高数微积分公式大全

合集下载

高数微积分公式大全

高数微积分公式大全

高等数学微积分公式大全一、基本导数公式⑴()0c '= ⑵1x x μμμ-= ⑶()sin cos x x '= ⑷()cos sin x x '=- ⑸()2tan sec x x '= ⑹()2cot csc x x '=- ⑺()sec sec tan x x x '=⋅ ⑻()csc csc cot x x x '=-⋅ ⑼()x x e e '= ⑽()ln x x a a a '= ⑾()1ln x x'= ⑿()1log ln x a x a '=⒀()arcsin x '= ⒁()arccos x '= ⒂()21arctan 1x x '=+ ⒃()21arccot 1x x '=-+⒄()1x '=⒅'=二、导数的四则运算法则 三、高阶导数的运算法则 (1)()()()()()()()n n n u x v x u x v x ±=±⎡⎤⎣⎦ (2)()()()()n n cu x cu x =⎡⎤⎣⎦(3)()()()()n n nu ax b a uax b +=+⎡⎤⎣⎦(4)()()()()()()()0nn n k k k n k u x v x c u x v x -=⋅=⎡⎤⎣⎦∑ 四、基本初等函数的n 阶导数公式 (1)()()!n n x n = (2)()()n ax b n ax b e a e ++=⋅ (3)()()ln n x x n a a a =(4)()()sin sin 2n n ax b a ax b n π⎛⎫+=++⋅⎡⎤ ⎪⎣⎦⎝⎭ (5) ()()cos cos 2n nax b a ax b n π⎛⎫+=++⋅⎡⎤ ⎪⎣⎦⎝⎭ (6)()()()11!1n n nn a n ax b ax b +⋅⎛⎫=- ⎪+⎝⎭+ (7) ()()()()()11!ln 1n n n na n axb ax b -⋅-+=-⎡⎤⎣⎦+五、微分公式与微分运算法则⑴()0d c = ⑵()1d x x dx μμμ-= ⑶()sin cos d x xdx = ⑷()cos sin d x xdx =- ⑸()2tan sec d x xdx = ⑹()2cot csc d x xdx =- ⑺()sec sec tan d x x xdx =⋅ ⑻()csc csc cot d x x xdx =-⋅⑼()x x d e e dx = ⑽()ln x x d a a adx = ⑾()1ln d x dx x= ⑿()1logln x a d dx x a =⒀()arcsin d x =⒁()arccos d x = ⒂()21arctan 1d x dx x =+ ⒃()21arccot 1d x dx x=-+ 六、微分运算法则⑴()d u v du dv ±=± ⑵()d cu cdu = ⑶()d uv vdu udv =+ ⑷2u vdu udvd v v-⎛⎫=⎪⎝⎭ 七、基本积分公式⑴kdx kx c =+⎰ ⑵11x x dx c μμμ+=++⎰ ⑶ln dxx c x=+⎰ ⑷ln xxa a dx c a=+⎰ ⑸x x e dx e c =+⎰ ⑹cos sin xdx x c =+⎰ ⑺sin cos xdx x c =-+⎰ ⑻221sec tan cos dx xdx x c x==+⎰⎰ ⑼221csc cot sin xdx x c x ==-+⎰⎰ ⑽21arctan 1dx x c x=++⎰ ⑾arcsin x c =+八、补充积分公式 九、下列常用凑微分公式十、分部积分法公式⑴形如n ax x e dx ⎰,令n u x =,ax dv e dx =形如sin n x xdx ⎰令n u x =,sin dv xdx = 形如cos n x xdx ⎰令n u x =,cos dv xdx =⑵形如arctan n x xdx ⎰,令arctan u x =,n dv x dx = 形如ln n x xdx ⎰,令ln u x =,n dv x dx =⑶形如sin ax e xdx ⎰,cos ax e xdx ⎰令,sin ,cos ax u e x x =均可。

