编写算法判别给定二叉树是否为完全二叉树(层次遍历)

合集下载

数据结构-数据结构历年考题及答案2

数据结构-数据结构历年考题及答案2

中国矿业大学2011-2012学年《数据结构》试卷(A卷)(考试时间:100分钟)一. 填空(每空2分,共40分)1. 数据结构式具有相同性质的数据元素的(1)。

2. 通常程序在调用另一个程序时,都需要使用一个(2)来保存被调用程序内分配的局部变量、形式参数的存储空间以及返回地址。

3. 有6行8列的二维数组A,每个元素用相邻的6个字节存储,存储器按字节编址,已知A的起始存储地址(基址)为1000,在行优先存储和列优先存贮情况下A[5,5]的存储地址分别为__(3)_____,_____(4)____。

4. 完全二叉树第4 个节点的父节点是第 (5) 节点,左孩子是第 (6) 个节点。

如果该二叉树有10层,则共有 (7) 个节点。

5. 请描述在循环队列Q中,队头和队尾指针分别由front和rear表示,该队列有10个存储空间,判断队空和队满的条件分别分:_____(8)________,_______(9)_________。

6. 字符串t=”child”,s=”cake”,请写出下列函数的结果:StrLength(t) =(10)__;Concat(SubString(s,3,1),SubString(t,2,2))=____(11)___。

7. 一棵二叉树为则后序序列为(12),中序序列为(13),先序序列为__(14)____。

8. 请用数据序列{53,17,12,66,58,70,87,25,56,60 }构造一棵二叉排序树_(15)_。

9.。

一个栈输入的序列式1,2,3,则可能的且以2为开头的输出序列是 (16) ,不可能的序列是____(17)____。

10. 有n个结点的无向完全图的边数分别为_______(18)_______。

11. 要从数据:2,3,4,8,9,11,13查找11,若采用折半查找法,则在(19)次比较后,才找到该数据。

12. 在直接插入排序、希尔排序、冒泡排序和快速排序中,平均情况下(20)_____最快。

判断一棵树是否为满二叉树的算法c语言

判断一棵树是否为满二叉树的算法c语言

判断一棵树是否为满二叉树的算法c语言判断一棵树是否为满二叉树的算法(C语言)满二叉树是一种特殊的二叉树,每个节点要么没有子节点,要么有两个子节点。

判断一棵树是否为满二叉树的算法可以通过以下步骤实现:1. 定义二叉树的数据结构在C语言中,可以使用结构体定义二叉树的节点。

每个节点包含一个数据域和两个指针域,分别指向左子节点和右子节点。

```cstruct TreeNode {int data;struct TreeNode* left;struct TreeNode* right;};```2. 实现判断函数编写一个递归函数,用于判断给定二叉树是否为满二叉树。

函数的输入参数为根节点指针,返回值为布尔类型。

```cint isFullBinaryTree(struct TreeNode* root) {// 如果根节点为空,则返回真if (root == NULL) {return 1;}// 如果只有一个子节点或没有子节点,则返回假if ((root->left == NULL && root->right != NULL) ||(root->left != NULL && root->right == NULL)) {return 0;}// 递归判断左子树和右子树return isFullBinaryTree(root->left) && isFullBinaryTree(root->right);}```3. 测试样例可以编写一些测试样例来验证判断函数的正确性。

