绝对值不等式的解法 教案 (1)
(完整版)教案含绝对值不等式的解法

含绝对值的不等式解法(一)复习思考1、复习初中学过的不等式的三条基本性质.(1)、如果b a >,那么c b c a +>+(2)、如果0,>>c b a ,那么bc ac >(3)、如果0,<>c b a .那么bc ac <注意:性质(3)是不等式两边都乘以同一个负数,不等号的方向要变。
2、复习绝对值的定义及其几何意义. {0,0,≥<-=x x x x x几何意义:x 在数轴上所对应点到原点的距离(二).探究新知1。
2=x 几何意义是什么,在数轴上在数轴上应该怎样表示?解绝对值不等式 2<x ,由绝对值的意义你能在数轴上画出它的解吗?这个绝对值不等式的解集怎样表示?解绝对值不等 2x >,由绝对值的意义你能在数轴上画出它的解吗?这个绝对值不等式的解集怎样表示?2x >的解集有几部分?为什么2x <-也是它的解集?2、(0)x a a <>⇔ (0)x a a >>⇔3、练习 :(1)、5x <;(2)、 7x >(3)328x -≤ (4)238x -<(一)解下列不等式:(1)51431<-x (2) 752>+x(3)5|23|3≤-<x (4)|1|2x x +>+(5)|24|3x x -<+ (6)7|52|2≤-<x(7)|9|3x -> (8)|3|1x -<9。
设A ={x | |x -2|<3},B ={x | |x -1|≥1},则A ∩B 等于( )10。
设集合}110 {-≤≤-∈=x Z x x A 且,}5 {≤∈=x Z x x B 且,则B A U 中的元素个数是二、填空题1。
不等式|x +2|<3的解集是 ,不等式|2x —1|≥3的解集是 .2。
不等式1211<-x 的解集是___ .三、解答题1.解不等式x2- 2|x|—3>02。
绝对值不等式的解法(一)

4、定理 2
如果 a , b , c R 那么
a c ≤ a b + b c
当且仅当 (a b)(b c) ≥0 时,等号成立
(教材 P 14 -定理) 证明:3,ຫໍສະໝຸດ 教学 环节教学
内
容
个 性 设 计
你能给出定理 2 的解释吗?
例子,已知 (教材 P 14 -例 1)已知 a >0, x a < , y b < 求证: 2x 3 y 2a 3b <3
定理 1: 思考:在上面的不等式中,用向量 a , b 分别替换实 数 a , b ,可否也有类似的结论?
结论 1
2
教学 环节
教
学
内
容
个 性 设 计
2、在定理中以- b 代替 b ,会得到怎样的结论?
结论 2 3、怎样证明: a b + b ≥ a 结论 3 综上,我们有
a - b ≤ ab ≤ a + b a - b ≤ a b ≤ a + b
练习(第 4 版)P 19 -1,2,3,4 作业:
作 业
课 后 反 思
4
2、绝对值不等式的性质以及证明
板 书 设 计 计
1
教学 环节 一、复习引入
教
学
内
容
个 性 设 计
1、绝对值的几何意义: 2、绝对值的含义: 3、 a , b R , a b 的几何意义 二、新课 1、 a , b , a b ,之间的关系 当 ab >0 时: 当 ab <0 时: 当 ab =0 时;
吉林二中_数学_学科_高二_年级教学案
课题 课型 新授课 主备 绝对值不等式 审核 授课时间
No. _
含绝对值不等式的解法(1)

题型四 | f (x) | g(x) , | f (x) | g(x)
不等式两边平方法化为 | f (x) |2 g(x) 2 , | f (x) |2 g(x) 2
作业:解下列不等式。
1、|2x-3|<5x 2、|x2-3x-4|<4 3、| x-1 | > 2( x-3) 4、2x 1 x 2 5. x+|2x+3|>2.
数 都 不 是 原 不 等 式 的 解。 将 点A向 左 移 动1个 单 位 到 点A1, 这 时 有A1 A A1B 5; 同 理, 将 点B向 右 移 动 一 个 单 位 到 点B1, 这 时 也 有B1 A B1B 5, 从 数 轴 上 可 以 看 到 点A1与B1之 间 的 任 何 点 到 点A, B的 距 离 之 和 都 小 于5; 点A1的 左 边 或 点B1的 右 边 的 任 何 点 到 点A,, 的 距 离 之 和 都 大 于。 故 原 不 等
是
.
