4.5相似三角形的性质及其应用(2)
相似三角形的性质和实际应用

相似三角形的性质和实际应用相似三角形是初中数学中一个重要的概念,它有着广泛的实际应用。
本文将介绍相似三角形的性质以及在实际生活中的应用。
一、相似三角形的性质相似三角形是指具有相同的形状但大小不同的三角形。
相似三角形的性质有以下几点:1.对应角相等:如果两个三角形的三个内角分别对应相等,则它们是相似三角形。
例如,如果∠A=∠D,∠B=∠E,∠C=∠F,则△ABC∽△DEF。
2.对应边成比例:相似三角形中,对应边的长度成比例。
即如果两个三角形的两个对应边的比值相等,则它们是相似三角形。
例如,如果AB/DE=BC/EF=AC/DF,则△ABC∽△DEF。
3.周长比例:相似三角形的周长之比等于对应边长度之比。
设两个相似三角形的周长分别为L1和L2,对应边长度之比为k,则有L1/L2=k。
4.面积比例:相似三角形的面积之比等于对应边长度平方的比值。
设两个相似三角形的面积分别为S1和S2,对应边长度之比为k,则有S1/S2=k²。
二、相似三角形的实际应用1.测量高度:相似三角形的性质可以在测量高度时应用。
例如,在测量一座高楼的高度时,可以利用相似三角形的原理,通过测量自己的身高及影子的长度,然后利用身高与影子的长度之比,以及高楼与其影子的长度之比,计算出高楼的高度。
2.影视特技:在电影、电视剧等影视制作中,有时需要通过特技手法来表现出高楼倒塌等场景。
这时,可以利用相似三角形的性质,制作比例缩小的模型,然后通过摄影机的角度选择和镜头拉远,使得模型在电影中看起来像真实的大楼倒塌一样。
3.地图测量:在地图制作和测量工作中,也经常使用相似三角形的原理。
通过测量地面上的一段距离和其在地图上的投影长度,可以得到地面与地图的比例,从而便于进行地图上其他地点的距离估算。
4.影像重建:在计算机视觉和计算机图形学领域,相似三角形的概念也被广泛应用。
通过计算图像中物体的相似三角形关系,可以进行三维模型的重建,实现计算机生成的虚拟现实场景。
4.5《相似三角形的性质及其应用(2)》参考教案

4.5 相似三角形的性质及其应用(2)
1、经历相似三角形性质“相似三角形对应高线、对应中线、对应角平分线之比等于相似比”“相似三角形的周长之比等于相似比”和“相似三角形的面积之比等于相似比的平方”的探究过程。
2、掌握“相似三角形对应高线、对应中线、对应角平分线之比等于相似比”“相似三角形的周长之比等于相似比”和“相似三角形的面积之比等于相似比的平方”的两个性质。
3、会运用上述两个性质解决简单的几何问题。
1、教学的重点是关于相似三角形的周长和面积的两个性质及对应线段的性质。
2、“相似三角形的面积之比等于相似比的平方”这一性质的证明,涉及到相似三角形的判定及性质,过程比较复杂,证明思想的建构是本节教学的难点。
相似三角形的性质
1、相似三角形的对应角相等,对应边成比例。
2、相似三角形对应高线、对应中线、对应角平分线之比等于相似比。
3、相似三角形的周长比等于相似比;相似三角形的面积比等于相似比的平方。
根据本节课的教学内容和目标主要采用讲授法、讨论法、发现法。
4.5 相似三角形的性质及其应用第2课时 相似三角形的性质(2)浙教版数学九年级上册课件

三角形相似的 性质(2)
周长比 =相似比 面积比 =相似比的平方
1.填空: (1)如果三角形的边长扩大到原来的100倍,那么三角 形的周长扩大到原来的____1_0_0倍;面积扩大到原来的 ___1_0_0_0倍0 . (2)如果三角形的周长扩大到原来的100倍,那么三角 形的边长扩大到原来的____1_0_0倍. (3)如果三角形的面积扩大到原来的100倍,那么三角 形的边长扩大到原来的_____1_0倍.
3
5
4
10 6
8
相似比
3
5
4
10 6
8
相似三角形的周长和面积有以下性质:
相似三角形的周长之比等于相似比; 相似三角形的面积之比等于相似比的平方.
A
B
C
A′
B′
C′
A
如图,分别作△ABC,△A′B′C′的BC,
B
B′C′边上的高线AD,A′D′.
∵△ABC∽△A,在等边三角形ABC中,点D,E分别在边AB,AC上, DE∥BC. 如果BC=8 cm,AD:DB=1:3,则△ADE的周长等 于___6___cm,△ADE的面积等于______cm2.
感谢观看!
∵AD,A′D′分别是BC, B′C′边上的高线,
∴∠ADB=∠A′D′B′=90°,
B′
DC A′
C′ D′
A B DC
A′
B′
C′
D′
解:(1)在△ABC和△ADE中, ∵∠CAB=∠EAD(公共角), ∠B=∠ADE(已知), ∴△ABC∽△ADE.
如图,D,E分别是AC,AB上的点,∠ADE=∠B, AG⊥BC于点G,AF⊥DE于点F. 若AD=3,AB=5,求: (2)△ADE与△ABC的周长之比. (3)△ADE与△ABC的面积之比.
2024年浙教版数学九年级上册4.5《相似三角形的性质及应用》教学设计

2024年浙教版数学九年级上册4.5《相似三角形的性质及应用》教学设计一. 教材分析《相似三角形的性质及应用》是浙教版数学九年级上册第4.5节的内容。
本节主要介绍相似三角形的性质,包括相似三角形的对应边成比例、对应角相等以及相似比的概念。
同时,通过实际例题让学生了解相似三角形在实际问题中的应用。
本节内容是学生学习几何知识的重要环节,为后续学习相似多边形、三角函数等知识打下基础。
二. 学情分析九年级的学生已经掌握了三角形的基本知识,具备一定的逻辑思维能力。
但是,对于相似三角形的性质及应用,部分学生可能还存在一定的困难。
因此,在教学过程中,要关注学生的认知水平,注重引导,激发学生的学习兴趣,提高学生的动手操作能力和解决问题的能力。
三. 教学目标1.理解相似三角形的性质,掌握相似三角形的对应边成比例、对应角相等。
2.学会运用相似三角形的性质解决实际问题,提高学生的应用能力。
3.培养学生的观察能力、动手操作能力和团队协作能力。
四. 教学重难点1.相似三角形的性质及其证明。
2.相似三角形在实际问题中的应用。
五. 教学方法1.采用问题驱动法,引导学生主动探究相似三角形的性质。
2.利用多媒体辅助教学,展示相似三角形的动态变化,增强学生的直观感受。
3.运用实例分析法,让学生了解相似三角形在实际问题中的应用。
4.小组讨论,培养学生的团队协作能力。
六. 教学准备1.多媒体教学设备。
2.教学课件。
3.练习题及答案。
4.三角板、直尺等绘图工具。
七. 教学过程1.导入(5分钟)利用多媒体展示两组三角形,让学生观察并判断它们是否相似。
通过直观的展示,引发学生的思考,激发学生的学习兴趣。
2.呈现(10分钟)介绍相似三角形的定义及其性质,包括对应边成比例、对应角相等。
通过示例和证明,让学生理解和掌握相似三角形的性质。
3.操练(10分钟)让学生分组进行动手操作,利用三角板、直尺等工具,绘制一组相似三角形,并验证它们的性质。
教师巡回指导,解答学生的疑问。
相似三角形的性质与应用

相似三角形的性质与应用相似三角形是初中数学中的重要概念,它们具有一些特定的性质和各种应用。
本文将介绍相似三角形的性质,以及在实际问题中如何应用相似三角形来解决一些实际问题。
一、相似三角形的性质相似三角形是指具有相同形状但大小不一的两个三角形。
相似三角形具有以下几个基本性质:1. 对应角相等性质:相似三角形中的对应角相等,即相等角所对的边成比例。
例如,若∠A≌∠D,则边AB与边DE的比等于边AC与边DF的比,即AB/DE = AC/DF。
2.对应边成比例性质:相似三角形中的对应边成比例,即边的比和角的比之间成立。
例如,若AB/DE = AC/DF,则∠A≌∠D。
3.三角形的扩大缩小性质:相似三角形中,如果一个三角形的边与另一个三角形的边成比例,那么这两个三角形是相似的。