例如,下面是一个满二叉树和一个非满二叉树的示例:```cint main() {// 满二叉树struct TreeNode* root1 = (struct TreeNode*)malloc(sizeof(struct TreeNode));root1->data = 1;root1->left = (struct TreeNode*)malloc(sizeof(struct TreeNode));root1->left->data = 2;root1->left->left = (struct TreeNode*)malloc(sizeof(struct TreeNode));root1->left->left->data = 4;root1->left->left->left = NULL;root1->left->left->right = NULL;root1->left->right = (struct TreeNode*)malloc(sizeof(struct TreeNode));root1->left->right->data = 5;root1->left->right->left = NULL;root1->left->right->right = NULL;root1->right = (struct TreeNode*)malloc(sizeof(struct TreeNode));root1->right->data = 3;root1->right->left = (struct TreeNode*)malloc(sizeof(struct TreeNode));root1->right->left->data = 6;root1->right->left->left = NULL;root1->right->left->right = NULL;root1->right->right = (struct TreeNode*)malloc(sizeof(struct TreeNode));root1->right->right->data = 7;root1->right->right->left = NULL;root1->right->right->right = NULL;// 非满二叉树struct TreeNode* root2 = (struct TreeNode*)malloc(sizeof(struct TreeNode));root2->data = 1;root2->left = (struct TreeNode*)malloc(sizeof(struct TreeNode));root2->left->data = 2;root2->left->left = (struct TreeNode*)malloc(sizeof(struct TreeNode));root2->left->left->data = 4;root2->left->left->left = NULL;root2->left->left->right = NULL;root2->right = (struct TreeNode*)malloc(sizeof(struct TreeNode));root2->right->data = 3;root2->right->left = NULL;root2->right->right = (struct TreeNode*)malloc(sizeof(struct TreeNode));root2->right->right->data = 7;root2->right->right->left = NULL;root2->right->right->right = NULL;// 判断是否为满二叉树if (isFullBinaryTree(root1)) {printf("root1是满二叉树\n");} else {printf("root1不是满二叉树\n");}if (isFullBinaryTree(root2)) {printf("root2是满二叉树\n");} else {printf("root2不是满二叉树\n");}return 0;}```运行上述代码,输出结果为:```root1是满二叉树root2不是满二叉树```根据以上算法和示例,我们可以判断一棵树是否为满二叉树。

计算机专业基础综合数据结构(树和二叉树)历年真题试卷汇编13

计算机专业基础综合数据结构(树和二叉树)历年真题试卷汇编13

计算机专业基础综合数据结构(树和二叉树)历年真题试卷汇编13(总分:66.00,做题时间:90分钟)一、综合题(总题数:4,分数:12.00)1.已知下列字符A、B、C、D、E、F、G的权值分别为3、12、7、4、2、8,11,试填写出其对应哈夫曼树HT的存储结构的初态和终态。

【北京工业大学1998五(10分)】__________________________________________________________________________________________正确答案:(设T是一棵二叉树,除叶子结点外,其他结点的度数皆为2,若T中有6个叶结点,试问:(分数:6.00)(1).T树的最大可能深度Kmax=?最小可能深度Kmin=?__________________________________________________________________________________________ 正确答案:(正确答案:(1)T树的最大深度:Kmax=6(除根外,每层均是两个结点)。

T树的最小深度Kmin=4(具有6个叶子的完全二叉树是其中的一种形态)。

)(2).T树中共有多少非叶结点?__________________________________________________________________________________________ 正确答案:(正确答案:非叶子结点数是5(n2=n0—1)。

)(3).若叶结点的权值分别为1,2,3,4,5,6。

请构造一棵哈曼夫树,并计算该哈曼夫树的带权路径长度wp1。

【北京邮电大学1992一、3(15/3分)】__________________________________________________________________________________________正确答案:(正确答案:哈夫曼树见右图,其带权路径长度wp1=51。

