集合的表示---描述法

合集下载

集合的三种表示法

集合的三种表示法

集合的三种表示法:
1.列举法:列举法就是将集合的元素逐一列举出来的方式。

例如,光学中的三原色可以
用集合{红,绿,蓝}表示;由四个字母a, b, c, d组成的集合A可用A={a,b,c,d}表示,如此等等。

列举法还包括尽管集合的元素无法- -一列举,但可以将它们的变化规律表示出来的情况。

2.描述法:描述法的形式为{代表元素|满足的性质}。

设集合S是由具有某种性质P的元
素全体所构成的,则可以采用描述集合中元素公共属性的方法来表示集合: S={x|P(x)}。

图像法,图像法,又称韦恩图法、韦氏图法,是一种利用二维平面.上的点集表示集合的方法。

一般用平面上的矩形或圆形表示一个集合,是集合的一种直观的图形表示法。

3.符号法:有些集合可以用一些特殊符号表示,如: N: :非负整数集合或自然数集合
{0,1,2,3,.、Z:整数集合.-1,01,. Q:有理数集合、Q+: 正有理数集合、Q-: 负有理数集合、R:实数集合(包括有理数和无理数)。

集合的表示方法

集合的表示方法

)
【解析】 大于 2 且小于 5 的自然数为 3 和 4,所以用列举法表示其组成的 集合为{3,4}.
【答案】 A
2 判断(正确的打“√”,错误的打“×”) (1)集合 0∈{x|x>1}.( ) ) )
(2)集合{x|x<5,x∈N}中有 5 个元素.(
(3)集合{(1,2)}和{x|x2-3x+2=0}表示同一个集合.(
• 纷繁的大千世界中存在着各式各样的家族, 集合就是数学的一个大家族.我们尽管已经 知道可以用大写英文字母来表示不同的集 合,但这并不能体现集合中的各个具体元素 是什么.表示一个集合关键是确定它包含哪 些具体元素,集合中的元素是我们研究的主 要对象.那么怎样表示不同的集合呢?它有 哪些其他具体的表示方法呢?这节我们将主 要研究集合的两种不同表示方法.
p(x)表示该集 合中的元素x 所具有的性 质
集合的意义:表示满足后面条件p(x)的代 表元素x的取值范围。
说明:用描述法表示集合时,要注意以下几点:
(1)写清楚该集合中元素的代表符号 (2)特征性质必须是明确的; (3)不能出现未被说明的字母 (4)多层描述时应当准确使用“且”、“或” (5)所有描述的内容都要写在花括号内, 语言力求简明、准确 (6)若元素范围为R,,“ R ”可以省略不写; (7)有的集合可以直接写出元素名称,并用{ } 括起来表示这类元素的全体,如{实数}
【变式训练5】 若集合A={y|y=x+1,x∈R},B={y|y=x2+1,x∈R}, 则由集合A与B的公共元素组成的集合为 . 解析:集合A表示函数y=x+1中变量y的取值构成的集合.因为 x∈R,所以y∈R,即A=R.同理,集合B表示函数y=x2+1中变量y的取 值构成的集合.因为x∈R,所以x2≥0,从而x2+1≥1,即y≥1.因此,集合 B={y|y≥1}.于是A和B的公共元素是所有大于或等于1的实数,即A 与B的公共元素组成的集合是{y|y≥1}. 答案:{y|y≥1}

