数的整除PPT课件
合集下载
《数的整除特征》课件

数据存储与传输
在计算机科学中,整除是一个非常重要 的概念。例如,在数据存储和传输中, 我们需要用到二进制数,而二进制数的 整除可以用来进行数据的加密和解密。
VS
算法设计与优化
在算法设计和优化中,整除也是一个非常 重要的概念。例如,在排序算法中,我们 可以利用整除来快速判断一个数是否为整 数,从而优化算法的性能。
数的整除特征
偶数的整除特征
总结词
偶数可以被2整除
详细描述
偶数是能被2整除的整数,其特征是末尾数字为0、2、4、6或8。偶数的整除特 性表明,偶数除以2的余数为0。
奇数的整除特征
总结词
奇数不能被2整除
详细描述
奇数是除以2余数为1的整数,其特征是末尾数字为1、3、5、7或9。奇数的整除特性表明,奇数除以 2的余数只能是1。
《数的整除特征》ppt 课件
目录
• 整除的定义与性质 • 数的整除特征 • 整除的应用 • 数的整除特征的扩展知识 • 练习与思考
CHAPTER 01
整除的定义与性质
整除的定义
整除:如果整数a除以整数b( b≠0)的余数为0,那么就称a能
被b整除。
整除是数学中的一个基本概念, 是研究整数的一个重要的分支。
Байду номын сангаас
判断题
一个数如果是3的倍数,那么它 一定是9的倍数。( )
选择题
一个四位数,千位数字是个位数 字的2倍,百位数字是个位数字 的3倍,十位数字是个位数字的4
倍,这个四位数是( )。
填空题
一个四位数,千位数字是百位数 字的2倍,百位数字是十位数字 的3倍,个位数字是十位数字的4 倍,这个四位数的千位数字是( ),百位数字是( ),十位数字 是( ),个位数字是( )。
小学数学六年级总复习课件-2.数的整除

(这里面的数一般指非0自然数。) 整除: 整数a除以整数b(b≠0),除得的商是整数而没有余数, 我们就说数a能被数b整除,或数b能整除a。
十、整除 1.整除与除尽
6÷3=2 6能被数3整除, 或3能整除6。
除尽: 数a除以数b(b≠0),除得的商是整数或是有限小数, 这就叫做除尽。 除尽 区别: 整除是除尽的一种特殊情况, 整除 整除也可以说是除尽, 但除尽不一定是整除。 说说下面 算式是整除算式吗? 2.4÷0.6=4( × ) 5÷2=2.5 ( × ) 9÷4=2……1( × )
一个能同时被3、5整除的最小三位数是( 105 )。 9 6 3 0 1 2 5 8
3.
想一想
十、整除 能被2、3、5整除的数的特征
)。 31 )。
能同时被3、5整除的最大的两位数是(90 一个数被2、3、5除都余1,这个数最小的是(
先假设一个数被2、3、5除都没有余数,这个数最小的是 【即求2、3、5的最小公倍数】, 再+1。
能同时被2,3,5整除的数的特征: 要先考虑2和5, 再考虑3。
个位上是0,
而且各位上的数字的和要能被3整除。
)。
一个能同时被2、3、5整除的最小三位数是( 120 8 1 5 0 ①要先考虑2和5,个位上应该是?
√
2
②考虑最小三位数,百位上应该是? ③考虑能否被3整除,十位上可填哪些数? ④要最小三位数,那么十位上只能填什么数?
×)
。
。
既是奇数又是合数的有 ( 9
15 )
十、整除 4.质数和合数
1-20中质数有( 2、3、5、7、11、13、17、19 )
在括号里填上质数。
30=( 7 30=( 2 )+( 23 )=( 11 )+( 19 )=( 13 )+( 17 ) )×( 3 ) ×( 5 )
数的整除课件

一个数,如果除了1和它本身还有别的约数,这 样的数叫做合数.
最少有3个约数
公约数只有1的两个数,叫做互质数
互质数和质数之间有什么区别?
互质数讲的是两个数的关系,这两个数的 公约数只有1.
公约数只有1的两个数,叫做互质数
互质数和质数之间有什么区别?
互质数讲的是两个数的关系,这两个数的 公约数只有1. 质数是对一个自然数而言的,它只有1和它 本身两个约数.
