ZPW-2000A无绝缘轨道电路故障判断方法分析(彩字)

合集下载

ZPW-2000A无绝缘轨道电路故障分析与处理方法

ZPW-2000A无绝缘轨道电路故障分析与处理方法

ZPW-2000A无绝缘轨道电路故障分析与处理方法发布时间:2022-08-14T05:10:48.966Z 来源:《科学与技术》2022年7期作者:孙浩[导读] 在轨道交通运输系统和设备的运行中,不同型号的无绝缘轨道在运行时会出现不同形式的故障和问题。

孙浩中国铁路北京局集团公司石家庄电务段河北石家庄050000摘要:在轨道交通运输系统和设备的运行中,不同型号的无绝缘轨道在运行时会出现不同形式的故障和问题。

结合ZPW-2000A无绝缘轨道的电路故障进行分析,探讨此类型电路在运行过程中可能出现的典型故障以及应对处理方式。

针对此型号的无绝缘轨道电路故障包括室外电缆混线故障、区间电容断线故障、调度单元接线故障、区间移频报警故障进行分析,结合具体的故障明确故障处理方法是保证此类故障及时得到处理并解决的重要前提。

关键词:ZPW-2000A;无绝缘轨道;电路故障;处理方式引言:轨道交通运输中的故障不仅会影响到运输安全,也反映出了轨道交通建设的质量和运行效率方面的实际问题。

无绝缘轨道电路故障基于不同的区域和不同的表现形式有不同的类型。

在实际的无绝缘轨道运行中,需结合不同区域的故障找到针对性地处理措施。

一、无绝缘轨道电路故障分析与处理的重要作用(一)保障无绝缘轨道电路系统的应用安全轨道交通运输过程中的电路运行系统需要保证其运行稳定性和安全性。

在日常的运行维护管理工作中重视对故障和问题的维护管理有利于及时发现电路系统运行中的安全隐患,以便首先通过规避安全隐患保证整体线路系统的正常运行。

在整体的线路运行过程中,运行安全是线路充分发挥作用的重要前提。

因此,需要通过日常的安全隐患维护管理与针对性的故障分析与盐焗达到更好的安全稳定运行维护效果[1]。

(二)确保电路系统功能发挥的稳定性电路系统在运行时容易受到多方面外部因素的影响,尤其是对于无绝缘轨道而言,电路系统的电力资源供应稳定性会直接影响到其运行状态。

一旦出现部分区域或者整个系统的故障,会导致电路系统的功能发挥效果出现问题,轨道交通运行的效率会有所降低。

zpw-2000a轨道电路故障判断和处理程序解析

zpw-2000a轨道电路故障判断和处理程序解析

ZPW-2000A 轨道电路故障判断和处理程序一、判断故障区段1.对分割区段,轨 2亮红时,影响轨 1也亮红,所以首先查轨 2,若轨 2恢复,轨 1仍然亮红,再查轨 1。

2. 对红灯转移区段,当通过信号机红灯灭灯且该信号机防护的区段亮红时,该信号机的前方区段也亮红,应先查信号机防护的区段。

3. 对站联区段,当发车线与邻站分界区段亮红时,应先判断邻站的站联条件是否送过来, 可先观察该区段组合的 GJ (邻、 DJ (邻是否吸起,若吸起,说明邻站已将站联条件送过来;若未吸起,再到区间综合柜零层相应端子测试电压是否送过来。

若条件未送过来, 故障在邻站, 需邻站查找。

二、判断室内外故障判断清楚故障区段后,再判断故障在室内还是室外。

在区间综合柜的电缆模拟网络盘上进行测试判断,先测试发送电缆模拟网络的“电缆”塞孔电压,再测试接收电缆模拟网络的“电缆”塞孔电压。

与正常测试数据进行对比, 若发送电压不正常,故障在室内发送电路。

若发送“电缆” 电压正常,接收电压不正常,故障在室外。

若发送电压和接收电压均正常,故障在室内接收电路。

三、室内故障判断处理1. 室内发送电路故障判断处理a. 衰耗盘测试发送功出电压、载频、低频均正常,电缆模拟网络“设备”电压正常,而“电缆”电压不正常,则电缆模拟网络故障,更换电缆模拟网络即可。

b. 衰耗盘测试发送功出电压、载频、低频均正常,电缆模拟网络“设备”电压不正常,故障点在发送器的发送输出 s1、 s2端子至发送模拟网络端子 1、 2间的电线及继电器接点条件上。

