,,(3)考查科学记数法的概念.【点评】本大题旨在通过几个简单的填空,让学生加强对实数有关概念的理解. 举一反三:【变式】据市旅游局统计,今年“五·一”小长假期间,我市旅游市场走势良好,假期旅游总收入达到8.55亿元,用科学记数法可以表示为( )A .8.55×106B .8.55×107C .8.55×108D .8.55×109【答案】C.类型二、实数的分类与计算2.下列实数227、sin60°、3π、()02、3.14159、-9、()27--、8中无理数有( )个A .1B .2C .3D .4【答案】C.【解析】无理数有sin60°、3π、8. 【点评】对实数进行分类不能只看表面形式,应先化简,再根据结果去判断.举一反三:【课程名称: 实数 369214 经典例题1】 【变式】在,30cos ,2π,)23(,4,8,14.30 --,45tan ,712,1010010001.0 ,51-13.0%,3 中,哪些是有理数? 哪些是无理数?【答案】03.14,4,(32),-,45tan ,712,51-13.0%,3 都是有理数; π8,,cos30,2-0.1010010001,都是无理数.3.(2015•梅州)计算:+|2﹣3|﹣()﹣1﹣(2015+)0.【答案与解析】解:原式=2+3﹣2﹣3﹣1=﹣1.【点评】该题是实数的混合运算,包括绝对值,0指数幂、负整数指数幂等.只要准确把握各自的意义,就能正确的进行运算.举一反三:【课程名称:实数 369214 经典例题8-9】【变式1】计算:(2015•甘南州)计算:|﹣1|+20120﹣(﹣)﹣1﹣3tan30°.【答案】解:原式=﹣1+1﹣(﹣3)﹣3×=+3﹣=3.【变式2】计算:12004200320022001+⨯⨯⨯ 【答案】设n=2001,则原式=1)3)(2)(1(++++n n n n1)23)(3(22++++=n n n n (把n 2+3n 看作一个整体)=1)3(2)3(222++++n n n n =n 2+3n+1=n(n+3)+1 =2001×2004+1 =4010005.类型三、实数大小的比较4.比较下列每组数的大小:(1)417-与154- (2)a 与a1(a ≠0) 【答案与解析】(11740174=>+,4150415=>+,174+与415+1744150>+>,174415-<- (2)当a<-1或O<a<1时,a<a1;当-1<a<0或a>1时,a>a1; 当a=1±时,a=a1.【点评】(1)有时无理数比较大小,通过平方转化以后也无法进行比较,那么我们可以利用倒数关系比较;(2)这道题实际上是互为倒数的两个数之间的比较大小,我们可以利用数轴进行比较,我们知道,0没有倒数,±1的倒数等于它本身,这样数轴就被这3个数分成了4部分,下面就可以分类讨论每种情况.我们还可以利用函数图象来解决这个问题,把a1的值看成是关于a 的反比例函数,把a 的值看成是关于a 的正比例函数,在坐标系中画出它们的图象,可以很直观的比较出它们的大小.举一反三:【变式】比较下列每组数的大小: (1)817-和511- (2)52+和23+【答案】(1)将其通分,转化成同分母分数比较大小,1785840= ,1188540=, 171185<,所以171185->-.(2)()2257210740+=+=+,()232743748+=+=+,因为4048<,所以2532+<+.类型四、平方根的应用5.已知:x ,y 是实数,234690x y y ++-+=,若axy-3x=y ,则实数a 的值是_______.【答案】14. 234690x y y +-+=234(3)0x y ++-=两个非负数相加和为0,则这两个非负数必定同时为0,340x +=,(y-3)2=0, ∴ x=43-, y=3又∵axy-3x=y , ∴ a=43()33134433x y xy ⨯-++==-⨯. 【点评】此题考查的是非负数的性质.类型五、实数运算中的规律探索6.细心观察图形,认真分析各式,然后解答问题2122231112,22213,23314,2S S S +==+==+==S 1S 2S 3S 4S 5O1A2A 3A 4A 5A 61111(1)请用含有n (n 是正整数)的等式表示上述变化规律; (2)推算出OA 10的长;(3)求出S 12+ S 22+ S 32+…+ S 102的值. 【答案与解析】(1)由题意可知,图形满足勾股定理,()2,112n S n n n =+=+ (2)因为OA 1=1,OA 2=2,OA 3=3…,所以OA 10=10 (3)S 12+ S 22+ S 32+…+ S 102=2222)210()23()22()21(++++ =)10321(41++++=455. 【点评】近几年各地的中考题中越来越多的出现了一类探究问题规律的题目,这些问题素材的选择、文字的表述、题型的设计不仅考察了数学的基础知识,基本技能,更重点考察了创新意识和能力,还考察了认真观察、分析、归纳、由特殊到一般,由具体到抽象的能力.举一反三:【变式】图中是一幅“苹果图”,第一行有1个苹果,第二行有2个,第三行有4个,•第四行有8个,……你是否发现苹果的排列规律?猜猜看,第十行有______个苹果.【答案】29(512).中考总复习:实数—巩固练习(基础)【巩固练习】一、选择题1. 在实数-23,0,3,-3.1415,2,9,-0.1010010001…(每两个1之间依次多1个0),sin30°这8个实数中,无理数有()A.1个 B.2个 C.3个 D.4个2.我国第六次全国人口普查数据显示,居住在城镇的人口总数达到665 575 306人.将665 575 306用科学记数法表示(保留三个有效数字)约为()A.66.6×107B.6.66×108 C.0.666×108 D.6.66×1073.(2015•杭州)若k<<k+1(k是整数),则k=()A.6 B.7 C.8 D.94.在三个数0.5、、中,最大的数是( )A.0.5 B.C.D.不能确定5.用四舍五入法按要求对0.05049分别取近似值,其中错误的是()A.0.1(精确到0.1) B.0.05(精确到百分位)C.0.050(精确到0.001) D.0.05(精确到千分位)6.我国古代的“河图”是由3×3的方格构成,每个方格内均有数目不同的点图,每一行、每一列以及每一条对角线上的三个点图的点数之和均相等.图中给出了“河图”的部分点图,请你推算出P处所对应的点图是( )二、填空题7. ()0201112=-++y x 则x y= .8. (2014•辽阳)5﹣的小数部分是 .9.若22+-b a 与互为相反数,则a+b 的值为________. 10.已知a 与b 互为相反数,c 与d 互为倒数,m 的绝对值是1,则2m cd mba +-+的值为________.11.已知:22222233445522 33 44 55338815152424+=⨯+=⨯+=⨯+=⨯,,,,,若21010b ba a+=⨯符合前面式子的规律,则a+b=________.12.将正偶数按下表排列:第1列 第2列 第3列 第4列 第1行 2第2行 4 6第3行 8 10 12第4行 14 16 18 20 ……根据上面的规律,则2006所在行、列分别是________.三、解答题13. 计算:(1)2012201280.125⨯ (2)222121⎪⎪⎪⎪⎭⎫ ⎝⎛--⎪⎪⎪⎪⎭⎫ ⎝⎛+e e e e14.若333)43(,)43(,)43(--=-=-=c b a ,比较a 、b 、c 的大小。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