整除
倍数 约数
公倍数 最小公倍数 公约数 最大公约数
质数
互质数 合数
质因数 分解质因数 能被2整除数的特征 能被5整除数的特征 能被3整除数的特征
奇数 偶数
整数a除以整数b(b≠ 0),除得的商正好 是整数而没有余数,我们就说a 能被b整除(也 可以说b 能整除a )
填空:在12÷ 3= 4 4 ÷ 8= 0.5 2÷ 0.1= 20 3.2 ÷ 0.8= 4中,被除数能除尽除数的有( 4 )个, 被除数能整除除数的有( 1 )个,是(12÷ 3= 4 ).
两个数是互质数,最小公倍数 就是它们的乘积.
几个数公有的倍数,叫做这几个数的公倍数; 其中最小的一个叫做最小公倍数.
特殊情况
两个数是互质数,最小公倍数 就是它们的乘积.
几个数公有的倍数,叫做这几个数的公倍数; 其中最小的一个叫做最小公倍数.
特殊情况
两个数是互质数,最小公倍数 就是它们的乘积.
两个数具有约倍关系,最小公倍数 就是较大的数.
个位上是0、2、4、6、8的数,都能被2整除.
个位上是0或者5的数,都能被5整除.
一个数的各位上的数的和能被3整除,这个数就 能被3整除.
个位上是0、2、4、6、8的数,都能被2整除.
最少有3个约数
公约数只有1的两个数,叫做互质数
互质数和质数之间有什么区别?
互质数讲的是两个数的关系,这两个数的 公约数只有1.
公约数只有1的两个数,叫做互质数
互质数和质数之间有什么区别?
互质数讲的是两个数的关系,这两个数的 公约数只有1. 质数是对一个自然数而言的,它只有1和它 本身两个约数.
整除
倍数 约数
公倍数 最小公倍数 公约数 最大公约数
质数
互质数 合数
质因数 分解质因数 能被2整除数的特征 能被5整除数的特征 能被3整除数的特征
奇数 偶数
整数a除以整数b(b≠ 0),除得的商正好 是整数而没有余数,我们就说a 能被b整除(也 可以说b 能整除a )
填空:在12÷ 3= 4 4 ÷ 8= 0.5 2÷ 0.1= 20 3.2 ÷ 0.8= 4中,被除数能除尽除数的有( 4 )个, 被除数能整除除数的有( 1 )个,是(12÷ 3= 4 ).
两个数是互质数,最小公倍数 就是它们的乘积.
几个数公有的倍数,叫做这几个数的公倍数; 其中最小的一个叫做最小公倍数.
特殊情况
两个数是互质数,最小公倍数 就是它们的乘积.
几个数公有的倍数,叫做这几个数的公倍数; 其中最小的一个叫做最小公倍数.
特殊情况
两个数是互质数,最小公倍数 就是它们的乘积.
两个数具有约倍关系,最小公倍数 就是较大的数.
个位上是0、2、4、6、8的数,都能被2整除.
个位上是0或者5的数,都能被5整除.
一个数的各位上的数的和能被3整除,这个数就 能被3整除.
个位上是0、2、4、6、8的数,都能被2整除.
数的整除课件

最大公约数的整除性质
如果一个数能被另一个数整除,则它们的最大公约数等于被除数与 商的最大公约数。
最大公约数的整除应用
在数学、计算机科学等领域中,最大公约数的整除性质有着广泛的 应用。
最小公倍数的整除
01
最小公倍数的定义
两个或多个整数的最小正整数倍数。
02
最小公倍数的整除性质
如果一个数能被另一个数整除,则它们的最小公倍数等于被除数与商的
在计算机科学中的应用
在计算机科学中,整除的概念也具有广 泛的应用。例如,在计算机算法中,整 除的概念可以帮助我们快速准确地完成
各种计算和数据处理任务。
在计算机图形学中,整除的概念也经常 被用到。例如,当我们需要将图像分成 若干等份时,整除的概念可以帮助我们 确保每个图像的像素和比例都是相同的
。
在网络安全领域,整除的概念也具有广 泛的应用。例如,在加密算法中,整除 的概念可以帮助我们快速准确地完成各
者进行练习。
1. 题目
2. 题目
3. 题目
判断以下哪个数字可以 被7整除:14、28、35
、42。
一个数被12整除,那么 这个数的个位数字是多
少?
