随机变量的相互独立性
随机变量的独立性

P{ X = 0} = 1 p , P{ Z = 0} = 2 p(1 p) ,
P{ X = 0, Z = 0} = P{ X = 0, X + Y = 1}
= P{ X = 0, Y = 1} = P{ X = 0} P{Y = 1} = p(1 p ) .
2 p(1 p ) 2 = p(1 p ) , p = 0.5 . 令
1 ,若X + Y为偶数, Z= 0 ,若X + Y为奇数. 取何值时, 和 相互独立 相互独立? 问p取何值时,X和Z相互独立? 取何值时
解 首先求出Z的概率分布: 首先求出 的概率分布: 的概率分布
P{ Z = 0} = P{ X + Y = 1}
因为X和 因为 和Y 相互独立
= P{ X = 0, Y = 1} + P{ X = 1, Y = 0}
1 α= . 6
2 β = . 9
5
又由分布律的性质,有 又由分布律的性质 有
1 1 1 1 α + + + +β + =1 9 18 3 9
7 α+β = 18
假设随机变量X和 相互独立 相互独立, 例3 假设随机变量 和Y相互独立,都服从参数为 p(0<p<1)的0-1分布,随机变量 分布, ( ) 分布
f (x, y) = f X ( x) fY ( y) 成立,所以 相互独立.8 成立,所以X,Y相互独立 相互独立.
例5 设(X,Y )的联合密度函数为 ,
8 xy 0 ≤ x ≤ y , 0 ≤ y ≤ 1 f ( x, y) = , 其它 0
1
y
y= x
是否相互独立? 问X与Y是否相互独立? 与 是否相互独立 的边缘密度分别为 解 X,Y的边缘密度分别为
随机变量独立性判断随机变量的独立性和相关性

随机变量独立性判断随机变量的独立性和相关性随机变量的独立性和相关性是概率论和数理统计中的重要概念。
在实际问题中,我们经常需要判断随机变量之间是否相互独立或者相关。
本文将介绍如何判断随机变量的独立性和相关性。
一、什么是随机变量的独立性和相关性随机变量的独立性和相关性描述了随机变量之间的关系。
独立性:若两个随机变量X和Y的联合分布等于各自的边缘分布之积,即P(X=x, Y=y) = P(X=x)P(Y=y),则称X和Y独立。
相关性:若两个随机变量X和Y之间存在某种依赖关系,即它们的联合分布和边缘分布不相等,称X和Y相关。
二、判断随机变量的独立性和相关性的方法1. 统计方法利用样本数据进行统计分析,可以判断随机变量的独立性和相关性。
对于两个随机变量X和Y,如果它们的样本相关系数接近于0,可以认为X和Y近似独立;如果样本相关系数接近于1或-1,可以认为X和Y相关。
2. 图形方法通过绘制散点图可以直观地观察随机变量的相关性。
对于两个随机变量X和Y,如果它们的散点图呈现出线性关系,则可以认为X和Y相关;如果散点图呈现出无规律的分布,则可以认为X和Y近似独立。
3. 利用协方差和相关系数判断协方差和相关系数是判断随机变量相关性的重要指标。
协方差衡量了两个随机变量之间的线性相关性,若协方差为0,则可以认为两个随机变量不相关。
相关系数除了衡量两个随机变量的线性相关性,还可以衡量非线性相关性,相关系数的范围在-1至1之间,绝对值越接近1表示相关性越强,绝对值越接近0表示独立性越强。
三、应用举例1. 抛硬币问题假设一次抛硬币,X表示正面次数,Y表示反面次数。
在这个例子中,X和Y的取值只能是0或1,它们的联合分布如下:P(X=0, Y=0) = 1/2P(X=1, Y=0) = 1/2P(X=0, Y=1) = 1/2P(X=1, Y=1) = 1/2可以看出,X和Y的联合分布等于各自的边缘分布之积,即P(X=x, Y=y) = P(X=x)P(Y=y),因此X和Y是独立的。
证明随机变量相互独立

证明随机变量相互独立要证明随机变量相互独立,可以通过验证它们的联合分布函数和边缘分布函数,或者联合概率密度和边缘概率密度之间的关系来进行判断。