例如,如果AB/DE = AC/DF且BC/EF = AC/DF,则三角形ABC与三角形DEF相似。
二、相似三角形的应用相似三角形在实际问题中具有广泛的应用。
下面介绍几个常见的应用:1.测量高度:相似三角形可用于测量无法直接测量的高度。
例如,当直接无法测量一座建筑物的高度时,可以利用相似三角形原理,在地面上测量一个已知距离的长度,然后观察建筑物的倾斜角度,从而利用相似三角形的比例关系计算出建筑物的高度。
2.计算距离:相似三角形还可用于计算距离。
例如,当无法直接测量两个不相邻点之间的距离时,可以利用相似三角形与已知距离的比例关系计算出所需距离。
3.设计工程:在设计工程中,相似三角形可用于模拟大规模结构的小规模模型。
通过将真实结构缩小成模型,可以通过相似三角形的比例关系获得有关真实结构的信息,从而进行有效的设计和分析。
4.地图测绘:在制作地图时,为了将真实距离转换为地图上的距离,可利用相似三角形的比例关系来缩放。
这样可以保持地图的比例并准确表示真实距离。
总结:相似三角形的性质和应用是初中数学中的重要内容。
准确理解相似三角形性质,并能灵活运用到实际问题中,能够帮助我们解决许多几何和测量方面的困难。
相似三角形的性质及应用(解析版)

4.5相似三角形的性质及应用一、相似三角形的性质1.相似三角形的对应角相等,对应边的比相等. 2. 相似三角形中的重要线段的比等于相似比.相似三角形对应高,对应中线,对应角平分线的比都等于相似比. 要点:要特别注意“对应”两个字,在应用时,要注意找准对应线段. 3. 相似三角形周长的比等于相似比∽,则由比例性质可得:4. 相似三角形面积的比等于相似比的平方∽,则分别作出与的高和,则21122=1122ABCA B C BC AD k B C k A D S k S B C A D B C A D '''''''⋅⋅⋅⋅=='''''''''⋅⋅△△要点:相似三角形的性质是通过比例线段的性质推证出来的. 二、三角形的重心三角形三条中线的交点叫做三角形的重心,三角形的重心分每一条中线成1:2的两条线段.OEFDABC即12OD OE OF OA OB OC === . 要点:H OEFDAB C过点E 作EH ∥BC 交AD 于H ,根据三角形的中位线平行于第三边并且等于第三边的一半可得CD=2EH ,从而得到BD=2EH ,再根据△BDO 和△EHO 相似,利用相似三角形对应边成比例列出比例式计算即可得证1=2OE HE OB BD ,同理其他比例也可以得到. 三、相似三角形的应用1.测量高度测量不能到达顶部的物体的高度,通常使用“在同一时刻物高与影长的比例相等”的原理解决.要点:测量旗杆的高度的几种方法:平面镜测量法 影子测量法 手臂测量法 标杆测量法2.测量距离测量不能直接到达的两点间的距离,常构造如下两种相似三角形求解。
1.如甲图所示,通常可先测量图中的线段DC 、BD 、CE 的距离(长度),根据相似三角形的性质,求出AB 的长.2.如乙图所示,可先测AC 、DC 及DE 的长,再根据相似三角形的性质计算AB 的长.要点:1.比例尺:表示图上距离比实地距离缩小的程度,比例尺= 图上距离/ 实际距离;2.太阳离我们非常遥远,因此可以把太阳光近似看成平行光线.在同一时刻,两物体影子之比等于其对应高的比;3.视点:观察事物的着眼点(一般指观察者眼睛的位置); 4. 仰(俯)角:观察者向上(下)看时,视线与水平方向的夹角. 一、单选题1.两三角形的相似比是2:3,则其对应角的角平分线之比是( ) A .2:3 B .2:3 C .4:9 D .8:27 【解答】B【提示】根据相似三角形对应角平分线的比等于相似比解答即可. 【详解】解:∵两三角形的相似比是2:3, ∴相似三角形对应角平分线的比是2:3,故选:B .【点睛】本题考查了相似三角形的性质,主要利用了相似三角形对应角平分线的比,对应高的比,对应中线的比都等于相似比的性质.2.已知ABC DEF ∽△△,ABC 与DEF 的面积之比为1:2,若BC 边上的中线长为1,则EF 边上的中线长是( ) A .2 B .2 C .3D .4【解答】A【提示】由ABC DEF ∽△△,ABC 与DEF 的面积之比为1:2可知:相似比为1:2,则对应中线的比为1:2,即可求出答案.【详解】∵ABC DEF ∽△△,ABC 与DEF 的面积之比为1:2 ∴相似比为1:2 ∴其对应中线的比为1:2 ∵BC 边上的中线长为1 ∴EF 边上的中线长是2 故选:A【点睛】本题主要考查了相似三角形的相似比的相关知识点,熟练掌握相似三角形面积比、相似比、对应边的高线、中线的比的关系是解题的关键,属于基础知识题.3.如图点D 、E 分别在△ABC 的两边BA 、CA 的延长线上,下列条件能判定ED ∥BC 的是( ).A .AD DEAB BC =; B .AD AE AC AB =;C .AD AB DE BC ⋅=⋅; D .AD AC AB AE ⋅=⋅. 【解答】D【提示】根据选项选出能推出ADE ABC ∆∆∽,推出D B ∠=∠或E C ∠=∠的即可判断. 【详解】解:A 、∵AD DEAB BC =,EAD BAC ∠=∠,不符合两边对应成比例及夹角相等的相似三角形判定定理. 无法判断ADE ∆与ABC ∆相似,即不能推出//DE BC ,故本选项错误;B 、AD AE AC AB =EAD BAC ∠=∠, ADE ACB ∴∆∆∽,E B ∴∠=∠,D C ∠=∠,即不能推出//DE BC ,故本选项错误;C 、由AD AB DE BC ⋅=⋅可知AB DEBC AD =,不能推出DAE BAC ∆∆∽,即不能推出D B ∠=∠,即不能推出两直线平行,故本选项错误;D 、∵AD AC AB AE ⋅=⋅,AD AEAB AC ∴=,EAD BAC ∠=∠, DAE BAC ∴∆∆∽,D B ∴∠=∠,//DE BC ∴,故本选项正确;故选:D .【点睛】本题考查了相似三角形的性质和判定和平行线的判定的应用,主要考查学生的推理和辨析能力,注意:有两组对应边的比相等,且这两边的夹角相等的两三角形相似. 4.已知ABC 与DEF 相似,且A D ∠=∠,那么下列结论中,一定成立的是( ) A .B E ∠=∠ B .AB ACDE DF =C .相似比为AB DED .相似比为BCEF【解答】D【提示】根据相似三角形的性质对不同的对应角和对应边进行分类讨论.【详解】解:∵B 可以与E 对应,也可以与F 对应,∴∠B=∠E 或∠B=∠F ,A 不一定成立; 同上,AB 可以与DE 对应,也可以与DF 对应,∴AB AC DE DF =或AB ACDF DE =,B 不一定成立;同上,AB 可以与DE 对应,也可以与DF 对应,∴相似比可能是AB DE ,也可能是ABDF ,C 不一定成立;∵∠A=∠D ,即∠A 与∠D 是对应角,∴它们的对边一定是对应比,即BC 与EF 是对应比,∴相似比为BCEF ,∴D 一定成立, 故选D .【点睛】本题考查相似三角形的性质,注意相似三角形的性质是针对对应角和对应边而言的. 5.如图,小明站在 C 处看甲、乙两楼楼顶上的点 A 和点 E .C ,E ,A 三点在同一直线上,B ,C 相距 20 米,D ,C 相距 40 米,乙楼的高 BE 为 15 米,小明的身高忽略不计,则甲楼的高 AD 为 ( )A .40 米B .20 米C .15 米D .30 米【解答】D【提示】证明ADC EBC ∽△△,利用相似三角形的性质解答即可. 【详解】解:由题意可知:90ADC ∠=︒,90EBC ∠=︒,C ∠是公共角,∴ADC EBC ∽△△, ∴AD DCEB BC =, ∵20m BC =,40m DC =,15m BE =, ∴40=15=30m 20DC AD EB BC =⨯⨯.故选:D【点睛】本题考查相似三角形的判定及性质,解题的关键是熟练掌握相似三角形的判定及性质. 