2012年广东省广州市中考真题(word版含答案)

合集下载

2012年广东中考历史试卷(word版有答案)

2012年广东中考历史试卷(word版有答案)

保密 ★ 启用前2012年广东省初中毕业生学业考试历史说明:全卷共5页,满分100分,时间50分钟一、单项选择题(本大题共25小题,每小题3分,共75分。

在每小题列出的四个选项中,只有一个正确答案,请把答题卡上对应题目所选的选项涂黑。

)1.生活在距今约70——20万年,保留着猿的某些体质特征、能够打制粗糙石器的我国境内远古居民是A.元谋人B.北京人C.半坡人D.河姆渡人2.《荀子》载:西周“兼制天下,立七十一国。

”与“立七十一国”相关的制度是A.世袭制B.禅让制C.分封制D.郡县制3.中国银行行徽(图1)的外观设计灵感源自于我国古代的一种钱币(图2)。

这种形状的钱币最早在全国统一使用是在A.秦朝.B.唐朝C.宋朝D.清朝4.“进士科始于隋大业中,盛于贞观、永徽之际。

缙绅(有官职或做过官的人)虽位极人臣,不由进士者,终不为美。

”对该材料理解正确的是A.进士科的兴衰反映了科举制演变B.所有人才都从进士科选出C.进士科是科举考试中最重要科目D.缙绅都要参加进士科考试5.乾隆皇帝为巩固统一的多民族国家做出了许多努力,他自称有“十全武功”。

下列属于“十全武功”之一的是、A.收复台湾B.组织雅克萨之战C.设置驻藏大臣D.平定大小和卓叛乱6.我国古代科技文化璀璨。

下列著作属于相同类别的一组是A.《伤寒杂病论》与《天工开物》B.《史记》与《资治通鉴》C.《九章算术》与《本草纲目》D.《水经注》与《金刚经》7.今年中央电视台春节联欢晚会上,一相声节目将我国古典文学名著《三国演义》、《水浒传》、《红楼梦》和《西游记》内容都穿插其中。

上述古典文学名著成书于A.秦汉时期B.隋唐时期C.宋元时期D.明清时期8.在禁烟运动中,林则徐主张对外商“正常贸易者,加以优待,倘有带烟发觉,立正刑诛。

”材料表明林则徐①支持正常贸易 ②反对鸦片走私 ③反对开放口岸 ④维护民族利益A. ①②③B.①③④C.①②④D.②③④图1 中行行徽 图2 古钱币9.每个人一生中都有自己最重要的选择,康有为选择了变法,孙中山选择了革命,张謇选择了实业。

