小学数学常用的巧算和速算方法集锦

合集下载

小学数学常用的巧算和速算方法集锦

小学数学常用的巧算和速算方法集锦
(三)拆数凑整法
根据运算定律和数字特点,常常灵活地把算式中的数拆分,重新组合,分别凑成整十、整百、整千。例:998+1413+9989,给998添上2能凑成1000,给9989添上11凑成10000,所以就把1413分成1400、2与11三个数的和,按照拆数凑整法,原式=(998+2)+1400+(11+9989)=1000+1400+10000=12400。
第二部分例题解析
一、“凑整”先算1.计算:
(1)24+44+56
(2)53+36+47
解:(1)24+44+56=24+(44+56)=24+100=124
这样想:因为44+56=100是个整百的数,所以先把它们的和算出来.
(2)53+36+47=53+47+36=(53+47)+36=100+36=136
=9×5中间数是9
=45共有5个数 (5)计算:4+8+12+16+20
=12×5中间数是12
=60共有5个数2.等差连续数的个数是偶数时,它们的和等于首数与末数之和乘以个数的一半,简记成: (1)计算:1+2+3+4+5+6+7+8+9+10
=(1+10)×5=11×5=55共10个数,个数的一半是5,首数是1,末数是10.
②式=1000-(90+80+20+10) =1000-200=800
2.先减去那些与被减数有相同尾数的减数。 例4①4723-(723+189)②2356-159-256

各种速算巧算技巧总结经典

各种速算巧算技巧总结经典

各种速算巧算技巧总结经典一、加法速算巧算技巧1.去十法:将两位数相加,个位数保持不变,十位数去掉十位数的数再加1、例如:23+36=592.补数法:将两位数相加,若个位数相加等于10,则结果的十位数等于两个原数的十位数之和加1,个位数等于0。

例如:47+63=110。

3.同进法:将两个相同两位的数相加,在结果的十位数加1、例如:56+56=1124.十进法:将两个相邻的两位数相加,减10得到个位数,结果的十位数不变。

例如:56+57=10+56=1135.单位法:将两个相邻的两位数相加,结果的个位数等于个位数之和的个位数,结果的十位数等于个位数之和的十位数加上原来的十位数。

例如:54+67=(4+7)(5+6)=21+5=266.整十法:将个位数之和减去10,结果的个位数不变,结果的十位数加1、例如:56+49=(6+9)(5+4)=15+5=20+1=21二、减法速算巧算技巧1.补数法:相减的两个数差的绝对值等于减数加上被减数的补数,结果的符号取决于减数和被减数之间的关系。

例如:35-18=35+82=1172.同进法:减数的个位数与被减数的个位数相等,十位数大1,结果的个位数等于个位数之差,结果的十位数等于原数的十位数。

例如:57-25=323.进位借位法:被减数的个位数小于减数的个位数,从十位和百位依次向左借位。

例如:45-38=(40-8)(5-3)=74.破折法:将减数加上或减去10的倍数,使减数的个位数和百位数与被减数的个位数和百位数相等,然后计算,得到结果。

例如:147-86=147-80+6=675.近值法:如果两个数的个位数相等,差的绝对值为10的倍数,并且两个数的十位数的差不超过1,那么可以近似地认为差等于个位数之差乘以10。

例如:67-53≈(7-3)×10=40。

三、乘法速算巧算技巧1.移项法:将减数的个位数分别乘以被乘数的十位数和个位数,十位数的结果向左移动一位,个位数保持不变。

(完整版)常用的巧算和速算方法

(完整版)常用的巧算和速算方法

小学数学速算与巧算方法例解【转】速算与巧算在小学数学中,关于整数、小数、分数的四则运算,怎么样才能算得既快又准确呢?这就需要我们熟练地掌握计算法则和运算顺序,根据题目本身的特点,综合应用各种运算定律和性质,或利用和、差、积、商变化规律及有关运算公式,选用合理、灵活的计算方法。