如果一个数除以8的余数 是5,那么这个数是多少
?
进阶练习题
总结词
这些题目难度稍有提升,需要 掌握一些整除的性质和规律。
1. 题目
求出以下数字的最大互质数的整除
互质数的整除
如果两个数的最大公约数为1,则它 们互质,互质数的两数相除,商为1 。
互质数的整除性质
互质数的整除应用
在数学、计算机科学、密码学等领域 中,互质数的整除性质有着广泛的应 用。
互质的两个数相乘,其积能被这两个 数整除。
如果一个数能被另一个数整除,则它们的最大公约数等于被除数与 商的最大公约数。
最大公约数的整除应用
在数学、计算机科学等领域中,最大公约数的整除性质有着广泛的 应用。
最小公倍数的整除
01
最小公倍数的定义
两个或多个整数的最小正整数倍数。
02
最小公倍数的整除性质
如果一个数能被另一个数整除,则它们的最小公倍数等于被除数与商的
在计算机科学中的应用
在计算机科学中,整除的概念也具有广 泛的应用。例如,在计算机算法中,整 除的概念可以帮助我们快速准确地完成
各种计算和数据处理任务。
在计算机图形学中,整除的概念也经常 被用到。例如,当我们需要将图像分成 若干等份时,整除的概念可以帮助我们 确保每个图像的像素和比例都是相同的
。
在网络安全领域,整除的概念也具有广 泛的应用。例如,在加密算法中,整除 的概念可以帮助我们快速准确地完成各
者进行练习。
1. 题目
2. 题目
3. 题目
判断以下哪个数字可以 被7整除:14、28、35
、42。
一个数被12整除,那么 这个数的个位数字是多
少?
如果一个数除以8的余数 是5,那么这个数是多少
?
进阶练习题
总结词
这些题目难度稍有提升,需要 掌握一些整除的性质和规律。
1. 题目
求出以下数字的最大互质数的整除
互质数的整除
如果两个数的最大公约数为1,则它 们互质,互质数的两数相除,商为1 。
互质数的整除性质
互质数的整除应用
在数学、计算机科学、密码学等领域 中,互质数的整除性质有着广泛的应 用。
互质的两个数相乘,其积能被这两个 数整除。
人教版高中数学选修4-6-第一讲-整数的整除(一)整数的整除-课件(共33张PPT)

观察
12,21,24,30,33,51可同时被什么数整除, 有什么规律?
分析:以上6个数均可同时被3整除,并且各位 数字之和也能被3整除.
由此猜想:一个正整数的各位数字之和能被3 整除,那么这个正整数能被3整除.
带余除法
在生活中并不是什么情况下都可以整除, 很多情况都是不能除尽的.如:13÷2=6…1,在 整数集中这种表示法依然成立,叫做带余除法 (或欧氏除法算式).
知识回顾
以前学过的整数加法、减法、乘 法有什么特点?整数除法的商又是怎 样的? 整数的加法、减法、乘法运 算得到的结果任然为整数.两个 整数的商不一定是整数.
导入新课
从以前学过的乘法中我们知道
若A×B=C,那么C÷B=A或C÷A=B
也就是说乘法和除法是互逆的 运算.
例如:
13×2 = 26
26÷2 = 13 26÷13 = 2
第一讲整数的整除
教学目标
知识与能力
1.在熟悉整数的基础上充分理解整除 的概念和性质;熟练掌握带余除法的运算, 且能进行运算.
2.理解什么是素数的概念,并掌握素数 的判别方法.
过程与方法
1.通过复习以前的乘法、除法的知识,让 学生合作探讨,老师启迪,自然引出整除的概 念及性质.•
2.在整除的基础上通过生活中的实例,引 导学生考虑不能整除的情况,并让学生自己进 一步思考不能整除情况的解决方法并总结带余 除法的概念.
共六条鱼,平均一只猫咪得几条鱼?
若是再多一条鱼,平均一只猫咪又各 得几条鱼呢?
想一想
在上一页第一种情况下,平均每 只猫咪得到 6÷2 = 3(条);第二种 情况下每只猫咪在得到3条鱼后还剩一条,就是 说这种情况下鱼并不能平均分给两只猫咪. 生活中这样的例子还有很多,我们从数 学的角度该怎样理解,又怎样定义呢?它们 又有怎样的性质?下面我们将具体的分析.