c. 衰耗盘测试发送功出电压、载频、低频不正常, “+ 1” 衰耗盘测试发送功出电压、载频、低频正常,此时,若仅移频报警,轨道电路不亮红,则更换发送器即可。

d. 发送器和“+1”发送器的发送功出电压、载频、低频都不正常,则发送器和“+1”的发送器故障,更换发送器即可。

e. 发送器和“+1”发送器的发送功出电压均为“ 0” V , 检查发送器工作电源良好,故障点在低频编码条件电路或选择载频电路。

ZPW-2000A型无绝缘移频轨道电路室内设备故障处理分析

ZPW-2000A型无绝缘移频轨道电路室内设备故障处理分析

ZPW-2000A型无绝缘移频轨道电路室内设备故障处理分析ZPW-2000A型无绝缘移频轨道电路是铁路运输中常见的设备,它具有对列车进行移频轨道电路监测、使列车运行更加安全和便利的作用。

然而在使用过程中,设备可能会出现一些故障,为了保证设备的正常运行,我们需要及时对故障进行处理。

下面我们将就ZPW-2000A型无绝缘移频轨道电路室内设备故障处理进行分析,以便更好地理解和掌握处理故障的方法。

一、故障描述在进行故障处理之前,我们需要了解ZPW-2000A型无绝缘移频轨道电路室内设备可能会出现的故障情况。

常见的故障包括但不限于:供电异常、电源故障、线路短路、线路开路、信号干扰等。

这些故障都会对设备的正常运行造成影响,所以我们需要对这些故障进行及时的处理。

二、故障处理方法1. 供电异常如果发现ZPW-2000A型无绝缘移频轨道电路室内设备出现供电异常,首先需要检查电源线路是否连接正常,检查电源线路是否受潮或发生短路。

如果是因为电源线路故障导致的供电异常,需要及时更换电源线路并进行调试,以确保设备正常供电。

2. 电源故障3. 线路短路线路短路是ZPW-2000A型无绝缘移频轨道电路室内设备常见的故障之一,造成线路短路的原因可能是线路连接不良、线路受潮等。

对于线路短路,首先需要检查线路连接是否良好,如果发现线路连接不良,需要重新连接线路并进行测试。

如果线路受潮,需要将受潮部分进行清洁和烘干,并进行测试使用。

5. 信号干扰信号干扰是ZPW-2000A型无绝缘移频轨道电路室内设备可能遇到的故障之一,可能会受到外部干扰引起设备信号不稳定。

对于信号干扰,需要首先检查设备周围的环境情况,采取相应的屏蔽措施,确保设备的信号稳定。

ZPW-2000A无绝缘轨道电路故障判断方法分析

ZPW-2000A无绝缘轨道电路故障判断方法分析

ZPW-2000A无绝缘轨道电路故障判断方法分析发表时间:2015-07-23T14:07:22.730Z 来源:《教育学文摘》2015年7月总第162期供稿作者:朱小娟[导读] 死机故障可以通过松出发送盒半分钟再上好试验的方法来处理,如还不行则可能是发送盒本身故障。

朱小娟黑龙江交通职业技术学院161002ZPW-2000A型无绝缘轨道电路分为主轨道电路和送端调谐区小轨道电路两部分。

ZPW-2000A型无绝缘轨道电路故障判断分析需注意:不能以“轨入”电压作为判断故障的唯一依据,这是与UM-71设备的主要区别所在,因为ZPW-2000A设备增加了“衰耗盒”,接收器的工作值取决于经“衰耗盒”分频调整后的主轨道接收信息(指“轨出1”电压)和小轨道接收信息(指“轨出2”电压)。

不能单以测试数据符合标准范围确定好坏,而是测试数据必须与日常测试数据进行比较,再作出正确判断。

一、ZPW-2000A型无绝缘轨道电路发送无功出故障分析与判断结合发送盒工作条件和经验来分析判断发送无功出故障,最常出现的故障是编码电路故障(因为继电器接点是动态的)、模拟电缆故障和死机故障(当遇电源转换、打雷冲击等会造成发送盒内部自动保护)及发送器本身故障。

编码电路故障可根据列车的运行状态来判断(列车运行至前方某一区段时,本区段出现故障,列车再运行至前方更远的区段后,又恢复正常),查找方法是在故障情况下到编码组合根据判断的故障范围测试有关继电器接点电路的电压注意不要借KZ、KF电源测量,因为编码电路用的是QKZ电源,而跨组合借电源又不容易),在故障恢复的情况下检查有关配线。

