奥氏体化温度
等温淬火球铁(ADI)及其应用

S 应被严格限制,以保证球化成功,防止过 多的夹杂物产生和球化衰退。P促进脆性,为有 害元素。Mo 、Ni 、 Mn 、Cu 是由强变弱的促进 硬度的元素。Mn 应低于普通球墨铸铁,因为Mn 有显著的偏析倾向,致使石墨分布不均匀。Cu 可 以部分消除 Mn 的不利影响,在使用Cu 后,Mn 含量可放宽至0.5%。加入合金元素Cu 、Mo 、Ni 、Nb可以提高淬透性及力学性能。干扰元素Ti 、 Sn 、 Sb 、V 等破坏球形,要用稀土元素中和, 但Ce过多反球化,应加以控制。
1.2.3 等温淬火时间和奥氏体含碳量 在生产等淬球铁过程中,等淬时的长短起着主要作 用。在铁素体生核期,奥氏体接受铁素体生核与生长排 出的碳份,使得奥氏体中碳份由淬火时的0.8%-1.1%, 增加至1.2%-1.6%。这一碳份还不够使奥氏体在室温稳 定,还要在等温液中继续保温;在铁素体生长期,生长 的铁素体将更多的碳推入剩余奥氏体,使奥氏体碳浓度 增至1.8%-2.2%。这一碳浓度无论从热力学和动力学都 是稳定的。
1.1.3 铸造工艺 采用先进的成形方法和科学的浇冒口设计技 术,防止铸件产生缩孔、缩松、气孔、夹渣等隐 藏性缺陷。孔洞和显微缩松体积<1%。只有提 供完善的原始铸件,才能保证等淬球铁高性能的 稳定性和可靠性。 铸铁水平连铸和金属型铸造是制造等淬球铁 原件先进的成形方法,这种方法铸件冷却快,石 墨球数又多、又圆整,不易产生铸造缺陷。
互相合作
共同发展
共同进步
等温淬火球铁(ADI)及其应用
等温淬火球墨铸铁(Austempering Ductile Iron)是将球墨铸铁加热至奥氏体温度(850- 950℃)保温(1-2h)至奥氏体为碳所饱和, 然后急冷至使铸件不生成珠光体并高于马氏体 开始形成温度(Ms), 在此温度(250-380℃ )保持足够长的时间(1.5-3.5h)生成针状铁素 体和高碳奥氏体(称为奥氏铁素体)的热处理 态铸铁。等温淬火球墨铸铁简称等淬球铁( ADI),国内也有称为奥氏体球铁,贝氏体球 铁,奥贝球铁。
奥氏体化温度

马氏体转变膨胀曲线
Mf M50 C
B Ms
温度T
3. 研究钢的连续冷却转变
实际生产中,热处理多采用连续的冷却方式。需 要应用钢的连续冷却转变图(CCT)曲线了解 过冷奥氏体连续冷却转变的规律。CCT曲线的 建立,需首先测定不同冷却速度下的连续冷却 转变的膨胀曲线。
40CrNiMoA钢的冷却膨胀曲线: 为绘制CCT曲线,先取时间对数为横坐标,温度T纵坐 标绘出不同冷却速度的冷却曲线,将膨胀曲线上得到 的转变点,将开始及终了转变点联成光滑曲线便得到 CCT图。
例2: 金刚石为碳的一种晶体结构,其晶格常数 a=0.357 nm,当它转变成石墨(ρ=2.25g/cm3) 结构时,求其体积改变百分数?金刚石的晶体 结构为复式面心立方结构,每个晶胞共含有8个 碳原子。
例2:金刚石为碳的一种晶体结构,其晶格常数
a=0.357 nm,当它转变成石墨(ρ=2.25g/cm3) 结构时,求其体积改变百分数?金刚石的晶体 结构为复式面心立方结构,每个晶胞共含有8个 碳原子。
钢膨胀曲线的分析时间tlt1oel温度tact2钢的奥氏体化处理及等温转变过程的膨胀曲线时间tllflf2时间t温度t开始终了50t1t2过冷奥氏体等温转变动力学转变图l温度tmsmfabcdm50马氏体转变膨胀曲线图40crnimoa连续冷却转变热膨胀曲线2测定钢的cct曲线连续冷却转变曲线iii
Volume of BCC cell = a3 = 2.8633 = 23.467×10-30 (m3) Volume of FCC cell = a3 = 3.5913 = 46.307×10-30 (m3) But the FCC unit cell contains four atoms and the BCC unit cell contains only two atoms. Two BCC unit cells with a total volume of 46.934 will contain 4 atoms. Volume change/atom = (46.307 -46.934)/46.934 = -1.34% Steel contracts on heating!!