速算和巧算不仅能简便运算过程,化繁为简,化难为易,同时又会算得又快又准确。

一、“凑整”先算1.计算:(1)24+44+56(2)53+36+47解:(1)24+44+56=24+(44+56)=24+100=124这样想:因为44+56=100是个整百的数,所以先把它们的和算出来.(2)53+36+47=53+47+36=(53+47)+36=100+36=136这样想:因为53+47=100是个整百的数,所以先把+47带着符号搬家,搬到+36前面;然后再把53+47的和算出来.2.计算:(1)96+15(2)52+69解:(1)96+15=96+(4+11)=(96+4)+11=100+11=111这样想:把15分拆成15=4+11,这是因为96+4=100,可凑整先算.(2)52+69=(21+31)+69=21+(31+69)=21+100=121这样想:因为69+31=100,所以把52分拆成21与31之和,再把31+69=100凑整先算.3.计算:(1)63+18+19(2)28+28+28解:(1)63+18+19=60+2+1+18+19=60+(2+18)+(1+19)=60+20+20=100这样想:将63分拆成63=60+2+1就是因为2+18和1+19可以凑整先算.(2)28+28+28=(28+2)+(28+2)+(28+2)-6=30+30+30-6=90-6=84这样想:因为28+2=30可凑整,但最后要把多加的三个2减去.二、改变运算顺序:在只有“+”、“-”号的混合算式中,运算顺序可改变计算:(1)45-18+19(2)45+18-19解:(1)45-18+19=45+19-18=45+(19-18)=45+1=46这样想:把+19带着符号搬家,搬到-18的前面.然后先算19-18=1.(2)45+18-19=45+(18-19)=45-1=44这样想:加18减19的结果就等于减1.三、计算等差连续数的和相邻的两个数的差都相等的一串数就叫等差连续数,又叫等差数列,如:1,2,3,4,5,6,7,8,91,3,5,7,92,4,6,8,103,6,9,12,154,8,12,16,20等等都是等差连续数.1. 等差连续数的个数是奇数时,它们的和等于中间数乘以个数,简记成:(1)计算:1+2+3+4+5+6+7+8+9=5×9 中间数是5=45 共9个数(2)计算:1+3+5+7+9=5×5 中间数是5=25 共有5个数(3)计算:2+4+6+8+10=6×5 中间数是6=30 共有5个数(4)计算:3+6+9+12+15=9×5 中间数是9=45 共有5个数(5)计算:4+8+12+16+20=12×5 中间数是12=60 共有5个数2. 等差连续数的个数是偶数时,它们的和等于首数与末数之和乘以个数的一半,简记成:(1)计算:1+2+3+4+5+6+7+8+9+10=(1+10)×5=11×5=55共10个数,个数的一半是5,首数是1,末数是10.(2)计算:3+5+7+9+11+13+15+17=(3+17)×4=20×4=80共8个数,个数的一半是4,首数是3,末数是17.(3)计算:2+4+6+8+10+12+14+16+18+20=(2+20)×5=110共10个数,个数的一半是5,首数是2,末数是20.四、基准数法(1)计算:23+20+19+22+18+21解:仔细观察,各个加数的大小都接近20,所以可以把每个加数先按20相加,然后再把少算的加上,把多算的减去.23+20+19+22+18+21=20×6+3+0-1+2-2+1=120+3=1236个加数都按20相加,其和=20×6=120.23按20计算就少加了“3”,所以再加上“3”;19按20计算多加了“1”,所以再减去“1”,以此类推.(2)计算:102+100+99+101+98解:方法1:仔细观察,可知各个加数都接近100,所以选100为基准数,采用基准数法进行巧算.102+100+99+101+98=100×5+2+0-1+1-2=500方法2:仔细观察,可将5个数重新排列如下:(实际上就是把有的加数带有符号搬家)102+100+99+101+98=98+99+100+101+102=100×5=500可发现这是一个等差连续数的求和问题,中间数是100,个数是5.加法中的巧算1.什么叫“补数”?两个数相加,若能恰好凑成整十、整百、整千、整万…,就把其中的一个数叫做另一个数的“补数”。