高数微积分公式大全(总结的比较好)

高数微积分公式大全(总结的比较好)

高等数学微积分公式大全一、基本导数公式⑴()0c '= ⑵1x x μμμ-= ⑶()sin cos x x '=⑷()cos sin x x '=- ⑸()2tan sec x x '= ⑹()2cot csc x x '=- (7)()x x e e '= (8)()ln x x a a a '= ⑽ (9)()1ln x x '=二、导数的四则运算法则()u v u v '''±=± ()uv u v uv '''=+ 2u u v uv v v '''-⎛⎫= ⎪⎝⎭五、微分公式与微分运算法则⑴()0d c = ⑵()1d x x dx μμμ-= ⑶()sin cos d x xdx = ⑷()cos sin d x xdx =-⑼()x x d e e dx = ⑽()ln x x d a a adx = ⑾()1ln d x dx x= ⒂()21arctan 1d x dx x =+ ⒃()21arc cot 1d x dx x =-+ 六、微分运算法则⑴()d u v du dv ±=± ⑵()d cu cdu =七、基本积分公式⑴kdx kx c =+⎰⑸x x e dx e c =+⎰ ⑹cos sin xdx x c =+⎰ ⑺sin cos xdx x c =-+⎰【特殊角的三角函数值】(1)sin 00= (2)1sin 62π= (3)sin 3π= (4)sin 12π=) (5)sin 0π= (1)cos 01= (2)cos 6π= (3)1cos 32π= (4)cos 02π=) (5)cos 1π=- (1)tan 00= (2)tan 63π=(3)tan 3π=(4)tan 2π不存在 (5)tan 0π=(1)cot 0不存在 (2)cot6π=(3)cot 33π=(4)cot 02π=(5)cot π不存在 十二、重要公式 (1)0sin lim 1x x x→= (2)()10lim 1x x x e →+= (3))1n a o >= (4)1n = (9)lim 0xx e →-∞= (10)lim x x e →+∞=∞ (11)0lim 1xx x +→= (12)00101101lim 0n n n m m x m a n m b a x a x a n m b x b x b n m--→∞⎧=⎪⎪+++⎪=<⎨+++⎪∞>⎪⎪⎩ (系数不为0的情况) 十三、下列常用等价无穷小关系(0x →)sin x x tan x x a r c s i n x x arctan x x 211c o s 2x x - ()ln 1x x + 1x e x - 1l n x a x a - ()11x x ∂+-∂十四、三角函数公式2.二倍角公式sin 22sin cos A A A = 2222cos 2cos sin 12sin 2cos 1A A A A A =-=-=- 十五、几种常见的微分方程1.可分离变量的微分方程:()()dy f x g y dx= , ()()()()11220f x g y dx f x g y dy += 2.齐次微分方程:dy y f dx x ⎛⎫= ⎪⎝⎭3.一阶线性非齐次微分方程:()()dy p x y Q x dx+= 解为: ()()()p x dx p x dx y e Q x e dx c -⎡⎤⎰⎰=+⎢⎥⎣⎦⎰。