2012年广州中考数学真题卷含答案解析

2012年广州中考数学真题卷含答案解析

2012年广州市初中毕业生学业考试数学30A(满分:150分时间:120分钟)第Ⅰ卷(选择题,共30分)一、选择题(本大题共10小题,每小题3分,满分30分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.实数3的倒数是()A.-13B.13C.-3D.32.将二次函数y=x2的图象向下平移1个单位,则平移后的二次函数的解析式为()A.y=x2-1B.y=x2+1C.y=(x-1)2D.y=(x+1)23.一个几何体的三视图如图所示,则这个几何体是()A.四棱锥B.四棱柱C.三棱锥D.三棱柱4.下面的计算正确的是()A.6a-5a=1B.a+2a2=3a3C.-(a-b)=-a+bD.2(a+b)=2a+b5.如图,在等腰梯形ABCD中,BC∥AD,AD=5,DC=4,DE∥AB交BC于点E,且EC=3,则梯形ABCD的周长是()A.26B.25C.21D.206.已知|a-1|+√7+b=0,则a+b=()A.-8B.-6C.6D.87.在Rt△ABC中,∠C=90°,AC=9,BC=12,则点C到AB的距离是()A.365B.1225C.94D.3√348.已知a>b,若c 是任意实数,则下列不等式中总是成立的是( ) A.a+c<b+c B.a-c>b-c C .ac<bc D.ac>bc 9.在平面中,下列命题为真命题的是( )A.四边相等的四边形是正方形B.对角线相等的四边形是菱形C.四个角相等的四边形是矩形D.对角线互相垂直的四边形是平行四边形10.如图,正比例函数y 1=k 1x 和反比例函数y 2=k2x 的图象交于A(-1,2)、B(1,-2)两点,若y 1<y 2,则x的取值范围是( )A.x<-1或x>1 B .x<-1或0<x<1 C.-1<x<0或0<x<1 D.-1<x<0或x>1第Ⅱ卷(非选择题,共120分)二、填空题(本大题共6小题,每小题3分,满分18分.)11.已知∠ABC=30°,BD 是∠ABC 的平分线,则∠ABD= 度. 12.不等式x-1≤10的解集是 . 13.分解因式:a 2-8a= .14.如图,在等边△ABC 中,AB=6,D 是BC 上一点,且BC=3BD,△ABD 绕点A 旋转后得到△ACE,则CE 的长度为 .15.已知关于x 的一元二次方程x 2-2√3x-k=0有两个相等的实数根,则k 的值为 . 16.如图,在标有刻度的直线l 上,从点A 开始,以AB=1为直径画半圆,记为第1个半圆;以BC=2为直径画半圆,记为第2个半圆;以CD=4为直径画半圆,记为第3个半圆;以DE=8为直径画半圆,记为第4个半圆,……,按此规律,继续画半圆,则第4个半圆的面积是第3个半圆面积的 倍,第n 个半圆的面积为 (结果保留π).三、解答题(本大题共9小题,满分102分.解答应写出文字说明、证明过程或演算步骤.)17.(本小题满分9分) 解方程组:{x -y =8,3x +y =12.18.(本小题满分9分)如图,点D在AB上,点E在AC上,AB=AC,∠B=∠C.求证:BE=CD.19.(本小题满分10分)广州市努力改善空气质量,近年来空气质量明显好转,根据广州市环境保护局公布的2006~2010这五年各年的全年空气质量优良的天数,绘制折线图如图,根据图中信息回答:(1)这五年的全年空气质量优良天数的中位数是,极差是;(2)这五年的全年空气质量优良天数与它前一年相比较,增加最多的是年(填写年份);(3)求这五年的全年空气质量优良天数的平均数.30B20.(本小题满分10分)已知1a +1b =√5(a ≠b),求ab(a -b)-ba(a -b)的值.21.(本小题满分12分)甲、乙两个袋中均装有三张除所标数值外完全相同的卡片,甲袋中的三张卡片上所标的数值分别为-7、1、3,乙袋中的三张卡片上所标的数值分别为-2、1、6.先从甲袋中随机取出一张卡片,用x 表示取出的卡片上标的数值,再从乙袋中随机取出一张卡片,用y 表示取出的卡片上标的数值,把x 、y 分别作为点A 的横坐标、纵坐标. (1)用适当的方法写出点A(x,y)的所有情况; (2)求点A 落在第三象限的概率.22.(本小题满分12分)如图,☉P的圆心为P(-3,2),半径为3,直线MN过点M(5,0)且平行于y轴,点N在点M的上方.(1)在图中作出☉P关于y轴对称的☉P',根据作图直接写出☉P'与直线MN的位置关系;(2)若点N在(1)中的☉P'上,求PN的长.23.(本小题满分12分)某城市居民用水实行阶梯收费,每户每月用水量如果未超过20吨,按每吨1.9元收费;每户每月用水量如果超过20吨,未超过的部分仍按每吨1.9元收费,超过的部分则按每吨2.8元收费.设某户每月用水量为x吨,应收水费为y元.(1)分别写出每月用水量未超过20吨和超过20吨时,y与x间的函数关系式;(2)若该城市某户5月份水费平均为每吨2.2元,求该户5月份用水多少吨?24.(本小题满分14分)如图,抛物线y=-38x 2-34x+3与x 轴交于A 、B 两点(点A 在点B 的左侧),与y 轴交于点C.(1)求点A 、B 的坐标;(2)设D 为已知抛物线的对称轴上的任意一点,当△ACD 的面积等于△ACB 的面积时,求点D 的坐标;(3)若直线l 过点E(4,0),M 为直线l 上的动点,当以A 、B 、M 为顶点所作的直角三角形有且只...有.三个时,求直线l 的解析式.25.(本小题满分14分)如图,在平行四边形ABCD 中,AB=5,BC=10,F 为AD 的中点,CE ⊥AB 于点E,设∠ABC=α(60°≤α<90°). (1)当α=60°时,求CE 的长; (2)当60°<α<90°时,①是否存在正整数k,使得∠EFD=k ∠AEF?若存在,求出k 的值;若不存在,请说明理由; ②连结CF,当CE 2-CF 2取最大值时,求tan ∠DCF 的值.2012年广州市初中毕业生学业考试一、选择题1.B由倒数的定义可知,a(a≠0)的倒数是1a,故选B.评析本题考查了倒数的意义,学生很容易混淆倒数和相反数这两个概念,属简单题.2.A根据函数图象的平移规律可得到y=x2-1,故选A.3.D由左视图和主视图可知:几何体是柱体,再由俯视图可知:几何体的底面是三角形,故选D.4.C由同类项的定义可知:选项A中,6a与-5a是同类项,其合并的结果应为a,故A错;选项B 中,a与2a2不是同类项,不能合并,故B错;选项D是单项式与多项式相乘,由乘法法则可知结果应为2a+2b,故D错;选项C由去括号法则可知其正确.5.C因为BC∥AD,DE∥AB,由平行四边形的定义可知:四边形ABED是平行四边形,所以BE=AD=5,从而BC=BE+EC=5+3=8;又因为四边形ABCD是等腰梯形,且BC∥AD,所以AB=CD=4,从而梯形ABCD的周长为4+4+5+8=21,故选C.6.B由于|a-1|+√7+b=0,则根据实数的绝对值和算术平方根的非负性可知|a-1|和√7+b均为0,所以a=1,b=-7,从而a+b=-6,故选B.7.A点C到AB的距离即等于AB边上的高,作出其高CD,在Rt△ABC中,由勾股定理可得AB=√AC2+BC2=√92+122=15,再由S△ABC=12AB·CD=12AC·BC可求得CD=365,故选A.8.B由不等式的基本性质可知:选项A错;当c≥0时,选项C不成立,故C错;当c≤0时,选项D 不成立,故D错;由不等式的基本性质可知选项B正确,故选B.9.C由平行四边形、菱形和正方形的定义及判定可知:A、B、D均错;对于选项C,由于四边形的内角和是360°,故四角相等时均为直角,由矩形判定可知C正确.评析本题考查了正方形、菱形、矩形、平行四边形的判定方法,是一道简单的综合问题,中考常结合起来进行考查,属容易题.10.D当正比例函数y1=k1x和y2=k2x的图象交于两点A(-1,2)、B(1,-2)时,要判断其函数值的大小关系,首先要根据两函数图象的两交点横坐标-1、1和x≠0将x的取值范围划分成六个部分:x<-1、x=-1、-1<x<0、0<x<1、x=1、x>1;其次再结合图象可知:若y1<y2,则-1<x<0或x>1,故选D.二、填空题11.答案15解析由角平分线定义可知∠ABD=12∠ABC=15°.12.答案x≤11解析由不等式基本性质可知x≤11.13.答案a(a-8)解析用提公因式法可分解得到.14.答案2解析 ∵△ABC 是等边三角形,∴BC=AB=6,又BC=3BD,∴BD=2,∵△ABD 绕点A 旋转后得到△ACE,∴CE=BD=2. 15.答案 -3解析 ∵关于x 的一元二次方程x 2-2√3x-k=0有两个相等的实数根,∴Δ=(2√3)2-4·1·(-k)=0,∴k=-3. 16.答案 4;π·22n-5解析 由题意可知:半圆的直径依次扩大2倍,第3个和第4个半圆的直径分别为4和8,其面积分别为2π、8π,所以第4个半圆的面积是第3个半圆面积的4倍.