[高一数学]不等式恒成立问题的处理
关于不等式恒成立问题的几种求解方法

关于不等式恒成立问题的几种求解方法不等式恒成立问题,在高中数学中较为常见。
这类问题的解决涉及到一次函数、二次函数、三角函数、指数与对数函数等函数的性质、图象,渗透着换元、化归、数形结合、函数与方程等思想方法,有利于考查学生的综合解题能力,在培养思维的灵活性、创造性等方面起到了积极的作用。
不等式恒成立问题在解题过程中有以下几种求解方法:①一次函数型;②二次函数型;③变量分离型;④数形结合型。
下面我们一起来探讨其中一些典型的问题一、一次函数型——利用单调性求解例1、若不等式对满足的所有实数m都成立,求x的取值范围。
若对该不等式移项变形,转化为含参数m的关于x的一元二次不等式,再根据对称轴和区间位置关系求对应的二次函数的最小值,利用最小值大于零求解。
这样得分好几种情况讨论,这思路应该说从理论上是可行的,不过运算量不小。
能不能找出不需要讨论的方法解决此问题呢?若将不等式右边移到左边,然后将新得到的不等式左边看做关于m的一次函数,借助一次函数的图像直线(其实是线段)在m轴上方只需要线段的两个端点在上方即可。
分析:在不等式中出现了两个字母:x及m,关键在于该把哪个字母看成是一个变量,另一个作为常数。
显然可将m视作自变量,则上述问题即可转化为在[-2,2]内关于m的一次函数大于0恒成立的问题。
解:原不等式转化为(1-x2)m+2x-1>0在|m|2时恒成立,设f(m)= (1-x2)m+2x-1,则f(m)在[-2,2]上恒大于0,故有:此类题本质上是利用了一次函数在区间[a,b]上的图象是一线段,故只需保证该线段两端点均在m轴上方(或下方)即可。
给定一次函数y=f(x)=ax+b(a≠0),若y=f(x)在[m,n]内恒有f(x)>0,则根据函数的图象(线段)(如下图)可得上述结论等价于ⅰ),或ⅱ)可合并成同理,若在[m,n]内恒有f(x)0恒成立;f(x)3;若改为:,构造函数,画出图象,得a<3利用数形结合解决恒成立问题,应先构造函数,作出符合已知条件的图形,再考虑在给定区间上函数与函数图象之间的关系,得出答案或列出条件,求出参数的范围。
高考数学解决不等式恒成立问题常用5种方法!最后一种很重要!

开篇语:不等式恒成立问题在高中数学是一类重点题型,高考也是必考内容。
由于不等式问题题型众多,题目也比较灵活。
所以在学习过程中,同学们要学会总结各种解题方法!方法一:分离参数法解析:分离参数法适用的题型特征:当不等式的参数能够与其他变量完全分离出来,并且分离后不等式其中一边的函数的最值或范围可求时,则将参数式放在不等式的一边,分离后的变量式放在另一边,将变量式看成一个新的函数,问题即转化为求新函数的最值或范围,若a≥f(x)恒成立,则a≥f(x)max,若a≤f(x)恒成立,则a≤f(x)min方法二:变换主元法(也可称一次函数型)解析:学生通常习惯把x当成主元(未知数),把另一个变量p看成参数,在有些问题中这样的解题过程繁琐,如果把已知取值范围的变量当成主元,把要求取值范围的变量看成参数,则可简便解题。
适用于变换主元法的题型特征是:题目有两个变量,且已知取值范围的变量只有一次项,这时就可以将不等式转化为一次函数求解。
方法三:二次函数法解析:二次函数型在区间的恒成立问题:解决这类问题主要是分析 1,判断二次函数的开口方向2,二次函数的判别式是大于0还是小于03,判断二次函数的对称轴位置和区间两端值的大小,即判断函数在区间的单调性 方法四:判别式法解析:不等式一边是分式,且分式的分子和分母的最高次项都是二次项时,利用判别式法可以快速的解题,分离参数将会使解题变得复杂。
方法五:最值法解析:不等式两边是两个函数,且含有参数时,我们可以分出出参数,构造新函数,求函数的导数来求得新函数的最值。
总结:在解不等式恒成立的问题时,应根据不等式的特点,选择适合的方式快速准确的解题。
平时练习过程中,应注意观察,总结!。
高中数学恒成立问题