中考总复习:实数—巩固练习 (基础)
【巩固练习】 一、选择题 1. 在实数-
23,0,3,-3.1415,2
π,9,-0.1010010001…(每两个1之间依次多1个0),sin30° 这8个实数中,无理数有( )
A .1个
B .2个
C .3个
D .4个
2.我国第六次全国人口普查数据显示,居住在城镇的人口总数达到665 575 306人.将665 575 306用科学记数法表示(保留三个有效数字)约为( ) A .66.6×107
B .6.66×108
C .0.666×10
8
D .6.66×107
3.(2015•杭州)若k <<k+1(k 是整数),则k=( ) A .6 B .7 C .8 D .9
4.在三个数0.5、、中,最大的数是( )
A .0.5
B .
C .
D .不能确定
5.用四舍五入法按要求对0.05049分别取近似值,其中错误的是( ) A .0.1(精确到0.1)
B .0.05(精确到百分位)
C .0.050(精确到0.001)
D .0.05(精确到千分位)
6.我国古代的“河图”是由3×3的方格构成,每个方格内均有数目不同的点图,每一行、每一列以及每一条对角线上的三个点图的点数之和均相等.图中给出了“河图”的部分点图,请你推算出P 处所对应的点图是( )
二、填空题
7. ()0201112
=-++y x 则x y
= .
8. (2014•辽阳)5﹣的小数部分是 .
9.若22+-b a 与互为相反数,则a+b 的值为________.
10.已知a 与b 互为相反数,c 与d 互为倒数,m 的绝对值是1,则
2m cd m
b
a +-+的值为________.
11.已知:222222334455
22 33 44 55338815152424+
=⨯+=⨯+=⨯+=⨯,,,,,
若21010b b
a a
+=⨯符合前面式子的规律,则a+b=________.
12.将正偶数按下表排列:
第1列 第2列 第3列 第4列 第1行 2
第2行 4 6
第3行 8 10 12
第4行 14 16 18 20 ……
根据上面的规律,则2006所在行、列分别是________.
三、解答题
13. 计算:(1)201220128
0.125⨯ (2)2
22121⎪⎪⎪⎪