速算巧算公式大全

速算巧算公式大全

速算巧算公式大全一、加法速算。

1. 凑整加法。

- 公式:如果两个数相加,其中一个数接近整十、整百、整千等,就把这个数看作整十、整百、整千等与一个较小数的和或差,然后再进行计算。

- 例如:计算28 + 97。

- 把97看作100 - 3。

- 则28+97 = 28+(100 - 3)=28 + 100-3 = 128 - 3 = 125。

2. 互补数加法。

- 定义:两个数相加,若能恰好凑成整十、整百、整千等,就称这两个数互为互补数。

- 公式:如果a和b是互补数(a + b = c,c为整十、整百、整千等),在加法算式中有a + b + d=(a + b)+d = c + d。

- 例如:13+87+56。

- 因为13和87是互补数,13+87 = 100。

- 所以13+87+56 = 100+56 = 156。

二、减法速算。

1. 凑整减法。

- 公式:当减数接近整十、整百、整千等时,把减数看作整十、整百、整千等与一个较小数的和或差,然后进行计算。

- 例如:计算132 - 98。

- 把98看作100 - 2。

- 则132−98 = 132-(100 - 2)=132 - 100+2 = 32 + 2 = 34。

2. 同尾相减。

- 公式:被减数与减数的尾数相同,先把被减数和减数同时减去这个相同的尾数,再进行计算。

- 例如:计算234 - 134。

- 先同时减去134的尾数4,得到230 - 130。

- 230 - 130 = 100。

三、乘法速算。

1. 乘法分配律。

- 公式:a×(b + c)=a× b+a× c,a×(b - c)=a× b - a× c。

- 例如:计算12×(10 + 5)。

- 根据乘法分配律,12×(10 + 5)=12×10+12×5 = 120+60 = 180。

- 再如:计算15×(20 - 3)。

小学生注意:10种最常见的速算与巧算方法!请收藏

小学生注意:10种最常见的速算与巧算方法!请收藏

小学生注意:10种最常见的速算与巧算方法!请收藏
数学速算法指利用数与数之间的特殊关系进行较快的加减乘除运算,这种运算方法称为速算法、心算法。

巧算或简算包括乘法,除法的分配律,结合律,交换律,加法交换、结合等,这需要在某个算式中找出,找到了可以应用的定律,及每个数的分解数,就可以巧妙地算出答案了。

让孩子学会速算和巧算,不仅可以提高孩子做题的准确度,更能让孩子的大脑反应明锐!今天,我特意整理了十种孩子们在学习过程中最常见的速算和巧算方法,希望各位家长抽空让孩子学习学习!
一、顺逆相加:用“顺逆相加”算式可求出若干个连续数的和。

二、凑整巧算:用“凑整方法”,常常能使计算变得比较简便、快速。

三、恒等变形:是一种重要的思想和方法,也是一种重要的解题技巧。

四、拆数加减:在分数加减法运算中,把一个分数拆成两个分数相减或相加,使隐含的数量关系明朗化,并抵消其中的一些分数,往
往可大大地简化运算。

(1)拆成两个分数相减。

例如:
(2)拆成两个分数相加。

例如:
五、先借后还:“先借后还”是一条重要的数学解题思想和解题技巧。

六、由小推大:一种数学思维方法,也是一种速算、巧算技巧。

七、巧妙试商:除数是两位数的除法,可以采用一些巧妙试商方法,提高计算速度。

八、同分子分数加减
九、个数折半:下面的几种情况下,可以运用“个数折半”的方
法, 巧妙地计算出题目的得数
十、两分数相除:有些分数相除,可以采用以下的巧算方法。

(完整word版)校本课程:常用的巧算和速算方法(word文档良心出品)

(完整word版)校本课程:常用的巧算和速算方法(word文档良心出品)

目录第一讲生活中几十乘以几十巧算方法 (2)第二讲常用巧算速算中的思维与方法(1) (4)第三讲常用巧算速算中的思维与方法(2) (6)第四讲常用巧算速算中的思维与方法(3) (8)第五讲常用巧算速算中的思维与方法(4) (10)第六讲常用巧算速算中的思维与方法(5) (14)第七讲常用巧算速算中的思维与方法(6) (16)第八讲小数的速算与巧算1——凑整 (18)第九讲乘法速算1 (19)第十讲乘法速算2 (21)第十一讲乘法速算3 (22)第十二讲乘法速算4 (23)第十三讲乘法速算5 (24)第十四讲乘法速算6 (25)第十五讲乘法速算7 (27)第十六讲乘法速算8 (29)注:《速算技巧》 (33)第一讲生活中几十乘以几十巧算方法1.十几乘十几:口诀:头乘头,尾加尾,尾乘尾。