死机故障可以通过松出发送盒半分钟再上好试验的方法来处理,如还不行则可能是发送盒本身故障。

发送器本身故障判断方法为首先用CD96-3A数字选频表在衰耗盘面板上 “发送电源”插孔测试,工作电源正常,再用CD96-3A数字选频表选好相应频率,在衰耗盘面板上“发送功出”插孔测试,无电压输出。

ZPW_2000A无绝缘轨道电路故障判断方法分析(彩字)

ZPW_2000A无绝缘轨道电路故障判断方法分析(彩字)

ZPW-2000A无绝缘轨道电路故障判断方法分析一、基本问题:1、ZPW-2000A型无绝缘轨道电路的原理:ZPW-2000A型无绝缘轨道电路分为主轨道电路和送端调谐区小轨道电路两部分。

主轨道信息由本区段接收器接收。

送端调谐区小轨道信息由运行前方所在区段接收器处理后形成小轨道电路继电器执行条件“XG”送至本区段接收器【须特别注意:与前方站相邻区段的小轨信息是由对方站接受处理后形成小轨道电路继电器执行条件使XGJ↑、再通过站联条件使本站XGJ(邻)↑、最后经XGJ (邻)↑条件接入24V控制电源作为小轨道检查条件使用;而最接近进站口的一个区段的小轨检查条件“XGJ”则人工接入24V控制电源(因该区段实际上只有主轨区段,没有小轨区段)】。

本区段接收器同时接收到主轨道移频信息(指“轨出1”电压)及小轨道电路. 专业学习资料.继电器执行条件(指“XGJ”电压),判决无误后驱动轨道继电器吸起。

2、必须掌握发送盒、接受盒正常工作的各个条件发送盒正常工作的6个条件:①电源正常且极性正确(22.5~25.5V)②有且只有一个载频和型号(-1或—2型)选择③有且只有一个低频接通④发送电平调整线接触良好⑤功出负载无短路现象(正常电阻为400Ω左右)⑥发送盒未受高压冲击而处于保护状态(死机)接受盒正常工作的5个条件:①电源正常且极性正确(22.5~25.5V)②载频型号与发送盒相符③轨出1电压符合标准(240~870mv),④“XGJ”条件电压﹥20V(正常30V左右、人工条件24V左右)⑤接受盒未受高压冲击而处于保护状态(死机)3、平时要注意的问题①室外补偿电容故障会造成室内限入电压下降(一个坏约降50~100mv)②室外下雨天气会造成室内限入电压下降(约下降150mv左右)③室外空芯线圈接触不良会造成匹配盒、调谐盒烧坏或造成室内设备故障(对设备形成大电压冲击)④室外送端第一、或第二个电容坏会造成小轨电压下降(约降20~40mV)。

ZPW—2000A型无绝缘轨道电路故障现象分析及处理

ZPW—2000A型无绝缘轨道电路故障现象分析及处理

ZPW—2000A型无绝缘轨道电路故障现象分析及处理ZPW-2000A型无绝缘轨道电路是在法国UM71无绝缘轨道电路技术基础上改进而来,广泛的应用于我国的铁路闭塞系统,其正常工作是列车安全、高效运行的保证。

本文以现场实践为基础,对ZPW-2000A型无绝缘轨道电路在现场使用过程中的常见故障现象及处理方法进行总结,并对故障处理流程进行分析,总结其操作过程中需要注意的几点。

关键字:轨道电路调谐单元补偿电容故障处理ZPW-2000A型无绝缘轨道电路是在法国UM71无绝缘轨道电路技术基础上进行改进[1],在保证系统安全性、传输稳定性和可靠性的前提下,较大程度的提高其抗干扰能力,以适应我国复杂的气候环境。

ZPW-2000A型无绝缘轨道电路提高技术性能、降低工程造价,能够满足主体化机车信号和列车超速防护系统对轨道电路安全性和可靠性的要求,广泛的应用于我国的铁路闭塞系统。

在铁路系统中,轨道电路系统一直是铁路线路灾害防治和设备安全风险管理的重点。

根据近几年各铁路局信号设备故障统计数据,可发现轨道电路故障发生最为频繁,在采用约占信号故障总量的36%[2]。

1 ZPW2000A型轨道电路结构组成ZPW2000A型轨道电路,如图1所示,由主轨道电路和调谐区小轨道电路两部分组成,其中调谐区小队到電路可视为列车运行前方主轨道电路所属的延伸段。

电气绝缘节是轨道电路实现与相邻轨道电路间电气分隔的部件,包括两个调谐单元(BA1/BA2)、一个空心线圈(SA V)和29m的钢轨组成,在主轨道区段设置补偿电容C。