以下是证明随机变量X和Y相互独立的一般步骤:1. 定义独立性:如果两个随机变量X和Y满足对于所有可能的事件A和B,它们的联合概率等于各自概率的乘积,即P(A∩B) = P(A)P(B),那么称X和Y是相互独立的。
2. 使用分布函数:对于连续型随机变量,如果X和Y相互独立,则它们的联合分布函数F(x, y)等于边缘分布函数的乘积,即F(x, y) = F_X(x) * F_Y(y)。
类似地,对于离散型随机变量,它们的联合概率质量函数等于边缘概率质量函数的乘积。
3. 使用概率密度函数:对于具有概率密度函数的随机变量,如果X和Y相互独立,则它们的联合概率密度函数f(x, y)等于边缘概率密度函数的乘积,即f(x, y) = f_X(x) * f_Y(y)。
4. 检验条件独立性:随机变量X和Y相互独立还意味着给定任何其他随机变量Z的条件下,X和Y仍然是独立的。
这可以用条件概率来表示,即P(X|Z)和P(Y|Z)的乘积应该等于P(X, Y|Z)。
5. 数学期望的性质:如果X和Y相互独立,那么它们的乘积的期望值等于各自期望值的乘积,即E(XY) = E(X)E(Y)。
这是独立性的一个结果,但不能用来作为独立性的判定标准,因为不线性相关并不意味着独立。
6. 实证检验:在实际应用中,可以通过收集数据并计算这些概率或期望值来检验随机变量是否独立。
如果实证数据与独立性的定义相符合,则可以认为它们是独立的。
7. 理论推导:在某些情况下,可以通过理论推导来证明独立性。
例如,如果已知随机变量是由某些独立的实验或过程生成的,那么这些随机变量可能是独立的。
8. 测度论方法:在更高级的数学框架下,如测度论,可以使用σ-代数和概率测度的概念来定义和证明独立性。
这通常涉及到对事件集合的操作和概率的公理化定义。
3.4(随机变量的相互独立性)

f ( x , y) 1 2 1 2 1 ( x 1 ) 2 ( x 1 )( y 2 ) ( y 2 ) 2 exp{ ( 2 } 2 2 2 2 2 ( 1 ) 1 1 1 2 2
由例3.11知,f X ( x ), fY ( y)的乘积为
0
1
x2 2
)dx
1 1 2 e 2 0
1
x2 2
dx
1 2 (1) (0)
1 2.5066 0.8413 0.5
0.1445
□
3.4 随机变量的相互独立性
【例 3.19】对于二维正态分布,则 X 与 Y 相互独立的 充要条件是ρ=0.
0.5
pj
0.5
0.5
及独立性得到下表:
3.4 随机变量的相互独立性
pij
Z
0.25
1
0.25
0
0.25
0
0.25
1
(X,Y) (0,0) (0,1) (1,0) (1,1)
(X,Z) (0,1) (0,0) (1,0) (1,1)
(X,Z)的分布律及边缘分布律为:
X Z 0 0 0.25 1 0.25 p i. 0.5
第3章 多维随机变量及其分布
3.4 随机变量的相互独立性
定义3.9 设n维随机变量(X1,X2,…,Xn)的分 布函数为F(x1,x2,…,xn),FXi (xi)为Xi的边缘分布 函数,如果对任意n个实数x1,x2,…,xn,有
P{ X 1 x1 , X 2 x2 ,, X n xn } P{ X i xi } 即 F ( x1 , x2 , , xn ) FX i ( xi )
第三章相互独立的随机变量(多维随机变量及其分布)

10:42:20
19
例5 设(X,Y)在圆域D={(x, y)| x2+y2r 2}上服从均匀 分布. (1) 求X与Y的边缘密度,判断X与Y是否相互独立. 2 r2 r 2 2 ( 2)求P 8 X Y 4 . 2 y 解 1 / r , ( x , y ) D , x2+y2=r 2
即 1 2σ1σ 2 1 2 2 σ1 1 ρ 1 , 2 σ 2
从而 0.