例:12×14=?解: 1×1=12+4=62×4=812×14=168注:个位相乘,不够两位数要用0占位。

2.头相同,尾互补(尾相加等于10):口诀:一个头加1后,头乘头,尾乘尾。

例:23×27=?解:2+1=32×3=63×7=2123×27=621注:个位相乘,不够两位数要用0占位。

3.第一个乘数互补,另一个乘数数字相同:口诀:一个头加1后,头乘头,尾乘尾。

例:37×44=?解:3+1=44×4=167×4=2837×44=1628注:个位相乘,不够两位数要用0占位。

4.几十一乘几十一:口诀:头乘头,头加头,尾乘尾。

例:21×41=?解:2×4=82+4=61×1=121×41=8615.11乘任意数:口诀:首尾不动下落,中间之和下拉。

例:11×23125=?解:2+3=53+1=41+2=32+5=72和5分别在首尾11×23125=254375注:和满十要进一。

小学数学速算与巧算方法

小学数学速算与巧算方法

小学数学速算与巧算方法在小学数学中,速算与巧算方法可以帮助学生们快速计算数学题目,提高他们的计算效率。

下面介绍一些常用的小学数学速算与巧算方法。

一、快速乘法1.垂直互补法:假设解题的数字是27和83相乘,我们可以将相乘的数字列成如下形式:2 7×83---------16 21 (7×3=21)+ 56 (2×8=16)---------2241这种方法适用于两位数相乘的情况。

2.分解法:当有一个较大的数和一个较小的数相乘时,我们可以将较大的数分解成更容易计算的部分,然后再相乘。

例如,我们要计算37×4,可以将37分解为30+7,然后将这两个数分别与4相乘,最后再将两个结果相加:(30×4)+(7×4)=120+28=1483.十倍法:当需要计算一个数的十倍时,可以直接在这个数的末位加一个零。

例如,计算23的十倍,就是230。

二、快速除法1.分解法:当需要计算一个数除以一个较大的数时,我们可以将这个数分解成更容易计算的部分,然后再进行计算。

例如,计算125÷5,可以将125分解为100+20+5,然后分别将这三个数除以5:(100÷5)+(20÷5)+(5÷5)=20+4+1=252.迭加法:当需要计算一个数除以2、3、4等数字时,可以使用迭加法。

例如,计算108÷4,可以从最大的4开始迭加,找到一个最大的数x,使得x×4≤108,然后再计算108-x×4的值,这个值就是我们要的结果。

在这种情况下,4×25=100,所以108-100=8,所以108÷4=25余8三、快速加减法1.补零法:当需要进行两个数的加减运算时,我们可以选择将其中一个数补零,使得两个数的位数相同,然后再进行计算。

例如,计算27+8,我们可以将8补零成80,然后进行计算:27+80=1072.数形结合法:当需要进行一系列连加或连乘的运算时,我们可以将这些数进行排列组合,形成一种数形结合的形式,从而简化计算过程。

小学数学速算技巧全收录

小学数学速算技巧全收录

小学数学速算技巧全收录数学是小学生学习的重点科目之一,掌握一些速算技巧可以帮助孩子在解题时更加高效和准确。

以下是一些小学数学速算技巧的全收录:一、加法和减法技巧:1.十位进位法:在做加法时,遇到计算个位时需要进位的情况,可以将个位数减10,十位数加1,再进行运算。

例如:47+8=47-2+10=552.凑整法:将加、减的数调整为更容易计算的整数,再进行运算。

例如:36+9=36+4+5=453.同位数减法:在两个数相减时,先将个、十、百位等逐位相减。

例如:368-221=300-200+60-20+8-1=147二、乘法技巧:1.乘法分配律:先将一个数按位数拆分,再逐位与另一个数相乘,最后将各位的乘积相加。

例如:24×7=(20×7)+(4×7)=140+28=1682.乘法补数法:将一个数改变一部分,使它与另一个数的乘积更容易计算。

例如:45×8=(40×8)+(5×8)=320+40=360。

3.乘法交换律:调换两个数的位置,结果不变。

例如:6×7=7×6=424.十位乘法:当一个数的个位是0,十位是1时,乘法运算可以简化。

例如:40×8=320。

三、除法技巧:1.除法的倍数法则:当除数是10的倍数时,商就是被除数中的那个位上的数字。

例如:420÷10=422.除法的综合利用法:根据整体和部分的关系,综合使用余数、商数和被除数,简化计算步骤。

例如:580÷25=(570÷25)+(10÷25)=22+0.4=22.4四、其他技巧:1.利用分数的性质:对于分数的加减运算,先找到它们的相同分母,再计算分子的和或差。