6.如图,在Rt △ABC 中,90ACB ∠=,CD AB ⊥垂足为D ,那么下列结论错误的是( )A .22AC BD BC AD ⋅=⋅B .22BC BD CD AB ⋅=⋅C .AD BC AC CD ⋅=⋅ D .CD BC AC BD ⋅=⋅ 【解答】B【提示】根据直角三角形的性质与相似三角形的判定可知△ADC ∽△CDB ∽△ACB ,利用相似三角形的对应线段成比例即可求解. 【详解】∵∠ACB=90°,CD ⊥AB , ∴△ADC ∽△CDB ∽△ACB ∴AC2=AD·AB ,BC2=BD·AB ,故22AC BD BC AD ⋅=⋅,A 正确,B 错误;∵△ADC ∽△CDB∴AD AC CDCD BC BD == ∴AD BC AC CD ⋅=⋅,CD BC AC BD ⋅=⋅,C,D 选项正确; 故选B.【点睛】此题主要考查相似三角形的判定与性质,解题的关键是熟知直角三角形的性质及相似三角形的判定.7.如图,E ,F 是平行四边形ABCD 对角线AC 上两点,AE=CF=14AC .连接DE ,DF 并延长,分别交AB ,BC 于点G ,H ,连接GH ,则ADG BGHS S △△的值为( )A .12B .23C .34D .1【解答】C【提示】首先证明AG :AB=CH :BC=1:3,推出GH ∥AC ,推出△BGH ∽△BAC ,可得223924ADC BAC BGHBGHS S BA SSBG ()()====,13ADG ADCSS=,由此即可解决问题.【详解】∵四边形ABCD 是平行四边形 ∴AD=BC ,DC=AB , ∵AC=CA , ∴△ADC ≌△CBA , ∴S △ADC=S △ABC ,∵AE=CF=14AC ,AG ∥CD ,CH ∥AD ,∴AG :DC=AE :CE=1:3,CH :AD=CF :AF=1:3, ∴AG :AB=CH :BC=1:3, ∴GH ∥AC , ∴△BGH ∽△BAC , ∴223924ADC BAC BGHBGHS S BA S SBG ()()====,∵13ADG ADCS S=,∴913434ADG BGHS S=⨯=.故选C .【点睛】本题考查平行四边形的性质、相似三角形的判定和性质、全等三角形的判定和性质、等高模型等知识,解题的关键是灵活运用所学知识解决问题,属于中考选择题中的压轴题.8.如图,在正方形ABCD 中,ABP 是等边三角形,AP 、BP 的延长线分别交边CD 于点E 、F ,联结AC 、CP 、AC 与BF 相交于点H ,下列结论中错误的是( )A .AE=2DEB .CFP APHC .CFP APCD .2CP PH PB =⋅【解答】C【提示】A.利用直角三角形30度角的性质即可解决问题. B.根据两角相等两个三角形相似即可判断.C.通过计算证明∠DPB≠∠DPF ,即可判断.D.利用相似三角形的性质即可证明. 【详解】解:∵四边形ABCD 是正方形, ∴∠D=∠DAB=90°, ∵△ABP 是等边三角形, ∴∠PAB=∠PBA=∠APB=60°, ∴∠DAE=30°, ∴AE=2DE ,故A 正确; ∵AB ∥CD ,∴∠CFP=∠ABP=∠APH=60°,∵∠PHA=∠PBA+∠BAH=60°+45°=105°, 又∵BC=BP ,∠PBC=30°, ∴∠BPC=∠BCP=75°, ∴∠CPF=105°,∴∠PHA=∠CPF ,又易得∠APB=∠CFP=60°, ∴△CFP ∽△APH ,故B 正确; ∵∠CPB=60°+75°=135°≠∠DPF , ∴△PFC 与△PCA 不相似,故C 错误; ∵∠PCH=∠PCB-∠BCH=75°-45°=30°, ∴∠PCH=∠PBC , ∵∠CPH=∠BPC , ∴△PCH ∽△PBC ,∴PC PHPB PC =,∴PC2=PH•PB ,故D 正确, 故选:C .【点睛】本题考查相似三角形的判定和性质,等边三角形的性质,正方形的性质,直角三角形30度角的性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.9.如图所示,D 、E 分别是ABC ∆的边AB 、BC 上的点,且//DE AC ,AE 、CD 相交于点O .若45::2DOE COA S S ∆∆=,则BDES ∆与CDE S ∆的比是( )A .1:2B .1: 3C .2:3D .2:5 【解答】C【提示】利用相似三角形的性质解决问题即可. 【详解】解:∵//DE AC , ∴DEO CAO ∆∆∽, ∵45::2DOE COA S S ∆∆=,∴2425DE AC ⎛⎫=⎪⎝⎭,∴25DE AC =, ∵//DE AC , ∴25BE DE BC AC ==, ∴23BE EC =,∴BDES ∆与CDE S ∆的比2:3=,故选:C .【点睛】本题主要考查的是相似三角形的性质和判定,熟练掌握相似三角形的性质和判定定理是解题的关键.10.如图,正方形ABCD 和正方形CGFE 的顶点,,C D E 在同一条直线上,顶点, ,B C G 在同一条直线上.O 是EG 的中点,EGC ∠的平分线GH 过点D ,交BE 于点H ,连接FH 交EG 于点M ,连接OH 交EC 于点N .则BCCG 的值为( )A .31-B .3C .21-D .2【解答】C【详解】∵四边形ABCD 和四边形CGFE 是正方形,,,BC DC CE CG BCE DCG ∴==∠=∠.在BCE和DCG △中,,,(),,BC DC BCE DCG BCE DCG SAS BEC BGH CE CG =⎧⎪∠=∠∴∴∠=∠⎨⎪=⎩≌.90BGH CDG ∠+∠=︒,,90CDG HDE BEC HDE ∠=∠∴∠+∠=︒.GH BE ∴⊥.GH 平分,EGC BGH EGH ∠∴∠=∠.()BGH EGH ASA ∴≌.BH EH ∴=.又O 是EG 的中点,//HO BG ∴.D C DHN G ∴∽△△.DN HN DC CG ∴=.设HN a =,正方形ECGF 的边长是2b ,则2BC a =,22,,22b a aCD a NC b a b -==∴=,即2220a ab b +-=,解得(12)a b =-+或(12)a b =--(舍去),则221,212a BCb CG =-∴=-.二、填空题11.若两个相似三角形的面积比是9:25,则对应边上的中线的比为 _________. 【解答】3:5【提示】根据相似三角形的性质:相似三角形对应边上的中线之比等于相似比即可得出答案. 【详解】∵两个相似三角形的面积比是9:25 ∴两个相似三角形的相似比是3:5 ∴对应边上的中线的比为3:5 故答案为:3:5.【点睛】本题主要考查相似三角形的性质,掌握相似三角形的性质是解题的关键. 12.如图,△ABC ∽△CBD ,AB=9,BD=25,则BC=______.【解答】15【提示】根据相似三角形的性质列出比例式,代入计算即可求解. 【详解】解:∵△ABC ∽△CBD ,∴AB CBCB BD =,即2BC AB BD =⨯, AB=9,BD=25,2292522515BC AB BD ∴=⨯=⨯==,15BC =∴, 故答案为:15【点睛】本题考查了相似三角形的性质,根据相似三角形的性质列出比例式是解题的关键. 13.一个三角形三边长度之比为2:5:6,另一个与它相似的三角形最长边为24,则三角形的最短边为_________. 【解答】8【提示】首先设与它相似的三角形的最短边的长为x ,然后根据相似三角形的对应边成比例,即可得方程,解此方程即可求得答案.【详解】解:设与它相似的三角形的最短边的长为x ,则 2624x =,∴8x =;∴三角形的最短边为8. 故答案为:8.【点睛】此题考查了相似三角形的性质.此题比较简单,注意掌握相似三角形的对应边成比例定理的应用.14.