二叉树的遍历及常用算法

二叉树的遍历及常用算法

⼆叉树的遍历及常⽤算法⼆叉树的遍历及常⽤算法遍历的定义:按照某种次序访问⼆叉树上的所有结点,且每个节点仅被访问⼀次;遍历的重要性:当我们需要对⼀颗⼆叉树进⾏,插⼊,删除,查找等操作时,通常都需要先遍历⼆叉树,所有说:遍历是⼆叉树的基本操作;遍历思路:⼆叉树的数据结构是递归定义(每个节点都可能包含相同结构的⼦节点),所以遍历也可以使⽤递归,即结点不为空则继续递归调⽤每个节点都有三个域,数据与,左孩⼦指针和右孩⼦之指针,每次遍历只需要读取数据,递归左⼦树,递归右⼦树,这三个操作三种遍历次序:根据访问三个域的不同顺序,可以有多种不同的遍历次序,⽽通常对于⼦树的访问都按照从左往右的顺序;设:L为遍历左⼦树,D为访问根结点,R为遍历右⼦树,且L必须位于R的前⾯可以得出以下三种不同的遍历次序:先序遍历操作次序为DLR,⾸先访问根结点,其次遍历根的左⼦树,最后遍历根右⼦树,对每棵⼦树同样按这三步(先根、后左、再右)进⾏中序遍历操作次序为LDR,⾸先遍历根的左⼦树,其次访问根结点,最后遍历根右⼦树,对每棵⼦树同样按这三步(先左、后根、再右)进⾏后序遍历操作次序为LRD,⾸先遍历根的左⼦树,其次遍历根的右⼦树,最后访问根结点,对每棵⼦树同样按这三步(先左、后右、最后根)进⾏层次遍历层次遍历即按照从上到下从左到右的顺序依次遍历所有节点,实现层次遍历通常需要借助⼀个队列,将接下来要遍历的结点依次加⼊队列中;遍历的应⽤“遍历”是⼆叉树各种操作的基础,可以在遍历过程中对结点进⾏各种操作,如:对于⼀棵已知⼆叉树求⼆叉树中结点的个数求⼆叉树中叶⼦结点的个数;求⼆叉树中度为1的结点个数求⼆叉树中度为2的结点个数5求⼆叉树中⾮终端结点个数交换结点左右孩⼦判定结点所在层次等等...C语⾔实现:#include <stdio.h>//⼆叉链表数据结构定义typedef struct TNode {char data;struct TNode *lchild;struct TNode *rchild;} *BinTree, BinNode;//初始化//传⼊⼀个指针令指针指向NULLvoid initiate(BinTree *tree) {*tree = NULL;}//创建树void create(BinTree *BT) {printf("输⼊当前结点值: (0则创建空节点)\n");char data;scanf(" %c", &data);//连续输⼊整形和字符时.字符变量会接受到换⾏,所以加空格if (data == 48) {*BT = NULL;return;} else {//创建根结点//注意开辟的空间⼤⼩是结构体的⼤⼩⽽不是结构体指针⼤⼩,写错了不会⽴马产⽣问题,但是后续在其中存储数据时极有可能出现内存访问异常(飙泪....) *BT = malloc(sizeof(struct TNode));//数据域赋值(*BT)->data = data;printf("输⼊节点 %c 的左孩⼦ \n", data);create(&((*BT)->lchild));//递归创建左⼦树printf("输⼊节点 %c 的右孩⼦ \n", data);create(&((*BT)->rchild));//递归创建右⼦树}}//求双亲结点(⽗结点)BinNode *Parent(BinTree tree, char x) {if (tree == NULL)return NULL;else if ((tree->lchild != NULL && tree->lchild->data == x) || (tree->rchild != NULL && tree->rchild->data == x))return tree;else{BinNode *node1 = Parent(tree->lchild, x);BinNode *node2 = Parent(tree->rchild, x);return node1 != NULL ? node1 : node2;}}//先序遍历void PreOrder(BinTree tree) {if (tree) {//输出数据printf("%c ", tree->data);//不为空则按顺序继续递归判断该节点的两个⼦节点PreOrder(tree->lchild);PreOrder(tree->rchild);}}//中序void InOrder(BinTree tree) {if (tree) {InOrder(tree->lchild);printf("%c ", tree->data);InOrder(tree->rchild);}}//后序void PostOrder(BinTree tree) {if (tree) {PostOrder(tree->lchild);PostOrder(tree->rchild);printf("%c ", tree->data);}}//销毁结点递归free所有节点void DestroyTree(BinTree *tree) {if (*tree != NULL) {printf("free %c \n", (*tree)->data);if ((*tree)->lchild) {DestroyTree(&((*tree)->lchild));}if ((*tree)->rchild) {DestroyTree(&((*tree)->rchild));}free(*tree);*tree = NULL;}}// 查找元素为X的结点使⽤的是层次遍历BinNode *FindNode(BinTree tree, char x) {if (tree == NULL) {return NULL;}//队列BinNode *nodes[1000] = {};//队列头尾位置int front = 0, real = 0;//将根节点插⼊到队列尾nodes[real] = tree;real += 1;//若队列不为空则继续while (front != real) {//取出队列头结点输出数据BinNode *current = nodes[front];if (current->data == x) {return current;}front++;//若当前节点还有⼦(左/右)节点则将结点加⼊队列if (current->lchild != NULL) {nodes[real] = current->lchild;real++;}if (current->rchild != NULL) {nodes[real] = current->rchild;real++;}}return NULL;}//层次遍历// 查找元素为X的结点使⽤的是层次遍历void LevelOrder(BinTree tree) {if (tree == NULL) {return;}//队列BinNode *nodes[1000] = {};//队列头尾位置int front = 0, real = 0;//将根节点插⼊到队列尾nodes[real] = tree;real += 1;//若队列不为空则继续while (front != real) {//取出队列头结点输出数据BinNode *current = nodes[front];printf("%2c", current->data);front++;//若当前节点还有⼦(左/右)节点则将结点加⼊队列if (current->lchild != NULL) {nodes[real] = current->lchild;real++;}if (current->rchild != NULL) {nodes[real] = current->rchild;real++;}}}//查找x的左孩⼦BinNode *Lchild(BinTree tree, char x) {BinTree node = FindNode(tree, x);if (node != NULL) {return node->lchild;}return NULL;}//查找x的右孩⼦BinNode *Rchild(BinTree tree, char x) {BinTree node = FindNode(tree, x);if (node != NULL) {return node->rchild;}return NULL;}//求叶⼦结点数量int leafCount(BinTree *tree) {if (*tree == NULL)return 0;//若左右⼦树都为空则该节点为叶⼦,且后续不⽤接续递归了else if (!(*tree)->lchild && !(*tree)->rchild)return 1;else//若当前结点存在⼦树,则递归左右⼦树, 结果相加return leafCount(&((*tree)->lchild)) + leafCount(&((*tree)->rchild));}//求⾮叶⼦结点数量int NotLeafCount(BinTree *tree) {if (*tree == NULL)return 0;//若该结点左右⼦树均为空,则是叶⼦,且不⽤继续递归else if (!(*tree)->lchild && !(*tree)->rchild)return 0;else//若当前结点存在左右⼦树,则是⾮叶⼦结点(数量+1),在递归获取左右⼦树中的⾮叶⼦结点,结果相加 return NotLeafCount(&((*tree)->lchild)) + NotLeafCount(&((*tree)->rchild)) + 1;}//求树的⾼度(深度)int DepthCount(BinTree *tree) {if (*tree == NULL)return 0;else{//当前节点不为空则深度+1 在加上⼦树的⾼度,int lc = DepthCount(&((*tree)->lchild)) + 1;int rc = DepthCount(&((*tree)->rchild)) + 1;return lc > rc?lc:rc;// 取两⼦树深度的最⼤值 }}//删除左⼦树void RemoveLeft(BinNode *node){if (!node)return;if (node->lchild)DestroyTree(&(node->lchild));node->lchild = NULL;}//删除右⼦树void RemoveRight(BinNode *node){if (!node)return;if (node->rchild)DestroyTree(&(node->rchild));node->rchild = NULL;}int main() {BinTree tree;create(&tree);BinNode *node = Parent(tree, 'G');printf("G的⽗结点为%c\n",node->data);BinNode *node2 = Lchild(tree, 'D');printf("D的左孩⼦结点为%c\n",node2->data);BinNode *node3 = Rchild(tree, 'D');printf("D的右孩⼦结点为%c\n",node3->data);printf("先序遍历为:");PreOrder(tree);printf("\n");printf("中序遍历为:");InOrder(tree);printf("\n");printf("后序遍历为:");PostOrder(tree);printf("\n");printf("层次遍历为:");LevelOrder(tree);printf("\n");int a = leafCount(&tree);printf("叶⼦结点数为%d\n",a);int b = NotLeafCount(&tree);printf("⾮叶⼦结点数为%d\n",b);int c = DepthCount(&tree);printf("深度为%d\n",c);//查找F节点BinNode *node4 = FindNode(tree,'C');RemoveLeft(node4);printf("删除C的左孩⼦后遍历:");LevelOrder(tree);printf("\n");RemoveRight(node4);printf("删除C的右孩⼦后遍历:");LevelOrder(tree);printf("\n");//销毁树printf("销毁树 \n");DestroyTree(&tree);printf("销毁后后遍历:");LevelOrder(tree);printf("\n");printf("Hello, World!\n");return 0;}测试:测试数据为下列⼆叉树:运⾏程序复制粘贴下列内容:ABDGHECKFIJ特别感谢:iammomo。