1.1.2 集合的表示方法之描述法

1.1.2  集合的表示方法之描述法

(2)不等式 2 x 1 0 的解集; (3)所有奇数组成的集合;
x x 2k 1, k Z
(4)由第一象限所有的点组成的集合. x, y x 0, y 0
分析 (1)
用描述法表示集合关键是找出元素的特征性质. 特征性质是“小于 5 的所有整数” ;
.
(2)解不等式就可以得到不等式解集元素的特征性质; (3)特征性质是“元素都能写成 2k 1(k Z) 的形式” ; (4)特征性质是“为第一象限的点” ,即横坐标与纵坐标都为正数.
右侧为元素所具有的特征性质.
问题 小于5的实数所组成的集合中有哪些元素?
当元素为实数 时,可以不标 注取值范围
描述法{x∈R|x<5}
元素无法一一列举但特征明显
巩固知识 典型例题
例3 (1) 用描述法表示下列各集合: 小于 5 的所有整数组成的集合;
x Z | x 5
1 x | x 2
1.1 集合的概念
1.1.2集合的表示方法之描述法
创设情景
兴趣导入
问题 :小于5的实数所组成的集合中有哪些元素?
元素有无穷多个,特征: (1)集合的元素都是实数; (2)集合的元素都小于5.
元素无法一一列举但特征明显
动脑思考
探索新知
描述法.在一个大括号内画一条竖线,竖线的左侧
为集合的代表元素,并标出元素的取值范围,竖线的
为了简便起见,在使用描述法表示集合时, 可以省略竖线及其左侧的代表元素,用描述性 语言表述集合的特征性质。 例如:所有正奇数组成的集合可以表示为:
{正奇数}
运用知识 强化练习
教材练习1.1.2
2.用描述法表示下列各集合: (1)大于 3 的实数所组成的集合; (2)小于 20 的所有自然数组成的集合;

集合的表示方法(描述法)

集合的表示方法(描述法)

