函数的零点和二分法
函数零点问题

函数零点问题
函数零点问题,又称为函数根搜索问题,是求解一元函数或多元函数的实根的方法。
即在给定的一个区间[a,b]内求解f(x)=0的根,其中f(x)是一个连续函数。
该问题的求解最常用的方法是二分法和牛顿迭代法。
二分法是一种简单而有效的求解函数零点的方法,它的基本思想是将定义域划分为两个子区间,如果函数在两个子区间的符号不同,则说明该区间存在函数零点,然后再把该区间一分为二,得到新的两个子区间,重复上述步骤,直至找到函数零点的精确位置。
牛顿迭代法是一种根据函数的导数来求函数零点的一种方法,它的基本思想是:令函数f(x)在某点x0上的切线与X轴相交于点P,然后选择P作为下一个迭代点,重复该过程,直至收敛到函数零点。
高一数学函数的零点与二分法教案

一. 教学内容:函数的零点与二分法二. 学习目标1、理解函数零点的概念与性质,会求函数的零点。
2、理解零点的意义,会求简单函数的零点,了解函数的零点与方程的根的关系;3、通过具体实例了解二分法是求方程近似解的常用方法,理解用二分法求函数零点的原理,从中体会函数与方程之间的联系及其在实际问题中的应用.4、在函数与方程的联系中,初步体会事物间相互转化的辩证思想;体验探究的过程、发现的乐趣。
三. 知识要点 1、函数的零点一般地,如果函数()y f x =在实数a 处的值等于零,即()0f a =,则a 叫做这个函数的零点。
归纳:函数的零点并不是“点”,它不是以坐标的形式出现的。
说明:(1)函数的零点是一个实数,即当函数的自变量取这一实数时函数值为零; (2)对于函数的零点问题我们只在实数X 围内讨论;(3)方程的根、函数的图象与x 轴交点的横坐标以及函数的零点是同一个问题的三种不同的表现形式2、函数零点的意义:函数)x (f y =的零点就是方程0)x (f =的实数根,亦即函数)x (f y =的图象与x 轴交点的横坐标.归纳:方程0)x (f =有实数根⇔函数)x (f y =的图象与x 轴有交点⇔函数)x (f y =有零点.3、函数零点存在性的判定方法对于函数相对应的方程能求解的,可以直接求解方程的实数根,从而确定函数的零点;对于函数相对应的方程不能直接求解的,又该怎样处理?如果函数)x (f y =在区间[]b ,a 上的图象是连续不断的一条曲线,并且有0)b (f )a (f <⋅,那么,函数)x (f y =在区间()b ,a 内有零点.即存在()b ,a c ∈,使得0)c (f =,这个c 也就是方程0)x (f =的根。
说明:(1)函数)x (f y =在区间[]b ,a 上有定义; (2)函数的图象是连续不断的一条曲线;(3)函数)x (f y =在区间[]b ,a 两端点的函数值必须满足0)b (f )a (f <⋅; (4)函数)x (f y =在区间()b ,a 内有零点,但不唯一;(5)用判定方法验证函数2x )x (f =,说明该方法仅是判断函数零点存在的一种方法,并不是唯一的方法。
高中数学-函数零点问题及例题解析

高中数学-函数零点问题及例题解析一、函数与方程基本知识点1、函数零点:(变号零点与不变号零点)(1)对于函数)(x f y =,我们把方程0)(=x f 的实数根叫函数)(x f y =的零点。
(2)方程0)(=x f 有实根⇔函数()y f x =的图像与x 轴有交点⇔函数()y f x =有零点。
若函数()f x 在区间[],a b 上的图像是连续的曲线,则0)()(<b f a f 是()f x 在区间(),a b 内有零点的充分不必要条件。
2、二分法:对于在区间[,]a b 上连续不断且()()0f a f b ⋅<的函数()y f x =,通过不断地把函数()y f x =的零点所在的区间一分为二,使区间的两个端点逐步逼近零点,进而得到零点的近似值的方法叫做二分法; 二、函数与方程解题技巧零点是经常考察的重点,对此部分的做题方法总结如下:(一)函数零点的存在性定理指出:“如果函数)(x f y =在区间[a,b]上的图象是连续不断的一条曲线,并且0)()(<b f a f ,那么,函数)(x f y =在区间(a,b )内有零点,即存在),(b a c ∈,使得0)(=c f ,这个c 也是方程0)(=x f 的根”。