如图,在矩形ABCD 中,E 是BC 的中点,连接AE ,过点E 作EF AE ⊥交DC 于点F .若4AB =,6BC =,则DF 的长为______.【解答】74【提示】结合矩形的性质证明BAECEF ∆∆可求得CF 的长,再利用DF CD DF =-可求解.【详解】解:四边形ABCD 为矩形,90B C ∴∠=∠=︒,4CD AB ==,90BAE AEB ∴∠+∠=︒,EF AE⊥,90AEF∴∠=︒,90AEB CEF∴∠+∠=︒,BAE CEF∴∠=∠,BAE CEF∴∆∆,::AB CE BE CF∴=,E是BC的中点,6BC=,3BE CE∴==,4AB=,4:33:CF∴=,解得94CF=,97444DF CD DF∴=-=-=.故选:7 4.【点睛】本题主要考查矩形的性质,相似三角形的判定与性质,证明BAE CEF∆∆是解题的关键.15.用杠杆撬石头的示意图如图所示,P是支点,当用力压杠杆的A端时,杠杆绕P点转动,另一端B向上翘起,石头就被撬动.现有一块石头要使其滚动,杠杆的B端必须向上翘起8cm,已知杠杆的动力臂AP与阻力臂BP之比为4:1,要使这块石头滚动,至少要将杠杆的A端向下压_____cm.【解答】32【提示】首先根据题意画出图形,然后根据△APM∽△BPN有AP AMBP BN=,然后再利用动力臂AP与阻力臂BP之比为4:1和8BN≥即可求出AM的最小值.【详解】解:如图:AM、BN都与水平线垂直,即AM∥BN;∴△APM∽△BPN;∴APBP=AMBN,∵杠杆的动力臂AP与阻力臂BP之比为4:1,∴AMBN=41,即AM=4BN;∴当BN≥8cm时,AM≥32cm;故要使这块石头滚动,至少要将杠杆的端点A 向下压32cm . 故答案为:32.【点睛】本题主要考查相似三角形的判定及性质的应用,掌握相似三角形的判定及性质是解题的关键. 16.如图,已知,20,60AB BC ACBAD DAE AD DE AE ︒︒==∠=∠=,则DAC ∠的度数为_________.【解答】40°【提示】由AB BC ACAD DE AE ==可判定△ABC ∽△ADE ,得到∠BAC=∠DAE ,再根据20BAD ︒∠=,60DAE ︒∠=,可得出∠DAC 的度数.【详解】解:∵AB BC ACAD DE AE ==, ∴~ABC ADE , ∴60BAC DAE ︒∠=∠=, 又∵20BAD ︒∠=, ∴40DAC ︒∠=. 故答案为:40°.【点睛】本题考查了相似三角形的判定和性质,解题的关键是能根据AB BC ACAD DE AE ==判定出△ABC ∽△ADE.17.如图,已知在ABC 中,90C ∠=︒,10AB =,1cot 2B =,正方形DEFG 的顶点G 、F 分别在边AC 、BC 上,点D 、E 在斜边AB 上,那么正方形DEFG 的边长为_____.【解答】207【提示】作CM ⊥AB 于M ,交GF 于N ,由勾股定理可得出AB ,由面积法求出CM ,证明△CGF ∽△CAB ,再根据对应边成比例,即可得出答案. 【详解】作CM ⊥AB 于M ,交GF 于N ,如图所示: ∵Rt △ABC 中,∠C =90°,AB =10,1cot B 2=,∴设BC =k ,则AC =2k ,AB2=AC2+BC2,即:102=(2k )2+k2,解得:k =25, ∴BC =25,AC =45, ∴CM =AC BC AB ⋅=452510⨯=4,∵正方形DEFG 内接于△ABC , ∴GF =EF =MN ,GF ∥AB , ∴△CGF ∽△CAB ,∴CN GF =CM AB ,即4EF EF410-=, 解得:EF =207;故答案为:207.【点睛】本题考查的是相似三角形的判定和性质、正方形的性质、勾股定理等知识;正确作出辅助线、灵活运用相似三角形的判定定理和性质定理是解题的关键.18.如图,在ABC 中,90ACB ∠=︒,AC BC =,点E 是边AC 上一点,以BE 为斜边往BC 侧作等腰Rt BEF △,连接,CF AF ,若6AB =,四边形ABFC 的面积为12,则AE =_________,AF =_________.【解答】 234【提示】如图,过点E 作EH AB ⊥于H ,过点F 作FQ AC ⊥,交AC 的延长线于Q ,由面积和差关系可求3BCF S ∆=,通过证明ABE CBF ∆∆∽,可得2()ABE BCF S AB S BC∆∆=,可求2EH =,由勾股定理可求AE ,BE ,EF 的长,通过证明BEH EFQ ∆∆∽,可得2BE EH BH EF QF EQ ===,可求22EQ =,2QF =,由勾股定理可求解.【详解】解:如图,过点E 作EH AB ⊥于H ,过点F 作FQ AC ⊥,交AC 的延长线于Q ,90ACB ∠=︒,AC BC =,2AB BC ∴,=6AB ,32AC BC ∴==四边形ABFC 的面积为12,12ABC BCF S S ∆∆∴+=, 3BCF S ∆∴=,等腰Rt BEF ∆,2BE BF ∴,45EBF∠=︒,=45ABC ∠︒,ABE CBF ∴∠=∠,2AB BE BC FB == ABE CBF ∴∆∆∽,∴2()ABE BCF S AB S BC ∆∆=, 326ABE S ∆∴=⨯=,∴162AB EH ⨯=,2EH ∴=,45CAB ∠=︒,EH AB ⊥,45CAB AEH ∴∠=∠=︒,2AH EH ∴==,222AE EH ==,4BH ∴=,2CE =,2221825BE CE BC ∴=+=+=,10EF ∴=,180AEH BEH FEB QEF ∠+∠+∠+∠=︒, 90BEH FEQ ∴∠+∠=︒,且90BEH EBH ∠+∠=︒EBH QEF ∴∠=∠,且90Q BHE ∠=∠=︒,BEH EFQ ∴∆∆∽, ∴2BE EH BHEF QF EQ ===, 22EQ ∴=,2QF =, 42AQ ∴=,2232234AF AQ QF ∴=+=+=,故答案为:22,34.【点睛】本题考查了相似三角形的判定和性质,等腰直角三角形的性质,勾股定理等知识,利用相似三角形的性质求出EH 的长是本题的关键.三、解答题19.如图,在ABP 中,C ,D 分别是,AP BP 上的点.若4,5,6,3CD CP DP AC BD =====.(1)求证:ABP DCP ∽△△; (2)求AB 的长. 【解答】(1)见解析(2)AB=8【提示】(1)△ABP与△DCP有公共角,分别计算PDPC与APBP的值,得到PD PCPA PB=,根据相似三角形的判定定理得出结论;(2)运用相似三角形的性质计算即可.(1)证明:∵CD=CP=4,DP=5,AC=6,BD=3,∴AP=AC+CP=6+4=10,BP=BD+DP=3+5=8,∴54PDPC=,10584APBP==,∴PD APPC BP=,即PD PCPA PB=,∵∠DPC=∠APB,∴△ABP∽△DCP;(2)解:∵△ABP∽△DCP,∴AB PBCD PC=,即844AB=,∴AB=8.【点睛】本题考查了相似三角形的判定与性质,属于基础题.解决问题的关键是掌握:有两边对应成比例且夹角相等的两个三角形相似.20.如图,在矩形ABCD中,AB:BC=1:2,点E在AD上,BE与对角线AC交于点F.(1)求证:△AEF∽△CBF;(2)若BE⊥AC,求AE:ED.【解答】(1)见解析(2)1:3【提示】(1)根据矩形的性质得到AD∥BC,然后根据相似三角形的判断方法可判断△AEF∽△CBF;(2)设AB=x,则BC=2x,利用矩形的性质得到AD=BC=2x,∠BAD=∠ABC=90°,接着证明△ABE∽△BCA,利用相似比得到AE=12x,则DE=32x,从而可计算出AE:DE.