集合的表示方法(描述法)集合呀,就像是一个神秘的小世界,里面住着各种各样的元素小伙伴。

那描述法呢,就像是给这个小世界画一幅特别的画像,让你能清楚地知道这个集合里都有哪些小伙伴。

比如说,有一个集合是所有大于5的整数。

那我们用描述法来表示这个集合的时候呢,就可以写成{x | x是整数,且x > 5}。

这个大括号就像是这个小世界的围墙,把属于这个集合的元素都圈在里面。

中间的这条竖线呀,就像是一个分界线。

线左边的x呢,就像是一个代表,代表这个集合里的每一个元素。

线右边的部分呢,就是这个集合元素的特点,就像是这个小世界的规则一样,只有符合这个规则的元素才能进入这个集合。

再想象一下,有个集合是所有名字里带“花”字的女生。

那这个集合用描述法表示就是{女生| 女生的名字里带“花”字}。

这就好像是在一个大花园里,我们只挑选那些名字带“花”字的女生,把她们组成了一个特别的小团体。

有时候呢,描述法还能表示一些很复杂的集合。

像有一个集合是平面直角坐标系里所有在直线y = 2x + 1上的点。

那这个集合的描述法表示就是{(x,y) | y = 2x + 1}。

这里的(x,y)就是平面直角坐标系里的点的坐标啦,就像是每个点的小标签。

而y = 2x + 1这个式子呢,就是这个小团体的准入门槛,只有坐标满足这个式子的点才能进入这个集合。

我还记得我第一次接触描述法的时候,那感觉就像是进入了一个密码世界。

看着那些弯弯绕绕的符号和式子,有点晕乎乎的。

可是当我开始把这些符号和实际的东西联系起来的时候,就像是解开了密码一样,突然就觉得很有趣。

比如说,学校里要找所有穿红色鞋子的同学,这就可以用集合的描述法来表示呀,{同学 | 同学穿红色鞋子}。

其实描述法就是这么一种很奇妙的东西,它可以把生活中、数学里各种各样的东西按照一定的规则分类,然后组成一个集合。

它就像是一个超级收纳盒,这个收纳盒的标签就是线右边的那些规则。

只要东西符合这个标签的描述,就可以放进这个收纳盒里,这个收纳盒就是我们所说的集合啦。

(新教案)集合的表示方法

(新教案)集合的表示方法

教师活动学生活动设计意图元素的集合集合当然也可以用图示法表示。

例1:用适当的方法表示下列集合⑴由24与30的所有公约数组成的集合答:{1,2,3,4}⑵大于10的所有自然数组成的集合答:{x│x>10,x∈N}⑶所有正偶数组成的集合答:{x│x=2n,n∈N*}直角坐标系中,第二象限内的点构成的集合答:{(x,y)│x<0.y>0}抛物线y=x2上的所有点组成的集合{(x,y)│y=x2}(二)各种表示法的适用范围它们各有优点.用什么方法来表示集合,要具体问题具体分析.(l)有的集合可以分别用三种方法表示.例如“小于的自然数组成的集合”就可以表为:①列举法:;②描述法:;③图示法:如图1。

(2)有的集合不宜用列举法表示.例如“由小于的正实数组成的集合”就不宜用列举法表示,因为不能将这个集合中的元素—一列举出来,但这个集合可以这样表示:①描述法:;②图示法:如图2.(3)用描述法表示集合,要特别注意这个集合中的元素是什么,它应该符合什么条件,从而准确理解集合的意义.例如:①集合中的元素是,它表示函数中自变量的取值范围,即;②集合中的元素是,它表示函数值。

的取值范围,即;③集合中的元素是点,它表示方程的解组成的集合,或者理解为表示曲线上的点组成的集合;学生回答问题加深对概念的巩固和应用④集合 中的元素只有一个,就是方程 ,它是用列举法表示的单元素集合.实际上,这是四个完全不同的集合.列举法与描述法各有优点,应该根据具体问题确定采用哪种表示法.要注意,一般无限集,不宜采用列举法,因为不能将无限集中的元素—一列举出来,而没有列举出来的元素往往难以确定.例2:把下列集合用另一种方法表示出来 1.{x │x 2-x-6=0}2.{y │y= x 2-x-6,x ∈R} 3.{(x,y)│y= x 2-x-6,x ∈R }4.{(x,y)│x+y=5,x ∈N*,y ∈N* } 分析:(1)-2,3(2)代表元素是y ,这个集合是当x 取任意实数时,二次函数y= x 2-x-6的所有函数值的集合。

1.1.2 集合的表示方法

1.1.2 集合的表示方法

1.1.2 集合的表示方法教材知识检索考点知识清单 1.列举法将集合中的元素____,写在____表示集合的方法. 2.描述法描述法的一般形式为 ,其意义是表示由集合I 中具r 有性质____的所有元素构成的集合.要点核心解读1.集合常用的表示方法有列举法、描述法(1)列举法,把集会中的元素一一列举出来,写在大括号内表示集合的方法,叫列举法,例,如,A={指南针:,造纸,火药,印刷}.列举法适合表示有限集,当集合中元素的个数较少时,用列举法表示这榉的集合较为方便,而且使人一目了然.(2)描述法,把集合中元素的公共 属性描述出来,写在大括号内表示集合的方法,叫做描述法 ,它的一般形式为)},(|{x P x 竖线前面的x 表示集合中元素的一般形式,而后面的P(x)表示集合元素x 的公共属性,例如,n {z n A ∈=}.8<n 在不引起混淆的情况下,为了简便,有些集合用描述法表示时,可省去竖线及左边的部分,例如由所有圆组成的集合,可表示为{圆}.如表示由直线y=x 上所有的点构成的集合,可用下列三种方法: ①文学语言形式:直线y=x 上所有的点构成的集合; ②符号语言形式:};|),{(x y y x =③图形语言形式:在平面直角坐标系内画出直线x y =(图略).2.对集合表示法的理解(1)列举法可以看清集合的元贰描述法可以看清集合元素的特征.(2)两种表示法里的“{ }”都有“全体”“集合”的含义,因此,{全体整数}中的“全体”二字是多余的,应改为{ 整数}.(3)除了用列举法和描述法来表示集合,还可以利用图形表示集合,也可以通过集合的运算来表示集合,例如 }2,1{=A ⋅}3,2{3.选择适当的方法表示集合的规律集合的常用表示方法:列举法和描述法,在集合的运算中经常用到,在具体解题中:要根据题目的特点,选用适当的方法表示集合.(1)对于有限集或元素间存在明显规律的无限集,可采用列举法.(2 )对于无明显规律的无限集,不能将它们一一列举出来,可以通过将集合中元素(只有这个集合才有)的共同特征描述出来,即采用描述法.(3)有些集合既可用列举法,又可用描述法.典例分类剖析考点1集合的表示方法[例1]用适当的方法表示下列集合: (1)所有非负偶数组成的集合;(2)所有小于20的既是奇数又是质数的正整数组成的集合;9)3(2-x 的一次因式组成的集合;(4)方程0)5)(2)(1(2=---x x x 的解组成的集合; (5)直角坐标系内第三象限的点组成的集合. [解析] };,8,6,4,2,0{},2|){1( 或N n n x x ∈=};3,3){3(};19,17,13,11,7,5,3){2(+-x x⋅<<-}0,0|),){(5(};5,5,2,1){4(y x y x[点拨]这里(1)中第二种表示法及(2)、(3)、(4)为列举法,而(1)中第一种表示法和(5)为描述法.实数的集合、点的集合是集合的两种重要形式,通过本例,读者要学会熟练地写出一定条件下的这两种形式的集合,为今后的学习奠定基础.母题迁徙1.分别用自然语言、图形语言、集合语言表示“直线y=x 上所有点构成的集合”. 考点2 列举法与描述法的转换[例2] (1)已知集合},16|{z xN x M ∈+∈=求M ; (2)已知集合},|16{N x z xC ∈∈+=求C . [解析] 集合M 、C 中元素的形式不一致,要正确认识。