根据函数零点的存在性定理判断函数在某个区间上是否有零点(或方程在某个区间上是否有根)时,一定要注意该定理是函数存在零点的充分不必要条件:如例、函数xx x f 2)1ln()(-+=的零点所在的大致区间是( ) (A )(0,1); (B )(1,2); (C ) (2,e ); (D )(3,4)。
分析:显然函数xx x f 2)1ln()(-+=在区间[1,2]上是连续函数,且0)1(<f ,0)2(>f ,所以由根的存在性定理可知,函数xx x f 2)1ln()(-+=的零点所在的大致区间是(1,2),选B(二)求解有关函数零点的个数(或方程根的个数)问题。
二分法求函数零点教案(可编辑修改word版)

1、二分法的概念用二分法求方程的近似解对于在区间[a, b]上连续不断且 f (a ) · f (b ) < 0 的函数 y = f (x ) , 通过不断把函数f (x ) 的零点所在的区间一分为二, 使区间的两个端点逐步逼近零点,进而得到零点的近似值的方法叫二分法。
2、用二分法求函数 f (x ) 的零点的近似值的步骤:(1)确定区间[a, b], 验证: f (a ) · f (b ) < 0,确定精确度(2)求区间(a , b)的中点 x 1(3)计算 f (x 1 )若 f (x 1 ) =0, 则就 x 1 是函数的零点若 f (a ) · f (x 1 ) <0,则令 b = x 1 (此时零点 x 0∈(a,x 1 ))若 f (x 1 ) · f (b ) <0,则令 a = x 1 (此时零点 x 0∈( x 1 , b)) (4)判断是否达到精确度即若 | a – b | <, 则得到零点的近似值为 a (或 b ),否则重复(2)~(4) 3、用二分法求函数零点的条件:若函数零点左右两侧函数值符号相反,则此零点为函数的变号零点,从图象来看,若图象穿过零点,则此零点为变号零点。
否则为不变号零点。
二分法只能求函数的变号零点。
例题讲解:例 1:下列函数图象与 x 轴均有交点,其中不能用二分法求图中函数零点的是( )解:应选 B ,利用二分法求函数零点必须满足零点两侧函数值异号。
1 例 2、 利用二分法求方程 x= 3 - x 的一个近似解(精确到 0.1)。
解:设 f (x ) = 1 + x - 3 ,则求方程 1= 3 - x 的一个近似解,即求函数 f (x ) 的一个近似零x x点。
∵ f (2) = - 1 < 0 , f (3) = 1> 0 ,∴取区间[2,3]作为计算的初始区间。
函数零点与二分法

1.函数零点 概念:对于函数,把使成立的实数叫做函数的零点。
函数零点的意义:函数的零点就是方程实数根,亦即函数的图象与轴交点的横坐标。
即:方程有实数根函数的图象与轴有交点函数有零点。
零点存在性定理:如果函数在区间上的图象是连续不断的一条曲线,并且有,那么函数在区间内有零点。
既存在,使得,这个也就是方程的根。
2.二分法 二分法及步骤: 对于在区间,上连续不断,且满足·的函数,通过不断地把函数的零点所在的区间一分为二,使区间的两个端点逐步逼近零点,进而得到零点近似值的方法叫做二分法. 给定精度,用二分法求函数的零点近似值的步骤如下:(1)确定区间,,验证·,给定精度;(2)求区间,的中点;(3)计算:①若=,则就是函数的零点;②若·<,则令=(此时零点); ③若·<,则令=(此时零点); (4)判断是否达到精度;即若,则得到零点零点值(或);否则重复步骤2~4。