完整word高数微积分公式三角函数公式考研

完整word高数微积分公式三角函数公式考研

高等数学微积分公式大全一、基本导数公式⑴ c⑵ x x1⑶ sin x cos x⑷ cosx sin x⑸ tan xsec 2 x⑹ cot xcsc 2 x⑺ sec x sec x tan x⑻ csc xcsc x cot x⑼ e xe x⑽ a xa x ln a⑾ ln x1x⑿ log a x1 ⒀ arcsin x1 x2 ⒁ arccos x1x ln a11 x 2⒂ arctan x1 ⒃ arccot x1 2⒄x1⒅x1 1 x 21 x2 x二、导数的四则运算法规u vuvuvu v uvu u v uvvv2三、高阶导数的运算法规( 1) u x v xnnv x nncu n xu x(2) cu xnnn( 3) u ax ba n u n ax b( 4) u x v xc n k u n k x v ( k ) xk 0四、基本初等函数的 n 阶导数公式( 1) xnnn!( 2) eaxbnaneax b (3) axna x ln na(4) sin ax bna nsin axb n(5)cos axb naxb n2a n cos21nna nn!nn 1a n n 1 !(6)(7)1 ax b1ax n 1ln ax baxnbb五、微分公式与微分运算法规⑴ d c 0⑵ d xx1dx⑶ d sin x cosxdx⑷ d cosx sin xdx ⑸ d tan xsec 2 xdx⑹ dcot xcsc 2 xdx⑺ d secx secx tan xdx⑻ d cscx cscx cot xdx⑼ dexe xdx⑽ daxa xln adx⑾ d ln x1dxx⑿ dlog a x1 dx ⒀ d arcsin x1 dx ⒁ d arccos x1 dxx ln a1 x 21 x 2⒂ d arctan x12 dx⒃ darccot x1dx1x 1 x 2六、微分运算法规⑴ du v du dv⑵d cu cdu⑶ duv vdu udv⑷ d uvdu udvvv 2七、基本积分公式⑴kdx kx c⑵ x dxx 1c⑶dx ln xc1x⑷a xdx a xc⑸ e x dxe x c⑹ cosxdxsin x cln a⑺sin xdxcosx c⑻1 dxsec 2 xdx tan x ccos 2 x ⑼ 12xdxcot xc⑽ 1 2 dx arctan x csin 2xcsc x1⑾1dxarcsin x c1x 2八、补充积分公式tan xdx ln cos x ccot xdx ln sin x csecxdx ln secx tan x ccscxdx ln cscx cot x c11x1 a 2dx1 x aa2x 2 dx a arctan a cx22a l n x ac1dx arcsinxc1dx ln xx 2 a 2ca 2 x 2ax 2 a 2九、以下常用凑微分公式积分型换元公式f axb dx1 f ax b d ax bu ax baf x x 1dx 1 f x d xu xf ln x1dxfln x d ln xu ln xxf e x e x dx f e x d e xf a x a x dx 1 f a x d a xln af sin x cosxdx f sin x d sin x f cos x sin xdx f cosx d cosx f tan x sec2 xdx f tan x d tan x f cot x csc2 xdx f cot x d cot xf12 dx f arcta n x d arc ta n x arctan xx1f arcsin x 1 dx f arcsin x d arcsin x1 x2十、分部积分法公式⑴形如x n e ax dx ,令u x n, dv e ax dx形如x n sin xdx 令u x n,dv sin xdx形如x n cos xdx 令u x n,dv cosxdx⑵形如x n arctanxdx ,令 u arctan x ,dv x n dx形如x n ln xdx ,令 u ln x ,dv x n dx⑶形如e ax sin xdx,e ax cos xdx令u e ax ,sin x,cos x 均可。

高数微积分基本公式大全

高数微积分基本公式大全



1 ⑼∫ = csc2 xdx = − cot x + c sin 2 x ∫

x 1 ⑽∫ dx = arctan x + c 1 + x2
∫ cos
1
2
dx = ∫ sec 2 xdx = tan x + c

1 1 − x2
dx = arcsin x + c
六、补充积分公式
∫ tan xdx = − ln cos x + c ∫ sec xdx = ln sec x + tan x + c
2.二倍角公式
cos( A − B ) = cos A cos B + sin A sin B
tan( A − B ) = tan A − tan B 1 + tan A tan B cot A ⋅ cot B + 1 cot( A − B ) = cot B − cot A
sin 2 A = 2sin A cos A tan 2 A = 2 tan A 1 − tan 2 A
2
u = cos x
xdx = ∫ f ( tan x )d ( tan x ) xdx = ∫ f ( cot x )d ( cot x )
1
2
u = tan x u = cot x
2
∫ f ( arctan x ) ⋅ 1 + x
dx = ∫ f ( arc ta n x )d ( arc ta n x )
tan
cot
4.和差化积公式
sin a + sin b = 2sin
a+b a−b ⋅ cos 2 2 a+b a −b cos a + cos b = 2 cos ⋅ cos 2 2