高中数学不等式的恒成立问题不等式恒成立的问题既含参数又含变量,往往与函数、数列、方程、几何有机结合起来,具有形式灵活、思维性强、不同知识交汇等特点. 考题通常有两种设计方式:一是证明某个不等式恒成立,二是已知某个不等式恒成立,求其中的参数的取值范围.解决这类问题的方法关键是转化化归,通过等价转化可以把问题顺利解决,下面我就结合自己记得教学经验谈谈不等式的恒成立问题的处理方法。
一、构造函数法在解决不等式恒成立问题时,一种最重要的思想方法就是构造适当的函数,即构造函数法,然后利用相关函数的图象和性质解决问题,同时注意在一个含多个变量的数学问题中,需要确定合适的变量和参数,从而揭示函数关系,使问题更加面目更加清晰明了,一般来说,已知存在范围的量视为变量,而待求范围的量视为参数.例1 已知不等式对任意的都成立,求的取值范围.解:由移项得:.不等式左侧与二次函数非常相似,于是我们可以设则不等式对满足的一切实数恒成立对恒成立.当时,即解得故的取值范围是.注:此类问题常因思维定势,学生易把它看成关于的不等式讨论,从而因计算繁琐出错或者中途夭折;若转换一下思路,把待求的x为参数,以为变量,令则问题转化为求一次函数(或常数函数)的值在内恒为负的问题,再来求解参数应满足的条件这样问题就轻而易举的得到解决了。
二、分离参数法在不等式中求含参数范围过程中,当不等式中的参数(或关于参数的代数式)能够与其它变量完全分离出来并,且分离后不等式其中一边的函数(或代数式)的最值或范围可求时,常用分离参数法.例2已知函数(为常数)是实数集上的奇函数,函数在区间上是减函数.(Ⅰ)若对(Ⅰ)中的任意实数都有在上恒成立,求实数的取值范围.解:由题意知,函数在区间上是减函数.在上恒成立注:此类问题可把要求的参变量分离出来,单独放在不等式的一侧,将另一侧看成新函数,于是将问题转化成新函数的最值问题:若对于取值范围内的任一个数都有恒成立,则;若对于取值范围内的任一个数都有恒成立,则.三、数形结合法如果不等式中涉及的函数、代数式对应的图象、图形较易画出时,可通过图象、图形的位置关系建立不等式求得参数范围.例 3 已知函数若不等式恒成立,则实数的取值范围是 .解:在同一个平面直角坐标系中分别作出函数及的图象,由于不等式恒成立,所以函数的图象应总在函数的图象下方,因此,当时,所以故的取值范围是注:解决不等式问题经常要结合函数的图象,根据不等式中量的特点,选择适当的两个函数,利用函数图像的上、下位置关系来确定参数的范围.利用数形结合解决不等式问题关键是构造函数,准确做出函数的图象.如:不等式,在时恒成立,求的取值范围.此不等式为超越不等式,求解时一般使用数形结合法,设然后在同一坐标系下准确做出这两个函数的图象,借助图象观察便可求解.四、最值法当不等式一边的函数(或代数式)的最值较易求出时,可直接求出这个最值(最值可能含有参数),然后建立关于参数的不等式求解.例4 已知函数(Ⅰ)当时,求的单调区间;(Ⅱ)若时,不等式恒成立,求实数的取值范围.解(Ⅱ)当时,不等式即恒成立.由于,,亦即,所以.令,则,由得.且当时,;当时,,即在上单调递增,在上单调递减,所以在处取得极大值,也就是函数在定义域上的最大值.因此要使恒成立,需要,所以的取值范围为.例5 对于任意实数x ,不等式│x+1│+│x-2│>a 恒成立,求实数a 的取值范围.分析①:把左边看作x 的函数关系,就可利用函数最值求解.解法1:设f (x )=│x+1│+│x-2│ =-2x+1,(x ≤1)3,(-1<x ≤2)2x-1,(x >2) ∴f (x )min =3. ∴a <3.分析②:利用绝对值不等式│a │-│b │<│a ±b │<│a │+│b │求解f (x )=│x+1│+│x-2│的最小值.解法2:设f(x)=│x+1│+│x-2│,∵│x+1│+│x-2│≥│(x+1)-(x-2)│=3,∴f(x)min=3. ∴a<3.分析③:利用绝对值的几何意义求解.