(1)解:证明:∵四边形ABCD为矩形,∴AD∥BC,∴△AEF∽△CBF;(2)设AB=x,则BC=2x,∵四边形ABCD为矩形,∴AD=BC=2x,∠BAD=∠ABC=90°,∵BE⊥AC,∴∠AFB=90°,∵∠ABF+∠BAF=90°,∠BAC+∠ACB=90°,∴∠ABF=∠ACB,∵∠BAE=∠ABC,∠ABE=∠BCA,∴△ABE∽△BCA,∴AE ABAB BC=,即2AE xx x=,∴AE=12x,∴DE=AD-AE=32x,∴AE:DE=13:22x x=1:3.【点睛】本题考查了三角形相似的判定与性质,应注意利用图形中已有的公共角、公共边等条件,同时利用相似三角形的性质进行几何计算.也考查了矩形的性质.21.如图,为了测量平静的河面的宽度EP,在离河岸D点3.2米远的B点,立一根长为1.6米的标杆AB,在河对岸的岸边有一根长为4.5米的电线杆MF,电线杆的顶端M在河里的倒影为点N,即PM PN=,两岸均高出水平面0.75米,即0.75DE FP==米,经测量此时A、D、N三点在同一直线上,并且点M、F、P、N N共线,点B、D、F共线,若AB、DE、MF均垂直与河面EP,求河宽EP是多少米?【解答】河宽为12米【提示】连接DF ,根据题意可得出四边形DEPF 为矩形,由ADB NDF ∽△△可求得DF ,便可解决问题.【详解】解:如图,连接DF ,∵点B 、D 、F 共线,DE 、MF 均垂直与河面EP ,且0.75DE FP ==, 4.5MF =, ∴四边形DEPF 为矩形, ∴DF EP =,∴ 4.50.75 5.25PN FM FP =+=+=, ∴ 5.250.756FN PN FP =+=+=, ∵AB 、DE 、MF 均垂直与河面EP , ∴90ABD NFD ∠=∠=︒, ∵ADB NDF ∠=∠, ∴ADB NDF ∽△△; ∴AB NFBD DF =, ∵ 1.6AB =, 3.2BD =, ∴1.663.2DF =,∴12DF =, ∴12EP =(米). 答:河宽EP 是12米.【点睛】本题主要考查了相似三角形的性质与判定,矩形的判定和性质等知识.关键是构造和证明三角形相似.22.如图,已知AD ,BC 相交于点E ,且△AEB ∽△DEC ,CD =2AB ,延长DC 到点G ,使CG =12CD ,连接AG .(1)求证:四边形ABCG 是平行四边形;(2)若∠GAD =90°,AE =2,CG =3,求AG 的长. 【解答】(1)证明见解析; (2)35AG =【提示】(1)根据相似三角形的性质可得AB ∥CD ,再由CD =2AB ,CG =12CD ,可得AB =CG ,即可证明;(2)由平行四边形的性质可得AG ∥BC ,可得∠AEB =90°,再由CG =3可得AB =3,利用勾股定理可得BE ,再由相似三角形的性质可得CE ,从而得出BC ,即可求解. (1)证明:∵△AEB ∽△DEC , ∴∠B =∠BCD , ∴AB ∥CD , 即AB ∥CG ,∵CD =2AB ,CG =12CD ,∴AB =CG ,∴四边形ABCG 是平行四边形; (2)解:∵四边形ABCG 是平行四边形,AE =2,CG =3, ∴AG ∥BC ,AG =BC ,AB =CG =3, ∵∠GAD =90°, ∴∠AEB =90°,在Rt △ABE 中,由勾股定理可得:BE 22AB AE -即BE =22325-=,∵△AEB ∽△DEC , ∴12BE AB CE CD ==, ∴CE =25,∴BC =BE+CE =35, ∴AG =BC =35.【点睛】本题考查相似三角形的性质,勾股定理,平行四边形的判定与性质,解题的关键是熟练掌握相似三角形的性质,勾股定理的运用,平行四边形的判定与性质.23.如图,在△ABC 中,AD 是角平分线,点E 是边AC 上一点,且满足ADE B ∠=∠.(1)证明:ADB AED ∆∆;(2)若3AE =,5AD =,求AB 的长. 【解答】(1)见解析(2)253【提示】(1)证出∠BAD=∠EAD .根据相似三角形的判定可得出结论; (2)由相似三角形的性质可得出AD ABAE AD =,则可得出答案. (1)∵AD 是∠BAC 的角平分线, ∴∠BAD=∠EAD . ∵∠ADE=∠B , ∴△ADB ∽△AED . (2)∵△ADB ∽△AED , ∴AD ABAE AD =,∵AE=3,AD=5, ∴535AB =, ∴253AB =. 【点睛】本题考查了相似三角形的判定与性质以及三角形内角和定理,熟练掌握相似三角形的判定定理和性质定理是解题的关键.24.已知:平行四边形ABCD ,E 是BA 延长线上一点,CE 与AD 、BD 交于G 、F .求证:2CF GF EF =⋅.【解答】见解析【提示】根据平行四边形的性质得到AD BC ∥,AB CD ∥,得到△DFG ∽△BFC ,△DFC ∽△BFE ,根据相似三角形的性质列出比例式,计算即可. 【详解】证明:∵四边形ABCD 是平行四边形, ∴AD BC ∥,AB CD ∥,∴△DFG ∽△BFC ,△DFC ∽△BFE ∴GF DF CF BF =,CF DFEF BF =, ∴GF CFCF EF =, 即2CF GF EF =⋅.【点睛】本题考查的是相似三角形的判定和性质,掌握相似三角形的判定定理和性质定理是解题的关键.25.如图,已知cm,cm,23,36,117AD a AC b BC AC B D ===∠∠=︒=︒,ABC DAC △∽△.(1)求AB 的长;(2)求DC 的长; (3)求BAD ∠的度数.【解答】(1)32cm a ;(2)2cm3b ;(3)153︒【提示】(1)由ABC DAC △∽△,可得:,AB BCAD AC =再代入数据可得答案;(2)由ABC DAC △∽△,可得:,AC BCDC AC =再代入数据可得答案;(3)由ABC DAC △∽△,可得:117,36,BAC D B DAC ∠=∠=︒∠=∠=︒再利用角的和差可得答案; 【详解】解:(1)23,,BC AC AD a ==3,2BC AC ∴= ABC DAC △∽△,,AB BCAD AC ∴= 3,2AB a ∴= 3.2AB a ∴=(2) ABC DAC △∽△,,AC BCDC AC ∴= 而3,,2BC AC b AC == 3,2b DC ∴=2.3DC b ∴=(3) ABC DAC △∽△,36,117,B D ∠=︒∠=︒117,36,BAC D B DAC ∴∠=∠=︒∠=∠=︒11736153.BAD BAC DAC ∴∠=∠+∠=︒+︒=︒【点睛】本题考查的是相似三角形的性质,掌握相似三角形的对应角相等,对应边成比例是解题的关键.26.如图,在四边形ABCD 中,AC ,BD 交于点F .点E 在BD 上,且BAE CAD ∠=∠,AB ACAE AD =.(1)求证:ABC AED ∽△△. (2)若20BAE ∠=︒,求∠CBD 的度数. 【解答】(1)证明见解析 (2)20︒【提示】(1)根据两边对应成比例,且夹角相等,两个三角形相似,即可证明.(2)根据(1)中ABC AED ∽△△,得出ADB ACB ∠=∠,再根据对顶角相等,AFD BFC ∠=∠,证得AFD BFC ∽△△,得出CBD CAD BAE ∠=∠=∠,即可求解. (1)∵BAE CAD ∠=∠∴BAE EAF CAD EAF ∠+∠=∠+∠, ∴BAC DAE ∠=∠, AB ACAE AD =,∵在ABC 和AED △中, AB ACAE AD BAC DAE ⎧=⎪⎨⎪∠=∠⎩,∴ABC AED ∽△△. (2)∵ABC AED ∽△△, ∴ADB ACB ∠=∠,又∵AFD BFC ∠=∠,对顶角相等,∴AFD BFC ∽△△, ∴CBD CAD ∠=∠,∵BAE CAD ∠=∠,20BAE ∠=︒,∴20CAD ∠=︒, 故答案为:20︒.【点睛】本题考查了相似三角形的判定和性质,熟练掌握相似三角形的判定和性质是解题的关键. 27.