(二)考点分析题型1:方程的根与函数零点例1.(1)方程lgx+x=3的解所在区间为( ) A .(0,1)B .(1,2) C .(2,3)D .(3,+∞) (2)设a 为常数,试讨论方程的实根的个数。
解析:(1)在同一平面直角坐标系中,画出函数y=lgx 与y=-x+3的图象(如图)。
它们的交点横坐标,显然在区间(1,3)内,由此可排除A ,D 至于选B 还是选C ,由于画图精确性的限制,单凭直观就比较困难了。
实际上这是要比较与2的大小。
当x=2时,lgx=lg2,3-x=1。
由于lg2<1,因此>2,从而判定∈(2,3),故本题应选C 。
(2)原方程等价于))((D x x f y ∈=0)(=x f x))((D x x f y ∈=)(x f y =0)(=x f )(x f y =x 0)(=x f ⇔)(x f y =x ⇔)(x f y =)(x f y =],[b a 0)()(<b f a f )(x f y =),(b a ),(b a c ∈0)(=c f c a[]b )(a f )(b f 0<)(x f y =)(x f ε)(x f a []b )(a f )(b f 0<εa ()b 1x )(1x f )(1x f 01x )(a f )(1x f 0b 1x ),(10x a x ∈)(1x f )(b f 0a 1x ),(10b x x ∈εε<-||b a a b )lg()3lg()1lg(x a x x -=-+-0x 0x 0x 0x ⎪⎪⎩⎪⎪⎨⎧-=-->->->-xa x x x a x x )3)(1(00301即构造函数和,作出它们的图像,易知平行于x 轴的直线与抛物线的交点情况可得:①当或时,原方程有一解;②当时,原方程有两解; ③当或时,原方程无解点评:图象法求函数零点,考查学生法求方程lgx+x=3解所在的区间。
高一 数学 函数的零点与二分法课件

二分法在寻找函数零点中的应用
二分法是一种通过不断将区间 一分为二来逼近函数零点的数 值方法。
在给定一个连续函数和一个闭 区间,不知道零点所在的大致 位置时,可以使用二分法来找 到零点。
二分法的基本思想是,如果函 数在区间两端取值异号,则该 区间内必定存在一个零点。
二分法在解决函数零点问题中的优势
实例
以 $f(x) = x^2 - 2x - 3$ 为例, 其零点为 $x = -1, x = 3$。
高次函数的零点问题
高次函数零点定义
高次函数 $f(x)$ 的零点是满足 $f(x) = 0$ 的 $x$ 值。
零点求解方法
通过解高次方程来找到零点。
实例
以 $f(x) = x^3 - x - 1$ 为例,其零点为 $x = 1, x = -1, x = frac{1}{3}$。
以 $f(x) = x - 3$ 为例,其零点为 $x = 3$。
零点求解方法
通过解方程 $ax + b = 0$ 来找到零 点。
二次函数的零点问题
二次函数零点定义
二次函数 $f(x) = ax^2 + bx + c$ 的零点是满足 $f(x) = 0$ 的
$x$ 值。
零点求解方法
通过解二次方程 $ax^2 + bx + c = 0$ 来找到零点。
导数法
通过判断导数的正负来判 断函数的单调性,进而找 到函数的零点。
03 二分法原理
二分法的定义
二分法定义
二分法是一种求解实数近似值的方法,通过不断将区间一分 为二,使区间长度逐渐缩小,当区间长度小于给定的误差范 围时,区间内的任意实数近似值即可作为所求的近似解。
2014.11.18函数零点、二分法、任意角题型全总结