解法3:设x、-1、2在数轴上的对应点分别是P、A、B,则│x+1│+│x-2│=│PA│+│PB│,当点P在线段AB上时,│PA│+│PB│=│AB│=3,当点P不在线段AB上时,│PA│+│PB│>3,因此不论点P在何处,总有│PA│+│PB│≥3,而当a<3时,│PA│+│PB│>a恒成立,即对任意实数x,不等式│x+1│+│x-2│>a 恒成立.∴实数a的取值范围为(-∞,3).小结求“恒成立问题”中参数范围,利用函数最值方便自然,利用二次不等式恒为正(负)的充要条件要分情况讨论,利用图象法直观形象.综上,恒成立问题多与参数的取值范围问题联系在一起,是近几年高考的一个热门题型,它以“参数处理”为主要特征,以“导数”为主要解题工具.往往与函数的单调性、极值、最值等有关,所以解题时要善于将这类问题与函数最值联系起来,通过函数最值求解相关问题.不等式恒成立问题,因题目涉及知识面广,解题方法灵活多样,技巧性强,难度大等特点,要求有较强的思维灵活性和创造性、较高的解题能力,上述方法是比较常用的,但因为问题形式千变万化,考题亦常考常新,因此在备考的各个阶段都应渗透恒成立问题的教与学,在平时的训练中不断领悟和总结,教师也要介入心理辅导和思想方法指导,从而促使学生在解决此类问题的能力上得到改善和提高.。
与二次函数有关的“恒成立”问题的求解策略

ʏ张亮昌解决不等式恒成立问题常见的方法有:判别式法,分离参数法,主参换位法等㊂下面举例分析这类问题的求解策略㊂方法一:判别式法例1 已知不等式(m 2+4m -5)x 2+4(1-m )x +3>0对任意实数x 恒成立,则实数m 的取值范围是㊂①当m 2+4m -5=0时,可得m =-5或m =1㊂若m =-5,则不等式化为24x +3>0,这时对任意实数x 不可能恒大于0㊂若m =1,则3>0恒成立㊂②当m 2+4m -5ʂ0时,根据题意可得m 2+4m -5>0,Δ=16(1-m )2-12(m 2+4m -5)<0,解得m <-5或m >1,1<m <19,所以1<m <19㊂综上可知,所求实数m 的取值范围是{m |1ɤm <19}㊂评注:对于一元二次不等式a x 2+b x +c >0(a >0)在R 上恒成立,则Δ=b 2-4a c <0;一元二次不等式a x 2+b x +c <0(a <0)在R 上恒成立,则Δ=b 2-4a c <0㊂方法二:分离参数法例2 不等式x y ɤa x 2+2y 2对于1ɤx ɤ2,2ɤy ɤ3恒成立,则实数a 的取值范围是㊂不等式x y ɤa x 2+2y 2对于1ɤx ɤ2,2ɤy ɤ3恒成立,等价于a ȡyx -2yx2对于1ɤx ɤ2,2ɤy ɤ3恒成立㊂令t =y x ,则1ɤt ɤ3,所以a ȡt -2t 2在1ɤt ɤ3上恒成立㊂令函数y =-2t 2+t =-2t -142+18,当t =1时,y m a x =-1,则a ȡ-1㊂故实数a 的取值范围是{a |a ȡ-1}㊂评注:若a ȡf (x )恒成立,则a ȡf (x )m a x ;若a ɤf (x )恒成立,则a ɤf (x )m i n ㊂方法三:主参换位法例3 已知函数y =a x 2-2a x +8+3a ,若对于1ɤa ɤ3,y <0恒成立,则实数x 的取值范围为㊂已知函数可化为关于a 的函数y =a x 2-2a x +8+3a =(x 2-2x +3)a +8㊂由题意知,y <0对于1ɤa ɤ3恒成立㊂因为x 2-2x +3>0恒成立,且y 是关于a 的一次函数,在1ɤa ɤ3上随x 的增大而增大,所以y <0对1ɤa ɤ3恒成立等价于y 的最大值小于0,即3(x 2-2x +3)-8<0,也即3x 2-6x +1<0,解得3-63<x <3+63,所以实数x 的取值范围为x 3-63<x <3+63㊂评注:在一个函数式中,有两个自变量,其中给出一个自变量的范围,这时可把问题转化为关于已知范围的那个自变量的函数(本题是一次函数)㊂在R 上定义运算⊗:A ⊗B =A (1-B ),若不等式(x -a )⊗(x +a )<4对x ɪR 恒成立,则实数a 的取值范围为㊂提示:(x -a )⊗(x +a )=(x -a )[1-(x +a )]=-x 2+x +a 2-a <4对x ɪR 恒成立,即x 2-x -a 2+a +4>0对x ɪR 恒成立,所以Δ=4-4(-a 2+a +1)=4a 2-4a <0,所以0<a <1,即实数a ɪ(0,1)㊂作者单位:湖北省巴东县第三高级中学(责任编辑 郭正华)61 知识结构与拓展 高一数学 2023年9月Copyright ©博看网. All Rights Reserved.。