如图,四边形ABCD 为正方形,且E 是边BC 延长线上一点,过点B 作BF ⊥DE 于F 点,交AC 于H 点,交CD 于G 点.(1)求证:△BGC ∽△DGF ; (2)求证:GD AB DF BG ⋅=⋅; (3)若点G 是DC 中点,求GFCE 的值.【解答】(1)见解析 (2)见解析 (3)5GF CE=【提示】(1)由正方形性质和题干已知垂直条件得直角相等,后由对顶角相等,进而得到△BGC ∽△DCF .(2)由第一问的结论可得到相似比,既有DG BC DF BG ⋅=⋅,然后因为正方形四边相等,进行等量代换即可求出证明出结论.(3)通过ASA 判定出△BGC ≌△DEC ,进而根据第一问结论可得△BGC ∽△DGF ,然后通过相似比设未知数,赋值CG x =,即可求出GFCE 的值.(1)证明:∵四边形ABCD 是正方形 ∴90BCD ADC ∠=∠=︒ ∵BF DE ⊥ ∴90GFD ∠=︒ ∴BCD GFD ∠=∠,又∵BGC DGF ∠=∠, ∴△BGC ∽△DCF . (2)证明:由(1)知△BGC ∽△DGF , ∴BG BCDG DF =, ∴DG BC DF BG ⋅=⋅ ∵四边形ABCD 是正方形, ∴AB BC =∴DG AB DF BG ⋅=⋅. (3)解:由(1)知△BCC ∽△DGF , ∴FDG CBG ∠=∠,在△BGC 与△DEC 中,,{,=,CBG CDE BCG DCE BC CD ∠=∠∠=∠ ∴△BGC ≌△DEC (ASA ) ∴CG EC = ∵G 是CD 中点 ∴CG DG = ∴::GF CE CF DC = ∵△BGC ∽△DGF ∴::GF DG CG BG =在Rt △BGC 中,设CG x =,则2BC x =,BC =∴CG BG =∴GF CE=【点睛】本题主要考查了正方形的性质,全等三角形判定和性质,相似三角形判定和性质等知识点,熟练运用相似三角形判定和性质是解题的关键.28.如图1,在ABC 中,90ACB ∠=︒,AC BC =,点D 是AB 边上一点(含端点A 、B ),过点B 作BE 垂直于射线CD ,垂足为E ,点F 在射线CD 上,且EF BE =,连接AF 、BF .(1)求证:ABF CBE ∽;(2)如图2,连接AE ,点P 、M 、N 分别为线段AC 、AE 、EF 的中点,连接PM 、MN 、PN .求PMN ∠的度数及MNPM 的值;(3)在(2)的条件下,若2BC =PMN 面积的最大值.【解答】(1)证明见解析;(2)135PMN ∠=;=2MN PM 3)14 【提示】(1)根据两边对应成比例,夹角相等判定即可.(2)PMN ∠的值可以根据中位线性质,进行角转换,通过三角形内角和定理求解即可,MNPM 的比值转换为AFCE 的比值即可求得.(3)过点P 作PQ 垂直于NM 的延长线于点Q ,12PMN S MN PQ =△,将相关线段关系转化为CE ,可得关系218PMN S CE =△,观察图象,当2CE BC == 【详解】(1)证明:∵90ACB ∠=︒,AC BC = ∴2AB BC =,45ABC BAC ∠=∠= ∵BE 垂直于射线CD , ∴90,BEF ∠= 又∵EF BE =∴2FB EB =,45FBE EFB ∠=∠= ∵+ABC ABE ABE FBE ∠∠=∠+∠ 即:ABF CBE ∠=∠又∵2AB BFCB BE == ∴ABF CBE ∽(2)解:∵点P 、M 、N 分别为线段AC 、AE 、EF 的中点∴//PM CN ,//MN AF ,11,22PM CE MN AF== ∴MPN CNP ∠=∠,CNM EFA ∠=∠∴+MPN MNP CNP MNP CNM EFA ∠∠=∠+∠=∠=∠ 又∵ABF CBE ∽ ∴90AFB CEB ∠=∠= 又∵45EFB ∠=∴904545EFA AFB BFE ∠=∠-∠=-= ∴+45MPN MNP ∠∠=又∵++180MPN MNP PMN ∠∠∠= ∴18045135PMN ∠=-=又∵12=12AFMN AFPM CECE = 又∵ABF CBE ∽ ∴=2AF AB CE CB = ∴=2MNPM(3)如下图:过点P 作PQ 垂直于NM 的延长线于点Q , 135,PMN ∠=︒ 45,PMQ MPQ ∴∠=︒=∠,PQ ∴= 111221222228216PMNS MN PQ AF PM AF CE AF CE ==⨯⨯==△又∵BC =∴AF =∴221168PMN S CE ==△∴当CE 取得最大值时,PMN 取得最大值, ,BE CE ⊥E ∴在以BC 的中点为圆心,BC 为直径的圆上运动,∴当CE CB ==CE 最大,∴11=2=84S ⨯, 【点睛】本题考查的是三角形相似和判定、以及三角形面积最大值的求法,根据题意找见相关的等量是解题关键.。
浙教版九级上数学.相似三角形的性质及其应用同步导学练(含答案)2

4.5 相似三角形的性质及其应用(2)相似三角形的周长之比等于相似比,面积之比等于相似比的平方.1.两个相似三角形的一组对应边分别为5cm和3cm,若它们的面积之和为136cm2,则较大的三角形的面积是(D).A.36cm2B.85cm2C.96cm2D.100cm22.如图所示,已知△ABC∽△DEF,AB∶DE=1∶2,则下列等式中,一定成立的是(D).(第2题)(第3题)(第4题)3.如图所示,在ABCD中,点E在边DC上,DE∶EC=3∶1,连结AE交BD于点F,则△DEF的面积与△BAF的面积之比为(B).A.3∶4B.9∶16C.9∶1D.3∶14.如图所示,在△ABC中,D是AB边上的一点,若∠ACD=∠B,AD=1,AC=2,△ADC 的面积为1,则△BCD的面积为(C).A.1B.2C.3D.45.如图所示,如果△ABC与△DEF都是正方形网格中的格点三角形(顶点在格点上),那么S△DEF∶S△ABC的值为 2 .(第5题)(第6题)(第7题)6.如图所示,在平面直角坐标系中,Rt△ABO的顶点O与原点重合,顶点B在x轴上,∠ABO=90°,OA 与反比例函数y=x k (x<0)的图象交于点D ,且OD=2AD ,过点D 作x 轴的垂线交x 轴于点C.若S 四边形ABCD =10,则k 的值为 -16 .7.如图所示,在四边形ABCD 中,AD ∥BC ,CM 是∠BCD 的平分线,且CM ⊥AB ,点M 为垂足,AM=31AB.若四边形ABCD 的面积为715,则四边形AMCD 的面积是 1 . 8.已知两个相似三角形的一组对应边长分别是35cm 和14cm.(1)若它们的周长相差60cm ,求这两个三角形的周长.(2)若它们的面积相差588cm 2,求这两个三角形的面积.【答案】(1)较大的三角形的周长为100cm ,较小的三角形的周长为40cm.(2)较大的三角形的面积为700cm 2,较小的三角形的面积为112cm 2.9.如图所示,△ABC 是正方形网格中的格点三角形(顶点在格点上),请在正方形网格上按下列要求画一个与△ABC 相似的格点三角形,并填空.(1)在图1中画△A 1B 1C 1,使得△A 1B 1C 1的周长是△ABC 的周长的2倍,则ABB A 11= 2 . (2)在图2中画△A 2B 2C 2,使得△A 2B 2C 2的面积是△ABC 的面积的2倍,则AB B A 22= 2 .(第9题)【答案】(1)图略 2(2)图略2 10.如图所示,在△ABC 中,P 是BC 边上任意一点(点P 与点B ,C 不重合),AFPE 的顶点F ,E 分别在AB ,AC 上.已知BC=2,S △ABC =1.设BP=x ,平行四边形AFPE 的面积为y.(1)求y 关于x 的函数表达式.(2)上述函数有最大值或最小值吗?若有,则当x 取何值时,y 有这样的值,并求出该值;若没有,请说明理由.(第10题)【答案】(1)∵四边形AFPE 是平行四边形,∴PF ∥CA.