综上,对于二维正态随 机变量( X , Y ), X和Y相互独立的充分必要条 件是
0.
10:42:20
12
例3
甲乙两人约定中午12时30分在某地会面. 如果甲来到的时间在 12:15 到 12:45 之间是均匀 分布 . 乙独立地到达 , 而且到达时间在 12:00到 13:00之间是均匀分布. 求先到的人等待另一人到达的时间不超过 5 分钟的概率; 又甲先到的概率是多少? 解: 设X为甲到达时刻,Y为乙到达时刻. 以12时 为起点0,以分为单位.
d c
o
a
b
x
10:42:20
17
f X ( x)
f ( x , y )dy
d
y
当 a x b时,
d
1 1 f X ( x) dy . c ( b a )(d c ) ba 1 , a x b , f X ( x) b - a 0, 其它.
222121??????????nyx??????????????????????????????????????????????22222121212122212121exp121yyxxyxf??则若0????????????????????????????????????????222221212121exp21yxyxf??????????????????????????????????????22222212112exp212exp21yx????ryxyfxfyx????即即x与y相互独立
多维随机变量及其分布,随机变量相互独立性,条件概率

P {Y1X1 }P {X1 ,Y1 } 0.010 , P {X1 } 0.045
P {Y2X1 }P {X1 ,Y2} 0.005 , P {X1 } 0.045
三、连续型随机变量的条件分
布
定义 设二维随机变量(X,Y)的概率密度为
xp 0(,xy,y ) 0p X(x)p Y(y) 其它 故X,Y 独立
问X和Y是否独立?
解:pX(x)
xe(xy)dy
0
xex
x>0
pY(y)0x e(xy)dx e y
y >0
即:
xex, x0
pX(x)0, 其它
ey,
pY
(
y)
0,
y0 其它
例3 设随机X变 和Y量 相互独 ,并立 且 X服从 N(a,σ2)Y , 在[b,b]上服从均,求 匀 (X分 ,Y)布 的联合概. 率密度
对(X,Y)的所有可能取值(xi, yj),有
P ( X x i,Y y j) P ( X x i) P ( Y y j)
则称X和Y相互独立.
例1 已知(X,Y)的分布律为
(X,Y) (1,1) (1,2) (1,3) (2,1) (2,2) (2,3)
1
1
1
1
p ij
6
9 18
3
(1)求 与 应满足;的条件
(1)求在 X1的条件 ,Y的 下条件分 ; 布律
(2)求在 Y0的条件 ,X的 下条件分 . 布律
解 Y X 0 1 2 3P{Yj}
0 0 .84 0 .0 03 0 .0 02 0 .0 0100 .900 1 0 .06 0 .0 01 0 .0 00 0 .0 8002 .080 2 0 .01 0 .0 00 0 .0 50 0 .0 4001 .020 P{Xi} 0 .91 0 .0 04 0 .0 53 0 .0 2113 .000
随机变量的独立性及联合分布的定义及计算方法

随机变量的独立性及联合分布的定义及计算方法随机变量是统计学中一个重要的概念,指的是随机试验中可能取到的数值。
对于多个随机变量之间的关系,独立性和联合分布是常用的概念和方法。
本文将依次介绍随机变量独立性的定义和判定方法、随机变量的联合分布的定义和常见计算方法。
一、随机变量的独立性随机变量的独立性是指在给定条件下,多个随机变量之间不存在相关性,即一个随机变量的取值不会对其他随机变量的取值产生影响。
常用的判定方法包括:1. 互不影响如果两个随机变量之间互不影响,则这两个变量是独立的。
例如,投掷两个骰子,其中一个骰子的点数不会影响另一个骰子的点数,因此两个骰子的点数是独立的随机变量。
2. 相互独立如果多个随机变量之间的任意两个变量都是独立的,则这些随机变量是相互独立的。