2 x 0,x 2, x ,2
【做一做】 (3)若不等式|2-x|>2-x成立,则实数x的取值范围
是
.
解析:依题意 x-2<0,解得 x<2.
答案: -∞,2
变式例题:
如果把|x|<2中的x换成“x-1”,也就是 | x-1 | <2如何解?
如果把|x|>2中的x换成“3x-1”,也就 是 | 3x-1 | >2如何解?
绝对值不等式的解法(一) 郑慧
复习绝对值的意义:
代数的意义
x X>0 |x|= 0 X=0
- x X<0 一个数的绝对值表示:
几何意义
数轴上与这个数对应的 点到原点的距离,|x|≥0
x2
人教A版数学高二选修4-5教案 绝对值不等式的解法

1.2.2 绝对值不等式的解法一、教学目标1.理解绝对值的几何意义,掌握去绝对值的方法.2.会利用绝对值的几何意义求解以下类型的不等式:|ax +b |≤c ;|ax +b |≥c ;|x -a |+|x -b |≥c ;|x -a |+|x -b |≤c .3.能利用绝对值不等式解决实际问题. 二、课时安排 1课时 三、教学重点理解绝对值的几何意义,掌握去绝对值的方法. 四、教学难点会利用绝对值的几何意义求解以下类型的不等式:|ax +b |≤c ;|ax +b |≥c ;|x -a |+|x -b |≥c ;|x -a |+|x -b |≤c .五、教学过程 (一)导入新课解关于x 的不等式|2x -1|<2m -1(m ∈R ).【解】 若2m -1≤0,即m ≤12,则|2x -1|<2m -1恒不成立,此时,原不等式无解;若2m -1>0,即m >12,则-(2m -1)<2x -1<2m -1,所以1-m <x <m . 综上所述:当m ≤12时,原不等式的解集为∅,当m >12时,原不等式的解集为{x |1-m <x <m }.(二)讲授新课教材整理1 绝对值不等式|x |<a 与|x |>a 的解集教材整理2 |ax +b |≤c ,|ax +b |≥c (c >0)型不等式的解法 1.|ax +b |≤c ⇔ .2.|ax +b |≥c ⇔ .教材整理3 |x -a |+|x -b |≥c ,|x -a |+|x -b |≤c (c >0)型不等式的解法 1.利用绝对值不等式的几何意义求解. 2.利用零点分段法求解.3.构造函数,利用函数的图象求解. (三)重难点精讲题型一、|ax +b|≤c 与|ax +b|≥c 型不等式的解法 例1求解下列不等式.(1)|3x -1|≤6;(2)3≤|x -2|<4;(3)|5x -x 2|<6.【精彩点拨】 关键是去绝对值符号,转化为不含绝对值符号的不等式. 【自主解答】 (1)因为|3x -1|≤6⇔-6≤3x -1≤6, 即-5≤3x ≤7,从而得-53≤x ≤73,所以原不等式的解集是⎩⎨⎧⎭⎬⎫x ⎪⎪-53≤x ≤73. (2)∵3≤|x -2|<4,∴3≤x -2<4或-4<x -2≤-3,即5≤x <6或-2<x ≤-1. 所以原不等式的解集为{x |-2<x ≤-1或5≤x <6}. (3)法一 由|5x -x 2|<6,得|x 2-5x |<6. ∴-6<x 2-5x <6.∴⎩⎪⎨⎪⎧x 2-5x +6>0,x 2-5x -6<0,∴⎩⎪⎨⎪⎧(x -2)(x -3)>0,(x -6)(x +1)<0,即⎩⎪⎨⎪⎧x <2或x >3,-1<x <6. ∴-1<x <2或3<x <6.∴原不等式的解集为{x |-1<x <2或3<x <6}. 法二 作函数y =x 2-5x 的图象,如图所示.|x 2-5x |<6表示函数图象中直线y =-6和直线y =6之间相应部分的自变量的集合.解方程x 2-5x =6,得x 1=-1,x 2=6.解方程x 2-5x =-6,得x ′1=2,x ′2=3.即得到不等式的解集是{x |-1<x <2或3<x <6}. 规律总结:1.