奥氏体化处理

Hale Waihona Puke 快速快速原始奥氏体晶粒小的好处是,相变时产生的马氏体片也小。这不仅提高强度,而且也改善延性和韧性。一种 能大大细化原奥氏体晶粒的方法是,用很快的速率加热至奥氏体化温度,并在刚高于AC3温度处作非常短时间的 保温。这时可用瞬间过热来溶解碳化物,而又不至于粗化奥氏体晶粒。
由于马氏体晶粒细化以及淬火时位错密度的提高,这种处理能使屈服应力提高约10%。位错密度提高的原因 还不很清楚,但在200℃以下的回火不能消除这些位错,于是冲击性能变差。提高回火温度确能消除位错,这时 性能主要由极细的回火马氏体片尺寸控制。采用400℃以上的回火温度,快速热处理能改善冲击性能,但效果不 很大。有证据表明,奥氏体形变热处理前,如果不用普通奥氏体化而采用快速热处理,强度虽只有少量提高,但 韧性却大大提高。原因主要是快速奥氏体化产生的晶粒细。
其研究要点如下。在760~820℃范围内保温1~8h后残存的碳化物数量如图(b)所示。将其在一定条件下等 温相变后的球状碳化物数量如图(c)所示,两种情况均是温度越高碳化物越少。而从绝对值看时,等温相变后多 一些,以单位体积换算大致相同,在冷却中没有新的核生成。同时,升温速度缓慢时,片状碳化物分断后形成较 大的颗粒。如图(d)所示,相对的数量较少,核粒径较大。为了了解最合适的核数,探讨了等温相变后的球化组 织,见图(e)。其碳化物粒径状况如图(f)所示。奥氏体化的温度高时,核的数量少,球状碳化物粒径大,是 良好的分离的组织状态。但是奥氏体化温度过高时,由于核间距离过大,C不能很好扩散凝聚,会形成新的片状碳 化物析出,相反,温度过低时,形成碳化物数量很多、却不能很好分离的组织。具体来说,在820℃短时保温与 800℃长时间保温,会有新的片状碳化物析出。若在760℃加热,如果不进行长时间保温,则分离状况不充分。总 之,要得到最合适的核心数量,应在800℃短时间保温或是在780℃保温,但在实际生产中,因为有凝固偏析的存 在,需稍高于上述温度,在780℃~790℃处理。
钢的奥氏体化过程

钢的奥氏体化过程钢是一种重要的金属材料,具有优良的力学性能和耐腐蚀性能。
而钢的奥氏体化过程是指钢在加热冷却过程中的晶体结构转变。
本文将以钢的奥氏体化过程为标题,详细介绍钢的奥氏体化过程及其影响因素。
一、奥氏体的定义奥氏体是一种在钢中常见的晶体结构,具有面心立方结构。
在室温下,奥氏体是钢的主要组织之一,它具有较高的硬度和强度。
二、奥氏体化过程奥氏体化过程是指钢在加热到一定温度后,晶体结构发生转变,从其他组织转变为奥氏体结构的过程。
奥氏体化过程是钢的热处理过程中的重要环节。
1. 加热阶段在奥氏体化过程中,首先需要将钢件加热到一定的温度。
加热温度的选择是根据钢的成分、组织结构和所需性能来确定的。
通常情况下,钢的加热温度在临界点以上,即钢的临界温度。
2. 保温阶段钢件加热到一定温度后,需要保持一段时间,使钢件内部温度均匀分布,以促进晶体结构的转变。
保温时间的长短取决于钢件的尺寸和所需的晶体结构转变程度。
3. 冷却阶段在保温阶段结束后,需要将钢件迅速冷却到室温或低温,以固定奥氏体的晶体结构。
冷却速度的选择也是根据钢的成分、组织结构和所需性能来确定的。
通常情况下,冷却速度越快,所得到的奥氏体的晶体结构越细小,强度和硬度也会相应提高。