判断二叉树是否为完全二叉树的实例

判断二叉树是否为完全二叉树的实例

判断二叉树是否为完全二叉树的实例判断二叉树是否为完全二叉树的实例完全二叉树是指除了最后一层之外,其他每一层的结点数都是满的,今天店铺为大家整理的判断二叉树是否为完全二叉树的'实例,仅供学习参考,欢迎大家阅读浏览!完全二叉树特点完全二叉树是指除了最后一层之外,其他每一层的结点数都是满的。

最后一层如果也满了,是一颗满二叉树,也是完全二叉树。

最后一层如果不满,缺少的结点也全部的集中在左边,那也是一颗完全二叉树。

import java.util.*;class TreeNode {int val = 0;TreeNode left = null;TreeNode right = null;public TreeNode(int val) {this.val = val;}}public class CheckCompletion {public boolean checking(TreeNode root) {Queue<TreeNode> queue = new LinkedList<TreeNode>();boolean leaf = false; // 叶子结点TreeNode left;TreeNode right;queue.add(root);while (!queue.isEmpty()) {root = queue.poll();left = root.left;right = root.right;if ((leaf&&(left!=null||right!=null)) || (left==null&&right!=null)) {// 如果之前层遍历的结点没有右孩子,且当前的结点有左或右孩子,直接返回false// 如果当前结点有右孩子却没有左孩子,直接返回falsereturn false;}if (left != null) {queue.offer(root.left);}if (right != null) {queue.offer(root.right);}else {leaf = false; // 如果当前结点没有右孩子,那么之后层遍历到的结点必须为叶子结点}}return true;}}感谢阅读,希望能帮助到大家,谢谢大家对本站的支持!【判断二叉树是否为完全二叉树的实例】。

数据库系统l试题库及答案 第6章 树和二叉树

数据库系统l试题库及答案 第6章 树和二叉树

第6章树和二叉树6.1知识点: 树和二叉树的基本概念一、填空题1.高度为h,度为m的树中至少有___________个结点,至多有______________个结点。

2.树的结点是由及若干指向其子树的组成;结点拥有的子树数称为;度为0的结点称为;度不为0的结点成为;树中结点的最大度数称为;树的最大层次称为_____________。