从第1个半圆开始,其直径依次为20、21、22、23、…,第n 个半圆的直径为2n-1,其半径为2n-2,面积为12π(2n-2)2=π·22n-5. 评析 本题考查的是规律探索,其关键是得出第n 个半圆的半径为2n-2,是一道难题.三、解答题17.解析 {x -y =8, ①3x +y =12,②①+②得4x=20,x=5.(4分)把x=5代入①得5-y=8,y=-3.(8分)∴原方程组的解是{x =5,y =-3.(9分)18.解析 在△ABE 和△ACD 中, ∵{∠B =∠C,AB =AC,∠A =∠A,(4分) ∴△ABE ≌△ACD,(7分) ∴BE=CD.(9分)19.解析 (1)这五年的全年空气质量优良天数的中位数是345,极差是357-333=24. (4分,中位数和极差各2分)(2)这五年的全年空气质量优良天数与它前一年相比较,增加数为:2007年是333-334=-1,2008年是345-333=12,2009年是347-345=2,2010年是357-347=10,所以增加最多的是2008年.(7分) (3)334+333+345+347+3575=343.2(天),∴这五年的全年空气质量优良天数的平均数为343.2.(10分)评析 本题是一道统计题,首先要求学生能够正确理解图中数据的意义,考查了学生利用折线统计图分析问题和解决问题的能力,同时考查了中位数、极差、增长率、平均数的求法,属容易题. 20.解析ab(a -b)-ba(a -b)=a 2-b 2ab(a -b)=(a+b)(a -b)ab(a -b)=a+b ab .(5分)又∵1a +1b=√5(a ≠b),∴a+b ab=√5,(8分)∴原式=a+b ab=√5.(10分)评析 本题先化简分式再求值,考查了因式分解、整体思想,属中等题. 21.解析 (1)x:-7、-1、3, y:-2、1、6.(1分) 列表得:xy -7-1 3 -2 (-7,-2) (-1,-2)(3,-2) 1 (-7,1) (-1,1) (3,1) 6 (-7,6)(-1,6)(3,6)或画树状图得:(5分)由表格或树状图可知,A(x,y)的所有情况有9种:(-7,-2)、(-7,1)、(-7,6)、(-1,-2)、(-1,1)、(-1,6)、(3,-2)、(3,1)、(3,6).(8分)(2)若点A 落在第三象限,则x<0,y<0,(9分) ∴只有(-7,-2)、(-1,-2)符合条件.(10分) ∴P(点A 落在第三象限)=29.(12分)22.解析 (1)∵☉P 的圆心为P(-3,2),半径为3,∴☉P 关于y 轴对称的☉P'的圆心P'的坐标为(3,2),半径为3.(2分) ☉P'如图所示,(4分)由作图可知:☉P'与直线MN 相交.(6分) (2)连结PN 、P'N 、PP',并延长PP'与MN 相交于点D. ∵点P 、P'的坐标分别为(-3,2)、(3,2),∴PP'∥x 轴,从而有PD ⊥ND,P'D=5-3=2,PD=5-(-3)=8.(9分) ∴在Rt △P'DN 中,DN=2-P'D 22-22√5.(10分) ∴在Rt △PDN 中,PN=√PD 2+DN 2=√82+(√5)2=√69.(12分) 23.解析 (1)y={1.9x(0≤x ≤20),2.8x -18(x >20).(6分)(2)设该户5月份用水量为x 吨,则 2.8x-18=2.2x.(9分) 解得x=30.(11分)∴该户5月份用水量为30吨.(12分)24.解析 (1)在抛物线y=-38x 2-34x+3中令y=0,得x=-4或2,∴由题知点A 、B 的坐标分别是(-4,0)、(2,0).(2分) (2)抛物线y=-38x 2-34x+3中令x=0,得y=3, ∴点C 的坐标是(0,3).∴S △ABC =12AB ·OC=12×[2-(-4)]×3=9.(3分)抛物线y=-38x 2-34x+3的对称轴为x=-1,则点D 的横坐标为-1,故可设点D 的坐标为(-1,b),作DP ⊥y 轴于点P. ①当点D 在直线AC 上方时,若b>3,则S △ACD =S 梯形AOPD -S △CDP -S △AOC =12(1+4)·b-12(b-3)×1-12×4×3=2b-92,当S △ACD =S △ABC 时,即2b-92=9,b=274;(4分)若b<3,则S △ACD =S 梯形AOPD +S △CDP -S △AOC =12(1+4)·b+12(3-b)×1-12×4×3=2b-92<9. 若b=3,则S △ACD =12×1×3=32<9.∴此时点D 的坐标是(-1,274).(5分)②当点D 在直线AC 下方时,若b<0,则S △ACD =S 梯形AOPD +S △AOC -S △CDP =12(1+4)·(-b)+12×4×3-12(3-b)×1=-2b+92, 当S △ACD =S △ABC 时,-2b+92=9,b=-94;(6分)若b>0,则S △ACD =S △AOC -S 梯形AOPD -S △CDP =12×4×3-12×(1+4)×b-12×(3-b)×1=-2b+92<9; 若b=0,则S △ACD =12×(4-1)×3=92<9.∴此时点D 的坐标是(-1,-94).(7分) 综上,点D 的坐标是(-1,274)或(-1,-94).(8分)(3)设以AB 为直径的圆为☉Q,若直线l 与☉Q 没有公共点时,则以A 、B 、M 为顶点所作的直角三角形只有两个(即分别过点A 、B 作x 轴的垂线与直线l 相交时)或不存在(即直线l 与x 轴垂直时);(9分)若直线l 与☉Q 相交时,则以A 、B 、M 为顶点所作的直角三角形有四个,也即存在四个点M,即:分别过点A 、B 作x 轴的垂线与直线l 相交的两个交点及直线l 与☉Q 相交的两个交点;(10分)故当且仅当直线l 与☉Q 相切(设切点为点N)时,当以A 、B 、M 为顶点所作的直角三角形有且只有三个,即存在三个点M:分别过点A 、B 作x 轴的垂线与直线l 相交的两个交点及切点N.(11分)当切点N 在x 轴上方时,设直线l 与直线x=-1相交于点F,连结QN.∵点A 、B 的坐标分别是(-4,0)、(2,0),∴点Q 的坐标是(-1,0),则☉Q 的半径为3,QE=5,由相切可知:QN ⊥EF,故在Rt △QEN 中,NE=√QE 2-QN 2=√52-32=4.∵∠ENQ=∠EQF=90°,∠QEN=∠FEQ,∴△EQF ∽△ENQ,可得EN QN =EQ FQ ,即43=5FQ ,FQ=154,∴点F 的坐标为(-1,154).(12分)设直线l 的解析式为y=mx+n,分别代入点E(4,0)和点F (-1,154),可求得解析式为y=-34x+3.(13分) 当切点N 在x 轴下方时,由对称性可知:直线l 的解析式为y=34x-3,∴直线l 的解析式为y=34x-3或y=-34x+3.(14分)25.解析 (1)∵CE ⊥AB,∴∠BEC=90°,∴在Rt △BEC 中,sin α=CE BC ,∴CE=BCsin α=10×sin 60°=5√3.(3分)(2)解法一:连结CF 并延长交BA 延长线于点G.(4分)①存在满足要求的k,k=3.∵四边形ABCD 是平行四边形,∴AB ∥CD,AB=CD=5,AD=BC=10.(5分)∴∠AGF=∠FCD,∠GAF=∠D,又AF=DF,∴△CFD ≌△GFA,得AG=CD=5,GF=FC,又∠CEG=90°,∴EF=GF,∴∠AEF=∠AGF.(6分)∵AG=5=AF,∴∠AGF=∠AFG=∠CFD=∠AEF,又∠EFC=∠AEF+∠AGF=2∠AEF,∴∠EFD=∠EFC+∠CFD=3∠AEF,故k=3.(8分)②设BE=x,则EG=AG+AE=10-x,在Rt △BEC 中,CE 2=BC 2-BE 2=100-x 2.(9分) 在Rt △GEC 中,CG 2=CE 2+EG 2=200-20x.(10分)∴CF 2=(12CG)2=50-5x.(11分)∴CE 2-CF 2=-x 2+5x+50=-(x -52)2+2254.(12分)当x=52时,CE 2-CF 2取最大值,此时CE=5√152,EG=152,(13分)∴tan ∠DCF=tan ∠AGF=CE EG =√153.(14分)解法二:作FN ⊥EC 于点N,连结CF.①存在满足要求的k,k=3.∵CE ⊥AB,FN ⊥EC,∴∠AEC=∠FNC=90°,∴AE ∥FN,∴∠AEF=∠EFN.(4分) ∵四边形ABCD 是平行四边形,∴AB ∥CD,AB=CD=5,AD=BC=10,∴AE ∥FN ∥CD,又AF=DF,∴EN=CN(平行线等分线段定理).(9分)又FN ⊥EC,∴EF=CF,∴∠EFN=∠CFN.∵FN ∥CD,∴∠CFN=∠FCD.∵FD=12AD=5=CD,∴∠FCD=∠CFD,∴∠EFD=∠EFN+∠CFN+∠CFD=3∠EFN=3∠AEF,故k=3.②同解法一.(14分)。

