反激式变压器开关电源工作原理
反激式变压器开关电源工作原理

反激式变压器开关电源工作原理反激式变压器开关电源工作原理比较简单,输出电压控制范围比较大,因此,在一般电器设备中应用最广泛。
1-7-1.反激式变压器开关电源工作原理所谓反激式变压器开关电源,是指当变压器的初级线圈正好被直流脉冲电压激励时,变压器的次级线圈没有向负载提供功率输出,而仅在变压器初级线圈的激励电压被关断后才向负载提供功率输出,这种变压器开关电源称为反激式开关电源。
图1-19-a是反激式变压器开关电源的简单工作原理图,图1-19-a中,Ui是开关电源的输入电压,T是开关变压器,K是控制开关,C是储能滤波电容,R是负载电阻。
图1-19-b是反激式变压器开关电源的电压输出波形。
把图1-19-a与图1-16-a进行比较,如果我们把图1-16-a中开关变压器次级线圈的同名端对调一下,原来变压器输出电压的正、负极性就会完全颠倒过来,图1-19-b所示的电压输出波形基本上就是从图1-16-b的波形颠倒过来的。
不过,因为图1-16-b的波形对应的是纯电阻负载,而图1-19-b的负载是一个储能滤波电容和一个电阻并联。
由于储能滤波电容的容量很大,其两端电压基本不变,变压器次级线圈输出电压uo相当于被整流二极管和输出电压Uo进行限幅,因此,图1-16-b中输出电压uo的脉冲尖峰完全被削除,被限幅后的剩余电压幅值正好等于输出电压Uo的最大值Up,同时也等于变压器次级线圈输出电压uo的半波平均值Upa。
下面我们来详细分析反激式变压器开关电源的工作过程(参考图1-20)。
图1-19-a中,在控制开关K接通的Ton期间,输入电源Ui对变压器初级线圈N1绕组加电,初级线圈N1绕组有电流i1流过,在N1两端产生自感电动势的同时,在变压器次级线圈N2绕组的两端也同时产生感应电动势,但由于整流二极管的作用,没有产生回路电流。
相当于变压器次级线圈开路,变压器次级线圈相当于一个电感。
因此,流过变压器初级线圈N1绕组的电流就是变压器的励磁电流,变压器初级线圈N1绕组两端产生自感电动势可由下式表示:或上式中,e1为变压器初级线圈N1绕组产生的自感电动势,L1是变压器初级线圈N1绕组的电感,N1为变压器初级线圈N1绕组线圈绕组的匝数,为变压器铁心中的磁通。
反激式变压器开关电源工作原理

反激式变压器开关电源工作原理引言:反激式变压器开关电源是一种常用的电源设计,广泛应用于各个领域,如电子设备、通信设备、工业控制等。
在本文中,我们将详细介绍反激式变压器开关电源的工作原理及其基本组成部分。
一、工作原理反激式变压器开关电源是一种通过开关管的断续导通实现能量转换的电源设计。
其工作原理可以概括为以下几个过程:1. 输入电压变换:反激式变压器开关电源通常采用交流输入,利用输入电压的变换来实现电能的转换和调节。
输入电压首先经过整流电路,将交流电信号转换为脉冲直流电信号。
2. 能量储存:脉冲直流电信号进入能量储存电容器,用于储存电能。
这里的能量储存器通常采用电容器,其大小和选择根据需求进行合理的设计。
3. 开关管控制:开关管是反激式变压器开关电源的核心部分,用于对能量的开关和控制。
开关管的导通与断开实现了能量的转换。
通过控制开关管的导通时间长短可以实现输出电压和电能的调节。
4. 变压器工作:在开关管导通状态下,输入电压经过变压器变换为输出电压。
反激式变压器特点之一是输入端和输出端没有直接电气连接,其通过磁耦合实现电能传输。
5. 输出滤波:输出电压经过滤波电路,滤除脉动和噪声,得到平稳、纹波较小的直流电压供给外部负载使用。
二、基本组成部分反激式变压器开关电源主要由以下几个基本组成部分构成:1. 整流电路:整流电路用于将交流电信号转换为脉冲直流电信号,常见的整流电路有单相整流桥和三相整流桥。
2. 能量储存器:能量储存器主要是指电容器,用于储存电能。
其容量的大小和选择应根据输出电流和纹波要求进行合理设计。
3. 开关管:开关管是反激式变压器开关电源的核心部分,主要通过导通或断开来控制能量转换和电压调节。
常见的开关管有MOSFET、IGBT等。
4. 控制电路:控制电路是用于控制开关管导通和断开的电路部分。
它通常接收来自负载和输入电压的反馈信号,并通过控制信号控制开关管的工作。
5. 变压器:变压器是反激式变压器开关电源的核心组件之一,通过变压器实现输入电压和输出电压的转换。
反激式开关电源设计详解