高等数学中所涉及到的微积分公式汇总

高等数学中所涉及到的微积分公式汇总

高等数学中所涉及到的微积分公式汇总微积分是高等数学中的一门重要学科,涉及到很多重要的公式和定理。

下面是一些微积分中常用的公式的汇总:1.导数公式:- 函数f(x)在点x处的导数:f'(x) = lim (f(x+h)-f(x))/h,其中h -> 0- 常见函数的导数公式:常数函数导数为0,幂函数导数为nx^(n-1),三角函数的导数等-乘法法则:(f*g)'(x)=f'(x)*g(x)+f(x)*g'(x)-商法则:(f/g)'(x)=(f'(x)g(x)-f(x)g'(x))/(g(x))^22.积分公式:- 不定积分和定积分的基本定理:若F'(x) = f(x),则∫f(x) dx = F(x) + C- 基本不定积分:∫x^n dx = (1/n+1)*x^(n+1) + C (其中n不等于-1)- 定积分的性质:∫(a to b) f(x) dx = -∫(b to a) f(x) dx,∫(a to b) [f(x) ± g(x)] dx = ∫(a to b) f(x) dx ± ∫(a to b)g(x) dx3.微分学的基本定理:- 导数的基本定理:如果F(x)是f(x)的一个原函数,那么∫(a to b) f(x) dx = F(b) - F(a)- 牛顿-莱布尼茨公式:若F(x)是f(x)的一个原函数,那么∫(a tob) f(x) dx = F(x),_(a to b) = F(b) - F(a)4.极限定理:- 极限的四则运算定理:设lim (x -> a) f(x) = L,lim (x -> a) g(x) = M,则lim (x -> a) [f(x)±g(x)] = L±M,lim (x -> a)[f(x)*g(x)] = L*M,lim (x -> a) [f(x)/g(x)] = L/M (其中M不等于0)- L'Hospital法则:设lim (x -> a) f(x) = 0,lim (x -> a) g(x) = 0,并且lim (x -> a) f'(x)/g'(x) 存在,则lim (x -> a) f(x)/g(x) = lim (x -> a) f'(x)/g'(x)- 夹逼定理:如果数列{a_n}、{b_n}、{c_n}满足a_n <= b_n <=c_n,并且lim (n -> ∞) a_n = lim (n -> ∞) c_n = L,则lim (n -> ∞) b_n = L5.泰勒级数:-函数f(x)的泰勒级数展开:f(x)=f(a)+f'(a)(x-a)+f''(a)*(x-a)^2/2!+...+f^n(a)*(x-a)^n/n!+...,其中f^n(a)表示函数f(x)在点a处的n阶导数以上仅是微积分中涉及到的一些公式,实际上微积分的公式和定理非常丰富,还有更多的公式可以在相关的教材和文献中找到。