例如:5/6+3/6=8/6=12/62.利用倍数关系:通过找到两个数的最小公倍数,将两个数都变为相同的分数,然后再进行计算。

例如:2/3+1/4=8/12+3/12=11/12以上就是一些小学数学速算技巧的全收录。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(二)符号搬家法
在加减混合,乘除混合同级运算中,可以根据运算的需要以及题目的特点,交换数字的位置,可以使计算变得简便。特别提醒的是:交换数字的位置,要注意运算符号也随之换位置。例:464-545+836-455,观察例题我们会发现,如果按照惯例应该从左往右计算,464减545根本就不够减,在小学阶段,学生没办法做,所以要想做这道题,学生必须先观察数字特点,进行简便计算,按照符号搬家法,原式=464+836-545-455=1300-(545+455)=300。
五、加减混合式的巧算
1.去括号和添括号的法则 在只有加减运算的算式里,如果括号前面是“+”号,则不论去掉括号或添上括号,括号里面的运算符号都不变;如果括号前面是“-”号,则不论去掉括号或添上括号,括号里面的运算符号都要改变,“+”变“-”,“-”变“+”,即:a+(b+c+d)=a+b+c+d
a-(b+a+d)=a-b-c-d
(2)28+28+28=(28+2)+(28+2)+(28+2)-6=30+30+30-6=90-6=84这样想:因为28+2=30可凑整,但最后要把多加的三个2减去.
二、改变运算顺序:
在只有“+”、“-”号的混合算式中,运算顺序可改变
计算:(1)45-18+19
(2)45+18-19
解:(1)45-18+19=45+19-18=45+(19-18)=45+1=46这样想:把+19带着符号搬家,搬到-18的前面.然后先算19-18=1.
这样想:因为53+47=100是个整百的数,所以先把+47带着符号搬家,搬到+36前面;然后再把53+47的和算出来.
2.计算:(1)96+15(2)52+69
解:(1)96+15=96+(4+11)=(96+4)+11=100+11=111这样想:把15分拆成15=4+11,这是因为96+4=100,可凑整先算.
(三)拆数凑整法
根据运算定律和数字特点,常常灵活地把算式中的数拆分,重新组合,分别凑成整十、整百、整千。例:998+1413+9989,给998添上2能凑成1000,给9989添上11凑成10000,所以就把1413分成1400、2与11三个数的和,按照拆数凑整法,原式=(998+2)+1400+(11+9989)=1000+1400+10000=12400。
②式=1000-(90+80+20+10) =1000-200=800
2.先减去那些与被减数有相同尾数的减数。 例4①4723-(723+189)②2356-159-256
解:①式=4723-723-189=4000-189=3811
②式=2356-256-159=2100-159=1941
3.利用“补数”把接近整十、整百、整千…的数先变整,再运算(注意把多加的数再减去,把多减的数再加上)。
例5①506-397②323-189
③467+997④987-178-222-390
解:①式=500+6-400+3(把多减的3再加上)=109②式=323-200+11(把多减的11再加上)=123+11=134③式=467+1000-3(把多加的3再减去) =1464④式=987-(178+222)-390=987-400-400+10=197
1.等差连续数的个数是奇数时,它们的和等于中间数乘以个数,简记成:
(1)计算:1+2+3+4+5+6+7+8+9
=5×9中间数是5
=45共9个数
(2)计算:1+3+5+7+9
=5×5中间数是5
=25共有5个数 (3)计算:2+4+6+8+10
=6×5中间数是6
=30共有5个数 (4)计算:3+6+9+12+15
解:①式=(36+64)+87=100+87=187
②式=(99+101)+136=200+136=336
③式=(1361+639)+(972+28)=2000+1000=3000
3.拆出补数来先加。 例2①188+873②548+996③9898+203解:
①式=(188+12)+(873-12)(熟练之后,此步可略) =200+861=1061