数的整除课件PPT版

8与4 14与2 9与4 17与3 110与2 250与1 125与6 87与87
你能把12分成两个数, 使其中一个数能整除另一个 数吗?(动手试着操作一下)
为了便于学习和使用,本文 档下载后内容可随意修改调 整及打印,欢迎下载。
一、口算下面各题 (请点击鼠标左键开始练习)
6÷2= 3
35 ÷5= 7
9 ÷4= 2……1 25 ÷7= 3……4
848 ÷8= 106
276 ÷9= 30……6
仔细观察上面这些算式你发现有什么不同了吗?
没有余数
6÷2= 3 35 ÷5=7 848 ÷8=106
有余数ቤተ መጻሕፍቲ ባይዱ
9 ÷4= 2……1 25 ÷7=3……4 276 ÷9=30……6
6÷2= 3 35 ÷5= 7 这类算式就叫整除 848 ÷8= 106
6÷2=3 我们就说:6能被2整除
35 ÷5=7 我们就说:35能被5整除
848 ÷8=106 我们就说:848能被8整除
继续
9能被4整除吗? 25能被7整除吗? 27能被9整除吗?
想一想:哪一组的第一个数能被第二个数整除?
你能把12分成两个数, 使其中一个数能整除另一个 数吗?(动手试着操作一下)
为了便于学习和使用,本文 档下载后内容可随意修改调 整及打印,欢迎下载。
一、口算下面各题 (请点击鼠标左键开始练习)
6÷2= 3
35 ÷5= 7
9 ÷4= 2……1 25 ÷7= 3……4
848 ÷8= 106
276 ÷9= 30……6
仔细观察上面这些算式你发现有什么不同了吗?
没有余数
6÷2= 3 35 ÷5=7 848 ÷8=106
有余数ቤተ መጻሕፍቲ ባይዱ
9 ÷4= 2……1 25 ÷7=3……4 276 ÷9=30……6
6÷2= 3 35 ÷5= 7 这类算式就叫整除 848 ÷8= 106
6÷2=3 我们就说:6能被2整除
35 ÷5=7 我们就说:35能被5整除
848 ÷8=106 我们就说:848能被8整除
继续
9能被4整除吗? 25能被7整除吗? 27能被9整除吗?
想一想:哪一组的第一个数能被第二个数整除?
《数的整除特征》PPT课件

精选ppt
9
小测试
200÷2 21÷3 55÷5 147÷7 46÷9 67÷11 123÷13
答案是前四个可以,后三个不行。
你都算对了吗?
精选ppt
10
精选ppt
11
精选ppt
6
9的整除特征
若一个整数的各个位数的数字和能被9整 除,则这个整数能被9整除 。
如:252 252=2+2+5=9,9÷9=1(整除) 如:133 133÷9=14.7777......(不能整除)
精选ppt
7
11的整除特征
若一个整数的奇位数字之和与偶位数字 之和的差能被11整除,则这个数能被11 整除。
除)
精选ppt
5
7的整除特征
被7整除若一个整数的个位数字截去,再从余下的数中, 减去个位数的2倍,如果差是7的倍数,则原数能被7 整除。如果差太大或心算不易看出是否7的倍数,就需 要继续上述「截尾、倍大、相减、验差」的过程,直 到能清楚判断为止。
如:133 13-3×2=7 , 7÷7=1(整除) 如:12 12÷7=1.741857(不能整除)
除)
精选ppt
3
3的整除特征
被3整除的数必须各个位数上的数加起来 为3的倍数。
如:147=1+4+7=12 147÷3=49(整除) 如:136=1+3+6=10 136÷3=45.33333333.......(不能整除)
精选ppt
4
5的整除特征
被5整除个位为0或者5。 如:10,15 10÷5=2(整除) 15÷5=3(整除) 如:6,12 6÷5=1.2(不能整除)12÷5=2.2(不能整
数的整除特征
六(2)班 徐骏
《数的整除总复习》课件

详细描述
整除与分治策略在数学中有着广泛的应用。例如,在求解最大公约数和最小公倍数时,常常采用分治 策略,将问题分解为更小的部分,分别求解后再合并结果。这种方法能够简化问题,提高解题效率。