2012年广东省广州市中考英语试卷(含解析版)

2012年广东省广州市中考英语试卷(含解析版)

2012年广东省广州市中考英语试卷一、听力(共两节,满分35分)(略)二、语言知识及运用(共两节,满分20分)第一节单项选择(共10小题;每小题1分,满分10分)从16~25各题所给的A、B、C和D项中,选出可以填入空白处的最佳选项,并在答题卡上将该项涂黑。

16. ---Is this book you were talking about yesterday?---Yes,thank you very much.A. aB. allC. theD. 不填l 7. ---He asked her_________the bag because it was too expensive.A. not to buyB. to buy notC. not buyingD. not buy18. ---It’s surprising that he got such a high mark!---Yes. I wonder it.A. how did he doB. how he didC. why did he doD. that he did19. Although you may meet some difficulties, you should never .A. turn upB. get upC. give upD. grow up20.You be hungry after the long walk. Help yourself to some cakes.A. can’tB. shouldn’tC. needD. must21. ---I’ve got the final Harry Potter book. ---You will love it. I it twice already.A. am readingB. have readC. was readingD. will read22. ---Do you like this movie? ---Yes, it’s the one I’ve ever seen.A. betterB. bestC. goodD. well23. He has to earn lots of money he can buy his children nice food and clothes.A. so thatB. such thatC. thatD. in order24. Ms Wang is an excellent teacher. in our class loves her.A. SomeoneB. No oneC. EveryoneD. Anyone25. Whenever he was late. he could find plenty of excuses sounded reasonable.A. whoB. whereC. whenD. which第二节语法选择(共10小题;每小题1分,满分10分)阅读下面短文,按照句子结构的语法性和上下文连贯的要求,从26~35各题所给的A、B、C和D项中选出最佳选项,并在答题卡上将该项涂黑。