三、奥氏体化过程的影响因素奥氏体化过程的结果会受到多种因素的影响,包括温度、时间和冷却速度等。
1. 温度温度是奥氏体化过程中最重要的影响因素之一。
加热温度的选择应根据钢的成分和所需的晶体结构来确定。
过高的温度可能导致晶粒长大,从而降低钢的强度和硬度。
2. 时间保温时间的长短也会对奥氏体化过程产生影响。
保温时间过短可能导致晶体结构转变不完全,保温时间过长则可能导致晶粒长大。
因此,保温时间的选择应根据钢的成分和所需的晶体结构转变程度来确定。
3. 冷却速度冷却速度是奥氏体化过程中另一个重要的影响因素。
快速冷却可以得到细小的奥氏体晶粒,从而提高钢的强度和硬度。
慢速冷却则会导致晶粒长大,从而降低钢的强度和硬度。
奥氏体的形成动力学

(1) 形核率I
在奥氏p( Q W ) kT
(9.1)
式中,C为常数; Q为扩散激活能; T为绝对温度;k为波尔兹曼常数; W为临界晶核的形核功。
W
Gmax
16 3
(ⅱ) 铁素体中有利于奥氏体形核部位增多, 原子扩散距离相对缩短,有利于奥氏体长大;
(ⅲ) 奥氏体与铁素体的相界面浓度差(Cγ/αCα/γ)以及奥氏体与渗碳体的相界面浓度差 (C cem/γ-Cγ/cem)均减小(见图9.5(a)),因而 加速了奥氏体长大时的相界面推移速度。
综上所述,奥氏体形成温度升高时,奥氏体 的形核率I和长大速度G均增大。所以,奥氏体形 成速度随形成温度升高呈单调增大。
由于在一个珠光体片层间距内形成奥氏体的
同时,类似过程也在其他片层中进行,所以可用 一个片层间距内的奥氏体的长大速度代替奥氏体 长大的平均速度。此时
dC C / cem C /
dx
S0
,
其中 S0为珠光体片层间距,Cγ/cem-Cγ/α为奥氏体
两个相界面之间的浓度差(由状态图中GS线和ES线
确定),因此可近似估算奥氏体向铁素体及渗碳体
➢ 原子扩散系数,原子扩散速度 ,有利于铁素体向奥 氏体的点阵重构,促进渗碳体的溶解,也加速奥氏体的 形核。
➢ Cγ/α与Cα/γ之差减小(图9.5(a)) ,奥氏体形核所需的 碳浓度起伏减小,也有利于奥氏体的形核率。
因此,奥氏体形成温度升高,即相变过热度增大, 可以使奥氏体形核急剧,这对于形成细小的奥氏体晶 粒是有利的。
dC
dx 为相界面处奥氏体中碳的浓度梯度;△CB为奥氏体与
铁素体的相界面处或奥氏体与渗碳体的相界面处的两相浓
20CrMnTiH、20CrMoH等温正火工艺

20CrMnTiH、20CrMoH等温正火工艺正火是汽车变速器齿轮、轴类零件锻坯预先热处理的常用工艺。
目的是为了获得均匀、接近理想平衡状态的组织(铁素体和珠光体)和合适的硬度范围(160-190HB),以提高切削加工性和控制最终热处理变形。
但常规正火由于受设备限制采用堆装、堆冷方式,会造成不同零件之间或同一零件不同部位的冷却速度及其组织、应力和硬度的较大差别,导致切削加工性能恶化和热处理变形加大,从而降低齿轮精度等级和影响齿轮的使用性能。
另外,随着汽车行业中齿轮、轴类零件精度等级的提高以及Ni-Cr钢的普及应用,采用常规正火工艺已经不能适应生产的要求,为此我们公司于2007年底进行技术改造,购进了一条等温正火线,并于2008年六月份调试完成。
在等温正火线的调试以及试生产过程中,我们对20CrMnTiH、20CrMoH、SAE8620 H等材料进行了等温正火试验,通过工艺试验得出以下结论:要获得均匀分布的组织、硬度以及良好的机械切削加工性能,主要取决于正火工艺过程中快冷、缓冷的设计和等温温度、时间的确定。