形如a <|f (x )|<b (b >a >0)型不等式的简单解法是利用等价转化法,即a <|f (x )|<b (0<a <b )⇔a <f (x )<b 或-b <f (x )<-a .2.形如|f (x )|<a ,|f (x )|>a (a ∈R )型不等式的简单解法是等价命题法,即 (1)当a >0时,|f (x )|<a ⇔-a <f (x )<a . |f (x )|>a ⇔f (x )>a 或f (x )<-a . (2)当a =0时,|f (x )|<a 无解. |f (x )|>a ⇔|f (x )|≠0.(3)当a <0时,|f (x )|<a 无解. |f (x )|>a ⇔f (x )有意义. [再练一题] 1.解不等式: (1)3<|x +2|≤4; (2)|5x -x 2|≥6.【解】 (1)∵3<|x +2|≤4,∴3<x +2≤4或-4≤x +2<-3,即1<x ≤2或-6≤x <-5,所以原不等式的解集为{x |1<x ≤2或-6≤x <-5}.(2)∵|5x -x 2|≥6,∴5x -x 2≥6或5x -x 2≤-6,由5x -x 2≥6,即x 2-5x +6≤0,∴2≤x ≤3, 由5x -x 2≤-6,即x 2-5x -6≥0,∴x ≥6或x ≤-1, 所以原不等式的解集为{x |x ≤-1或2≤x ≤3或x ≥6}. 题型二、含参数的绝对值不等式的综合问题 例2已知函数f (x )=|x -a |.(1)若不等式f (x )≤3的解集为{x |-1≤x ≤5},求实数a 的值;(2)在(1)的条件下,若f (x )+f (x +5)≥m 对一切实数x 恒成立,求实数m 的取值范围. 【精彩点拨】 解f (x )≤3,由集合相等,求a →求y =f (x )+f (x +5)的最小值,确定m 的取值范围【自主解答】 (1)由f (x )≤3,得|x -a |≤3, 解得a -3≤x ≤a +3.又已知不等式f (x )≤3的解集为{x |-1≤x ≤5},所以⎩⎪⎨⎪⎧a -3=-1,a +3=5,解得a =2.(2)法一 由(1)知a =2,此时f (x )=|x -2|,设g (x )=f (x )+f (x +5)=|x -2|+|x +3|, 于是g (x )=⎩⎪⎨⎪⎧-2x -1,x <-3,5,-3≤x ≤2,2x +1,x >2.利用g (x )的单调性,易知g (x )的最小值为5. 因此g (x )=f (x )+f (x +5)≥m 对x ∈R 恒成立, 知实数m 的取值范围是(-∞,5]. 法二 当a =2时,f (x )=|x -2|. 设g (x )=f (x )+f (x +5)=|x -2|+|x +3|.由|x -2|+|x +3|≥|(x -2)-(x +3)|=5(当且仅当-3≤x ≤2时等号成立),得g (x )的最小值为5.因此,若g (x )=f (x )+f (x +5)≥m 恒成立, 则实数m 的取值范围是(-∞,5]. 规律总结:1.第(2)问求解的关键是转化为求f (x )+f (x +5)的最小值,法一是运用分类讨论思想,利用函数的单调性;法二是利用绝对值不等式的性质(应注意等号成立的条件).2.将绝对值不等式与函数以及不等式恒成立交汇、渗透,这是命题的新动向.解题时应强化函数、数形结合与转化化归思想方法的灵活运用.[再练一题]2.关于x 的不等式lg(|x +3|-|x -7|)<m . (1)当m =1时,解此不等式;(2)设函数f (x )=lg(|x +3|-|x -7|),当m 为何值时,f (x )<m 恒成立?【解】 (1)当m =1时,原不等式可变为0<|x +3|-|x -7|<10,可得其解集为{x |2<x <7}. (2)设t =|x +3|-|x -7|,则由对数定义及绝对值的几何意义知0<t ≤10, 因y =lg x 在(0,+∞)上为增函数, 则lg t ≤1,当t =10,x ≥7时,lg t =1, 故只需m >1即可,即m >1时,f (x )<m 恒成立. 