反激式开关电源设计详解一、工作原理1.开关管控制:反激式开关电源中,开关管起到了关键的作用。
当输入电压施加在开关管上时,开关管处于导通状态,此时电流流经变压器和输出电路,能量存储在变压器核心中。
当输入电压施加在开关管上时,开关管处于截止状态,此时能量释放,通过一对二极管和电容器形成输出脉冲电流。
2.变压器作用:反激式开关电源中的变压器主要用于将输入电压转换为所需的输出电压。
在导通状态下,输入电压施加在变压器的一侧,能量存储在变压器的磁场中。
在截止状态下,变压器的磁场崩溃,能量释放到输出电路中。
3.输出电路过滤:输出电流通过一对二极管和电容器形成脉冲电流。
为了使输出电流更加稳定,需要通过电容器对输出电流进行滤波,降低脉冲幅度,使输出电压更加平稳。
二、基本结构1.输入滤波电路:由于输入电源通常含有较多的噪声和干扰,为了保障开关电源的正常工作,需要在输入端添加一个滤波电路,通过滤波电容和电感将输入电压的尖峰和噪声滤除。
2.开关控制电路:开关控制电路用于对开关管进行控制,使其在合适的时机打开和关闭。
常见的控制方式有定时控制和反馈控制两种。
3.开关管:开关管在反激式开关电源中起到了关键的作用。
常见的开关管有MOS管、IGBT管等,其特性包括导通损耗、截止损耗和开关速度等。
4.变压器:变压器用于将输入电压变换为所需的输出电压。
同时,变压器还能起到隔离输入电源和输出负载的作用,保护负载。
5.输出整流滤波电路:输出整流滤波电路用于对输出电流进行整流和滤波,使输出电压更加稳定。
三、常见设计方法1.脉冲宽度调制(PWM)控制:PWM是一种常用的反激式开关电源控制方法,通过控制开关管的导通时间来调节输出电压和电流。
PWM控制能够实现较高的效率和较低的输出波纹,但需要一定的控制电路。
2.变压器匹配设计:在设计反激式开关电源时,需要合理选择变压器的匝数比,以实现所需的输入输出电压转换。
同时,还需要考虑变压器的大小和功耗。
反激式开关电源原理

反激式开关电源原理反激式开关电源是指使用反激高频变压器隔离输入输出回路的开关电源."反激"(FL Y BACK)的具体所指是当输入为高电平(开关管接通)时输出线路中串联的电感为放电状态,相反当输入为高电平(开关管断开)时输出线路中的串联的电感为充电状态.与之相对的是"正激"(FORWARD)式开关电源,当输入为高电平(开关管接通)时输出线路中串联的电感为充电状态,相反当输入为高电平(开关管断开)时输出线路中的串联的电感为放电状态,以此驱动负载.电机配导线(电机一个千瓦大约2A)"1.5加二,2.5加三""4后加四,6后加六""25后加五,50后递增减五""百二导线,配百数" 该口诀是按三相380V交流电动机容量直接选配导线的。
"1.5加二"表示1.5mm2的铜芯塑料线,能配3.5kW的及以下的电动机。
由于4kW 电动机接近3.5kW的选取用范围,而且该口诀又有一定的余量,所以在速查表中4kW以下的电动机所选导线皆取1.5mm2。
"2.5加三"、"4后加四",表示2.5mm2及4mm2的铜芯塑料线分别能配5.5kW、8kW电动机。
"6后加六",是说从6mm2的开始,能配"加大六"kW的电动机。
即6mm2的可配12kW,选相近规格即配1lkW电动机。
10mm2可配16kW,选相近规格即配15kW电动机。
16mm2可配22kW电动机。
这中间还有18.5kW电动机,亦选16mm2的铜芯塑料线。
"25后加五",是说从25mm2开始,加数由六改为五了。
即25mm2可配30kW的电动机。
35mm2可配40kW,选相近规格即配37kW电动机。
"50后递增减五",是说从50mm2开始,由加大变成减少了,而且是逐级递增减五的。
反激式开关电源(flyback)环路设计基础