下面做一简单的总结回顾:一、等温正火及其关键工艺参数:根据常用低碳合金渗碳钢的奥氏体连续冷却转变曲线,其共同特点是:奥氏体均匀化后,在随后的冷却过程中,由于冷却速度的不同,正火后不同零件之间或同一零件的表面与心部组织也不相同(铁素体与珠光体的含量比例或含有贝氏体)。
要完全获得理想均匀的铁素体和珠光体,则对冷却速度的限制较为严格,这是常规正火很难实现的。
等温正火的原理是将工件加热到AC3或ACcm以上30~50℃,保温适当时间后,以合适的方式冷却到珠光体转变区域某一合适温度,并在此温度下保温,使不同零件和同一零件的不同部位温度均匀化,并在该温度下均匀地完成铁素体+珠光体转变,然后在空气中冷却的正火工艺。
由于不同零件和零件的不同部位基本上是在同一温度下完成组织转变的,所以转变产物及应力、硬度分布是均匀的,从而克服了常规正火过程中零件冷却速度难以控制、零件冷却不均匀的问题。
奥氏体等温转变曲线

奥氏体等温转变曲线
奥氏体等温转变曲线是描述钢材在冷却过程中奥氏体相转变为其他相(如铁素体、贝
氏体、马氏体等)时的温度-时间关系曲线。
奥氏体等温转变曲线是根据一定条件下进行的实验数据绘制而成的,可以帮助人们了解钢材在不同温度下的相变行为。
奥氏体等温转变曲线通常包括以下几个主要阶段:
1. 加热阶段:钢材在室温下开始加热,温度逐渐升高。
在此阶段,奥氏体相开始
逐渐形成。
2. 奥氏体形成阶段:当钢材的温度达到一定程度时,奥氏体相开始迅速形成。
此时,奥氏体相的含量逐渐增加。
3. 奥氏体保持阶段:当钢材的温度保持在一定范围内时,奥氏体相的含量基本保
持不变。
此时,钢材的组织处于稳定状态。
4. 奥氏体相变阶段:当钢材的温度继续降低时,奥氏体相开始发生相变。
不同的
相变过程会在曲线上呈现不同的形态。
奥氏体等温转变曲线的形态可以受到多种因素的影响,如钢质的成分、加热和冷却速率、温度变化范围等。
不同材料和实验条件下得到的奥氏体等温转变曲线可能会
有所不同。
通过研究奥氏体等温转变曲线,人们可以深入了解钢材的相变机制,
从而提高钢材的性能和应用范围。
奥氏体化

奥氏体化?将钢件加热至临界点以上温度,使之转变为奥氏体,并获得均匀奥氏体组织奥氏体的形成过程包含点阵重构和原子的扩散奥氏体的性能:在钢的各种组织中,以奥氏体的密度最高,比体积最小,线膨胀系数最大,导热性能最差。
故奥氏体钢在加热时应降低加热速度各种临界转变温度的物理意义Ac1:加热时珠光体转变为奥氏体的温度Ac3:加热时先共析铁素体全部转变为奥氏体的终了温度Accm:加热时二次渗碳体全部溶入奥氏体的终了温度Ar1:冷却时奥氏体转变为珠光体的温度Ar3:冷却时奥氏体开始析出先共析铁素体的温度Arcm:冷却时奥氏体开始析出二次渗碳体的温度奥氏体化过程要经历四个阶段:1. 奥氏体晶核的形成2. 奥氏体晶核的长大3. 渗碳体的溶解4. 奥氏体成分的均匀化珠光体转变为奥氏体并使奥氏体成分均匀必须有两个必要而充分条件:一是温度条件,要在Ac1以上加热,二是时间条件,要求在Ac1以上温度保持足够时间。
四、影响奥氏体形成速度的因素:一)加热温度(二)钢的碳含量’钢中含碳量越高,奥氏体的形成速度越快(三)钢的原始组织\原始组织越细,A形成越快钢中合金元素对奥氏体形成的影响主要有两方面:一方面是合金影响碳在奥氏体中的扩散系数;另一方面是合金元素加入改变碳化物的稳定性。