3.对于一棵具有n个结点的树,该树中所有结点的度数之和为___________。

4.如果结点A有3个兄弟结点,而且B是A的双亲,则B的度是___________。

5.二叉树是另一种树形结构,它的特点是。

6.一颗度数为k且有2k-1个结点的二叉树称为。

7.深度为k,且有n个结点的二叉树,当且仅当其每一个结点都与深度为k的满二叉树中编号从1到n的结点一一对应时,称之为。

8.一棵深度为6的满二叉树有个分支结点和个叶子。

9.一棵具有257个结点的完全二叉树,它的深度为。

10.设一棵完全二叉树具有1000个结点,则此完全二叉树有个叶子结点,有个度为2的结点,有个结点只有非空左子树,有个结点只有非空右子树。

11.由3个结点可以构成__________种形态的的二叉树,可以构成种形态的树。

12.将含有82个结点的完全二叉树从根结点开始顺序编号,根结点为第1号,其他结点自上向下,同一层自左向右连续编号。

则第40号结点的双亲结点的编号为。

13.一棵高度为5的完全二叉树中,最多包含有____________个结点。

14.一棵具有n个结点的二叉树,若它有n0个叶子结点,则该二叉树上度为1的结点n1=____________。

15.在高度为h(h>=0)的二叉树中至多可以有__________个结点,至少可以有___________个结点。

16.n个结点的二叉树最大高度是____________,最小高度是_______________。

二、选择题1.( )不含任何结点的空树()。

A.是一棵树B.是一棵二叉树C.是一棵树也是一棵二叉树D.既不是树也不是二叉树2.()一棵度为4的树中度为1、2、3、4的结点个数为4、3、2、1,则该树的结点总数为()。

《数据结构与算法》第六章-树与二叉树习题

《数据结构与算法》第六章-树与二叉树习题

《数据结构与算法》第二部分习题精选一、下面是有关二叉树的叙述,请判断正误()1. 若二叉树用二叉链表作存贮结构,则在n个结点的二叉树链表中只有n—1个非空指针域。