∴△BFP ∽△BAC.∴.∵S△ABC =1,∴S △BFP =42x .同理S △PEC =,∴y=. (2)上述函数有最大值,最大值为21.理由如下:∵y=-22x +x=-21(x -1)2+21,-21<0, ∴y 有最大值.又∵0<x<2,∴当x=1时,y 有最大值,最大值为21.11.如图所示,D ,E 分别是△ABC 的边AB ,BC 上的点,且DE ∥AC ,AE ,CD 相交于点O ,若S △DOE ∶S △COA =1∶9,则S ,则S △BDE 与S △CDE 的比是(B ).A.1∶3B.1∶2C.1∶4D.1∶9(第11题) (第12题) (第13题) (第14题)12.如图所示,D ,E ,F ,G 为△ABC 两边上的点,且DE ∥FG ∥BC ,若DE ,FG 将△ABC 的面积三等分,则下列结论正确的是(C ).13.如图所示,在ABCD 中,AB=6,AD=9,∠BAD 的平分线交BC 于点E ,交DC 的延长线于点F ,BG ⊥AE 于点G ,BG=42,则△EFC 的周长为(D ).A.11B.10C.9D.814.如图所示,在△ABC 中,∠C=90°,D 是BC 边上一点,DE ⊥AB 于点E ,∠ADC=45°,若DE ∶AE=1∶5,BE=3,则△ABD 的面积为 13 .15.如图所示,平面内有16个格点,每个格点小正方形的边长为1,则图中阴影部分的面积为 1211 . (第15题) (第16题)16.如图所示,M 是△ABC 内-点,过点M 分别作直线平行于△ABC 的各边,所形成的三个小三角形(图中阴影部分)的面积分别是1,4,9.则△ABC 的面积是 36 .17.如图所示,已知AD 是△ABC 的角平分线,⊙O 经过A ,B ,D 三点.过点B 作BE ∥AD ,交⊙O 于点E ,连结ED.(1)求证:ED ∥AC.(2)若BD=2CD ,设△EBD 的面积为S1,△ADC 的面积为S2,且S 21-16S 2+4=0,求△ABC 的面积.(第17题)【答案】(1)∵AD 是△ABC 的角平分线,∴∠BAD=∠DAC.∵∠E=∠BAD ,∴∠E=∠DAC. ∵BE ∥AD ,∴∠E=∠EDA.∴∠EDA=∠DAC.∴ED ∥AC.(2)∵BE ∥AD ,∴∠EBD=∠ADC.又∵∠E=∠DAC ,∴△EBD ∽△ADC ,且相似比k=DC BD =2.∴21S S =k 2=4,即S1=4S2.∵S12-16S 2+4=0,∴16S22-16S2+4=0,即(4S2-2)2=0.∴S 2=21. ∵=3,∴S △ABC =23. 18.如图1所示,分别以直角三角形ABC 三边为直径向外作三个半圆,其面积分别用S 1,S 2,S 3表示,则不难证明S 1=S 2+S 3.(1)如图2所示,分别以直角三角形ABC 三边为边向外作三个正方形,其面积分别用S 1,S 2,S 3表示,则S 1,S 2,S 3之间有什么关系?(不必证明)(2)如图3所示,分别以直角三角形ABC 三边为边向外作三个正三角形,其面积分别用S 1,S 2,S 3表示,请你确定S 1,S 2,S 3之间的关系并加以证明.(3)若分别以直角三角形ABC 三边为边向外作三个一般三角形,其面积分别用S 1,S 2,S 3表示,为使S 1,S 2,S 3之间仍具有与(2)相同的关系,所作三角形应满足什么条件?请证明你的结论.(4)类比(1),(2),(3)的结论,请你总结出一个更具一般意义的结论.(第18题) 【答案】设直角三角形ABC 的三边BC ,CA ,AB 的长分别为a ,b ,c ,则c 2=a 2+b 2.(1)S 1=S 2+S 3.(2)S1=S2+S3.证明:∵S1=43c 2,S2=43a 2,S3=43b 2,∴S2+S3=43 (a 2+b 2)= 43c 2=S 1.∴S 1=S 2+S 3. (3)当所作的三个三角形相似时,S 1=S 2+S 3.证明:∵所作的三个三角形相似,∴, ∴=1.∴S 1=S 2+S 3.(4)分别以直角三角形ABC 三边为边向外作三个相似图形,其面积分别用S 1,S 2,S 3表示,则S 1=S 2+S 3.19.【镇江】点E ,F 分别在ABCD 的边BC ,AD 上,BE=DF ,点P 在边AB 上,AP ∶PB=1∶n (n >1),过点P 且平行于AD 的直线l 将△ABE 分成面积为S 1,S 2的两部分,将△CDF 分成面积为S 3,S 4的两部分(如图所示).有下列四个等式:①S 1∶S 3=1∶n ;②S 1∶S 4=1∶(2n+1);③(S 1+S 4)∶(S 2+S 3)=1∶n ;④(S 3-S 1)∶(S 2-S 4)=n ∶(n+1).其中成立的是(B ).A.①②④B.②③C.②③④D.③④(第19题) (第20题)20.【杭州】如图所示,在Rt △ABC 中,∠BAC=90°,AB=15,AC=20,点D 在边AC 上,AD=5,DE ⊥BC 于点E ,连结AE ,则△ABE 的面积等于 78 .【解析】∵在Rt △ABC 中,∠BAC=90°,AB=15,AC=20,∴BC=22AC AB =25,S △ABC =21AB ·AC=21×15×20=150.∵AD=5,∴CD=AC -AD=15.∵DE ⊥BC ,∴∠DEC=∠BAC=90°.又∵∠C=∠C ,∴△CDE ∽△CBA.∴AC CE =CB CD ,即20CE =2515,解得CE=12.∴BE=BC -CE=13.∵S △ABE ∶S △ABC =BE ∶BC=13∶25,∴S △ABE =2513×150=78.21.如图所示,在△ABC 中,已知AB=AC=5,BC=6,且△ABC ≌△DEF ,将△DEF 与△ABC 重合在一起,△ABC 不动,△DEF 运动,并满足:点E 在边BC 上沿点B 到点C 方向运动,且DE 始终经过点A ,EF 与AC 交于点M .(1)求证:△ABE ∽△ECM .(2)在△DEF 的运动过程中,重叠部分能否构成等腰三角形?若能,求出BE 的长;若不能,请说明理由.(3)当线段AM 最短时,求重叠部分的面积.(第21题)【答案】(1)∵AB=AC ,∴∠B=∠C.∵△ABC ≌△DEF ,∴∠AEF=∠B.∵∠AEF+∠CEM=∠AEC=∠B+∠BAE ,∴∠CEM=∠BAE.∴△ABE ∽△ECM.(2)能.∵∠AEF=∠B=∠C ,∠AME >∠C ,∴∠AME >∠AEF.∴AE ≠AM.①当AE=EM 时,则△ABE ≌△ECM ,∴CE=AB=5.∴BE=BC -EC=1.②当AM=EM 时,则∠MAE=∠MEA ,∴∠MAE+∠BAE=∠MEA+∠CEM ,即∠CAB=∠CEA.∵∠C=∠C ,∴△CAE ∽△CBA.∴AC CE =CB AC .∴CE=CB AC 2=625.∴BE=611.∴BE=1或611. (3)设BE=x.∵△ABE ∽△ECM ,∴.∴CM=-51(x -3)2+59.∴AM=5-CM=51(x -3)2+516.∴当x=3时,AM 最短为516.此时BE=21BC ,∴E 为BC 的中点.∴AE ⊥BC.∴AE=22BE AB =4.EF ⊥AC.∴EM=AE 2-AM 2=512.∴S △AEM =21×516×512=2596.。
4.4相似三角形的性质及应用(2)

测量金字塔高度
D B
┐ C A
┐ E
例1
A
C B E
D
把一小镜子放在离树( ) 米的点 米的点E处 把一小镜子放在离树(AB)8米的点 处,然后 沿着直线BE后退到点 后退到点D, 沿着直线 后退到点 ,这时恰好在镜子里看到树梢 顶点A,再用皮尺量得DE=2.8m,观察者目高 顶点 ,再用皮尺量得 , CD=1.6m。这时树高多少?你能解决这个问题吗? 。这时树高多少?你能解决这个问题吗?