连续加热时奥氏体的形成与等温形成过程相比特点。
一、转变在一个温度范围内完成二、转变速度随加热速度增加而增加三、奥氏体成分不均匀性随加热速度增大而增大四、奥氏体起始晶粒大小随加热速度增大而细化奥氏体晶粒度的概念有以下三种起始晶粒度本质晶粒度实际晶粒度起始晶粒度: 奥氏体转变刚刚完成,即奥氏体晶粒边界刚刚相互接触时的奥氏体晶粒大小实际晶粒度:钢在某一具体的加热条件下实际获得的奥氏体晶粒的大小称为实际晶粒度。
本质晶粒度: 根据GB/T6394-2002,即在930±10 ℃保温3~8h后所测得的奥氏体晶粒大小称为本质晶粒度。
A晶粒具有正常长大倾向的钢称为本质粗晶粒钢A晶粒具有异常长大倾向的钢称为本质细晶粒钢影响A晶粒长大的因素长大驱动力:界面能减小,与晶界曲率半径和界面能有关。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
△l
Ac1
△l Ac1Arcm
b
Accm
Ac3 Ar3 T/℃
c
Ar1 T/℃
共析钢
Ar1
T/℃ 过共析钢
亚共析钢
2. 研究钢的等温转变
(1)测定过冷奥氏体等温转变的动力学曲线 试样:退化状态的材料制备试样。 钢的奥氏体化处理及等 温转变过程的膨胀曲线 奥氏体化温度:Ac1+(30~50℃);
或生产中实际淬火温度。
马氏体转变膨胀曲线
Mf M50 C
B Ms
温度T
3. 研究钢的连续冷却转变
实际生产中,热处理多采用连续的冷却方式。需 要应用钢的连续冷却转变图(CCT)曲线了解 过冷奥氏体连续冷却转变的规律。CCT曲线的 建立,需首先测定不同冷却速度下的连续冷却 转变的膨胀曲线。
40CrNiMoA钢的冷却膨胀曲线: 为绘制CCT曲线,先取时间对数为横坐标,温度T纵坐 标绘出不同冷却速度的冷却曲线,将膨胀曲线上得到 的转变点,将开始及终了转变点联成光滑曲线便得到 CCT图。
1.3.4 膨胀分析的应用(组织转变
体积效应)
1。确定钢的组织转变温度: 温度变化(无相变)正常膨胀 钢加热 组织变化导致附加膨胀 1) 。转变点的测定
△l Ac1 a a' ae段: 珠光体转变为奥氏体 eb段:铁素体溶解于奥氏体
注:在确定钢组织转变临界点时, 为使结果有可比性,除对钢的成分 有严格要求外,还有下列要求: 1。原始组织应相同,常用退火态, 晶粒度相同。 2。相同加热及冷却速度(一般小于 200 ˚C/h,高合金钢冷却速度小于 120 ˚C/h 3。奥氏体化温度和保温时间按要求 保持一致。
Volume of BCC cell = a3 = 2.8633 = 23.467×10-30 (m3) Volume of FCC cell = a3 = 3.5913 = 46.307×10-30 (m3) But the FCC unit cell contains four atoms and the BCC unit cell contains only two atoms. Two BCC unit cells with a total volume of 46.934 will contain 4 atoms. Volume change/atom = (46.307 -46.934)/46.934 = -1.34% Steel contracts on heating!!