轨道电路工作时,发送端产生信号经由发送端设备传输至发送端轨面,然后分别向主轨道电路方向和小轨道电路方向传输,主轨道电路接受处理来自主轨道电路的信号,小轨道电路信号由运行前方相邻轨道电路接收器处理,并将小轨道电路继电器执行条件传输至本轨道电路接收器,作为轨道继电器励磁的必要检查条件。

2 ZPW-2000A型无绝缘轨道电路的室外故障现象及处理ZPW-2000A型轨道电路包括主轨道区段和小轨道区段,为了实现钢轨的无缝连接,取消了传统用于轨道电路绝缘的机械绝缘节,采用具有电气绝缘特性的电气绝缘节,ZPW-2000A型轨道电路电气绝缘节设计长度为29m,为了实现列车在该区域的占用检查,将去其构成一段小轨道电路,通过相邻区段轨道电路接收设备来检查该区段的占用与空闲。

ZPW―2000A型轨道电路故障分析及处理

ZPW―2000A型轨道电路故障分析及处理发表时间:2019-12-16T13:44:37.720Z 来源:《基层建设》2019年第26期作者:赵志峰[导读] 摘要:ZPW-2000A移频自动闭塞设备是高频电子设备构成的新型移频自动闭塞系统,从它的工作原理、器材特性到故障分析都与一般轨道电路有很大不同。

通号工程局集团有限公司武汉 430061摘要:ZPW-2000A移频自动闭塞设备是高频电子设备构成的新型移频自动闭塞系统,从它的工作原理、器材特性到故障分析都与一般轨道电路有很大不同。

在日常施工及维修中掌握的工作原理、器材特性及积累的故障案例对ZPW-2000A型轨道电路故障进行分析,并介绍了处理方法。

关键词:ZPW-2000A;轨道电路;故障处理;电气绝缘节;载频设置;模拟网络盘ZPW-2000A移频轨道电路在我国铁路建设中的普及显示了其安全性和可靠性,但在实际运行过程中,由于一些故障的处理经验积累不足,造成故障判断处理不及时,影响运输安全。

现就ZPW-2000A型无绝缘轨道电路区间常见故障进行分析,对施工及电务维修人员提供帮助和经验积累。

一、ZPW-2000A无绝缘轨道电路的构成ZPW-2000A无绝缘轨道电路由室内与室外两个部分组成。

室外部分包括调谐区、传输电缆、补偿电容、机械绝缘节、匹配变压器、调谐设备引接线和室外防雷,室内部分有发送器、接收器、衰耗器以及电缆模拟网络等构成。

1室外部分(1)补偿电容:保证了轨道电路的传输距离,保证接收端信号有效信干比。

(2)传输电缆:采用国产内屏蔽铁路信号数字电缆SPT,直径1.0毫米,总长度按10千米考虑。

(3)调谐区:用于实现两条轨道电路的电气隔离。

(4)调谐区设备引接线:用于SWA、BA等设备和钢轨之间的连接。

(5)机械绝缘节:设在进出站出口,由空芯线圈SWA与调谐单元并接而成。

(6)匹配变压器:实现轨道与SPT铁路数字信号电缆的匹配连接,获得最好的传输效果。

ZPW-2000A型无绝缘移频轨道电路室内设备故障处理分析

ZPW-2000A型无绝缘移频轨道电路室内设备故障处理分析一、故障现象描述ZPW-2000A型无绝缘移频轨道电路是一种广泛应用于铁路交通自动化控制系统中的关键设备,用于控制列车的运行和停车。

在实际应用中,由于各种原因,这一设备可能会出现各种故障现象,影响铁路交通系统的正常运行。

本文将针对ZPW-2000A型无绝缘移频轨道电路室内设备故障进行分析和处理,以期为相关工作人员提供一定的帮助。

二、常见故障现象及原因分析1. 设备开机后无法正常启动这种故障现象通常是由于电源线接触不良、设备内部故障或者电源供应不足导致的。

在处理这一故障时,首先需要检查设备的电源线是否接触牢固,如果发现接触不良的情况,应及时更换或修复电源线;其次需要检查设备的内部元件是否正常工作,如果发现故障元件,应立即更换;最后需要确认供电电源是否稳定,如供电不足,应及时采取措施解决。