(2)52+69=(21+31)+69=21+(31+69)=21+100=121这样想:因为69++69=100凑整先算.
3.计算:
(1)63+18+19
(2)28+28+28
解:(1)63+18+19=60+2+1+18+19=60+(2+18)+(1+19)=60+20+20=100这样想:将63分拆成63=60+2+1就是因为2+18和1+19可以凑整先算.
解:①式=100+(10+20+30)=100+60=160
②式=100-(10+20+30) =100-60=40
③式=100-(30-10)=100-20=80
2.带符号“搬家”
例8计算325+46-125+54
解:原式=325-125+46+54=(325-125)+(46+54)=200+100=300
(2)计算:3+5+7+9+11+13+15+17
=(3+17)×4=20×4=80
共8个数,个数的一半是4,首数是3,末数是17.
(3)计算:2+4+6+8+10+12+14+16+18+20
=(2+20)×5=110
共10个数,个数的一半是5,首数是2,末数是20.
四、基准数法
(1)计算:23+20+19+22+18+21
(七)提取公因数法
乘法分配率的反应用,出错率比较高,一般包括三种类型。第一,直接提取。例:3.65×23+3.65×77,这道题比较简单,利用乘法分配律的反向应用,直接提取公因数3.65,那么,原式=3.65×(23+77)=3.65×100=365。第二,省略×1的题目。例:6.3×101-6.3,把算式补充完整,6.3×101-6.3×1,学生就很容易看出两个乘法算式中有相同的因数6.3,原式=6.3×(101-1)=6.3×100=630。
(2)45+18-19=45+(18-19)=45-1=44这样想:加18减19的结果就等于减1.
三、计算等差连续数的和
相邻的两个数的差都相等的一串数就叫等差连续数,又叫等差数列,如:1,2,3,4,5,6,7,8,9
1,3,5,7,9
2,4,6,8,10
3,6,9,12,15
4,8,12,16,20等等都是等差连续数.
(五)等值变化法
等值变化是小学数学中重要的思想方法。做加法时候,常常利用这样的恒等变形:一个加数增加,另一个加数就要减少同一个数,它们的和才不变。而减法中,是被减数和减数同时增加或减少相同的数,差才不变。例:1234-798,把798看作800,减去800后,再在所得差里加上多减去的2,按照此方法,原式=1234-800+2=436。
小学数学常用的巧算和速算方法集锦
在小学数学中,关于整数、小数、分数的四则运算,怎么样才能算得既快又准确呢?这就需要我们熟练地掌握计算法则和运算顺序,根据题目本身的特点,综合应用各种运算定律和性质,或利用和、差、积、商变化规律及有关运算公式,选用合理、灵活的计算方法。速算和巧算不仅能简便运算过程,化繁为简,化难为易,同时又会算得又快又准确。
第一部分常用技巧
(一)凑整先算法
加法、减法的简便计算中,基本思路是“凑整”,根据加法(乘法)的交换律、结合律以及减法的性质,其中若有能够凑整的,可以变更算式,使能凑整的数结成一对好朋友,进行凑整计算,能使计算简便。例:298+304+196+502,本题可以运用加法交换律和结合律,把能够凑成整十、整百、整千……的数先加起来,可以使计算简便,因此原式=(298+502)+(304+196)=800+500=1300。
加法中的巧算1.什么叫“补数”? 两个数相加,若能恰好凑成整十、整百、整千、整万…,就把其中的一个数叫做另一个数的“补数”。 如:1+9=10,3+7=10,2+8=10,4+6=10,5+5=10。
又如:11+89=100,33+67=100,22+78=100,44+56=100,55+45=100, 在上面算式中,1叫9的“补数”;89叫11的“补数”,11也叫89的“补数”.也就是说两个数互为“补数”。
解:仔细观察,各个加数的大小都接近20,所以可以把每个加数先按20相加,然后再把少算的加上,把多算的减去.
23+20+19+22+18+21=20×6+3+0-1+2-2+1=120+3=123
6个加数都按20相加,其和=20×6=120.23按20计算就少加了“3”,所以再加上“3”;19按20计算多加了“1”,所以再减去“1”,以此类推.
相关文档
最新文档