过冷奥氏体等温 转变动力学转变图
△l
△lf
△lf/2
温
t1
t2 时间t
(2)马氏体转变点Ms的确定
优点:奥氏体转变为马氏体的体积效应最明显,用膨胀法测定 Ms点效果很好。 要求:多数钢测定Ms点需要很高的冷却速度:膨胀仪需具有淬 火机构和快速记录装置。常采用全自动快速膨胀仪。 马氏体转变量的确定:假定马氏体和奥氏体的膨胀系数相近, 转变量与膨胀量成正比,则可用下面方法: △l A D
(2)测定钢的CCT曲线(连续冷却转变曲线)
图 40CrNiMoA连续冷却转变热膨胀曲线
4. 淬火钢的回火
I: 80 ~ 160 ℃: 体积收 缩,ε 相碳化物析出, 马氏体正方度下降。 II: 230 ~ 280 ℃:体积膨 胀,残奥分解。 III: 260 ~ 360 ℃:体积收
缩,马氏体分解为铁素体和 碳化铁。 535 ℃回火:200 ℃出现拐折, 表明回火钢转变为铁素体和渗 碳体(弱铁磁相)。
Ar1
e
Ac3
b' Ar3
亚共析钢
b T/℃
2). 钢膨胀曲线的分析 ab:珠光体转变为奥氏体;
bc: 铁素体溶解于奥氏体;
二次渗碳体的存在使高温区膨胀曲线明 显拐折;奥氏体膨胀系数比珠光体大 导致斜率增大;二次渗碳体不断溶解, 使奥氏体含碳量增高,比容增大,使 Arcm两旁斜率不同。
Ac1
△l
a Ar1
2.反常膨胀有何意义,举例说明之。 3.画出亚共析钢的示差膨胀曲线,标出组织转 变温度,指出曲线斜率在组织转变前后有何 不同,为什么 ?
例1. Calculate the change in volume that occurs when BCC iron is heated and changes to FCC iron. The lattice parameter of BCC iron is 2.863 A and of FCC iron is 3.591 A.
5. 研究热循环对材 料的影响
• 在相变内热循环产生缺陷 和内应力。Ms-Mf; As-Af. • 冷却速度20℃/s,T-750℃.
5. 研究晶体缺陷
• 位错密度: N=(ρ NA/M)2/3Δ V/V
空位浓度: n/N=ΔV/V=3Δl/l =exp(-u/RT)
复习题
1.试用双原子模型说明固体热膨胀的物理本质。
保温时间:由试样大小定;
(直径3毫米在空气中保温5~10分钟)。
时间 t
t2
E
等温转变过程:经奥氏体化后,
立即冷却到等温温度;同时膨 胀仪也从记录膨胀和温度的关 系切换到记录膨胀和时间的关系。 等温条件下试样的伸长 和组织转变数量成正比
t1
O 温度 T
△l
C
A
△l
等温转变产物:过冷奥氏体在相变温度A1下不同温 度范围内可发生高温珠光体型转变(A1~550℃), 中温贝氏体(550℃~Ms)和低温马氏体型转变(比 热容大于奥氏体); 等温转变产物数量的确定:组织的转变量与膨胀量 成正比。转变50%所需要的时间即△l/2所对应的 时间。 奥氏体的中温转变通常不彻底,可借助金相方法, 对应温度下转变产物进行定量分析。然后再按转 变量与膨胀量成正比的关系,找出不同转变量所 对应的时间。 TTT图的绘制:在Ms点和Ac1点间,每隔 (2)马氏体转变点Ms的确定
例2: 金刚石为碳的一种晶体结构,其晶格常数 a=0.357 nm,当它转变成石墨(ρ=2.25g/cm3) 结构时,求其体积改变百分数?金刚石的晶体 结构为复式面心立方结构,每个晶胞共含有8个 碳原子。
例2:金刚石为碳的一种晶体结构,其晶格常数
a=0.357 nm,当它转变成石墨(ρ=2.25g/cm3) 结构时,求其体积改变百分数?金刚石的晶体 结构为复式面心立方结构,每个晶胞共含有8个 碳原子。