例如,投掷三个骰子,每个骰子的点数都是独立的随机变量,因此三个骰子的点数是相互独立的随机变量。
3. 独立性定义下的概率乘法公式对于两个独立的随机变量X和Y,它们同时取到某个值的概率等于它们各自取到这个值的概率的乘积。
即P(X=x,Y=y)=P(X=x)P(Y=y)。
该公式也适用于多个独立的随机变量。
二、随机变量的联合分布多个随机变量的联合分布是指这些随机变量取值组合所对应的概率分布函数。
常用的计算方法包括:1. 联合分布函数对于两个随机变量X和Y,它们的联合分布函数定义为F(x,y)=P(X<=x,Y<=y)。
该函数可以用来计算任意两个随机变量的联合分布。
对于多个随机变量,联合分布函数的定义相应地拓展。
2. 联合概率密度函数对于连续型随机变量,它们的联合概率密度函数可以通过对应的联合分布函数求导得到。
即f(x,y)=∂^2 F(x,y)/∂x∂y。
该函数可以用来计算任意两个连续型随机变量的联合分布。
对于多个连续型随机变量,联合概率密度函数的定义相应地拓展。
3. 边缘分布和条件分布对于联合分布中的任意一个随机变量,我们都可以将它的概率分布函数单独计算出来,称为边缘分布。
3.3随机变量的相互独立性

其意义:事件{X≤x}与{Y≤y}相互独立
它表明,两个随机变量相互独立时,它们的 联合分布函数等于两个边缘分布函数的乘积 .
2
离散型: X与Y相互独立 P{X=xi,Y=yj}=P{X=xi}P{Y=yj} 即pij=pi. p.j (i,j=1,2,…)
1 0.2
0
5,
0 x 0.2
0,
其它
6
f(x,y)=fX(x)fY(y)
25e5 y ,0 x 0.2, y 0
0
,其它 y
D
o 0.2 x
P{Y≤X} f ( x, y)dxdy
D
0.2
dx
x 25e5 ydy=0.3697
0
0
7
例3 设:(X
,Y
)∼N(
1,
2
,12
随机变量的独立性是概率论中的一个重要概念 两随机变量独立的定义是:
设 X,Y是两个随机变量,若对任意的x,y,
有
P(X x,Y y) P(X x)P(Y y)
则称X,Y相互独立 .
两事件A,B独立的定义是: 若P(AB)=P(A)P(B) 则称事件A,B独立 .
1
用分布函数表示,即
定义:设二维随机变量(X,Y)的分布函数 为F(x, y), X和Y的边缘分布函数分别为 FX(x), FY(y),若x,y ,有
22
定理2 若X1, …,Xn相互独立,而 Y1=g1(X1, …,Xm), Y2=g2 (Xm+1, …,Xn)
则Y1与Y2独立 .
23
17
在某一分钟的任何时刻,信号进入收音机 是等可能的. 若收到两个互相独立的这种信号 的时间间隔小于0.5秒,则信号将产生互相干 扰. 求发生两信号互相干扰的概率.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
例2 设X与Y是两个相互独立的随机变量, X在(0,0.2)上服从均匀分布,Y的概率密度 5 y 为: 5e , y 0
求 P{Y≤X}
fY ( y ) 0,
D
其它
解: P{Y≤X} f ( x , y )dxdy
1 5 , 0 x 0 .2 0 .2 0 f X ( x) 其它 0,
12
若(X,Y)的概率密度为
2 , 0 x y ,0 y 1 f ( x, y ) 其它 0,
情况又怎样?
解: f X ( x )
fY
( y)
1
x y 0
2dy 2(1 x ), 2dx 2 y,
0<x<1
0<y<1
由于存在面积不为0的区域, f ( x , y ) f X ( x ) fY ( y ) 故X和Y不独立 .
13
例5 甲乙两人约定中午12时30分在某地会面. 如果甲来到的时间在 12:15到12:45之间是均匀 分布 . 乙独立地到达 , 而且到达时间在 12:00 到 13:00之间是均匀分布. 试求先到的人等待另一 人到达的时间不超过5分钟的概率. 又甲先到的 概率是多少?
解: 设X为甲到达时刻,Y为乙到达时刻
( x y )
问X和Y是否独立?