函数零点、二分法、任意角题型全总结题型一:求零点或零点的个数方法1、解方程:根据零点的定义,)(x f y =的零点就是方程0)(=x f 的根,所以方程0)(=x f 根的个数就是函数)(x f y =零点的个数.练:方程 f(x)=96370x x-∙-=的零点是例1、 求函数2223+--=x x x y 的零点. 例2:(2010年福建理科)函数()⎩⎨⎧>+-≤-+=0,ln 20,322x x x x x x f 的零点个数为( )A0 B1 C2 D3方法2数形结合:函数)((x g x h y -=)的零点,也就是)(x h y =图象)(x g y =图象交点横坐标,所以函数)((x g x h y -=)的零点个数就是)(x h y =图象与)(x g y =图象交点个数.例:(2012年北京文科)函数xx x f )21()(21-=的零点个数为( )A0 B1 C2 D3练:1、方程223x x -+=的实数解的个数为 _______ 。
(2)2、函数()⎩⎨⎧>+-≤-=1,341,442x x x x x x f 的图象和函数()x x g 2log =的图象的交点个数是( ) 3、若函数a x a x f x --=)( (0>a 且1≠a )有两个零点,则实数a 的取值范围是 }1|{>a a4、(10浙江)已知0x 是函数()xx f x-+=112的一个零点,若()01,1x x ∈,()+∞∈,02x x ,则( )A .()01<x f ,()02<x f B .()01<x f ,()02>x f C .()01>x f ,()02<x f D .()01>x f ,()02>x f5、直线y =1与曲线2y x x a =-+有四个交点,则a 的取值范围是 。
6、已知函数32,2()(1),2x f x x x x ⎧≥⎪=⎨⎪-<⎩若关于x 的方程f(x)=k 有两个不同的实根,则数k 的取值范围是_______方法3、零点存在性定理例1、求函数f(x)=lnx +2x -6的零点个数. f(x)= lnx +2x -6只有一个零点。
二分法求函数的零点

若f(a)·f(c)<0 ,则零点x0∈(a,c);
若f(c)·f(b)<0 ,则零点x0∈(c,b).
思考4:若给定精确度ε,如何选取近似 值? 当|m—n|<ε 时,区间[m,n]内的任意 一个值都是函数零点的近似值.
用二分法求函数f(x)零点近似值的步骤如下:
知识探究:
用二分法求函数零点近似值的步骤
思考1:求函数f(x)的零点近似值第一步 应做什么?
确定区间[a,b],使 f(a)f(b)<0 思考2:为了缩小零点所在区间的范围, 接下来应做什么?
求区间的中点c,并计算f(c)的值
思考3:若f(c)=0说明什么? 若f(a)·f(c)<0或f(c)·f(b)<0 ,则 分别说明什么?
4、判断是否达到精确度ε ,即若|a-b|< 则得到零点近似值a(或b),否则重复2~4
ε
(4) 思考:下列函数中能用二分法求零点的是(1) ____.
用二分法求方程的近似解一般步骤:
口 诀
定区间,找中点, 同号去,异号算, 周而复始怎么办? 中值计算两边看. 零点落在异号间. 精确度上来判断.
A
C
E
D
B
利用我们刚才的方法,你能否求出方 程lnx+2x-6=0 的近似解 ? 如果能的话,怎么去解?你能用函数的 零点的性质吗?
见excel软件演示
对于区间[a,b]上连续不断且f(a) · f(b)<0的函数 y=f(x),通过不断地把函数f(x)的零点所在的区间 一分为二,使区间的两个端点逐步逼近零点,进 而得到零点近似值的方法叫做二分法(bisection).
y
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
本课小结:
知识点: 1.函数零点定义 题型: 1.会求函数零点
2.二次函数的零点问题
3.零点存在性定理 4.二分法求零点近似值
2.解决二次函数的零点问题
3.利用零点存在性定理判断 零点个数情况 4.二分法求零点近似值
本课作业:学案中课后作业
判断下列函数是否存在零点
y 3x 6x 1
5
x y -2 -1.5 109 44.17 0 1 1 -8 2 107
由零点存在定理可知:区间(0,1) 和(1,2)上均至少存在一个零点
问题:如何求该函数零点的近似解?