题型三、含两个绝对值的不等式的解法例3 (1)解不等式|x +2|>|x -1|;(2)解不等式|x +1|+|x -1|≥3.【精彩点拨】 (1)可以两边平方求解,也可以讨论去绝对值符号求解,还可以用数轴上绝对值的几何意义来求解;(2)可以分类讨论求解,也可以借助数轴利用绝对值的几何意义求解,还可以左、右两边构建相应函数,画图象求解.【自主解答】 (1)|x +2|>|x -1|,可化为(x +2)2-(x -1)2>0,即6x +3>0,解得x >-12,∴|x +2|>|x -1|的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪x >-12. (2)如图,设数轴上与-1,1对应的点分别为A ,B ,那么A ,B 两点间的距离为2,因此区间[-1,1]上的数都不是不等式的解.设在A 点左侧有一点A 1到A ,B 两点的距离和为3,A 1对应数轴上的x .所以-1-x +1-x =3,得x =-32.同理设B 点右侧有一点B 1到A ,B 两点的距离和为3,B 1对应数轴上的x , 所以x -1+x -(-1)=3. 所以x =32.从数轴上可看到,点A 1,B 1之间的点到A ,B 的距离之和都小于3;点A 1的左边或点B 1的右边的任何点到A ,B 的距离之和都大于3,所以原不等式的解集是⎝⎛⎦⎤-∞,-32∪⎣⎡⎭⎫32,+∞. 规律总结:|x -a |+|x -b |≥c ,|x -a |+|x -b |≤c (c >0)型不等式的三种解法:分区间(分类)讨论法、图象法和几何法.分区间讨论的方法具有普遍性,但较麻烦;几何法和图象法直观,但只适用于数据较简单的情况.[再练一题]3.已知函数f (x )=|x -8|-|x -4|.(1)作出函数f (x )的图象;(2)解不等式f (x )>2. 【解】 (1)f (x )=⎩⎪⎨⎪⎧4,x ≤4,12-2x ,4<x ≤8,-4,x >8.函数的图象如图所示.(2)不等式|x -8|-|x -4|>2,即f (x )>2. 由-2x +12=2,得x =5, 根据函数f (x )的图象可知, 原不等式的解集为 (-∞,5). (四)归纳小结绝对值不等式的解法—⎪⎪⎪⎪—绝对值的几何意义—|ax +b |≤c 与|ax +b |≥c 型不等式—含两个绝对值的不等式的解法—含参数的绝对值不等式问题(五)随堂检测1.不等式|x |·(1-2x )>0的解集是( )A.⎝⎛⎭⎫-∞,12 B .(-∞,0)∪⎝⎛⎭⎫0,12 C.⎝⎛⎭⎫12,+∞ D.⎝⎛⎭⎫0,12 【解析】 原不等式等价于⎩⎪⎨⎪⎧x ≠0,1-2x >0,解得x <12且x ≠0,即x ∈(-∞,0)∪⎝⎛⎭⎫0,12. 【答案】 B2.不等式|x 2-2|<2的解集是( ) A .(-1,1) B .(-2,2) C .(-1,0)∪(0,1) D.(-2,0)∪(0,2)【解析】 由|x 2-2|<2,得-2<x 2-2<2,即0<x 2<4,所以-2<x <0或0<x <2,故解集为(-2,0)∪(0,2).【答案】 D3.不等式|x +1||x +2|≥1的实数解为________.【解析】|x +1||x +2|≥1⇔|x +1|≥|x +2|,且x +2≠0. ∴x ≤-32且x ≠-2.【答案】 ⎩⎨⎧⎭⎬⎫x ⎪⎪x ≤-32且x ≠-2六、板书设计七、作业布置同步练习1.2.2:绝对值不等式的解法八、教学反思。
绝对值不等式教案

绝对值不等式教案1.3绝对值不等式的解法(一)教学目标教学知识点1.掌握|x|>a与|x|<a (a>0)型不等式的解法。
2.|ax+b|>c 与|ax+b|<c 型不等式的解法。