高数微积分公式大全

高数微积分公式大全

高等数学微积分公式大全一、基本导数公式⑴()0c '=⑵1x x μμμ-=⑶()sin cos x x '=⑷()cos sin x x '=-⑸()2tan sec x x '=⑹()2cot csc x x '=-⑺()sec sec tan x x x '=⋅⑻()csc csc cot x x x '=-⋅ ⑼()xx e e '=⑽()ln x x a a a '=⑾()1ln x x'=⑿()1log ln xax a '=⒀()arcsin x '=⒁()arccos x '=⒂()21arctan 1x x '=+⒃()21arc cot 1x x '=-+⒄()1x '=⒅'=二、导数的四则运算法则()u v u v '''±=±()uv u v uv '''=+2u u v uv v v '''-⎛⎫= ⎪⎝⎭三、高阶导数的运算法则 (1)()()()()()()()n n n u x v x u x v x ±=±⎡⎤⎣⎦ (2)()()()()n n cu x cu x =⎡⎤⎣⎦(3)()()()()n n nu ax b a uax b +=+⎡⎤⎣⎦(4)()()()()()()()0nn n k k k n k u x v x c u x v x -=⋅=⎡⎤⎣⎦∑四、基本初等函数的n 阶导数公式 (1)()()!n nxn = (2)()()n ax b n ax b e a e ++=⋅ (3)()()ln n x x n a a a =(4)()()sin sin 2n n ax b a ax b n π⎛⎫+=++⋅⎡⎤ ⎪⎣⎦⎝⎭(5)()()cos cos 2n nax b a ax b n π⎛⎫+=++⋅⎡⎤ ⎪⎣⎦⎝⎭(6)()()()11!1n n nn a n ax b ax b +⋅⎛⎫=- ⎪+⎝⎭+ (7)()()()()()11!ln 1n n n na n axb ax b -⋅-+=-⎡⎤⎣⎦+五、微分公式与微分运算法则⑴()0d c =⑵()1d x x dx μμμ-=⑶()sin cos d x xdx =⑷()cos sin d x xdx =-⑸()2tan sec d x xdx =⑹()2cot csc d x xdx =-⑺()sec sec tan d x x xdx =⋅⑻()csc csc cot d x x xdx =-⋅⑼()x x d e e dx =⑽()ln x xd a a adx =⑾()1ln d x dx x=⑿()1logln xad dx x a=⒀()arcsin d x =⒁()arccos d x =⒂()21arctan 1d x dx x =+⒃()21arc cot 1d x dx x=-+ 六、微分运算法则⑴()d u v du dv ±=±⑵()d cu cdu = ⑶()d uv vdu udv =+⑷2u vdu udvd v v -⎛⎫= ⎪⎝⎭七、基本积分公式⑴kdx kx c =+⎰⑵11x x dx c μμμ+=++⎰⑶ln dx x c x =+⎰⑷ln xxa a dx c a=+⎰⑸x x e dx e c =+⎰⑹cos sin xdx x c =+⎰ ⑺sin cos xdx x c =-+⎰⑻221sec tan cos dx xdx x c x ==+⎰⎰⑼221csc cot sin xdx x c x ==-+⎰⎰⑽21arctan 1dx x c x =++⎰ ⑾arcsin x c =+八、补充积分公式tan ln cos xdx x c =-+⎰cot ln sin xdx x c =+⎰sec ln sec tan xdx x x c =++⎰csc ln csc cot xdx x x c =-+⎰2211arctan x dx c a x a a=++⎰2211ln 2x adx c x a a x a-=+-+⎰arcsin xca =+ln x c =++十、分部积分法公式⑴形如n ax x e dx ⎰,令n u x =,axdv e dx =形如sin n x xdx ⎰令nu x =,sin dv xdx =形如cos n x xdx ⎰令nu x =,cos dv xdx =⑵形如arctan n x xdx ⎰,令arctan u x =,ndv x dx =形如ln n x xdx ⎰,令ln u x =,ndv x dx =⑶形如sin ax e xdx ⎰,cos ax e xdx ⎰令,sin ,cos axu e x x =均可。