3:二分法
我们把每次将函数y=f(x)的零点所在区间收缩一
半的方法,使区间的两端点逐步逼近函数的零 点,以求得零点的近似值,这种方法叫二分法。
2
1 4a 0 1 a 4 1 综上所述: a 0或 a 4
[自 主 预 习· 探 新 知二]
判断下列函数是否存在零点
y 3x 6x 1
2
x y -2 -1.5 109 44.17 0 1 1 -8 2 107
由上表,你得到的猜想是?
零点存在定理 :
函数f(x)图像
函数h(x)图像
变号零点 穿过x轴 3. 零点 不变号零点 不穿过x轴
4.性质:
(1)函数图象过变号零点时,函数值变号,
过不变号零点时,函数值不变号
(2)相邻的两零点间,函数值保持同号
5. 二次函数零点的判定
判别式
0
0
0
没有实数 根
方程 ax2 bx c 0
二分法求零点近似解的步骤:
1)定初始区间 2)取区间的中点,并判断函数值
若函数值为0,则得到零点,否则
3)根据异号定区间
4)重复2)3)直到区间满足精确度的要求
思考:用二分法求得的零点是什么类型的零点?
例3.下列图像与x轴均有交点,其中不能用二分法求函 数零点的是( )
完成学案巩固训练(5分钟)
无零点
[ 基础自测] 1.思考辨析 (1)所有的函数都有零点.( )
ห้องสมุดไป่ตู้
(2)若方程f(x)=0有两个不等实根x1,x2,则函数y=f(x)的零点为(x1,0), (x2,0).( ) )
1 (3)f(x)=x-x只有一个零点.(
[ 答案]
(1)× (2)× (3)×
【典例分析】
例 1.求函数 y=x3-2x2-x+2 的零点.
解 : 令y 0 x 2x x 2 0
3 2
x ( x 2) ( x 2) 0 ( x 2)(x 1)(x 1) 0
2
函数的零点为 1 , 1,2
例 2:若函数 y=ax2-x-1 只有一个零点.求实数 a 的取值范围.
解:
①a 0时,y x 1只有一个零点 ②a 0时, 0 ( 1) 4a (1) 0
函数的零点和二分法
做好上课准备:端正坐姿
1.笔记本、练习本
2.学案课题(15) 3.打开课本P70
学习目标: 1.结合二次函数的图像,判断一元二次方程根的存在性及根的情况 2.了解函数的零点、方程的根、函数图象与 x 轴交点的横坐标之间的关系. 3.理解零点存在性定理,并且会用二分法求函数零点近似值
如果函数y=f(x)在区间[a, b]上的图象是连续不断
的, 并且f(a) · f(b)<0,则函数y=f(x)在区间(a, b)
上至少有一个零点,即存在c∈(a, b),使得
f(c)=0,这个c也就是方程f(x)=0的根
对零点存在性定理巩固理解:
• • • • • 1)至少 2)连续 3) f(a) · f(b)>0,不确定有无零点 4)反之不成立 5)存在定理可确定存在的是变号零点
[自 主 预 习· 探 新 知一]
函数的零点 1.定义
f(α)=0 ,则α叫做这个函数 等于零 ,即_______ 如果函数 y=f(x)在实数α处的值_________
零点 . 的_______ 2.数形理解:
方程f (x)=0的实数根
函数y=f (x)的图象与x轴交点的横坐标
函数y=f (x)的零点
(a 0) 的根
2 函数 y ax bx c
两个不相 等的实数 根x1,x2
两个不相 等的实数 根x1=x2
(a 0) 的图像
函数
两个变号零点
b 2a b x2 2a x1
y ax bx c
2
(a 0) 的零点
一个不变号 零点 b 2a