整除与数论的关系
总结词
数论是研究整数的性质和结构的数学分 支,整除是数论中的一个基本概念。
VS
详细描述
整除是数论中的一个核心概念,它是整数 的一个基本性质。通过研究整除的性质和 规律,可以深入了解整数的结构,进一步 探索数论中的其他问题。同时,整除也为 密码学、计算机科学等领域提供了重要的 理论基础和应用价值。
05
数的整除拓展
整除与同余式
总结词
同余式是整除的一种扩展,它描述了整数在模运算下的等价关系。
详细描述
同余式是数论中的一个重要概念,它表示两个或多个整数在模运算下具有相同 的余数。整除是同余式的一个特例,即当模数为1时,如果一个数a能被另一个 数b整除,则a与b模1同余。
整除与分治策略
总结词
分治策略是将复杂问题分解为若干个简单子问题,通过解决子问题来达到解决原问题的目的。
逻辑推理
03
利用整除性质进行逻辑推理是解决一些数学竞赛问题的重要方
法。
在日常生活中的应用
购物优惠
商家经常使用整除点来设置商品价格,以提供优 惠或促销活动。
时间计算
在日程安排和时间管理中,整除常用于计算时间 间隔或确定特定时间点。
金融计算
在投资和理财方面,整除在计算复利、评估风险 和制定预算时非常有用。
整除的唯一分解定理
总结词
整除的唯一分解定理是指,一个正整数可以表示为若干个质数的乘积,并且这种 表示方法是唯一的。
详细描述
这是整除的一个重要定理,它告诉我们一个正整数可以分解为若干个质数的乘积 ,而且这种分解方式是唯一的。这个定理在数学中有着广泛的应用,因为它可以 帮助我们更好地理解整数的结构,并解决与整数有关的数学问题。
整除与分治策略在数学中有着广泛的应用。例如,在求解最大公约数和最小公倍数时,常常采用分治 策略,将问题分解为更小的部分,分别求解后再合并结果。这种方法能够简化问题,提高解题效率。
整除与数论的关系
总结词
数论是研究整数的性质和结构的数学分 支,整除是数论中的一个基本概念。
VS
详细描述
整除是数论中的一个核心概念,它是整数 的一个基本性质。通过研究整除的性质和 规律,可以深入了解整数的结构,进一步 探索数论中的其他问题。同时,整除也为 密码学、计算机科学等领域提供了重要的 理论基础和应用价值。
05
数的整除拓展
整除与同余式
总结词
同余式是整除的一种扩展,它描述了整数在模运算下的等价关系。
详细描述
同余式是数论中的一个重要概念,它表示两个或多个整数在模运算下具有相同 的余数。整除是同余式的一个特例,即当模数为1时,如果一个数a能被另一个 数b整除,则a与b模1同余。
整除与分治策略
总结词
分治策略是将复杂问题分解为若干个简单子问题,通过解决子问题来达到解决原问题的目的。
逻辑推理
03
利用整除性质进行逻辑推理是解决一些数学竞赛问题的重要方
法。
在日常生活中的应用
购物优惠
商家经常使用整除点来设置商品价格,以提供优 惠或促销活动。
时间计算
在日程安排和时间管理中,整除常用于计算时间 间隔或确定特定时间点。
金融计算
在投资和理财方面,整除在计算复利、评估风险 和制定预算时非常有用。
整除的唯一分解定理
总结词
整除的唯一分解定理是指,一个正整数可以表示为若干个质数的乘积,并且这种 表示方法是唯一的。
详细描述
这是整除的一个重要定理,它告诉我们一个正整数可以分解为若干个质数的乘积 ,而且这种分解方式是唯一的。这个定理在数学中有着广泛的应用,因为它可以 帮助我们更好地理解整数的结构,并解决与整数有关的数学问题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
只有两个约数
一个数,如果除了1和它本身还有别的约数,这 样的数叫做合数.
2020年10月2日
20
一个数,如果只有1和它本身两个约数,这样的 数叫做质数(或素数).
只有两个约数
一个数,如果除了1和它本身还有别的约数,这 样的数叫做合数.
2020年10月2日
21
一个数,如果只有1和它本身两个约数,这样的 数叫做质数(或素数).