3. 设备工作过程中出现异常信号这种故障现象通常是由于设备接收到了异常信号,或者设备本身存在故障导致的。

在处理这一故障时,首先需要检查设备的信号输入端口,确认是否存在异常信号输入,如存在异常信号,应及时排除;其次需要检查设备本身是否存在故障,如发现故障,应立即修复或更换相应元件。

三、故障处理建议1. 定期检查设备为避免设备出现故障,建议对ZPW-2000A型无绝缘移频轨道电路室内设备进行定期检查,检查设备的电源线、内部元件以及工作状态,发现问题及时处理。

2. 注意设备周围环境ZPW-2000A型无绝缘移频轨道电路室内设备通常被安装在铁路交通自动化控制系统的控制室内,为避免设备受到外部干扰,建议注意设备周围的环境,确保环境清洁、整洁,及时处理设备周围的不良因素。

3. 及时维护设备1. 确认故障现象首先需要对ZPW-2000A型无绝缘移频轨道电路室内设备出现的故障进行详细确认,包括故障现象、出现频率、影响范围等。

2. 排除外部干扰如发现设备受到了外部干扰,需要及时排除外部干扰因素,保障设备正常工作。

ZPW2000A无绝缘轨道电路断轨故障的判断方法

区间轨道电路采用ZPW-2000A型无绝缘轨道电路,该制式轨道电路具有全程断轨检查功能,很大程度上提高了系统的安全性。

钢轨受环境、温度影响较大,冬季夜间及凌晨气温降至最低时,断轨现象不可避免。

受照明和交通条件的限制,凭眼睛检查断轨点是很费时也很困难的,对运输的干扰很严重。

断轨反映到信号设备故障,电务人员如何通过现有仪表和测试手段,迅速判断、确定断轨点显得尤为重要。

一、ZPW-2000A无绝缘轨道电路断轨实例XXX站控制台上行二离去区段2490G出现红光带,电务值班人员接到通知,到控制台确认现象后,去机械室测量,2490G衰耗盘主轨入为39mv,轨出1为14mv,轨出2为156mv,发送功出155V,前方区段2478G衰耗盘轨出2为153mv。

经室外现场测试查找,2490G主轨道断轨,通知工务抢修处理。

故障恢复。

如图1所示:从该故障的处理过程和测试数据(见下表)分1、故障区段2490G衰耗盘主轨轨入、轨出1电压明显下降,轨出2电压不变,证明接收通道正常,即室外接收设备至室内接收设备工作正常。