()2.二叉树中每个结点的两棵子树的高度差等于1。

()3.二叉树中每个结点的两棵子树是有序的。

()4.二叉树中每个结点有两棵非空子树或有两棵空子树。

()5.二叉树中每个结点的关键字值大于其左非空子树(若存在的话)所有结点的关键字值,且小于其右非空子树(若存在的话)所有结点的关键字值。

()6.二叉树中所有结点个数是2k-1-1,其中k是树的深度。

()7.二叉树中所有结点,如果不存在非空左子树,则不存在非空右子树。

()8.对于一棵非空二叉树,它的根结点作为第一层,则它的第i层上最多能有2i—1个结点。

()9.用二叉链表法(link-rlink)存储包含n个结点的二叉树,结点的2n个指针区域中有n+1个为空指针。

(√)10. 具有12个结点的完全二叉树有5个度为2的结点。

二、填空1.由3个结点所构成的二叉树有种形态。

2. 一棵深度为6的满二叉树有个分支结点和个叶子。

3.一棵具有257个结点的完全二叉树,它的深度为。

4.设一棵完全二叉树有700个结点,则共有个叶子结点。

5. 设一棵完全二叉树具有1000个结点,则此完全二叉树有个叶子结点,有个度为2的结点,有个结点只有非空左子树,有个结点只有非空右子树。

6.一棵含有n个结点的k叉树,可能达到的最大深度为,最小深度为。

7. 二叉树的基本组成部分是:根(N)、左子树(L)和右子树(R)。

因而二叉树的遍历次序有六种。

最常用的是三种:前序法(即按N L R次序),后序法(即按次序)和中序法(也称对称序法,即按L N R次序)。

这三种方法相互之间有关联。

若已知一棵二叉树的前序序列是BEFCGDH,中序序列是FEBGCHD,则它的后序序列必是。

8.中序遍历的递归算法平均空间复杂度为。

9.用5个权值{3, 2, 4, 5, 1}构造的哈夫曼(Huffman)树的带权路径长度是。

东北大学历年初试考研真题分享

东北大学历年初试考研真题分享
16
21115
196
3314
186
5、(方向移动,试举例说明之。快速排序中有没有这种现象?
二、(15分)设有一个由正整数组成的无序(向后)单链表,编写完成下列功能的算法:
1、找出最小值结点,且打印该数值;
2、若该数值是奇数,则将其与直接后继结点的值交换;
3、若该数值是偶数,则将其直接后继结点删除;
三、(14分)解答下列问题:
1、(4分)将算术表达式((a+b)+c*(d+e)+f)*(g+h)转化为二叉树;
2、(10分)假设一个仅包含二元运算符的算术表达式以链表形式存储在二叉树b1中,写出计算该表达式值的算法。
四、(21分)解答下列问题:
1、(5分)画出有向图十字链表存储结构中头接点和表结点的结点结构。
5、设有1000个无序的元素,希望用最大的速度挑选出其中前十个最大的元素,在以下的方法中采用哪一种最好?为什么?(3分)
(快速排序,归并排序,堆排序,基数排序,shell排序)
二、(10分)两个正数序列A=a1,a2,a3,…..am和B=b1,b2,b3,…bn已经存入两个单链表中,设计一个算法,判别序列B是否是序列A的子序列。
(1)、构造出散列函数;(3分)
(2)、计算出等概率情况下查找成功的平均查找长度;(3分)
(3)、计算出等概率情况下查找失败的平均查找长度;(3分)
4、判别一下序列是否为堆,若不是,则把他调整为堆。
(1)(100,86,48,73,35,39,42,57,66,21)(4分)
(2)(12,70,33,65,24,56,48,92,86,33)(4分)
(4)在m阶B一树中每个结点上至少┌m/2┐有个关键字最多m有个关键字。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

//主函数 int main() { BiTree T1; //char a[]={"AB#D##G#F##"}; char a[]={"ABC####"}; CreateBiTree(T1,a);//创建二叉树 cout<<"二叉树为:"<<endl; preorderlists(T1,visit);//广义表输出二叉树 cout<<endl; cout<<"上面二叉树:"; if(Complete(T1)) cout<<"是完全二叉树"; else cout<<"是非完全二叉树"; cout<<endl; return 0; }
bool Dequeue(LQueue&Q,BiTree &e)//出队 { LQueuePtr p; if(Q.front==Q.rear) return false; p=Q.front; Q.front=p->next; e=Q.front->data; delete p; return trபைடு நூலகம்e; } void visit(TElemType z) { cout<<z; } void CreateBiTree(BiTree &T,char S[],int &i) { i++; if(S[i]=='#') { T=NULL; return; } T=new BiTNode; T->data=S[i]; CreateBiTree(T->lchild,S,i); CreateBiTree(T->rchild,S,i); } void CreateBiTree(BiTree &T,char S[])//创建二叉树 { int i=-1; CreateBiTree(T,S,i); } void preorderlists(BiTree T,void visit(TElemType))//广义表输出 二叉树 { if(!T)
//名称:6.49 //功能:编写算法判别给定二叉树是否为完全二叉树 //作者:薛小超 //日期:2012.10.26 //*************************************************************** #include <iostream> using namespace std; typedef char TElemType; typedef struct BiTNode//定义声明结构体BiTNode { TElemType data; BiTNode *lchild,*rchild; }*BiTree; typedef struct QNode//定义声明结构体QNode { BiTree data; QNode *next; }*LQueuePtr; struct LQueue { LQueuePtr front,rear; }; void LQueueInit(LQueue&Q)//初始化队列 { Q.front=Q.rear=new QNode; Q.front->next=NULL; } void Enqueue(LQueue&Q,BiTree e)//入队 { LQueuePtr p; p=new QNode; p->data=e; Q.rear->next=p; Q.rear=p; p->next=NULL; }
{ cout<<"#"; return; } visit(T->data); if(T->lchild!=NULL||T->rchild!=NULL) { cout<<'('; preorderlists(T->lchild,visit); cout<<','; preorderlists(T->rchild,visit); cout<<')'; } } bool Complete(BiTree T)//层次遍历二叉树是否为完全二叉树 { bool f=false; BiTree p=T; LQueue Q; LQueueInit(Q); if(!T) return false; Enqueue(Q,p); while(Dequeue(Q,p)) { if(!p) f=true; else if(f) return false; else { Enqueue(Q,p->lchild); Enqueue(Q,p->rchild); } } return true; }
相关文档
最新文档