反激式开关电源(flyback)是一种常见的电源结构,广泛应用于电子设备中。
它具有结构简单、成本低廉、效率高等优点,在消费电子、工业控制和通信设备等领域被广泛应用。
本文旨在介绍反激式开关电源环路设计的基础知识,包括工作原理、设计步骤和注意事项。
一、反激式开关电源的工作原理1.1 反激式开关电源的基本结构反激式开关电源由输入滤波器、整流桥、高频变压器、功率开关器件、输出整流滤波器、控制电路等组成。
其中,高频变压器是反激式开关电源的关键部件,通过变压器实现输入电压的隔离和变换,功率开关器件则控制变压器的工作状态,实现电源的调节和稳定输出。
1.2 反激式开关电源的工作原理反激式开关电源通过功率开关器件周期性地将输入电压斩波,将输入电能存储在变压器的磁场中,然后再将其转换为输出电压。
在工作周期的后半段,存储的能量释放到输出负载上,从而实现对输出电压的调节。
通过控制功率开关器件的导通时间和断态时间,可以实现对输出电压的调节和稳定。
二、反激式开关电源环路设计的基础知识2.1 反激式开关电源的设计步骤(1)确定电源的输入输出参数:包括输入电压范围、输出电压、输出电流、负载调整范围等;(2)选择功率开关器件和高频变压器:根据电源的输入输出参数和工作频率选择合适的功率开关器件和高频变压器;(3)设计反激式开关电源的控制电路:根据所选的功率开关器件和高频变压器设计相应的控制电路,包括PWM控制电路、电源启动电路等;(4)设计输入输出滤波器和保护电路:设计输入输出滤波器,保证电源的输入输出稳定和干净,设计过压、过流、过温等保护电路,保证电源的安全稳定工作。
2.2 反激式开关电源环路设计的注意事项(1)磁性元件的设计:高频变压器和输出感应元件的设计是整个反激式开关电源设计的关键,应合理设计磁芯、线圈匝数等参数,保证磁性元件承载功率、效率和体积的平衡;(2)功率开关器件的选择和驱动:应选择合适的功率开关器件,并设计合理的驱动电路,保证功率开关器件的可靠工作和转换效率;(3)控制电路的设计:应根据功率开关器件的工作特性和工作频率设计合适的PWM控制电路和反馈控制电路,保证电源的稳定可调;(4)输入输出滤波器和保护电路的设计:应合理设计输入输出滤波器和保护电路,保证电源的输入输出稳定和安全可靠。
详解反激式开关电源的工作原理,通俗易懂一看就会

详解反激式开关电源的工作原理,通俗易懂一看就会反激式开关电源是一种高效能、高频率的变换器,可以将输入直流电压转换为符合要求的输出电压,这一特性使其被广泛应用于电子设备、通讯设备等领域中。
其工作原理可以简单地概括为:利用脉冲反转的方式将输入电压变成貌似交流的信号,再利用变压器调节电压和电流,得到输出电压。
1. 输入脉冲变换反激式开关电源的输入电压通常是一个直流电源,输入电压首先通过全桥整流电路将输入的交流电流变为直流电流,也就是通过一个矩形波将输入电压转换为反向的脉冲信号,并抵消了电源电阻,使电源的输出电压更为稳定。
2. 电源管理器接下来,脉冲信号被送入电源管理器。
电源管理器可以分别实现过压、过流、过电压等保护,并且可以调整输出电压。
对于负载变化或输入电压波动引起的输出电压变化,反激式开关电源可以通过均衡控制电路,降低输出电压的乱跳程度,保持它的稳定性。
3. MOSFET开关接下来,反激式开关电源的信号被送入MOSFET开关,通过开关管的控制电压,使MOSFET管的开关状态取反,从而产生带有相反极性的脉冲信号。
开关管的控制信号交调宽度调制,通过控制开关管的开关时间比,使得输出电压得以调节。
4. 变压器脉冲信号至此已经变成了一定的频率和脉宽的交变电压,接下来需要利用变压器进一步转换电压和电流。
变压器是反激式开关电源的关键组成部分,主要由绕组、铁芯和绝缘材料构成。
绕组和铁芯的性质决定了变压器的工作原理:通过磁场的感应作用,在输出端产生一个转换后的电压。
5. 输出电路最后,输出电路使用整流电路,将由变压器产生的交流电压转换为直流电压。
整流电路可以采用单相整流电路或三相整流电路,通过各种电子元件将交流电转换为直流电,以供电子设备使用。
以上就是反激式开关电源的工作原理的介绍。
总的来说,反激式开关电源的优点在于其高效能、可靠性和稳定性,可以为电子设备提供高质量的能源。
反激式变压器开关电源课件