2、故障区段2490G发送电压正常,小轨道电压(2478G衰耗盘轨出2)略有增加,可以证明发送通道正常,即室内发送设备至室外发送设备工作正常。

3、故障范围是2490G主轨道内部。

主轨轨入、轨出1电压下降明显,可排除个别电容损坏或丢失情况,应为钢轨封连或钢轨断轨故障。

小轨道电压(2478G衰耗盘轨出2)基本不变,可判断为区段内部钢轨断轨。

4、断轨点前后轨面电压差别明显,或显著升高或显著降低,断轨处两侧电容的端电压或电流也差别明显。

补偿电容均匀分布,间隔小,电压高,易测试,应作为测试点。

下表为电容的电流值:C5、C6间电流变化比较大,可以判断:C5、C6间有断轨点。

经仔细查找,距C5 17m左右右侧钢轨有1.2mm左右的裂缝,及时通知工务处理。

至此,从故障发生到找到故障点仅用了24分钟,极大地压缩了故障时间。

二、ZPW-2000A型无绝缘轨道电路断轨检查功能分析1、主轨道电路可视为由许多图2所示的四端网络组成。

ZPW-2000A无绝缘轨道电路故障分析与处理方法


[ 摘 要] Z P W一 2 0 0 0 A ̄绝缘移频轨道 电路在我国逐步广泛应用的同时 , 在铁路系统 日常使用和定期维护时产生了一系列故障维修问题, 本文针Z P W一 2 0 0 0 A 无 绝缘 移频 轨道 电路 的常见 故 障进行 故 障现象 进 行深 入分 析 、 查 找和 处理 , 并提 出解 决方 案 。 [ 关键 词] Z P W一 2 0 0 0 A无绝 缘 移频 轨 道 电路 故 障 分析 处理 中图分 类号 : TK3 1 1 文 献标 识码 : A 文章 编号 : 1 0 0 9 —9 1 4 X( 2 0 1 5 ) 1 6 — 0 0 1 1 一 O 1
难 免 会发 生故 障 , 影响行 车 。 有 些故 障是 常见 的 、 共性 的 。 通过 故障 现象直 接锁 定 故 障范 围 , 可 以迅速 找 到故 障 点 , 杜 绝 故 障延 时和故 障升 级 。
当发 现轨道 空 闲而 衰耗 盘“ 轨道 占用 ” 红灯 点亮 时 , 用C D 9 6 — 3 A 型 数字 选
作正常, 可能是发送盘内部故障, 可更换新的发送设备。 对接收盘检查电源 、 保
安器 、 主 轨道 、 小 轨道 的 输入 电压 , 判 断接收 盘 的内部 还是 外部 故 障 并 机仍 可 保证 G J 工作 , 多 为 单一 接收 设备 故 障 , 可更 换新 的 接收设 备 。 无 故障 报警处理 程序一 般多属 于无检 测非冗 余环节 故障 。 这类故 障多 由控 制 台红光 带指 示及 司机 行车 受 阻报告 发现 。 如: 发 送功 出 一组合架 一 防雷柜 一
机 械 室检 查S H上各 发送 、 接收 的工 作绿 灯是 否灭 灯 。 灭灯 设备 为故 障 设备 。 迅 速判 决故 障 是否 影响 行车 如只有 一 台发 送故 障并 已转为 “ +1 F S ” 工作 , 接 收 仍 正 常工作 , 那么 不 影响行车 。 如 只有一 台接 收故 障, 由于 双机 并联另 一方仍 保 持工 作 , 那 么也 不 影响 行车 。 发现 故 障一 般处 理程 序对 发 送盘 检查 电源 、 保 安 器、 低频编 码 电源 、 功 出 电压等等 , 判 断发送盘 内部还是 外部故值 , 在2 3 0 -3 8 0 mV 之间, 在相邻 前方 区段 衰耗盘 面板 上
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

ZPW-2000A无绝缘轨道电路故障判断方法分析一、基本问题:1、ZPW-2000A型无绝缘轨道电路的原理:ZPW-2000A型无绝缘轨道电路分为主轨道电路和送端调谐区小轨道电路两部分。

主轨道信息由本区段接收器接收。

送端调谐区小轨道信息由运行前方所在区段接收器处理后形成小轨道电路继电器执行条件“XG”送至本区段接收器【须特别注意:与前方站相邻区段的小轨信息是由对方站接受处理后形成小轨道电路继电器执行条件使XGJ↑、再通过站联条件使本站XGJ(邻)↑、最后经XGJ (邻)↑条件接入24V控制电源作为小轨道检查条件使用;而最接近进站口的一个区段的小轨检查条件“XGJ”则人工接入24V控制电源(因该区段实际上只有主轨区段,没有小轨区段)】。

本区段接收器同时接收到主轨道移频信息(指“轨出1”电压)及小轨道电路继电器执行条件(指“XGJ”电压),判决无误后驱动轨道继电器吸起。

教育资料2、必须掌握发送盒、接受盒正常工作的各个条件发送盒正常工作的6个条件:①电源正常且极性正确(22.5~25.5V)②有且只有一个载频和型号(-1或—2型)选择③有且只有一个低频接通④发送电平调整线接触良好⑤功出负载无短路现象(正常电阻为400Ω左右)⑥发送盒未受高压冲击而处于保护状态(死机)接受盒正常工作的5个条件:①电源正常且极性正确(22.5~25.5V)②载频型号与发送盒相符③轨出1电压符合标准(240~870mv),④“XGJ”条件电压﹥20V(正常30V左右、人工条件24V左右)⑤接受盒未受高压冲击而处于保护状态(死机)3、平时要注意的问题①室外补偿电容故障会造成室内限入电压下降(一个坏约降50~100mv)②室外下雨天气会造成室内限入电压下降(约下降150mv左右)③室外空芯线圈接触不良会造成匹配盒、调谐盒烧坏或造成室内设备故障(对设备形成大电压冲击)④室外送端第一、或第二个电容坏会造成小轨电压下降(约降20~40mV)。

因此,平时要通过测试分析发现轨出1和轨出2电压的变化,及时解决设备缺点;室外检修时一定要检查空芯线圈作用良好(可以用嵌表测电流的方法判断)。

⑤站间相邻区段的小轨信息,是由接车站接受检查再通过站联电路传递。

4、衰耗盘面板表示灯意义:教育资料答:发送工作灯---绿色,亮灯表示发送盒工作正常(即“发送功出”正常),灭灯表示无“发送功出”。

接收工作灯---绿色,亮灯表示接收盒工作正常,灭灯表示故障。

轨道占用灯---①正常反映轨道电路空闲时绿灯(即检查主、小轨均正常“GJ”有≧20V电压输出),②列车占用时亮红灯(即检查主、小轨至少有一个不正常,“GJ”无正常电压输出)。