2012年广东省广州市中考真题及答案

2012年广东省广州市中考真题及答案

2012年广州市初中毕业生学业考试数 学本试卷分选择题和非选择题两部分,共三大题25小题,共4页,满分150分,考试用时120分钟注意事项:1.答卷前,考生务必在答题卡第1面、第3面、第5面上用黑色字迹的钢笔或签字笔填写自已的考生号、姓名;填写考场试室号、座位号,再用2B 铅笔把对应这两个号码的标号涂黑.2.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号,不能答在试卷上.3.非选择题必须用黑色字迹的钢笔或签字笔作答,涉及作图的题目,用2B 铅笔画图,答案必须写在答题卡各题目指定区域内的相应位置上.如需改动,先划掉原来的答案,然后再写上新的答案;改动的答案也不能超出指定的区域,不准使用铅笔,圆珠笔和涂改液,不按以上要求作答的答案无效.4.考生必须保持答题卡的整洁,考试结束后,将本试卷和答题卡一并交回.第一部分 选择题 (共30分)一、选择题(本大题共10小题,每小题3分,满分30分,在每小题给出的四个选项中,只有一项是符合题目要求的.) 1. 实数3的倒数是( ) (A )13-(B )13(C )3- (D )32. 将二次函数2y x =的图像向下平移1个单位,则平移后的二次函数的解析式为( )(A )21y x =- (B )21y x =+(C )2(1)y x =-(D )2(1)y x =+3. 一个几何体的三视图如图1所示,则这个几何体是( )(A ) 四棱锥 (B )四棱柱 (C )三棱锥 (D )四棱柱 4.下面的计算正确的是( ) (A )651a a -=(B )2323a a a +=(C )()a b a b --=-+(D )2()2a b a b +=+5.如图2,在等腰梯形ABCD 中,BC AD ∥,5AD =,4DC =,DE AB ∥交BC 于点E ,且3EC =.则梯形ABCD 的周长是( ) (A )26 (B )25 (C )21 (D )20 6. 已知170a b -+-=,则a b +=( )(A )8- (B )6- (C )6 (D )8(A )365(B )1225(C )94(D )3348.已知a b >,若c 是任意实数,则下列不等式总是成立的是( )(A )a c b c +<+ (B )a c b c ->- (C )ac bc < (D )ac bc >9.在平面中,下列命题为真命题的是( ) (A )四边相等的四边形是正方形 (B )对角线相等的四边形是菱形 (C )四个角相等的四边形是矩形(D )对角线互相垂直的四边形是平行四边形 10.如图3,正比例函数11y k x =和反比例函数22k y x=的图象交于(12)A -,、(12)B -,两点, 若12y y <,则x 的取值范围是 ( )(A )1x <-或1x >(B )1x<-或01x <<(C )10x -<<或01x << (D )10x -<<或1x >第二部分 非选择题 (共120分)二、填空题(本大题共6小题,每小题3分,满分18分.)11.已知30ABC ∠=°,BD 是ABC ∠的平分线,则ABD ∠=_______度.12.不等式110x -≤的解集是_______. 13.分解因式:38a a -=_______.14.如图4,在等边ABC △中,6AB =,D 是BC 上一点.且3BC BD =,ABD △绕点A 旋转后的得到ACE △.则CE 的长为_______.15.已知关于x 的一元二次方程2230x x k --=有两个相等的实数根,则k 的值为_______. 16.如图5,在标有刻度的直线l 上,从点A 开始. 以1AB =为直径画半圆,记为第1个半圆; 以2BC =为直径画半圆,记为第2个半圆; 以4CD =为直径画半圆,记为第3个半圆; 以8DE =为直径画半圆,记为第4个半圆 ;……,按此规律,继续画半圆,则第4个半圆的面积是第3个半圆面积的_______倍,第n 个半圆的面积为_______. (结果保留π)三、解答题(本大题共9小题,满分102分,解答应写出文字说明、证明过程或演算步骤) 17.(本小题满分9分)解方程组:8312x y x y -=⎧⎨+=⎩,.如图6,点D 在AB 上,点E 在AC 上,AB AC =,B C ∠=∠.求证:BE CD =.19.(本小题满分10分)广州市努力改善空气质量,近年来空气质量明显好转,根据广州市环境保护局公布的2006~2010这五年的全年空气质量优良的天数,绘制折线图如图7,根据图中信息回答:(1)这五年的全年空气质量是优良的天数的中位数是_______ ;极差是_______ ; (2) 这五年的全年空气质量优良天数与它的前一年相比较,增加最多的是______年(填写年份);(3)求这五年的全年空气质量优良天数的平均数.20.(本小题满分10分) 已知115()a b ab+=≠,求()()a b b a b a a b ---的值.21.(本小题满分12分)甲、乙两个袋中均装有三张除所标数值外完全相同的卡片,甲袋中的三张卡片上的所标的数值分别为7-、1-、3,乙袋中的三张卡片上所标的数值分别为2-、1、6,先从甲袋中随机取一张卡片,用x 表示取出的卡片上标的数值,再从乙袋从随机取出一张卡片,用y 表示取出的卡片上标的数值.把x 、y 分别作为点A 的横坐标、纵坐标. (1)用适当的方法写出点()A x y ,的所有情况; (2)求点A 落在第三象限的概率 .如图8,P ⊙的圆心为(32)P -,,半径为3,直线MN 过点(50)M ,且平行于y 轴,点N 在点M 的上方.(1)在图中作出P ⊙关于y 轴的对称的P '⊙,根据作图直接写出P '⊙与直线MN 的位置关系 ; (2)若点N 在(1)中的P '⊙上,求PN 的长.23.(本小题满分12分)某城市居民用水实施阶梯收费.每户每月用水量如果未超过20吨,按每吨1.9元收费:每户每月用水量如果超过20吨,未超过的部分仍按每吨1.9元收费,超过的部分则按每吨2.8元收费.设某户每月用水量为x 吨,应收水费为y 元.(1)分别写出每月用水量未超过20吨和超过20吨时,y 与x 间的函数关系式; (2)若该城市某户5月份水费平均为每吨2.2元,求该户5月份用水多少吨?如图9,抛物线233384y x x =--+与x 轴交于A B 、两点(点A 在点B 的左侧),与y 轴交于点C .(1)求点A B 、的坐标;(2)设D 为已知抛物线的对称轴上任意一点,当ACD △的面积等于ACB △的面积时,求点D 的 坐标;(3)当直线l 过点(40)E ,,M 为直线l 上的动点,当以A B M 、、为顶点所作的直角三角形 有且只有....三个时,求直线l 的解析式.25.(本小题14分)如图10,在平行四边形ABCD 中,5AB =,10BC =,F 为AD 中点,CE AB ⊥于点E , 设(6090)ABC a x ∠=<°≤°.(1)当60a =°时,求CE 的长; (2)当6090a <<°°①是否存在正整数k ,使得EFD k AEF ∠=∠?若存在,求出k 的值;若不存在,请说明理由. ②连接CF ,当22CE CF -取最大值时,求tan DCF ∠的值.2012年广州市初中毕业生学业考试数学参考答案一、1. B2. A3. D4. C5. C6. B7. A8. B9. C 10. D 二、11.15 12.11x ≤ 13.(8)a a - 14.2 15.3- 16.2542πn -;三、 17.解:8312x y x y -=⎧⎨+=⎩①②①+②,得420x =,解得:5x =. ··········································································· (4分) 将5x =代入①,得:58y -=,解得:3y =-. ···················································· (8分)所以方程组的解是53x y =⎧⎨=-⎩. ······················································································· (9分)18.证明: 在ABE △和ACD △中,B C AB AC A A ∠=∠=∠=∠,,, ·········································································· (4分) (ASA)ABE ACD ∴△≌△, ····················································································· (8分) BE CD ∴=. ··············································································································· (9分) 19.解:(1)345;24; ······························································································ (3分)(2)2008; ··················································································································· (6分) (3)解:334333345347357343.25x ++++==(天).································ (10分) 20.解:原式22()()a b ab a b ab a b =---()()()a b a b ab a b +-=- ····················································································· (5分)115a b abba+==+=. ······································································ (10分) 21.解:(1)用列表法如下:········································································································································ (6分)或用树状图法:················································································· (6分)由上可知A 的坐标为:(72)--,;(71)-,;(76)-,;(12)--,;(11)-,;(16)-,;(32)-,;(3,1);(3,6); ··········································································································· (8分)(2)由树状图可知,所有可能的情况共有9种,点A 落在第三象限的情况有2种,所以P (点A 落在第三象限)=92. ····································································································· (12分)22.解:(1)作图如下: ················································· (4分)P '⊙与直线MN 相交.····················································· (6分) (2)如图,连接PP'并延长交MN 于点Q ,连接PN P N '、; 由于两圆外切,PP '垂直于y 轴,NM y ∥轴,所以PP MN '⊥. ····························································· (8分) 由题意可知:在Rt P QN '△中,2P Q '=,3P N '=, 由勾股定理可求出5QN =; ·················································································· (10分)在Rt PQN △中,358PQ =+=,5QN =,由勾股定理可求出228(5)69PN =+=. ····················································································· (12分)23.解:(1) 1.9(020)2.818(20)x x y x x ⎧=⎨->⎩≤≤; ··································································· (6分)(2)设:该用户5月份用水x 吨,由题意得:2.818 2.2x x -=;解得30x =(吨). ··································································································· (11分) 答:(1)y 与x 间的函数关系式是 1.9(020)2.818(20)x x y x x ⎧⎨->⎩≤≤;(2)5月份用水30吨. ····························································································· (12分) 24.解:(1)令0y =,则2333084x x --+=,解得14x =-,22x =. ················································ (1分)(40)(20)A B ∴-,,,.(2分)(2) 抛物线233384y x x =--+的对称轴为1x =-,与y 轴交点C的坐标为(03),,∴直线AC 的解析式为33y x =+,且当1x =-时,有94y =,∴直线AC 与对称轴1x =-的交点坐标为9(1)4H -,. ············································· (4分) 63AB CO == ,,16392ACB S ∴=⨯⨯=△.····························································································· (6分) 不妨设点D 的坐标为(1)a -,,当点D 位于AC 上方时,294D H a =-,∴ACD △的面积22192ACD S D H AO =⨯⨯=△;解方程得:274a =, 当点D 位于AC 下方时,194D H a =-,∴ACD △的面积11192ACD S D H AO =⨯⨯=△;解方程得:94a =-,∴点D 的坐标为27(1)4-,或9(1)4--,; ····································································· (8分) (3)如图②,以AB 为直径作P ⊙,当且仅当直线l 与P ⊙相切时符合题意, Rt PME △中,90PME ∠=°,35PM PE ==,,∴由勾股定理可得:22534ME =-=;利用三角形相似可以求得点M 的坐标412()55M ,. ···················································· (10分) 设直线l 的解析式为y kx b =+,代入412()55M ,、(40)E ,可得方程组4125540k b k b ⎧+=⎪⎨⎪+=⎩;解方程组得:343k b ⎧=-⎪⎨⎪=⎩. ······························································· (12分) ∴直线l 的解析式为334y x =-+.同理可得:直线l 的另一个解析式为334y x =+. ··················································· (14分) 25.解:(1)在Rt BEC △中,90BEC ∠=°,10BC =,当60α=°时,906030BCE ∠=-=°°°,所以152BE BC ==.由勾股定理可得:2210553EC =-=; ······················································· (2分)(2)①存在.如图,取BC 的中点M ,连接FM 交EC 于点N ,连接FC ,平行四边形ABCD 中,F M 、分别为AD BC 、的中点, 5AF BM AF BM ∴==∥,; 5FD MC FD MC ==∥,,∴四边形ABMF 、四边形FMCD 均为平行四边形. ··············································· (4分) 又5AB CD FD === ,23∴∠=∠.CE AB FM AB M ⊥ ,∥,为BC 的中点, ∴FM 为EC 的垂直平分线. 21EF FC ∴=∠=∠,, 31EFD ∴∠=∠. 又31AEF ∠=∠ ,3EFD AEF ∴∠=∠. ································································································· (6分) 所以3k =;②如图,由①可知,MN BE ∥, 12MN CM BE BC ∴==, 2BE MN ∴=.设MN x =,则2BE x =,5FN x =-;在Rt EBC △中,22221004CE BC BE x =-=-, ·················································· (8分) 在Rt FNC △中,222222(5)(5)5010CF FN NC x x x =+=-+-=-,········································································································································ (9分)2221004(5010)CE CF x x ∴-=---241050x x =-++ 252254()44x =--+. ······································································· (10分)故当54x =时,22CE CF -有最大值.2255155()44CN ∴=-=;515544FN =-=. ················································· (12分)又2FCD ∠=∠ ,5151515tan tan 2443FCD ∴∠=∠=÷=. ························································ (14分)。