• 反激式变压器开关电源概述 • 反激式变压器开关电源的设计与
优化 • 反激式变压器开关电源的特性与
性能指标
• 反激式变压器开关电源的调试与 测试
• 反激式变压器开关电源的常见问 题与解决方案
01 反激式变压器开关电源概述
定义与工作原理
定义
反激式变压器开关电源是一种通过控制开关管通断来调节输出电压的电源供应 器。
选择低损耗的开关管 和二极管,降低能量 损耗。
根据实际需求,选择 适当的保护电路和辅 助电路元器件。
选择合适的电容和电 感,以满足电源的稳 定性和效率要求。
变压器设计
确定变压器的匝数比和磁芯材料 ,以实现所需的电压和电流转换
。
考虑变压器的绝缘材料和结构, 确保安全可靠。
根据实际需求,优化变压器的体 积和重量。
1. 磁芯损耗过大
反激式变压器开关电源中的磁芯在工作过程中会产生损耗 ,若损耗过大,会导致效率降低。需要优化磁芯材料和结 构,降低损耗。
3. 散热不良
电源在工作过程中会产生热量,若散热不良,会导致效率 降低。需要加强散热设计,如增大散热面积、优化散热风 道等。
保护功能问题
总结词
保护功能问题表现为电源的保护功能 失效或误动作。
THANKS 感谢观看
可靠性分析
平均无率
失效率越低,电源的可靠性越高。
04 反激式变压器开关电源的调试与测试
调试步骤与注意事项
调试步骤 检查电路连接是否正确,确保所有元件都已正确安装。
接通电源,观察电源是否正常启动。
调试步骤与注意事项
01
调整变压器和开关管的工作参数 ,确保其在正常范围内。
当输入电压低于正常值时,电源可能无法 启动。解决方案是确保输入电压在正常范 围内。
反激电源的工作原理详解

反激电源的工作原理详解
反激电源(flyback power supply)是一种常见的开关电源拓扑结构,它通过磁性元件(变压器)储存能量并将其传递给负载。
以下是反激电源的工作原理的详细解释:
1. 输入电压:反激电源的输入电压通常是交流电源,通过整流电路将交流电转换为直流电。
2. 开关管:反激电源中有一个开关管(通常是MOSFET或BJT),它的作用是控制能量的传输和储存。
3. 控制电路:反激电源中有一个控制电路,它通过对开关管的控制来实现能量的传输和储存。
控制电路可以采用各种不同的方式,如PWM(脉宽调制)控制或变频控制。
4. 变压器:反激电源中的关键元件是变压器,它由一个或多个绕组组成。
输入绕组连接到开关管和输入电源,输出绕组连接到负载。
变压器通过磁耦合将能量从输入绕组传输到输出绕组。
5. 储能:当开关管导通时,输入绕组的电流开始增加,同时储存能量。
当开关管断开时,输入绕组的电流停止增加,并且能量通过变压器传递到输出绕组。
6. 整流和滤波:输出绕组的交流电压通过整流电路转换为直流电压,并通过滤波电路去除纹波。
这样就得到了稳定的直流电压,可以供给负载使用。
总结起来,反激电源的工作原理是通过控制开关管的导通和断开,使得能量在变压器中储存和传递,最终得到稳定的直流电压输出。
这种拓扑结构具有成本低、效率高的优点,因此在许多应用中得到广泛应用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
反激式变压器开关电源工作原理
反激式变压器开关电源是一种常见的开关电源拓扑结构,其工作原理
是通过快速开关管(MOSFET或IGBT)周期性地开关电源输入侧的电压,
使得变压器的磁场产生周期性的变化,从而形成高频交流电,经过输出整
流滤波后得到所需的直流输出电压。
下面是反激式变压器开关电源的详细工作原理介绍:
1.输入侧电压整流:输入电源的交流电压经过整流电路,转换为半波
或全波的脉冲电流,较低的电压通过滤波电容进行滤波,变为直流电压。
2.输入电感存储能量:变压器的输入侧有一个电感,当开关管导通时,电感存储电能,当开关管截止时,电感释放储能,产生电压波动,使得输
入侧电流减小。
3.开关管驱动:控制电路通过控制开关管的导通与截止,来实现周期
性地开关输入侧电压。
控制电路检测到输出电压低于设定值时,控制开关
管导通,电感储能;当输出电压高于设定值时,控制开关管截止,电感释
放能量。
4.变压器传递能量:当开关管导通时,电感储能产生的磁场将能量传
递到变压器绕组中;当开关管截止时,电感的储能释放,磁场消失,变压
器的绕组感应出变化的磁通,产生高频交流电。
5.输出整流滤波:变压器传递出的高频交流电经过输出端的整流电路,将交流电转换为直流电,然后经过滤波电容进行滤波,去除残余的脉动,
得到平滑的直流输出电压。
6.控制反馈:控制电路会不断检测输出电压并与设定值进行比较,根据比较结果控制开关管的导通与截止,使得输出电压保持在设定范围内。