高数微积分公式大全

高数微积分公式大全

微积分公式cos2n -1x d x =⎰∞+-+01)1(nm m x x d x 希腊字母 (Greek Alphabets)大写 小写读音 大写 小写读音 大写 小写 读音 Α α alpha Ι ι iota Ρ ρ rho Β β beta Κ κ kappa Σ σ, ς sigmaΓ γ gamma Λ λ lambd a Τ τ tau Δ δ delta Μ μ mu Υ υ upsilon Ε ε epsilon Ν ν nu Φ φ phi Ζ ζ zeta Ξ ξ xi Χ χ khi Η η eta Ο ο omicro n Ψ ψ psi ΘθthetaΠπpiΩωomega商数关系: tan θ=θθcos sin ; cot θ= θθsin cos 平方关系: cos 2θ+ sin 2θ=1; tan 2θ+ 1= sec 2θ; 1+ cot 2θ= csc 2θ順位低順位高; ⎰ 顺位高d 顺位低 ;0*∞ =∞1 *∞ = ∞∞ = 0*01 = 0000 = )(0-∞e ; 0∞ = ∞⋅0e ; ∞1 = ∞⋅0e顺位一: 对数; 反三角(反双曲)顺位二: 多项函数; 幂函数 顺位三: 指数; 三角(双曲)算术平均数(Arithmetic mean)nX X X X n+++= (21)中位数(Median) 取排序后中间的那位数字 众数(Mode)次数出现最多的数值几何平均数(Geometric mean)n n X X X G ⋅⋅⋅= (21)调和平均数(Harmonic mean))1...11(1121nx x x n H +++=平均差(Average Deviatoin)nX Xni||1-∑1 000 000 000 000 000 000 000 000 1024 yotta Y 1 000 000 000 000 000 000 000 1021 zetta Z1 000 000 000 000 000 000 1018 exa E1 000 000 000 000 000 1015 peta P1 000 000 000 000 1012 tera T 兆1 000 000 000 109 giga G 十亿1 000 000 106 mega M 百万1 000 103 kilo K 千100 102 hecto H 百10 101 deca D 十0.1 10-1 deci d 分,十分之一0.01 10-2 centi c 厘(或写作「厘」),百分之一0.001 10-3 milli m 毫,千分之一0.000 001 10-6 micro ? 微,百万分之一0.000 000 001 10-9 nano n 奈,十亿分之一0.000 000 000 001 10-12 pico p 皮,兆分之一0.000 000 000 000 001 10-15 femto f 飞(或作「费」),千兆分之一0.000 000 000 000 000 001 10-18 atto a 阿0.000 000 000 000 000 000 001 10-21 zepto z0.000 000 000 000 000 000 000 001 10-24 yocto y。

高数微积分公式

高数微积分公式

高数微积分公式以下是一些高数微积分中常用的公式:1. 极限求导公式:- $\\displaystyle \\frac{d}{dx}(x^{n})=nx^{n-1}$- $\\displaystyle \\frac{d}{dx}(\\sin x)=\\cos x$- $\\displaystyle \\frac{d}{dx}(\\cos x)=-\\sin x$- $\\displaystyle \\frac{d}{dx}(\\ln x)=\\frac{1}{x}$ - $\\displaystyle \\frac{d}{dx}(e^{x})=e^{x}$2. 基本导数法则:- $\\displaystyle \\frac{d}{dx}(cf(x))=cf'(x)$ (常数的导数)- $\\displaystyle \\frac{d}{dx}(f(x)\\pmg(x))=f'(x)\\pm g'(x)$ (和差法则)- $\\displaystyle\\frac{d}{dx}(f(x)g(x))=f'(x)g(x)+f(x)g'(x)$ (乘积法则)- $\\displaystyle\\frac{d}{dx}\\left(\\frac{f(x)}{g(x)}\\right)=\\frac{f'(x)g( x)-f(x)g'(x)}{g^{2}(x)}$ (商法则)- $\\displaystyle \\frac{d}{dx}(f(g(x)))=f'(g(x))\\cdot g'(x)$ (链式法则)3. 积分公式:- $\\displaystyle \\intx^{n}dx=\\frac{1}{n+1}x^{n+1}+C$- $\\displaystyle \\int \\sin xdx=-\\cos x+C$- $\\displaystyle \\int \\cos xdx=\\sin x+C$- $\\displaystyle \\int \\frac{1}{x}dx=\\ln |x|+C$- $\\displaystyle \\int e^{x}dx=e^{x}+C$这些只是一些常用的公式,高数微积分中还有更多的公式和定理。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