2012年广东省广州市中考英语试卷-答案

2012年广东省广州市中考英语试卷-答案

广东省广州市2012年初中毕业生学业考试英语答案解析一、听力第一节听力理解1.【答案】C2.【答案】B3.【答案】B4.【答案】C5.【答案】B6.【答案】A7.【答案】B8.【答案】B9.【答案】C10.【答案】A11.【答案】B12.【答案】A13.【答案】C14.【答案】A15.【答案】C第二节听取信息A.【答案】English BookB.【答案】1500C.【答案】Copy your workD.【答案】FunnyE.【答案】March二、语言知识及运用第一节单项选择16.【答案】C【解析】根据“you were talking about”可知这一部分是做book的定语,指昨天谈论的这本书,表特指,联系冠词的用法表特指应该用定冠词the。

【提示】句意:—这本书是昨天你谈论的那本吗?—是的,非常感谢你。

【考点】定冠词17.【答案】A【解析】根据“asked her…the bag”和“it was too expensive”可知这个书包太贵了,所以要求她不要买这个书包,在这里考查了固定结构ask…to do sth的否定形式,直接在不定式前加not。

【提示】句意:他要求她不要买这个书包,因为它的价格太贵了。

【考点】不定式18.【答案】B【解析】在宾语从句中要用陈述语序,也就是主谓宾的语序。

根据“wonder…it”以及四个选项,可知空格处需要一个宾语从句作wonder的宾语,从句中要用陈述语序。

另外根据“surprising”可知对他取得高分感到诧异,所以想知道是如何取得高分的,因此用how引导宾语从句。

【提示】句意:—他得了这么高的分数真是让人吃惊。

—是的。

我很想知道他是怎么做到的。

【考点】宾语从句19.【答案】C【解析】turn up调高;get up起床;give up放弃;grow up长大。

因为“although you may meet some difficulties”意思为虽然你可能会遇到一些麻烦,可知是让你不要放弃。

广州市中考数学试题及答案new

广州市中考数学试题及答案new

2012年广州市初中毕业生学业考试数学本试卷共5页,分两部分,共25小题,满分150分。

考试用时120分钟。

注意事项:1、答卷前,考生务必在答题卡上用黑色字迹的钢笔或签字笔填写自己的考生号、姓名;同时填写考场试室号、座位号,再用2B 铅笔把对应这两号码的标号涂黑。

2、选择题答案用2B 铅笔填涂;将答题卡上选择题答题区中对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案;答案不能答在试卷上。

3、非选择题答案必须用黑色字迹的钢笔或签字笔写在答题卡各题目指定区域内的相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案,改动后的答案也不能超出指定的区域;不准使用铅笔、圆珠笔和涂改液。

不按以上要求作答的答案无效。

4、考生必须保持答题卡的整洁,考试结束后,将本试卷和答题卡一并交回。

第一部分 选择题(共30分)一、选择题(本大题共10小题,每小题3分,满分30分。

在每小题给出的4个选项中只有一项是符合题目要求的)1.实数3的倒数是( )。

(A )31-(B )31 (C )3- (D )3 2.将二次函数2x y =的图象向下平移1个单位,则平移后的二次函数的解析式为( )。

(A )12-=x y (B )12+=x y (C )2)1(-=x y (D )2)1(+=x y3.一个几何体的三视图如图1所示,则这个几何体是( )。

(A )四棱锥 (B )四棱柱(C )三棱锥 (D )三棱柱4.下面的计算正确的是( ) 。

(A )156=-a a (B )223a a a =+ (C )b a b a +-=--)( (D )b a b a +=+2)(25.如图2,在等腰梯形ABCD 中,BC ∥AD ,AD =5,DC =4,DE ∥AB 交BC 于点E ,且EC =3,则梯形ABCD 的周长是( )(A )26 (B )25 (C )21 (D )20 6.已知,071=++-b a 则=+b a ( ) 。

2012年广东省中考真题(word版含答案)

2012年广东省中考真题(word版含答案)