正方向表示灯---黄色,亮灯表示处于此运行方向,灭灯表示处于非此运行方向。

反方向表示灯---黄色,亮灯表示处于此运行方向,灭灯表示处于非此运行方向。

5、在衰耗盘面板上测试的具体参数为:①“发送电源”塞孔--发送器24V工作电源,23V-25V;②“接收电源”塞孔--接收器24V工作电源,23V-25V;③“发送功出”塞孔--发送器输出电平测试(发送电平不同则输出电压值不同,一般为80~170V);④“轨入”塞孔--衰耗盒输入电压,主轨信息为240 ~870mV(其中小轨信息电压≧51 mV);⑤“轨出1”塞孔--经过衰耗盒分频调整后的主轨道信息输出电平,标准范围为240~870 mV (最好调整在640~870mV);⑥“轨出2”塞孔--经过衰耗盒分频调整后的小轨道信息输出电平,标准范围为125~145mV(最好调整在135~145mV);⑦“GJ(Z)”塞孔--主机轨道继电器电压,≧20V;⑧“GJ(B)”塞孔--并机轨道继电器电压,≧20V;教育资料⑨“GJ”塞孔--轨道继电器电压,≧20V(GJ开路时≧35V);⑩“XG(Z)”塞孔--主机小轨道继电器(或执行条件)电压,大于≧30V;⑾“XG(B)”塞孔--并机小轨道继电器(或执行条件)电压,大于≧30V;⑿“XG ”塞孔--小轨道继电器(或执行条件)电压,≧30V(负载开路时≧50V)。

⒀“XGJ ”塞孔--小轨道检查条件电压,≧20V(等同于运行前方区段衰耗盒“XG ”塞孔电压)。

6、ZPW-2000A轨道电路靠近送端的第1、2个补偿电容的重大作用是什么?小轨道电路参数应在什么情况下调整为好?答:轨道电路靠近送端的第1、2个补偿电容既是主轨道电路同时也是小轨道电路的补偿电容,是接受器可靠获取小轨信息的重要元件,当其中一个电容失效时将使“轨出2”电压下降40mV左右,可能导致小轨道电路不能正常工作而影响设备使用、造成故障延时;因此在设备投入使用之前应考虑补偿电容失效对小轨电气参数的影响,必须将“轨出2”电压调整为较可靠状态(135~145mV)。

7、ZPW-2000A主轨道电路最不利因素是什么?应在什么情况下调整为好?答:有2个补偿电容同时失效且又遇下雨时是主轨道电路最不利因素(1个补偿电容失效将使“轨出1”电压下降100mV左右),因此在设备投入使用之前应考虑补偿电容失效对电气参数的影响,必须将“轨出1”电压调整为较可靠状态(640~870mV)。

8、轨道电路调整怎样实现?答:在衰耗盘后的96芯插座上进行跨线实现:教育资料①最先调整发送电平,使“轨入”电压符合标准,即主轨信息为240 ~870mV(其中小轨信息电压≧51 mV);②按照接收电平调整表,使“轨出1”电压调整在较为可靠范围(最好调整在540~870mV)③按照小轨调整表,使“轨出2”电压调整在较为可靠范围(最好调整在135~145mV)教育资料.9、ZPW2000A 设备结构原理图:小轨① 发送电源(22.5—25.5V ) ②接受电源(22.5—25.5V ) ③发送功出(一般用3级电平,以满足小轨输入电压≥51mV 来调整为准,因小轨输入电压不足51mV 时无法使轨出2调到125mV 以上)④ 轨入(一般不超过2V ,随发送功出电压变化) ⑤ 轨出1(240—870 mV ,最好调整在640—870mV )⑥轨出2(125—145 mV ,最好调整在135—145mV ) ⑨GJ (≥20V ,开路时≥36V )⑿ XG (≥30V ,随轨出2电压变化,开路时≥50V ) ⒀ XGJ (≥20V ,随小轨检查条件变化)列车运行方向:X行机车显示:L L LU U HU地面显示:L L LU U H5G 4G 3G 2G 1G1700-1 2300-1 1700-2 2300-2 1700-1 2300-111.4Hz 11.4Hz 13.6 Hz 16.9 Hz 26.8 Hz 29 Hz2000-2 2600-2 2000-1 2600-1 2000-2 2600-2S行教育资料教育资料二、故障判断方法分析:1、关键点:①不能以“轨入”电压作为判断故障的唯一依据,这是与UM-71设备的主要区别所在,因为ZPW-2000A设备增加了“衰耗盒”,接收器的工作值取决于经“衰耗盒”分频调整后的主轨道接收信息(指“轨出1”电压)和小轨道接收信息(指“轨出2”电压);②不能单以测试数据符合标准范围确定好坏,而是测试数据必须与日常测试数据进行比较,再作出正确判断。