集合的概念u

集合的概念u

集合的概念u
集合是由一些对象组成的整体,其中每个对象都是集合的元素。

集合中的元素是无序的,没有重复的。

集合通常用大写字母表示,例如U表示一个集合。

集合中的元素用小写字母表示,例如a、b、c等。

集合的表示方法有两种:列举法和描述法。

列举法是将集合中的元素一一列举出来,用花括号{}括起来,元素之间用逗号分隔。

例如,集合U可以表示为U={a, b, c}。

描述法是根据元素的特定性质或条件来描述集合中的元素。

描述法的一般形式为{元素元素所具有的性质或满足的条件}。

例如,集合U可以描述为U={x x 是正整数且x小于等于10},表示U是由小于等于10的正整数组成的集合。

集合的运算有并集、交集、补集和差集等。

并集是两个集合中的所有元素的集合。

交集是两个集合中共有的元素的集合。

补集是一个集合中不在另一个集合中的元素的集合。

差集是一个集合中除去另一个集合中的元素后的剩余元素的集合。

集合的元素个数称为集合的基数或元素个数。

一个集合中元素的个数可以是有限的,也可以是无限的。

如果一个集合的元素个数有限,则称为有限集合,否则称
为无限集合。

集合的表示方法

集合的表示方法

1.1.2集合的表示方法学习目标:1、掌握集合的表示方法,集合的表示方法(字母表示、列举法、描述法、文氏图共4种)2、用列举法、描述法表示一个集合.知识要点:集合的表示方法1、大写的字母表示集合2、列举法:把集合中的元素一一列举出来,写在大括号内表示集合的方法.例如,24所有正约数构成的集合可以表示为{1,2,3,4,6,8,12,24}注:(1)大括号不能缺失.(2)有些集合种元素个数较多,元素又呈现出一定的规律,在不至于发生误解的情况下,亦可如下表示:从1到100的所有整数组成的集合:{1,2,3, (100)自然数集N :{1,2,3,4,…,n ,…}(3)区分a 与{a }:{a }表示一个集合,该集合只有一个元素.a 表示这个集合的一个元素.(4)用列举法表示集合时不必考虑元素的前后次序.相同的元素不能出现两次.(5)能不能表示无限集?(只能表示存在规律的集合){0,2,4,6,8,}A n =3、特征性质描述法:在集合I 中,属于集合A 的任意元素x 都具有性质p(x),而不属于集合A 的元素都不具有性质p(x),则性质p(x)叫做集合A 的一个特征性质,于是集合A 可以表示如下:{x ∈I | p (x ) }例如,不等式232>-x x 的解集可以表示为:}23|{2>-∈x x R x 或}23|{2>-x x x , 所有直角三角形的集合可以表示为:}|{是直角三角形x x注:(1)在不致混淆的情况下,也可以写成:{直角三角形};{大于104的实数}(2)注意区别:实数集,{实数集}.① {(,)x y y =中的元素是点。