2012年广东省初中毕业生学业考试数 学说明:1.全卷共4页,考试用时100分钟,满分为120分.2.答题前,考生务必用黑色笔迹的签字笔或钢笔在答题卡上填写自己的准考证号、姓名、试室号、座位号.用2B 铅笔把对应该号码的标号涂黑.3.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑,如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试卷上.4.非选择题必须用黑色字迹钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液.不按以上要求作答的答案无效.5.考生务必保持答题卡的整洁.考试结束时,将试卷和答题卡一并交回.一、选择题(本大题共5小题,每小题3分,共15分)在每小题列出的四个选项中,只有一个是正确的,请把答题卡上对应题目所选的选项涂黑. 1.5-的绝对值是( )(A )5 (B )5- (C )15 (D )15- 2.地球半径约为6 400 000米,用科学记数法表示为( ) (A )70.6410⨯ (B )66.410⨯ (C )56410⨯ (D )464010⨯ 3.数据8,8,6,5,6,1,6的众数是( ) (A )1 (B )5 (C )6 (D )84.如左图所示几何体的主视图是( )5.已知三角形两边的长分别是4和10,则此三角形第三边的长可能是( ) (A )5 (B )6 (C )11 (D )16二、填空题(本大题共5小题,每小题4分,共20分)请将下列各题的正确答案填写在答题卡相应的位置上.6.分解因式:2210x x -=___________. 7.不等式390x ->的解集是___________.8.如图,A 、B 、C 是O ⊙上的三个点,25ABC =∠,则A O C ∠的度数是___________.9.若x 、y为实数,且满足|3|0x -,则2012x y ⎛⎫⎪⎝⎭的值是___________.10.如图,在ABCD Y 中,2430AD AB A ===,,∠.以点A 为圆心,AD 的长为半径画弧交AB 于点E ,连结CE ,则阴影部分的面积是___________(结果保留π).三、解答题(一)(本大题共5小题,每小题6分,共30分) 11012sin 45(12--+.12.先化简,再求值:(3)(3)(2)x x x x +---,其中4x =.13.解方程组:4316x y x y -=⎧⎨+=⎩, ①. ②14.如图,在ABC △中,72AB AC ABC ==,∠.(1)用直尺和圆规作ABC ∠的平分线BD 交AC 于点D (保留作图痕迹,不要求写作法); (2)在(1)中作出ABC ∠的平分线BD 后,求BDC ∠的度数.15.已知:如图,在四边形ABCD 中,AB CD ∥,对角线AC BD 、相交于点O ,BO DO =.求证:四边形ABCD 是平行四边形.四、解答题(二)(本大题4小题,每小题7分,共28分)16.据媒体报道,我国2009年公民出境旅游总人数约5 000万人次,2011年公民出境旅游总人数约7 200万人次.若2010年、2011年公民出境旅游总人数逐年递增,请解答下列问题: (1)求这两年我国公民出境旅游总人数的年平均增长率;(2)如果2012年仍保持相同的年平均增长率,请你预测2012年我国公民出境旅游总人数约多少万人次?17.如图,直线26y x =-与反比例函数(0)ky x x=>的图象交于点(42)A ,,与x 轴交于点B .(1)求k 的值及点B 的坐标;(2)在x 轴上是否存在点C ,使得AC AB =?若存在,求出点C 的坐标;若不存在,请说明理由.18.如图,小山岗的斜坡AC 的坡度是3tan 4α=,在与山脚C 距离200米的D 处,测得山顶A 的仰角为26.6,求小山岗的高AB .(结果取整数;参考数据:sin 26.60.45cos 26.60.89tan 26.60.50===,,)19.观察下列等式:第1个等式:111111323a ⎛⎫==⨯- ⎪⨯⎝⎭; 第2个等式:2111135235a ⎛⎫==⨯- ⎪⨯⎝⎭; 第3个等式:3111157257a ⎛⎫==⨯- ⎪⨯⎝⎭; 第4个等式:4111179279a ⎛⎫==⨯- ⎪⨯⎝⎭; ……请解答下列问题:(1)按以上规律列出第5个等式:5a =____________=___________;(2)用含n 的代数式表示第n 个等式:n a =____________=___________(n 为正整数); (3)求1234100a a a a a +++++…的值.五、解答题(三)(本大题3小题,每小题9分,共27分)20.有三张正面分别写有数字211--,,的卡片,它们的背面完全相同,将这三张卡片背面朝上洗匀后随机抽取一张,以其正面的数字作为x 的值,放回卡片洗匀,再从三张卡片中随机抽取一张,以其正面的数字作为y 的值,两次结果记为()x y ,. (1)用树状图或列表法表示()x y ,所有可能出现的结果;(2)求使分式2223x xy yx y x y-+--有意义的()x y ,出现的概率; (3)化简分式2223x xy yx y x y-+--;并求使分式的值为整数的()x y ,出现的概率.21.如图,在矩形纸片ABCD 中,68AB BC ==,.把BCD △沿对角线BD 折叠.使点C 落在C '处,BC '交AD 于点G ;E F 、分别是C D '和BD 上的点,线段EF 交AD 于点H ,把FDE △沿EF 折叠,使点D 落在D '处,点D '恰好与点A 重合. (1)求证:ABC C DG '△≌△; (2)求tan ABG ∠的值; (3)求EF 的长.22. 如图,抛物线213922y x x =--与x 轴交于A B 、两点,与y 轴交于点C ,连接BC AC 、.(1)求AB 和OC 的长;(2)点E 从点A 出发,沿x 轴向点B 运动(点E 与点A B 、不重合),过点E 作直线l 平行BC ,交AC 于点D .设AE 的长为m ,ADE △的面积为s ,求s 关于m 的函数关系式,并写出自变量m 的取值范围;(3)在(2)的条件下,连接CE ,求CDE △面积的最大值;此时,求出以点E 为圆心,与BC 相切的圆的面积(结果保留π).2012年广东省初中毕业生学业考试参考答案及评分标准数 学6.2(5)x x - 7.3x > 8.50 9.1 10.13π3- 三、解答题(一)(本大题5小题,每小题7分,共35分) 11.解:原式=12122⨯-+················································································· 4分 112+ =12-. ········································································································· 7分 12.解:原式=2292x x x --+ ························································································ 3分 =29x -. ····································································································· 5分 当4x =时,原式=2491⨯-=-. ····················································································· 7分 13.解:①+②,得420x =. ·························································································· 3分 解得5x =. ··························································································································· 4分 将5x =代入①,得54y -=. ··························································································· 5分 解得1y =. ··························································································································· 6分∴原方程组的解是51x y =⎧⎨=⎩,.································································································· 7分14.解:(1)如图所示(作图正确得4分); (2)BD 平分ABC ∠,72ABC =∠,1362ABD ABC ∴==∠∠. ·························································································· 5分AB AC =,72C ABC ∴==∠∠. ······································································································ 6分 36A ∴=∠,363672BDC A ABD ∴=+=+=∠∠∠. ·································································· 7分15.解:四、解答题(二)(本大题共3小题,每小题9分,共27分) 16.解:(1)设这两年我国公民出境旅游总人数的年平均增长率为x .依题意,得25000(1)7200x +=. ···················································································· 3分 解得120.2 2.2x x ==-,(不合题意,舍去).答:这两年我国公民出境旅游总人数的年平均增长率为20%. ········································· 5分 (2)若2012年仍保持相同的年平均增长率,则预测2012年我国公民出境旅游总人数约7200(120%)8640⨯+=(万人次).答:预测2012年我国公民出境旅游总人数约8 640万人次. ············································ 7分 17.解:(1)点(42)A ,在反比例函数(0)ky x x=>的图象上, 24k∴=,解得8k =. ········································································································ 2分 将0y =代入26y x =-,得260x -=,解得3x =,则3OB =.∴点B 的坐标是(3,0). ································································································· 4分 (2)存在.过点A 作AH x ⊥轴,垂足为H ,则4OH =.AB AC =,.BH CH ∴= ······················································································································ 7分 431BH OH OB =-=-=,3115OC OB BH HC ∴=++=++=. ··········································································· 8分∴点C 的坐标是(5,0). ································································································· 9分 18.解:设小山岗的高AB 为x 米.依题意,得在Rt ABC △中,3tan 4AB x BC BC α===, 43BC x ∴=. ······················································································································· 2分 42003BD DC BC x ∴=+=+. ························································································ 3分在Rt ABD △中,tan ABADB BD=∠,tan 26.60.50=, 0.5042003xx∴=+. ··········································································································· 5分 解得300x =. ······················································································································ 7分 经检验,300x =是原方程的解. ······················································································· 8分 答:小山岗的高AB 为300米. ··························································································· 9分 19.解:(1)311119112911a ⎛⎫==⨯- ⎪⨯⎝⎭. ······································································ 2分 (2)1111(21)(21)22121n a n n n n ⎛⎫==- ⎪-+-+⎝⎭. ·························································· 6分 (3)123100a a a a ++++…=1111133557199201++++⨯⨯⨯⨯… =111111111111232352572199201⎛⎫⎛⎫⎛⎫⎛⎫⨯-+⨯-+⨯-++⨯- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭… ························· 7分 =111111111233557199201⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫⨯-+-+-++- ⎪ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦… ········································ 8分=1112201⎛⎫⨯- ⎪⎝⎭=100201. ·························································································································· 9分 五、解答题(三)(本大题3小题,每小题9分,共27分) 20.解:方法一:树状图如下:············································································································································· 3分所有()x y ,可能的结果共有9种,分别是:(22)--,,(21)--,,(21)-,,(12)--,,(11)--,,(11)-,,(12)-,,(11)-,,(11),.································································ 4分(2)由题意知,要使分式有意义,则220x y -≠且0x y -≠.即x y ≠且x y ≠-. ············································································································· 5分上述9种可能的结果中,共4种能使分式有意义,分别是:(21)-,,(21)--,,(12)-,,(12)--,. ···························································································································· 7分 所以,使分式2223x xy yx y x y-+--有意义的()x y ,出现的概率是49. ································· 8分 (3)原式2223()()()()()x xy xy y x y x yx y x y x y x y x y-++--===+-+-+. ··········································· 10分 由(2)可知,有4种可能的结果能使分式有意义,其中能使分式的计算结果是整数的结果有2种,分别是:(21)-,,(12)-,.所以,使分式2223x xy y x y x y-+--的值为整数的()x y ,出现的概率是29. ······················· 12分 21.(1)证明:四边形ABCD 为矩形,90C BAD AB CD ∴===∠∠,, ················································································· 1分 由图形的折叠性质,得90CD C D C C ''===,∠∠,BAD C AB C D ''∴==∠∠,. ·························································································· 3分 又AGB C GD '=∠∠,ABG C DG '∴△≌△(AAS ). ························································································ 4分(2)解:设AG 为x .8ABG C DG AD AG x '==△≌△,,,8BG DG AD AG x ∴==-=-. ····················································································· 5分 在Rt ABG △中,有222BG AG AB =+, 6AB =,222(8)6x x ∴-=+. 解得74x =. ························································································································· 7分 7tan 24AG ABG AB ∴==∠. ································································································ 8分(3)解法一:由图形的折叠性质,得904EHD DH AH ===∠,, AB EF ∴∥,DHF DAB ∴△∽△,HF DH AB AD ∴=,即162HF =, 3HF ∴=. ··························································································································· 9分 又ABG C DG '△≌△,ABG HDE ∴=∠∠,tan tan EH ABG HDE HD ∴==∠∠,即7244EH =, 76EH ∴=. ······················································································································· 11分。