3.|x-a|+|x-b|>c 与|x-a|+|x-b|<c型不等式的解法。
能力训练要求1.通过不等式的求解,加强学生的运算能力。
2.提高学生在解决问题中运用整体代换的能力。
教学重点|ax+b|>c 、|ax+b|<c、|x-a|+|x-b|>c 、|x-a|+|x-b|<c型不等式的解法。
教学难点如何去掉绝对值不等式中的不等式符号,将其转化成已会解的不等式。
教学过程:一、引入:在初中课程的学习中,我们已经对不等式和绝对值的一些基本知识有了一定的了解。
在此基础上,本节讨论含有绝对值的不等式。
关于含有绝对值的不等式的问题,主要包括两类:一类是解不等式,另一类是证明不等式。
本节主要研究不等式的解法。
1、解在绝对值符号内含有未知数的不等式(也称绝对值不等式),关键在于去掉绝对值符号,化成普通的不等式。
主要的依据是绝对值的意义.请同学们回忆一下绝对值的意义。
在数轴上,一个点到原点的距离称为这个点所表示的数的绝对值。
即⎪⎩⎪⎨⎧<-=>=0000x x x x x x ,如果,如果,如果。
2、含有绝对值的不等式有两种基本的类型。
第一种类型。
设a 为正数。
根据绝对值的意义,不等式a x <的解集是 }|{a x a x <<-,它的几何意义就是数轴上到原点的距离小于a 的点的集合是开区间(-a ,a ),如图所示。
a - 图1-1 a如果给定的不等式符合上述形式,就可以直接利用它的结果来解。
第二种类型。
设a为正数。
根据绝对值的意义,不等式ax>的解集是{|x a<}x>或ax-它的几何意义就是数轴上到原点的距离大于a的点的集合是两个开区间),(),a的并集。
试讲教案模板(含绝对值的不等式解法)

试讲教案模板(含绝对值的不等式解法)第一章:绝对值概念介绍1.1 绝对值的定义与性质引入绝对值的概念,解释绝对值表示一个数与零点的距离。
探讨绝对值的性质,如非负性、奇偶性等。
1.2 绝对值不等式介绍绝对值不等式的概念,即含有绝对值符号的不等式。
举例说明绝对值不等式的形式,如|x| > 2 或|x 3| ≤1。
第二章:绝对值不等式的解法2.1 绝对值不等式的基本性质讲解绝对值不等式的基本性质,如|a| ≤b 可以转化为-b ≤a ≤b。
引导学生理解绝对值不等式与普通不等式的区别与联系。
2.2 绝对值不等式的解法步骤介绍解绝对值不等式的步骤,包括正确理解不等式、画出数轴、分类讨论等。
通过具体例子演示解绝对值不等式的过程,如解|x 2| ≤3。
第三章:绝对值不等式的应用3.1 绝对值不等式在实际问题中的应用通过实际问题引入绝对值不等式的应用,如距离问题、温度问题等。
引导学生运用绝对值不等式解决实际问题,培养学生的数学应用能力。
3.2 绝对值不等式的综合应用提供综合性的题目,让学生练习将实际问题转化为绝对值不等式。
引导学生运用解绝对值不等式的技巧,求解综合应用问题。
第四章:含绝对值的不等式组4.1 不等式组的定义与性质引入不等式组的概念,即由多个不等式组成的集合。
探讨不等式组的性质,如解的交集、解的传递性等。
4.2 含绝对值的不等式组的解法讲解含绝对值的不等式组的解法,如先解每个绝对值不等式,再求交集。
提供例子,演示解含绝对值的不等式组的过程。
第五章:含绝对值的不等式解的应用5.1 含绝对值的不等式在实际问题中的应用通过实际问题引入含绝对值的不等式应用,如几何问题、物理问题等。
引导学生运用含绝对值的不等式解决实际问题,培养学生的数学应用能力。
5.2 含绝对值的不等式的综合应用提供综合性的题目,让学生练习将实际问题转化为含绝对值的不等式。
引导学生运用解含绝对值的不等式的技巧,求解综合应用问题。
第六章:绝对值不等式的图形解法6.1 绝对值不等式与数轴介绍如何利用数轴来解绝对值不等式。
绝对值不等式教案

绝对值不等式教案一、教学目标:1.理解 |x|≤ a ,|x|≥ a (a >0)型不等式的意义并掌握其解法。