高一不等式恒成立问题3种基本方法

高一不等式恒成立问题3种基本方法文章标题:探讨高一不等式恒成立问题的三种基本方法在高中数学学习中,不等式恒成立问题是一个很常见的题型。
学生们通常需要掌握多种方法来解决这类问题,而这些方法通常可以分为三种基本类型。
本文将会详细介绍这三种基本方法,帮助读者全面理解这一数学概念。
1. 方法一:代数法我们来介绍代数法。
这种方法是在不等式两边进行代数变换,使得不等式变成一个容易解决的形式。
代数法通常包括加减变形、乘除变形以及平方去根等技巧。
以不等式ax+b>0为例,我们可以通过移项得到ax>-b,然后再除以a的正负来确定不等式的方向,从而得到不等式的解集。
代数法在解决不等式恒成立问题中应用广泛,能够快速简便地找到解的范围和规律。
2. 方法二:图像法我们介绍图像法。
图像法是通过绘制不等式所代表函数的图像,来直观地找出不等式恒成立的区间。
对于一元一次不等式ax+b>0,我们可以画出函数y=ax+b的图像,从而通过观察图像的上升或下降趋势来确定不等式的解集。
图像法能够帮助我们更直观地理解不等式的性质和范围,提高我们的思维逻辑和空间想象能力。
3. 方法三:参数法我们介绍参数法。
参数法是通过引入一个或多个参数,将不等式转化为一个有参数的等式问题,进而进行求解。
参数法的典型应用包括辅助角法、二次函数法等。
以不等式ax²+bx+c>0为例,我们可以引入Δ=b²-4ac,然后根据Δ的正负来确定不等式的解集。
参数法在解决不等式问题中能够简化问题的复杂度,将不等式的求解转化为参数的求解,从而提高解题的效率和准确度。
总结回顾通过对以上三种基本方法的介绍,我们可以发现它们各有特点,应用范围和解题思路有所不同。
代数法能够利用代数变形快速求解不等式问题,图像法能够帮助我们直观地理解不等式的性质,而参数法则能够将问题转化为参数的求解,提高解题的效率。
个人观点和理解在实际解题中,我们应该根据具体情况灵活选用这三种方法,结合题目的特点和自身的掌握程度来选择合适的解题方法。
高一数学培优-恒成立问题

奥美高中2018级高一数学培优讲义——不等式恒成立问题一.不等式恒成立问题的处理方法1.利用根的判别式 设()()02≠++=a c bx ax x f(1)()0>x f 在R x ∈上恒成立⇔0>a 且0<∆; (2)()0<x f 在R x ∈上恒成立⇔0<a 且0<∆.例 1.对于任意实数x ,不等式()()042222<----x a x a 恒成立,则实数a 的取值范围是________.2.转换求函数的最值(1)若不等式()A x f >在区间D 上恒成立⇔在区间D 上()min f x A >(注:若()f x 的最小值不存在,则()0f x >恒成立⇔()f x 的下界大于0) (2)若不等式()B x f <在区间D 上恒成立⇔在区间D 上()max f x B <(注:若()f x 的最大值不存在,则()0f x <恒成立⇔()f x 的上界小于0)例2.设()222+-=ax x x f ,当[)+∞-∈,1x 时,都有()a x f ≥恒成立,求实数a 的取值范围.例3.R 上的函数()x f 既是奇函数,又是减函数,且当⎪⎭⎫⎝⎛∈2,0πθ时, 有()()022sin 2cos 2>--++a f a f θθ恒成立,求实数a 的取值范围.3.