⎫ ⎝⎛--⎪⎪⎪⎪⎭⎫ ⎝⎛
+e e e e
14.若333
)4
3
(,
)43(,)4
3
(--=-=-=c b a ,比较a 、b 、c 的大小。

15.在数学活动中,小明为了求23411111
2222
2n
+++++
的值(结果用n 表示),设计如图(1)所示的几何图形.
(1)请你利用这个几何图形求
23411111
22222
n +++++的值为_______. (2)请你利用图(2)再设计一个能求23411111
22
222
n +++++的值的几何图形.
16.(2014春•双流县月考)求(2+1)(22+1)(24+1)…(232
+1)+1的个位数字.
【答案与解析】 一、选择题 1.【答案】C ;
【解析】对实数分类,不能只为表面形式迷惑,而应从最后结果去判断.首先明确无理数的概念,即“无
限不循环小数叫做无理数”.一般来说,用根号表示的数不一定就是无理数,如93=是有理数,关键在于这个形式上带根号的数的最终结果是不是无限不循环小数.同样,用三角符号表示的数也不一定就是无理数,如sin30°、tan45°等.而-0.1010010001…尽管有规律,•但它是无限不循环小数,是无理数.
2
π
是无理数,而不是分数.在上面所给的实数中,只有3,2
π
,-0.1010010001…这三个数是无理数,其他五个数都是有理数,故选C. 2.【答案】B ;
【解析】科学记数法的表示形式为a ×10n
的形式,其中1≤|a |<10,n 为整数.确定n 的值是关键点,
由于665 575 306有9位,所以可以确定n=9﹣1=8.有效数字的计算方法是:从左边第一个不是0的数字起,后面所有的数字都是有效数字,故选B .
3.【答案】D. 【解析】∵k<<k+1(k 是整数),9<
<10,∴k=9.故选:D .
4.【答案】B ;
5.【答案】D ;
【解析】根据近似数与有效数字的概念对四个选项进行逐一分析即可:
A 、0.05049精确到0.1应保留一个有效数字,是0.1,故本选项正确;
B 、0.05049精确到百分位应保留一个有效数字,是0.05,故本选项正确;
C 、0.05049精确到0.001应是0、050,故本选项正确;
D 、0.05049精确到千分位应是0.050,故本选项错误. 故选D.
6.【答案】C ;
【解析】设左下角小方格内的点数为x (如图),则依题意得2+5+x=x+1+p,解得p=6.
二、填空题 7.【答案】-1;
【解析】根据非负数的性质,要使()0201112
=-++y x ,必须1020110x y +=⎧⎨-=⎩,即12011x y =-⎧⎨=⎩
.
因此()
2011
11y x =-=-.
8.【答案】2﹣ ;
【解析】由1<<2,得﹣2<﹣<﹣1. 不等式的两边都加5,得5﹣2<5﹣<5﹣1, 即3<5﹣<4,
5﹣的小数部分是(5﹣)﹣3=2﹣,故答案为:2﹣.
9.【答案】0; 【解析】由绝对值非负特性,可知02,
02≥+≥-b a ,又由题意可知:022=++-b a
所以只能是:a –2=0,b+2=0,即a=2,b= –2 ,所以a+b=0. 10.【答案】0;
【解析】原式=0110=+-. 11.【答案】109;
【解析】规律2
2211
n n n n n n +
=⨯
--,所以a=99,b=10,a+b=109. 12.【答案】第45行第13列
【解析】观察数列2,4,6,8,10,...每个比前一个增大2,2006是这列数字第1003个.
每行数字的个数按照1,2,3,4,5,...,n 递增,根据等差数列求和公式,第n 行(包
括n 行)以前的所有数字的个数(1)
2
n n +. 如果2006在第n 行,那么10032
)1(≥+n
n
设10032
)1(=+n n ,解得n 约为44.5,n 取整数,因此n=45。

到第44行(含44行)共有数字(44+1)×244
=990个;
到第45行(含45行)共有数字(45+1)×2
45
=1035个;
2006是第1003个,在45行13列.
三、解答题
13.【答案与解析】 (1)原式=2012
2012(80.125)
11⨯==
(2)原式=⎪⎪⎪⎪⎭
⎫ ⎝⎛--+⋅⎪⎪⎪⎪⎭⎫
⎝⎛
-++2121212
1e e e e e e e e =11=⋅e e
14.【答案与解析】
34()3a =-<-1;3
34b ⎛⎫
=- ⎪⎝⎭
>-1且<0;c >0;所以容易得出:a <b <c.
15.【答案与解析】 (1)112n
-
(2)
16.【答案与解析】
解:原式=(22﹣1)(22+1)(24+1)(28+1)…(232
+1)+1
=(24﹣1)(24+1)(28+1)…(232
+1)+1 =264
﹣1+1 =264
; ∵21=2,22=4,23=8,24=16,25
=32,…
∴2的整数次幂的个位数字每4个数字为一个循环组依次循环, ∵64=16×4, ∴264的个位数字与24
的个位数字相同,为6, ∴原式的个位数字为6.。

相关文档
最新文档