0
xe
dy xe x , x>0
y
fY ( y) xe
0
( x y )
dx e ,
y >0
即: xe x , x 0 f X ( x) 0, 其它
e y , y 0 fY ( y ) 0, 其它
1 21 2 1
2
1 1 2 1 2 2
对比两边 ∴ =0
11
例4 设(X,Y)的概率密度为
xe f ( x, y )
解:f X ( x )
( x y )
,y , 均有: , x 对一切 0, y x 0 f ( x, y) f X ( x) fY ( y) 0, 其它 故X,Y 独立
求证: X与Y独立 =0
证明: f ( x, y )
1 21 2 1 x , yR
2
e
( x u1 )( y u 2 ) ( y u 2 ) 2 1 ( x u1 ) 2 2 2 2 2 1 2 2 (1 ) 2 1
2
用分布函数表示,即
定义:设二维随机变量(X,Y)的分布函数 为F(x, y), X和Y的边缘分布函数分别为 FX(x), FY(y),若x,y ,有 F(x,y)=FX(x)FY(y) 则称随机变量X和Y相互独立 其意义:事件{X≤x}与{Y≤y}相互独立
它表明,两个随机变量相互独立时,它们的 联合分布函数等于两个边缘分布函数的乘积 .
7
f(x,y)=fX(x)fY(y)
25e 0
5 y
,0 x 0.2, y 0 y ,其它
D o
P{Y≤X} dx f ( x , y )dy
dx 25e
0 0 0.2 x 5 y
x
0.2
x
dy =0.3697
8
例3 设:(X ,Y )∼N(1,2,1,2 ,)
∴ X与Y独立
10
1 ( x u1 ) 2 ( y u 2 ) 2 2 2 2 2 1
“”
∵X和Y相互独立 ∴ (x,y) R2.有 f(x,y)= fX(x)fY(y) 特别,取 x=u1 , y=u2 代入上式有 f(u1,u2)= fX(u1)fY(u2) 即:
3.3随机变量的独立性
1
随机变量的独立性是概率论中的一个重要概念 两随机变量独立的定义是:
设 X,Y是两个随机变量,若对任意的x,y, 有
P( X x, Y y) P ( X x ) P (Y y)
则称X,Y相互独立 .
两事件A,B独立的定义是: 若P(AB)=P(A)P(B) 则称事件A,B独立 .
3
离散型: X与Y相互独立 P{X=xi,Y=yj}=P{X=xi}P{Y=yj} 即pij=pi. p.j (i,j=1,2,…) 连续型: X与Y相互独立 f(x,y)=fX(x)fY(y) 若(X,Y)服从二维正态分布,则X与Y 相互独立=0
4
例1 设二维随机变量(X,Y)的分布律为:
9
由
2 1 2 1 f X ( x) e 2 1 ( y 2 )2 2 1 2 2 fY ( y ) e 2 2
( x1 1 ) 2
xR
y R 于是:
“” 把=0代入
1 f ( x, y ) e 2 1 2 2 ( x u1 ) ( y u 2 ) 2 2 2 1 1 2 1 2 2 e e f X ( x) f Y ( y ) 2 1 2 2
以12时为起点,以分为单位,依题意,
X~U(15,45), Y~U(0,60)
14
解: 设X为甲到达时刻, Y为乙到达时刻 以12时为起点,以分为单位,依题意, X~U(15,45), Y~U(0,60) 1 1 , 15 x 45 , 0 x 60 f X ( x ) 30 fY ( y ) 60 其它 其它 0, 0, 由独立性 先到的人等待另一人 甲先到 1 到达的时间不超过 , 5分钟 15 x 45,0 y 60 的概率 f ( x, y ) 的概率 1800 0, 其它 所求为P( |X-Y | 5) 及P(X<Y)
X
1 2
Y
1
18
若X与Y相互独立,求 , 之值
5
解: =P{X=2,Y=2} =P{X=2}P{Y=2} 1 1 ( )( ) 3 9 =P{X=2,Y=3}=P{X=2}P{Y=3}
1 1 ( )( ) 3 18 又由 pij 1 1 3 i j 解得: 2 , 1 9 9