2.掌握 |ax+b| ≤ c ,|ax+b|≥ c (c >0)型不等式的解法,并学会运用“ ”。
3.通过本节课的学习,了解数形结合,分类讨论的思想。
二、教学重点:|x| ≤ a ,|x|≥ a (a>0)型不等式解法,关键是对绝对值意义的理解。
三、教学难点: |ax+b| ≤ c ,|ax+b|≥ c (c >0)型不等式的解法。
四、教学流程1、课题引入:商店出售的标明500g 的袋装食盐,按商品质量规定,其实际数与所标数的差不能超过5g ,如果设实际数是Xg ,那么怎样表示这个数量关系呢?2、引出课题:绝对值不等式3、巩固知识与探索新知:问题(一)1.绝对值的代数和几何意义。
(数形结合思想的铺垫)几何意义:实数a 的绝对值表示在数轴上所对应的点A 到原点的距离。
问题(二)1.解方程|x|=2?|x|=2的几何意义是什么?(从具体出发,体现数学问题与图形之间的直观联系)(1)代数法:当 x ≥0 时, x = 2;当 x< 0 时,-x = 2,即 x = -2。
∴ x= 2 或 -2(2)几何法:|x|=2的几何意义是到原点的距离等于2的点。
2.对于|x|>2, |x|<2能用绝对值定义分析讨论吗?能表述其几何意义吗?其解集是什么?(与课题绝对值不等式衔接,旧知与新知的自然过度)(1)代数法:① 解 |x| > 2:当 x ≥ 0 时,x > 2 ;当 x < 0 时,-x > 2 ,即 x < -2。
代数意义:|a|= a, a ≥0-a, a <0-aa X 0 -2 2 X∴ |x| > 2 的解集为 { x| x < -2 或 x > 2} ② 解 |x| < 2:当 x ≥ 0时,x < 2;当 x < 0时,-x < 2 ,即 x > -2。
2.《绝对值不等式的解法》说课稿(1)

2、目标分析
根据课程标准的要求及本节的地位和作用,我从以下几 方
面来确定教学目标: (1)知识目标:理解 与
ax b c a 0, c 0
x a 或 x a
(2)能力目标:运用含绝对值的不等式的解法解决一些简单 的不等式;培养学生数形结合、整体代换等意识. (3)情感目标:感悟形与数不同的数学形态间的和谐同一美.
ax b c与 ax b c a 0, c 0
的解法.
3、例题讲解
.
知识注重应用.因而,当这部分知识讲解完后,我将通过 两个例题来强化学生对知识的理解.
例1 解不等式 2 x 3 5 目的:巩固所学 知识,解决情景 中问题.例题注 重分析,并将结 果回到情景,培 养学生理论联系 实际的思想.
绝对值不等式的解法
(说课稿)
七、 教学评价
六、 板书设计 五、 教学过程
三、 教法分析
四、 学法分析
一、 课题介绍
二、 教材分析
一、课题介绍
选自人民教育出版社《普通高中标准实验教科书.数 学.选修(4-5)》不等式选讲第一讲——绝对值不等 式的解法.
二、教材分析
1、本节在教材中的地位和作用
不等式是中学学习的主要内容之一.解含绝对值的不等 式问题的基本思想是设法去掉绝对值符号,化归为不含绝 对值符号的不等式去解.而去绝对值的方法主要有公式法、 分类讨论法、平方法、几何法等.本节主要学习里面的公式 法,即运用绝对值的几何意义及数形结合、整体代换等思 想来去掉绝对值符号,转化为不含绝对值的不等式求解. 含绝对值不等式的学习,是在初中一元一次不等式的基础 上进行的,是集合知识的应用和巩固,同时,为以后不等 式的学习打下了基础,对培养学生分析问题、解决问题的 能力、理解能力、培育思维的灵活性有很大的帮助,同时 能使学生养成多角度认识事物的习惯;并通过不等式变换 的等价性培养思维的可容性.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
绝对值不等式的解法教案
教学目标
(1)掌握与()型的绝对值不等式的解法.