约数和倍数必须以整除为前提
2020年10月2日
10
几个数公有的约数,叫做这几个数的公约数; 其中最大的一个叫做最大公约数.
特殊情况
两个数是互质数,它们的最大公约 数是1.
2020年10月2日
11
几个数公有的约数,叫做这几个数的公约数; 其中最大的一个叫做最大公约数.
特殊情况
两个数是互质数,它们的最大公约 数是1.
约数和倍数是相互依存的
因为4.6 ÷ 2= 2.3,所以4.6是2的倍数,2是4.6 的约数(×)
2020年10月2日
9
如果数a能被数b(b≠ 0)整除, a就叫做b的 倍数, b就叫做a的约数(或a 的约数)
因为15 ÷ 5= 3,所以15是倍数,5是约数(×)
约数和倍数是相互依存的
因为4.6 ÷ 2= 2.3,所以4.6是2的倍数,2是4.6 的约数(×)
2020年10月2日
6
如果数a能被数b(b≠ 0)整除, a就叫做b的 倍数, b就叫做a的约数(或a 的约数)
因为15 ÷ 5= 3,所以15是倍数,5是约数(×)
约数和倍数是相互依存的
因为4.6 ÷ 2= 2.3,所以4.6是2的倍数,2是4.6 的约数(×)
2020年10月2日
7
如果数a能被数b(b≠ 0)整除, a就叫做b的 倍数, b就叫做a的约数(或a 的约数)
两个数具有约倍关系,最小公倍数 就是较大的数.
2020年10月2日
18
一个数,如果只有1和它本身两个约数,这样的 数叫做质数(或素数).
只有两个约数
一个数,如果除了1和它本身还有别的约数,这 样的数叫做合数.
2020年10月2日
19
一个数,如果只有1和它本身两个约数,这样的 数叫做质数(或素数).
2020年10月2日
14
几个数公有的倍数,叫做这几个数的公倍数; 其中最小的一个叫做最小公倍数.
特殊情况
两个数是互质数,最小公倍数 就是它们的乘积.
2020年10月2日
15
几个数公有的倍数,叫做这几个数的公倍数; 其中最小的一个叫做最小公倍数.
特殊情况
两个数是互质数,最小公倍数 就是它们的乘积.
除尽
整除
2020年10月2日
4
整数a除以整数b(b≠ 0),除得的商 正好是整数而没有余数,我们就说a 能被 b整除(也可以说b 能整除a )
填空:在12÷ 3= 4 4 ÷ 8= 0.5 2÷ 0.1= 20 3.2 ÷ 0.8= 4中,被除数能除尽除数的有( 4 )个, 被除数能整除除数的有( 1 )个,是(12÷ 3= 4 ).
2020年10月2日
12
几个数公有的约数,叫做这几个数的公约数;况
两个数是互质数,它们的最大公约 数是1.
2020年10月2日
13
几个数公有的约数,叫做这几个数的公约数; 其中最大的一个叫做最大公约数.
特殊情况
两个数是互质数,它们的最大公约 数是1.
两个数具有约倍关系,最大公约数 就是较小的数.
只有两个约数
一个数,如果除了1和它本身还有别的约数,这 样的数叫做合数.
最少有3个约数
2020年10月2日
22
一个数,如果只有1和它本身两个约数,这样的 数叫做质数(或素数).
只有两个约数
一个数,如果除了1和它本身还有别的约数,这 样的数叫做合数.
最少有3个约数
2020年10月2日
23
公约数只有1的两个数,叫做互质数
互质数和质数之间有什么区别?
互质数讲的是两个数的关系,这两个数的 公约数只有1.
2020年10月2日
24
公约数只有1的两个数,叫做互质数
互质数和质数之间有什么区别?
互质数讲的是两个数的关系,这两个数的 公约数只有1. 质数是对一个自然数而言的,它只有1和它 本身两个约数.
2020年10月2日
25
每个合数都可以写成几个质数相乘的形式,其 中每个质数都是这个合数的因数,叫做这个合数的 质因数.
奇数 偶数
能被3整除数的特征
2020年10月2日
3
整数a除以整数b(b≠ 0),除得的商正好 是整数而没有余数,我们就说a 能被b整除(也 可以说b 能整除a )
填空:在12÷ 3= 4 4 ÷ 8= 0.5 2÷ 0.1= 20 3.2 ÷ 0.8= 4中,被除数能除尽除数的有( 4 )个, 被除数能整除除数的有( 1 )个,是(12÷ 3= 4 ).