满足条件的二元方程的解集,是成对出现的。

② {x y = {y y = {y 表示单元素集合,方程的解。

4、维恩(Venn)图(文氏图):用一条封闭的曲线的内部来表示一个集合.学习中应注意的问题:①注意a 与{}a 的区别,②注意Φ与{0}的区别, {0}是含有0一个元素的集合。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

例题2 用描述法表示下列集合 (1)偶数集; (2)被3整除的数组成的集合; (3)被3除余1的数组成的集合;
练习 用描述法表示下列集合 (1)函数 y x上所有的点组成的集合; (2)坐标平面内,第一三象限的点组成的集合; (3)线段AB的中垂线上所有的点组成的集合;
2、图示法(韦恩图)
画一条封闭曲线,用它的内部表示集合的方法, 简称韦恩图。 同一个集合,可以用多种方法表示
描述法表示集合的形式:
x A
P ( x ) 或
x
P ( x )
用自然语言描述该集合
(1)A x R x 10

(2)B x Z x 2n, n Z
D x x 10

E x x 2n, n Z
(3)C x Z x 2n 1, n Z F x x 2n 1, n Z
例、用列举法表示下列集合: (1)小于5的所有自然数组成的集合; (2)方程x x 的所有实数根组成的集合;
2
x y 2 (3)方程组 的解集 x y 0 思考:
集合A {1,2},B {(1,2)},C {合所含元素的共同特征表示集合的方法
集合的含义与表示
2019年4月8日星期一
集合的三要素:
(1)确定性:集合中的元素必须是确定的.
(2)互异性:集合中的元素不能重复.
(3)无序性:集合中的元素是无先后顺序的.
小写字母表示元素,大写字母表示集合
元素与集合的关系 元素与集合只有两种关系是属于与不 属于的关系 如果a是集合A的元素,就说a属于集合 A记作
a A
如果a不是集合A的元素,就说a不属于 集合A记作
a A
重要数集:
(1) N: 自然数集(含0) 即非负整数集 (2) N+:正整数集(不含0)
(3) Z:整数集 (4) Q:有理数集
(5) R:实数集
自N整Z有Q,R实
集合的表示方法
1、列举法:把集合的元素一一列举出来,并用 花括号“{ }” 括起来。
思考:集合G x Z 1 x 5 与
注意:
集合H x 1 x 5 是否相同?
(1)竖线左边的元素代号和竖线右边的元素性质缺一不可; (2)元素代号字母可以任选,不影响集合; (3)所有描述内容都要写在括号内。
例题1 试分别用列举法和描述法表示下列集合 (1)方程 x 2 5 0 的所有实根组成的集合; (2)由大于5小于12的所有整数组成的集合;
一般,元素个数较少时用列举法,元素个数 无限,用描述法,考察集合关系,用图示法
思考:观察下列集合中的元素,并说出元素的取值或 取值范围 A

x x2 1 0

B x x 2k 1, k Z D
C x x 2k 1, k Z
G t
E
x y x2 1 tm
2
1
F ( x,y )
y y x2 1

y x2 1

描述 代号 再看_____ 看一个集合,先看_____, 看集合,必须看本质,即看包含哪些元素。
相关文档
最新文档