(2)掌握与()型的绝对值不等式的解法.
(3)通过用数轴来表示含绝对值不等式的解集,培养学生数形结合的能力。
(4)通过将含绝对值的不等式同解变形为不含绝对值的不等式,培养学生化归的思想和转化的能力。
教学重点:型的不等式的解法;
教学难点:利用绝对值的意义分析、解决问题.
教学过程设计
教师活动
一、导入新课
【提问】正数的绝对值什么负数的绝对值是什么零的绝对值是什么举例说明【概括】
【不等式的代数意义及几何意义】
学生活动
口答:代数意义
几何意义
|a|的意义是a在数轴上的相应点到原点的距离。
设计意图
绝对值的概念是解与()型绝对值不等式的概念,为解这种类型的绝对值不等式做好铺垫.
【不等式的性质】:
①若a>b ;c∈R 则 a+c>b+c
②若a>b ;c>0 则 ac>bc
③若a>b ;c<0 则 ac<b
二、新课
1、考察、研究特殊情况
【导入】2的绝对值等于几-2的绝对值等于几绝对值等于2的数是谁在数轴上表示出来.
【讲述】求绝对值等于2的数可以用方程来表示,这样的方程叫做绝对值方程.显然,它的解有二个,一个是2,另一个是-2.
【提问】如何解绝对值方程.
【设问】解绝对值不等式,由绝对值的意义你能在数轴上画出它的解吗这个绝对值不等式的解集怎样表示
【讲述】根据绝对值的意义,由右面的数轴可以看出,不等式的解集就是表示数轴上到原点的距离小于2的点的集合.
口答.画出数轴后在数轴上表示绝对值等于2的数.
画出数轴,思考答案
不等式的解集表示为
【设问】解绝对值不等式,由绝对值的意义你能在数轴上画出它的解吗这个绝对值不等式的解集怎样表示
【质疑】的解集有几部分为什么也是它的解集
【讲述】这个集合中的数都比-2小,从数轴上可以明显看出它们的绝对值都比2大,所以是解集的一部分.在解时容易出现只求出这部分解集,而丢掉这部解集的错误.
画出数轴思考答案
不等式的解集为或表示为,或
2、自主演练:解下列不等式
1) | x | < 4
| x | < -1
| x | ≤ 0
2) | x | > 4
| x | > -3
| x | >0
3、抽象概括绝对值不等式的解集答案:{ x | -4 < x < 4 }
Ф
答案:{ x | x>4,或x<-4 }
R
一般地,不等式|x|<a(a>0)的解集是{x|-a<x<a};
不等式|x|>a(a>0)的解集是{x|x>a或x<-a}。
【思考】上述绝对值不等式中的x能否代表一个“代数式”,像|ax+b|>c或|ax+b|<c(c>0) 请举例说明。
【设问】如果在中的,也就是怎样解
【点拨】可以把看成一个整体,也就是把看成,按照
的解法来解.
所以,原不等式的解集是
【设问】如果中的是,也就是怎样解
【点拨】可以把看成一个整体,也就是把看成,按照的解法来解.
,或,
由得由得
所以,原不等式的解集是
三、例题选讲
【例】:(1) |x-2|<3 (2) |x+1|>3
(3) 2| x-1 |< 5 (4) |2-x|>3
(5) |3x-1|>4 (6) |x-a|< b (b>0)
【拓展练习】解下列不等式
(1) |2-3x| -1> 0
(2) |x-3| > 5x+1
(3) |2x+1| < x+3
四、小结
1、的解集是;的解集是
2、解绝对值不等式注意不要丢掉这部分解集.
3、或型的绝对值不等式,若把看成一个整体一个字母,就可以归结为或型绝对值不等式的解法.
五、课后作业
1、作业 p9,A组,5.
2、思考探究下列不等式的解法
(1)3<| 2x-3| < 5 (2)| x- 5 | - | x+3 | < 1
(3) | x- 5 |<| 2x+3 |。