微積分公式sin x dx = -cos x + C cos x dx = sin x + C tan x dx = ln |sec x | + C cot x dx = ln |sin x | + Csec x dx = ln |sec x + tan x | + C csc x dx = ln |csc x – cot x | + C sin -1(-x) = -sin -1 xcos -1(-x) = - cos -1 x tan -1(-x) = -tan -1 x cot -1(-x) = - cot -1 x sec -1(-x) = - sec -1 x csc -1(-x) = - csc -1 xsin -1 x dx = x sin -1 x+21x -+C cos -1 x dx = x cos -1 x-21x -+C tan -1 x dx = x tan -1 x-½ln (1+x 2)+C cot -1 x dx = x cot -1 x+½ln (1+x 2)+C sec -1 x dx = x sec -1 x- ln |x+12-x |+Ccsc -1 x dx = x csc -1 x+ ln |x+12-x |+Csinh x dx = cosh x + C cosh x dx = sinh x + C tanh x dx = ln | cosh x |+ C coth x dx = ln | sinh x | + C sech x dx = -2tan -1 (e -x ) + C csch x dx = 2 ln |xx ee 211---+| + Cd uv = u d v + v d ud uv = uv = u d v + v d u→ u d v = uv - v d u cos 2θ-sin 2θ=cos2θ cos 2θ+ sin 2θ=1 cosh 2θ-sinh 2θ=1cosh 2θ+sinh 2θ=cosh2θsinh -1 x dx = x sinh -1 x-21x ++ C cosh -1 x dx = x cosh -1 x-12-x + C tanh -1 x dx = x tanh -1 x+ ½ ln | 1-x 2|+ Ccoth -1 x dx = x coth -1 x- ½ ln | 1-x 2|+ C sech -1 x dx = x sech -1 x- sin -1 x + C csch -1 x dx = x csch -1 x+ sinh -1 x + Ca bcαβγ Rsin (α±β)=sin α cos β ± cos α sin β cos (α±β)=cos α cos β μsin α sin β 2 sin α cos β = sin (α+β) + sin (α-β) 2 cos α sin β = sin (α+β) - sin (α-β) 2 cos α cos β = cos (α-β) + cos (α+β) 2 sin α sin β = cos (α-β) - cos (α+β)sin α + sin β = 2 sin ½(α+β) cos ½(α-β)sin α - sin β = 2 cos ½(α+β) sin ½(α-β) cos α + cos β = 2 cos ½(α+β) cos ½(α-β) cos α - cos β = -2 sin ½(α+β) sin ½(α-β) tan (α±β)=βαβαtan tan tan tan μ±, cot (α±β)=βαβαcot cot cot cot ±μe x=1+x+!22x +!33x +…+!n x n+ …sin x = x-!33x +!55x -!77x +…+)!12()1(12+-+n x n n + …cos x = 1-!22x +!44x -!66x +…+)!2()1(2n x n n -+ …ln (1+x) = x-22x +33x -44x +…+)!1()1(1+-+n x n n + …tan -1x = x-33x +55x -77x +…+)12()1(12+-+n x n n + …(1+x)r=1+r x+!2)1(-r r x 2+!3)2)(1(--r r r x 3+… -1<x<1 ∑=ni 11= n∑=ni i 1= ½n (n +1)∑=ni i 12=61n (n +1)(2n +1) ∑=ni i13= [½n (n +1)]2Γ(x) =⎰∞t x-1e -t d t = 2⎰∞t 2x-12t e -d t =⎰∞)1(ln tx-1 d t β(m , n ) =⎰10x m -1(1-x)n -1 d x =2⎰20sin π2m -1x cos 2n -1x d x=⎰∞+-+01)1(nm m x x d x 希腊字母 (Greek Alphabets)大写小写读音 大写 小写读音 大写 小写读音 Α α alpha Ι ι iota Ρ ρrhoΒ β beta Κ κ kappa Σ σ, ς sigmaΓ γ gamma Λ λ lambda Τ τtau Δ δ delta Μ μ mu Υ υ upsilonΕ ε epsilon Ν ν nu Φ φphi Ζ ζ zeta Ξ ξ xi Χ χkhi Η η eta Ο ο omicron Ψ ψpsi Θ θthetaΠπpiΩω omega倒数关系: sin θcsc θ=1; tan θcot θ=1; cos θsec θ=1 商数关系: tan θ=θθcos sin ; cot θ= θθsin cos 平方关系: cos 2θ+ sin 2θ=1; tan 2θ+ 1= sec 2θ; 1+ cot 2θ= csc 2θ順位低順位高; 顺位高d 顺位低 ;0*=∞1 * =∞∞ = 0*01 = 00 00 = )(0-∞e ; 0∞ = ∞⋅0e ; ∞1 = ∞⋅0e顺位一: 对数; 反三角(反双曲)顺位二: 多项函数; 幂函数 顺位三: 指数; 三角(双曲)1 000 000 000 000 000 000 000 000 10 yotta Y1 000 000 000 000 000 000 000 1021 zetta Z1 000 000 000 000 000 000 1018 exa E1 000 000 000 000 000 1015 peta P1 000 000 000 000 1012 tera T 兆1 000 000 000 109 giga G 十亿1 000 000 106 mega M 百万1 000 103 kilo K 千100 102 hecto H 百10 101 deca D 十0.1 10-1 deci d 分,十分之一0.01 10-2 centi c 厘(或写作「厘」),百分之一0.001 10-3 milli m 毫,千分之一0.000 001 10-6 micro ? 微,百万分之一0.000 000 001 10-9 nano n 奈,十亿分之一0.000 000 000 001 10-12 pico p 皮,兆分之一0.000 000 000 000 001 10-15 femto f 飞(或作「费」),千兆分之一0.000 000 000 000 000 001 10-18 atto a 阿0.000 000 000 000 000 000 001 10-21 zepto z0.000 000 000 000 000 000 000 001 10-24 yocto y重点在三方面:一、函数与反函数的关系:(Function and Inverse Function)以前我们学过的相反运算有:加<------->减;乘<------->除;平方<----->开方;指数<----->对数;三角<----->反三角。