因为15 ÷ 5= 3,所以15是倍数,5是约数(×)
约数和倍数是相互依存的
因为4.6 ÷ 2= 2.3,所以4.6是2的倍数,2是4.6 的约数( ×)
2020年10月2日
8
如果数a能被数b(b≠ 0)整除, a就叫做b的 倍数, b就叫做a的约数(或a 的约数)
因为15 ÷ 5= 3,所以15是倍数,5是约数(×)
除尽 整除
能除尽的不一定都能整除, 但能整除的一定能除尽.
2020年10月2日
5
如果数a能被数b(b≠ 0)整除, a就叫做b的 倍数, b就叫做a的约数(或a 的约数)
因为15 ÷ 5= 3,所以15是倍数,5是约数(×)
约数和倍数是相互依存的
因为4.6 ÷ 2= 2.3,所以4.6是2的倍数,2是4.6 的约数(×)
数的整除
整除
倍数 约数
公倍数 最小公倍数 公约数 最大公约数
质数 合数 互质数
质因数 分解质因数
奇数
能被2整除数的特征
能被5整除数的特征
能被3整除数的特征
2020年10月2日
2
整除
倍数 约数
公倍数 最小公倍数 公约数 最大公约数
质数 合数 互质数
质因数 分解质因数 能被2整除数的特征 能被5整除数的特征
2020年10月2日
2020年10月2日
16
几个数公有的倍数,叫做这几个数的公倍数; 其中最小的一个叫做最小公倍数.
特殊情况
两个数是互质数,最小公倍数 就是它们的乘积.
2020年10月2日
17
几个数公有的倍数,叫做这几个数的公倍数; 其中最小的一个叫做最小公倍数.
特殊情况
两个数是互质数,最小公倍数 就是它们的乘积.
一个数,如果除了1和它本身还有别的约数,这 样的数叫做合数.
2020年10月2日
20
一个数,如果只有1和它本身两个约数,这样的 数叫做质数(或素数).
只有两个约数
一个数,如果除了1和它本身还有别的约数,这 样的数叫做合数.
2020年10月2日
21
一个数,如果只有1和它本身两个约数,这样的 数叫做质数(或素数).
约数和倍数必须以整除为前提
2020年10月2日
10
几个数公有的约数,叫做这几个数的公约数; 其中最大的一个叫做最大公约数.
特殊情况
两个数是互质数,它们的最大公约 数是1.
2020年10月2日
11
几个数公有的约数,叫做这几个数的公约数; 其中最大的一个叫做最大公约数.
特殊情况
两个数是互质数,它们的最大公约 数是1.
约数和倍数是相互依存的
因为4.6 ÷ 2= 2.3,所以4.6是2的倍数,2是4.6 的约数(×)
2020年10月2日
9
如果数a能被数b(b≠ 0)整除, a就叫做b的 倍数, b就叫做a的约数(或a 的约数)
因为15 ÷ 5= 3,所以15是倍数,5是约数(×)
约数和倍数是相互依存的
因为4.6 ÷ 2= 2.3,所以4.6是2的倍数,2是4.6 的约数(×)
2020年10月2日
6
如果数a能被数b(b≠ 0)整除, a就叫做b的 倍数, b就叫做a的约数(或a 的约数)
因为15 ÷ 5= 3,所以15是倍数,5是约数(×)
约数和倍数是相互依存的
因为4.6 ÷ 2= 2.3,所以4.6是2的倍数,2是4.6 的约数(×)
2020年10月2日
7
如果数a能被数b(b≠ 0)整除, a就叫做b的 倍数, b就叫做a的约数(或a 的约数)
两个数具有约倍关系,最小公倍数 就是较大的数.
2020年10月2日
18
一个数,如果只有1和它本身两个约数,这样的 数叫做质数(或素数).
只有两个约数
一个数,如果除了1和它本身还有别的约数,这 样的数叫做合数.
2020年10月2日
19
一个数,如果只有1和它本身两个约数,这样的 数叫做质数(或素数).
2020年10月2日
14
几个数公有的倍数,叫做这几个数的公倍数; 其中最小的一个叫做最小公倍数.