2、观察“衰耗盒”指示灯状态进行初步判断:①发送工作灯灭灯表示无“发送功出”。

②接收工作灯灭灯表示接收盒工作不正常。

③轨道灯亮红灯表示“GJ”无正常电压输出(即“轨出1”、“XGJ ”电压至少有一个不正常,)。

3、测试判断:①测试数据比日常测试高许多,说明开路故障(负载变大)②测试数据比日常测试小许多,说明电路存在接触不良故障(如塞钉头松动)或补偿电容失效4、发送无功出故障分析与判断方法必须结合发送盒工作条件和经验来分析判断发送无功出故障,最常出现的故障是编码电路故障(因为继电器接点是动态的)、模教育资料教育资料拟电缆故障和死机故障(当遇电源转换、打雷冲击等会造成发送盒内部自动保护)。

编码电路故障可根据列车的运行状态来判断(列车运行至前方某一区段时,本区段出现故障,列车再运行至前方更远的区段后,又恢复正常),查找方法是在故障情况下到编码组合根据判断的故障范围测试有关继电器接点电路的电压(注意不要借KZ 、KF 电源测量,因为编码电路用的是QKZ 电源,而跨组合借电源又不容易),在故障恢复的情况下检查有关配线。

死机故障可以通过松出发送盒半分钟再上好试验的方法来处理(如还不行则可能是发送盒本身故障,必须更换发送盒) 5、发送功出正常,接受电路故障分析与判断方法必须结合衰耗盒测试的“轨入”、“轨出1”、“GJ ”、“XGJ ”电压来分析判断接受电路故障,最常出现的故障是室外的补偿电容、QKZ 编码电路故障查找示意图电源引入线、匹配盒,室内的模拟电缆(含防雷装置)①如“轨出1”、“XGJ”电压均为0,在分线盘测得发送电压也为0,说明室内发送故障,发送盒正常,必须进一步查找发送模拟电缆防雷、继电器组合电路②如“轨出1”为0、“XGJ”电压为0或24V(人工条件),在分线盘测得发送电压﹥80V(相当于负载空载,此电压与发送功出电压相等),说明发送电源没有送到室外发送端,必须进一步到室外查找③如“轨出1”、“XGJ”电压均为0,在分线盘测得发送电压正常,说明室外发送端匹配盒或引线故障④如“轨出1”为0、“XGJ”电压为30V左右,在分线盘测得接受电压为0,说明室外主轨接受端至分线盘故障,必须进一步到室外查找⑤如“轨出1”为0、“XGJ”电压为30V左右,在分线盘测得接受电压正常,说明室内分线盘至接受盒故障⑥如“轨出1”、“轨出1”电压正常、“XGJ”电压为0或很低,说明室外送端电容坏或调谐区断轨,必须进一步到室外查找⑦如“轨出1”、“轨出1”、“XGJ”电压正常,“GJ”电压﹥35V,说明组合GJ电路故障,必须检查是否继电器松动。

另:接受盒“死机”或故障不会影响行车(此时并机工作),可以通过松出接受盒半分钟再上好试验的方法来处理死机问题(如还不行则可能是接受盒本身故障,必须更换接受盒)。

室内测试判断故障列表如下:(分线盘数据也可以在模拟电缆盒电缆侧测试,另外,因衰耗盒内部电压低,一般不会故障)教育资料6、室外故障测试判断流程图:【电压下降缺点不在此列】教育资料教育资料7、故障处理注意事项:①必须用选频表进行测试以确保读数准确②注意分线盘发送端与发送功出电压、分线盘接受端与衰耗盒“轨入”电压有较大区别(因为室内设置了模拟电缆) ③如表现为2个区段均故障状态,必须首先判断处理列车运行前方区段的故障(因为小轨检查条件由前方区段接受处理) ④室内值班人员必须保持清醒的头脑,不能怕、不能急、不能慌、不能乱,一定要看准、测准、读准、判准,以免欲速则不达。

相关文档
最新文档