微积分(Calculus)学新的相反运算关系:微分<----->积分(Differentiation<----->Integration)二、解析几何:(Coordinate / Analytical Geometry)微积分就是解析几何的直接延伸,如果解析几何很糟,微积分是学不好的。

三、极限(Limit):极限是从初等数学到高等数学之间的过渡,好好理解一些极限题目,对学微积分很有帮助,它将有限计算的思想过渡到无限的思想,这部分学好了,对微积分的精髓就容易学了。

不过一般的人很难过渡,即使学过了微积分,很多人并没有掌握微积分的实质思想方法。

这一部分不要花太多的时间,因为,有些极限的进一步理解,要在学过一部分的微积分后才能进一步理解。

四、楼主所说的“一元一次方程”,可以当成代数在学,也可以当成解析几何来学,这是最简单的内容,最最起码的要求。

五、楼主可以从极限开始,利用假期,你会突然发现你的思想突然上了高高的一层,自豪感、自信心,就会空前提高。

六、如果有必要,请联络本人,本人可以提供大量的极限、微分、积分的练习与义务讲解。

试题立等可取。

七、如果楼主英文有一点基础,有一点信心或兴趣,本人建议数学跟英文一起学,很快您的英文运用能力会急剧提高,你就会有“一览众山小”的豪迈气派。

若有兴趣,本人可以提供数理化英的综合义务辅导。

方式可以借助于百度平台。

相关文档
最新文档