特殊情况
两个数是互质数,最小公倍数 就是它们的乘积.
2020年10月2日
15
几个数公有的倍数,叫做这几个数的公倍数; 其中最小的一个叫做最小公倍数.
特殊情况
两个数是互质数,最小公倍数 就是它们的乘积.
除尽
整除
2020年10月2日
4
整数a除以整数b(b≠ 0),除得的商 正好是整数而没有余数,我们就说a 能被 b整除(也可以说b 能整除a )
填空:在12÷ 3= 4 4 ÷ 8= 0.5 2÷ 0.1= 20 3.2 ÷ 0.8= 4中,被除数能除尽除数的有( 4 )个, 被除数能整除除数的有( 1 )个,是(12÷ 3= 4 ).
2020年10月2日
12
几个数公有的约数,叫做这几个数的公约数;况
两个数是互质数,它们的最大公约 数是1.
2020年10月2日
13
几个数公有的约数,叫做这几个数的公约数; 其中最大的一个叫做最大公约数.
特殊情况
两个数是互质数,它们的最大公约 数是1.
两个数具有约倍关系,最大公约数 就是较小的数.
只有两个约数
一个数,如果除了1和它本身还有别的约数,这 样的数叫做合数.
最少有3个约数
2020年10月2日
22
一个数,如果只有1和它本身两个约数,这样的 数叫做质数(或素数).
只有两个约数
一个数,如果除了1和它本身还有别的约数,这 样的数叫做合数.
最少有3个约数
2020年10月2日
23
公约数只有1的两个数,叫做互质数
互质数和质数之间有什么区别?
互质数讲的是两个数的关系,这两个数的 公约数只有1.
2020年10月2日
24
公约数只有1的两个数,叫做互质数
互质数和质数之间有什么区别?
互质数讲的是两个数的关系,这两个数的 公约数只有1. 质数是对一个自然数而言的,它只有1和它 本身两个约数.
2020年10月2日
25
每个合数都可以写成几个质数相乘的形式,其 中每个质数都是这个合数的因数,叫做这个合数的 质因数.
奇数 偶数
能被3整除数的特征
2020年10月2日
3
整数a除以整数b(b≠ 0),除得的商正好 是整数而没有余数,我们就说a 能被b整除(也 可以说b 能整除a )
填空:在12÷ 3= 4 4 ÷ 8= 0.5 2÷ 0.1= 20 3.2 ÷ 0.8= 4中,被除数能除尽除数的有( 4 )个, 被除数能整除除数的有( 1 )个,是(12÷ 3= 4 ).
因为15 ÷ 5= 3,所以15是倍数,5是约数(×)
约数和倍数是相互依存的
因为4.6 ÷ 2= 2.3,所以4.6是2的倍数,2是4.6 的约数( ×)
2020年10月2日
8
如果数a能被数b(b≠ 0)整除, a就叫做b的 倍数, b就叫做a的约数(或a 的约数)
因为15 ÷ 5= 3,所以15是倍数,5是约数(×)
除尽 整除
能除尽的不一定都能整除, 但能整除的一定能除尽.
2020年10月2日
5
如果数a能被数b(b≠ 0)整除, a就叫做b的 倍数, b就叫做a的约数(或a 的约数)
因为15 ÷ 5= 3,所以15是倍数,5是约数(×)
约数和倍数是相互依存的
因为4.6 ÷ 2= 2.3,所以4.6是2的倍数,2是4.6 的约数(×)
数的整除
整除
倍数 约数
公倍数 最小公倍数 公约数 最大公约数
质数 合数 互质数
质因数 分解质因数
奇数
能被2整除数的特征
能被5整除数的特征
能被3整除数的特征
2020年10月2日
2
整除
倍数 约数
公倍数 最小公倍数 公约数 最大公约数
质数 合数 互质数
质因数 分解质因数 能被2整除数的特征 能被5整除数的特征
2020年10月2日
2020年10月2日
16
几个数公有的倍数,叫做这几个数的公倍数; 其中最小的一个叫做最小公倍数.
特殊情况
两个数是互质数,最小公倍数 就是它们的乘积.
2020年10月2日
17
几个数公有的倍数,叫做这几个数的公倍数; 其中最小的一个叫做最小公倍数.
特殊情况
两个数是互质数,最小公倍数 就是它们的乘积.