2012广州中考英语试题及答案

2012广州中考英语试题及答案

20l2年广州市初中毕业生学业考试英语一、听力(共两节,满分35分)第一节听力理解(共15小题;每小题2分,.满分30分)每段播放两遍。

各段后有几个小题,各段播放前每小题有5秒钟的阅题时间。

请根据各段播放内容及其相关小题,在5秒钟内从题中所给的A、B、C项中,选出最佳选项,并在答题卡上将该项涂黑。

’听下面一段对话,回答第l~3三个小题。

1.What does the man give the woman?A.A birthday card.B.A birthday present.C.A birthday invitation.2.When will the woman go shopping?A.On Friday.B.On Saturday:C.On Sunday.3.Why does Anne think she is going to the man’s home?A.To discuss his study problems.B.To heIp him with his computer.C.To attend his birthday party.听下面一段对话,回答第4~6三个小题。

4Where does the talk take place?A.At the ticket Office.B.In the football stadium.C.In the street.5.Why does the woman want to buy a ticket?A.To go to see the match.B.T0 give her son a reward.C.To selI it and earn money.6.What does the woman finally decide to do?A.To go to the ticket office.B.T0buytheticketfromtheman.C.T0 return home without a ticket.听下面一段独自,回答第7~9三个小题。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2012年广州市初中毕业生学业考试数 学本试卷分选择题和非选择题两部分,共三大题25小题,共4页,满分150分,考试用时120分钟注意事项:1.答卷前,考生务必在答题卡第1面、第3面、第5面上用黑色字迹的钢笔或签字笔填写自已的考生号、姓名;填写考场试室号、座位号,再用2B 铅笔把对应这两个号码的标号涂黑.2.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号,不能答在试卷上.3.非选择题必须用黑色字迹的钢笔或签字笔作答,涉及作图的题目,用2B 铅笔画图,答案必须写在答题卡各题目指定区域内的相应位置上.如需改动,先划掉原来的答案,然后再写上新的答案;改动的答案也不能超出指定的区域,不准使用铅笔,圆珠笔和涂改液,不按以上要求作答的答案无效.4.考生必须保持答题卡的整洁,考试结束后,将本试卷和答题卡一并交回.第一部分 选择题 (共30分)一、选择题(本大题共10小题,每小题3分,满分30分,在每小题给出的四个选项中,只有一项是符合题目要求的.)1. 实数3的倒数是( )(A )13- (B )13 (C )3- (D )32. 将二次函数2y x =的图像向下平移1个单位,则平移后的二次函数的解析式为( )(A )21y x =- (B )21y x =+(C )2(1)y x =- (D )2(1)y x =+ 3. 一个几何体的三视图如图1所示,则这个几何体是( )(A ) 四棱锥 (B )四棱柱(C )三棱锥 (D )四棱柱4.下面的计算正确的是( )(A )651a a -=(B )2323a a a += (C )()a b a b --=-+(D )2()2a b a b +=+5.如图2,在等腰梯形ABCD 中,BC AD ∥,5AD =,4DC =,DE AB ∥交BC 于点E ,且3EC =.则梯形ABCD 的周长是( )(A )26 (B )25(C )21 (D )206. 已知170a b -+-=,则a b +=( )(A )8- (B )6-(C )6 (D )8(A )365 (B )1225 (C )94 (D )3348.已知a b >,若c 是任意实数,则下列不等式总是成立的是( )(A )a c b c +<+ (B )a c b c ->-(C )ac bc < (D )ac bc >9.在平面中,下列命题为真命题的是( )(A )四边相等的四边形是正方形(B )对角线相等的四边形是菱形(C )四个角相等的四边形是矩形(D )对角线互相垂直的四边形是平行四边形10.如图3,正比例函数11y k x =和反比例函数22k y x=的图象交于(12)A -,、(12)B -,两点,若12y y <,则x 的取值范围是 ( )(A )1x <-或1x >(B )1x <-或01x <<(C )10x -<<或01x <<(D )10x -<<或1x > 第二部分 非选择题 (共120分)二、填空题(本大题共6小题,每小题3分,满分18分.)11.已知30ABC ∠=°,BD 是ABC ∠的平分线,则ABD ∠=_______度.12.不等式110x -≤的解集是_______.13.分解因式:38a a -=_______.14.如图4,在等边ABC △中,6AB =,D 是BC 上一点.且3BC BD =,ABD △绕点A 旋转后的得到ACE △.则CE 的长为_______.15.已知关于x 的一元二次方程2230x x k --=有两个相等的实数根,则k 的值为_______.16.如图5,在标有刻度的直线l 上,从点A 开始.以1AB =为直径画半圆,记为第1个半圆;以2BC =为直径画半圆,记为第2个半圆;以4CD =为直径画半圆,记为第3个半圆;以8DE =为直径画半圆,记为第4个半圆 ;……,按此规律,继续画半圆,则第4个半圆的面积是第3个半圆面积的_______倍,第n 个半圆的面积为_______.(结果保留π)三、解答题(本大题共9小题,满分102分,解答应写出文字说明、证明过程或演算步骤)17.(本小题满分9分)解方程组:8312x y x y -=⎧⎨+=⎩,.如图6,点D 在AB 上,点E 在AC 上,AB AC =,B C ∠=∠.求证:BE CD =.19.(本小题满分10分)广州市努力改善空气质量,近年来空气质量明显好转,根据广州市环境保护局公布的2006~2010这五年的全年空气质量优良的天数,绘制折线图如图7,根据图中信息回答:(1)这五年的全年空气质量是优良的天数的中位数是_______ ;极差是_______ ;(2) 这五年的全年空气质量优良天数与它的前一年相比较,增加最多的是______年(填写年份);(3)求这五年的全年空气质量优良天数的平均数.20.(本小题满分10分)已知115()a b a b +=≠,求()()a b b a b a a b ---的值.21.(本小题满分12分)甲、乙两个袋中均装有三张除所标数值外完全相同的卡片,甲袋中的三张卡片上的所标的数值分别为7-、1-、3,乙袋中的三张卡片上所标的数值分别为2-、1、6,先从甲袋中随机取一张卡片,用x 表示取出的卡片上标的数值,再从乙袋从随机取出一张卡片,用y 表示取出的卡片上标的数值.把x 、y 分别作为点A 的横坐标、纵坐标.(1)用适当的方法写出点()A x y ,的所有情况;(2)求点A 落在第三象限的概率 .如图8,P ⊙的圆心为(32)P -,,半径为3,直线MN 过点(50)M ,且平行于y 轴,点N 在点M 的上方.(1)在图中作出P ⊙关于y 轴的对称的P '⊙,根据作图直接写出P '⊙与直线MN 的位置关系 ;(2)若点N 在(1)中的P '⊙上,求PN 的长.23.(本小题满分12分)某城市居民用水实施阶梯收费.每户每月用水量如果未超过20吨,按每吨1.9元收费:每户每月用水量如果超过20吨,未超过的部分仍按每吨1.9元收费,超过的部分则按每吨2.8元收费.设某户每月用水量为x 吨,应收水费为y 元.(1)分别写出每月用水量未超过20吨和超过20吨时,y 与x 间的函数关系式;(2)若该城市某户5月份水费平均为每吨2.2元,求该户5月份用水多少吨?如图9,抛物线233384y x x =--+与x 轴交于A B 、两点(点A 在点B 的左侧),与y 轴 交于点C .(1)求点A B 、的坐标;(2)设D 为已知抛物线的对称轴上任意一点,当ACD △的面积等于ACB △的面积时,求点D 的 坐标;(3)当直线l 过点(40)E ,,M 为直线l 上的动点,当以A B M 、、为顶点所作的直角三角形 有且只有....三个时,求直线l 的解析式.25.(本小题14分)如图10,在平行四边形ABCD 中,5AB =,10BC =,F 为AD 中点,CE AB ⊥于点E , 设(6090)ABC a x ∠=<°≤°.(1)当60a =°时,求CE 的长;(2)当6090a <<°°①是否存在正整数k ,使得EFD k AEF ∠=∠?若存在,求出k 的值;若不存在,请说明理由. ②连接CF ,当22CE CF -取最大值时,求tan DCF ∠的值.2012年广州市初中毕业生学业考试数学参考答案一、1. B2. A3. D4. C5. C6. B7. A8. B9. C 10. D二、11.15 12.11x ≤ 13.(8)a a - 14.2 15.3- 16.2542πn -; 三、17.解:8312x y x y -=⎧⎨+=⎩①②①+②,得420x =,解得:5x =. ··········································································· (4分) 将5x =代入①,得:58y -=,解得:3y =-. ···················································· (8分) 所以方程组的解是53x y =⎧⎨=-⎩. ······················································································· (9分) 18.证明:在ABE △和ACD △中,B C AB AC A A ∠=∠=∠=∠,,, ·········································································· (4分) (ASA)ABE ACD ∴△≌△, ····················································································· (8分) BE CD ∴=. ··············································································································· (9分)19.解:(1)345;24; ······························································································ (3分)(2)2008; ··················································································································· (6分)(3)解:334333345347357343.25x ++++==(天). ································ (10分) 20.解:原式22()()a b ab a b ab a b =--- ()()()a b a b ab a b +-=- ····················································································· (5分) 115a b ab b a +==+=. ······································································ (10分) 21.解:(1)用列表法如下:········································································································································ (6分)或用树状图法:················································································· (6分)由上可知A 的坐标为:(72)--,;(71)-,;(76)-,;(12)--,;(11)-,;(16)-,;(32)-,;(3,1);(3,6); ··········································································································· (8分)(2)由树状图可知,所有可能的情况共有9种,点A 落在第三象限的情况有2种,所以P (点A 落在第三象限)=92. ····································································································· (12分) 22.解:(1)作图如下: ················································· (4分)P '⊙与直线MN 相交. ····················································· (6分)(2)如图,连接PP'并延长交MN 于点Q ,连接PN P N '、;由于两圆外切,PP '垂直于y 轴,NM y ∥轴,所以PP MN '⊥. ····························································· (8分)由题意可知:在Rt P QN '△中,2P Q '=,3P N '=,由勾股定理可求出5QN =; ·················································································· (10分) 在Rt PQN △中,358PQ =+=,5QN =,由勾股定理可求出228(5)69PN =+=. ····················································································· (12分)23.解:(1) 1.9(020)2.818(20)x x y x x ⎧=⎨->⎩≤≤; ··································································· (6分) (2)设:该用户5月份用水x 吨,由题意得:2.818 2.2x x -=;解得30x =(吨). ··································································································· (11分) 答:(1)y 与x 间的函数关系式是 1.9(020)2.818(20)x x y x x ⎧⎨->⎩≤≤;(2)5月份用水30吨. ····························································································· (12分)24.解:(1)令0y =,则2333084x x --+=, 解得14x =-,22x =. ················································ (1分)(40)(20)A B ∴-,,,.(2分)(2)抛物线233384y x x =--+的对称轴为1x =-,与y 轴交点C的坐标为(03),, ∴直线AC 的解析式为33y x =+,且当1x =-时,有94y =, ∴直线AC 与对称轴1x =-的交点坐标为9(1)4H -,. ············································· (4分) 63AB CO ==,,16392ACB S ∴=⨯⨯=△.····························································································· (6分) 不妨设点D 的坐标为(1)a -,,当点D 位于AC 上方时,294D H a =-, ∴ACD △的面积22192ACD S D H AO =⨯⨯=△;解方程得:274a =, 当点D 位于AC 下方时,194D H a =-, ∴ACD △的面积11192ACD S D H AO =⨯⨯=△;解方程得:94a =-, ∴点D 的坐标为27(1)4-,或9(1)4--,; ····································································· (8分) (3)如图②,以AB 为直径作P ⊙,当且仅当直线l 与P ⊙相切时符合题意,Rt PME △中,90PME ∠=°,35PM PE ==,,∴由勾股定理可得:22534ME =-=;利用三角形相似可以求得点M 的坐标412()55M ,. ···················································· (10分) 设直线l 的解析式为y kx b =+,代入412()55M ,、(40)E ,可得方程组4125540k b k b ⎧+=⎪⎨⎪+=⎩;解方程组得:343k b ⎧=-⎪⎨⎪=⎩. ······························································· (12分) ∴直线l 的解析式为334y x =-+. 同理可得:直线l 的另一个解析式为334y x =+. ··················································· (14分) 25.解:(1)在Rt BEC △中,90BEC ∠=°,10BC =,当60α=°时,906030BCE ∠=-=°°°,所以152BE BC ==.由勾股定理可得: 2210553EC =-=; ······················································· (2分) (2)①存在.如图,取BC 的中点M ,连接FM 交EC 于点N ,连接FC ,平行四边形ABCD 中,F M 、分别为AD BC 、的中点,5AF BM AF BM ∴==∥,;5FD MC FD MC ==∥,,∴四边形ABMF 、四边形FMCD 均为平行四边形. ··············································· (4分) 又5AB CD FD ===,23∴∠=∠.CE AB FM AB M ⊥,∥,为BC 的中点,∴FM 为EC 的垂直平分线.21EF FC ∴=∠=∠,,31EFD ∴∠=∠.又31AEF ∠=∠,3EFD AEF ∴∠=∠. ································································································· (6分) 所以3k =;②如图,由①可知,MN BE ∥,12MN CM BE BC ∴==, 2BE MN ∴=.设MN x =,则2BE x =,5FN x =-;在Rt EBC △中,22221004CE BC BE x =-=-, ·················································· (8分) 在Rt FNC △中,222222(5)(5)5010CF FN NC x x x =+=-+-=-,········································································································································ (9分) 2221004(5010)CE CF x x ∴-=---241050x x =-++252254()44x =--+. ······································································· (10分) 故当54x =时,22CE CF -有最大值. 2255155()44CN ∴=-=;515544FN =-=. ················································· (12分) 又2FCD ∠=∠,5151515tan tan 2443FCD ∴∠=∠=÷=. ························································ (14分)。

相关文档
最新文档