二 、测高的方法
测量不能到达顶部的物体的高度,通常用“在同一时刻物 测量不能到达顶部的物体的高度 通常用“ 通常用 高与影长的比例” 高与影长的比例”的原理解决
三 、测距的方法
测量不能到达两点间的距离,常构造相似三角形求解 测量不能到达两点间的距离 常构造相似三角形求解 解决实际问题时( 测高、测距), 解决实际问题时(如测高、测距), 一般有以下步骤: 一般有以下步骤:①审题 ②构建图形 ③利用相似解决问题
A P B Q E N C
D M
课堂小结: 课堂小结
一 、相似三角形的应用主要有如下两个方面
1 测高(不能直接使用皮尺或刻度尺量的 测高 不能直接使用皮尺或刻度尺量的) 不能直接使用皮尺或刻度尺量的 2 测距 不能直接测量的两点间的距离) 测距(不能直接测量的两点间的距离 不能直接测量的两点间的距离
O
练习
2.已知:梯形ABCD 2.已知:梯形ABCD 已知 ,AD∥ 中,AD∥BC,AD=36,BC=60cm, AD=36,BC=60cm, 延长两腰BA,CD BA,CD交于点 延长两腰BA,CD交于点 O,OF⊥ O,OF⊥BC,交AD于 E,EF=32cm,则OF=_______. cm,则 cm,
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
练习
4、三角形的中位线截得的三角形与原 三角形的面积之比是多少?S△ADE与S四边 形DBCE的比呢?
A
D
B
E C
例4:如图,在△ABC中,作DE∥BC,分别 交AB、AC于点D、E,若要使△ADE与四边 形DBCE的面积相等,则AD与AB的比应取 多少? A D B E C
练习
4、在△ABC中,DE∥BC,E、D分别在AC、 AB上,EC=2AE,则S△ADE:S四边形DBCE的比为 ______ 5、如图,△ABC中, DE∥FG∥BC,AD=DF=FB, 则S△ADE:S四边形DFGE:S四 边形FBCG=_________
回顾:
相似三角形的性质: 1.相似三角形的对应角相等, 对应边成比例 2.相似三角形对应边上的中线、对应边 上的高、对应角的角平分线之比都等 于 相似比 。
ΔABC与ΔA’B’C’有什 么关系?为什么?
A
B C
ΔABC与ΔA’B’C’的相似比 是多少? A’ ΔABC与ΔA’B’C’的周长比 是多少? 面积比是多少?
F
C
B
P
拓展
如图DE∥BC,FG∥AB,MN∥AC, 且DE、FG、 MN交于点P。若记SΔDPM= S1, SΔPEF= S2, SΔGNP= S3,SΔABC= S、S与S1、 S2、S3之间 是否也有类似结论?猜想并加以验证。
显然△MDP∽△ABC 则由面积比等于相似比的平方知 √S1:√S=DP:BC , 同时,因为DP=BG,所以,有 √S1:√S=BG:BC ……① 同理,可得 √S2:√S=NC:BC ……② √S3:√S=GN:BC ……③ ①、②、③三式相加可得 (√S1+√S2+√S3):√S=1 即:√S=√S1+√S2+√S3
A M D
S1
探究 F E
S2
P S3
B G N C
B’
C’
你发现上面两个相似三角形的周长比与相似比 有什么关系?面积比与相似比又有什么关系?
猜想:相似三角形的周长之比等于相似 比,面积比等于相似比的平方
已知:Δ ABC∽Δ A’ B’ C,’相似比 为k. Δ ABC的周长
求证:
Δ A’B’C’的周长
= K,
A
sABC sA’B’C’
A’
=k2
三角形地块的实际周长 10000
A
∴三角形地块的实际周长为9.7×104cm, B 即970m。量得BC这上的高为2.2cm 1 ∴地图上△ABC的面积为 ×3.8×2.2=4.18cm2
2
∵
D
C
4.18 1 三角形地块的实际面积 10000
2
∴三角形地块的实际面积为4.18×108cm2,即41800m2 答:估计三角形地块的实际周长为970米,实际面积为41800平方米。
6、如图,△ABC中EF∥GH∥BC, AE:EG:GB=1:2:3,△AEF、四边形EFHG、四 边形GHCB的面积依次记为S1、S2、S3。则 S1:S2:S3=?
E A S1 F S2 S3 H
G
B
C
拓展
1、如图,△ABC中EF∥BC,PF∥AB, 若设SΔABC=S, SΔAEF=S1,SΔFCP=S2.请 猜想:S与S1、S2之间存在怎样的关系? 你能加以验证吗? A E
练习
例1;如图是某市部分街道图,比例尺是1:10000,请你 估计三条道路围成的三角形地块ABC的实际周长和面积
解:地图上的比例尺为1:10000,就是地图上的△ABC与实 际三角形地块的相似比为1:10000,量得地图上 AB=3.4cm,BC=3.8cm,AC=2.5cm。则地图上△ABC的周长为 3.4+3.8+2.5=9.7(cm) ∵ 9.7 1
3.相似三角形的周长之比等于相似比, 相似三角形的面积之比等于相似比的平方
练习
1.Δ ABC中,AE是角平分线,D是AB上的一 点,CD交AE于G,∠ACD=∠B,且 AC=2AD.则Δ ACD∽Δ______.它们的相似 比K =__, AE ______ AG A D G E
B
C
2、(1)如果将三角形的边长扩大为原来 的100倍,那么周长扩大为原来的100倍; 10000 面积扩大为原来的 倍; (2)如果三角形的面积扩大为原来的100 倍,那么边长扩大为原来的 10 倍; (3)如果三角形的周长扩大为原来的100 倍,那么边长扩大为原来的 100 倍; 3、在10倍的放大镜下看到的三角形与原三 角形相比,三角形的边长、周长、角、面 积,哪些被放大了10倍?
B
B’
C’
C
相似三角形的周长和面积有以下性质:
相似三角形的周长之比等于相似比, 相似三角形的面积之比等于相似比的平方
A
A’几何语言:∵ΔB NhomakorabeaD
B’
C’ D’
C
ABC∽Δ A’ B’ C,’相似比为k.
Δ ABC的周长 Δ A’B’C’的周长
∴
=k
sABC sA’B’C’
=k2
课堂小结:
相似三角形的性质: 1.相似三角形的对应角相等, 对应边成比例 2.相似三角形对应边上的中线、对应边 上的高、对应角的角平分线之比都等 于 相似比 。