分离参数法(1)将参数与变量分离,即化为()()g f x λ≥(或()()g f x λ≤)恒成立的形式; (2)求()f x 在x D ∈上的最大(或最小)值;(3)解不等式()max ()g f x λ≥(或()()min g f x λ≤) ,得λ的取值范围.例4.当(1,2)x ∈时,不等式042<++ax x 恒成立,求实数a 的取值范围.例5.已知(],1x ∈-∞时,不等式()21240x x a a ++-⋅>恒成立,求实数a 的取值范围.4.主参换位法在不等式的恒成立问题中,有一类题型是题中的参数如a 、m 、k 等的范围是已知的,而题要求的反而是变量x 的范围.这类题型中,由于已知范围的变量是以前我们所接触的参数,因而题中的函数结构也就发生了改变,此时函数是以参数为自变量的函数.一般来说,我们在观察这类恒成立问题时,哪个变量的范围是已知的,哪个就是该函数的自变量. 例6.若不等式0224>+⋅-xx a 对于]3,(-∞∈a 恒成立,求实数x 的取值范围.例7.对于满足2a ≤的所有实数a ,求使不等式212x ax a x ++>+恒成立的x 的取值范围.5.数形结合若所给不等式进行合理的变形化为()()x g x f ≥(或()()x g x f ≤)后,能非常容易地画出不等号两边函数的图象,则可以通过画图直接判断出结果.例8.若对任意x R ∈,不等式||x ax ≥恒成立,则实数a 的取值范围是________.例9.当()2,1∈x 时,不等式()x x a log 12<-恒成立,则实数a 的取值范围是________.6.消元转化法对于含有两个以上变量的不等式恒成立问题,可以根据题意依次进行消元转化,从而转化为只含有两变量的不等式问题,使问题得到解决.例10.已知()x f 是定义在[]1,1-上的奇函数,且()11=f ,若[]1,1,-∈n m ,0≠+n m 时()()0>++nm n f m f ,若()122+-≤at t x f 对于所有的[]1,1-∈x ,[]1,1-∈a 恒成立,求实数t 的取值范围.二.不等式能成立问题的处理方法若在区间D 上存在实数x 使不等式()A x f >成立,则等价于在区间D 上()max f x A >; 若在区间D 上存在实数x 使不等式()B x f <成立,则等价于在区间D 上的()min f x B <.例11.已知不等式a a x x 3132-≤-++在实数集R 上的解集不是空集,则实数a 的取值范围是________.例12.存在实数[]2,1∈x ,使得不等式022<-+a ax 有解,求实数a 的取值范围.三.不等式恰好成立问题的处理方法若不等式()A x f >在区间D 上恰成立, 则等价于不等式()A x f >的解集为D ; 若不等式()B x f <在区间D 上恰成立, 则等价于不等式()B x f <的解集为D .例13.不等式012>++bx ax 的解集为1|13x x ⎧⎫-<<⎨⎬⎩⎭则a b ⋅=___________.例14.已知(),22xax x x f ++=当[)+∞∈,1x 时,()x f 的值域是[)+∞,0,试求实数a 的值.思考题 1.已知()x f ,()x g 分别是定义在R 上的奇函数和偶函数,且()()xx g x f ⎪⎭⎫⎝⎛=+21错误!未找到引用源。
[高一数学]不等式恒成立问题的处理(最新整理)
![[高一数学]不等式恒成立问题的处理(最新整理)](https://img.taocdn.com/s3/m/e6ed17c35f0e7cd1852536d5.png)
yo m nyo mnx⎩⎩ ⎩ ⎩ ⎩ 不等式恒成立问题的处理恒成立问题在解题过程中大致可分为以下几种类型:①一次函数型;②二次函数型;③ 其他类不等式恒成立一、一次函数型给定一次函数 y=f(x)=ax+b(a ≠0),若 y=f(x)在[m,n]内恒有 f(x)>0,则根据函数的图象⎧ f (m ) > 0 ⎧ f (m ) < 0(直线)可得上述结论等价于⎨ n ) > 0 同理,若在[m,n]内恒有 f(x)<0,则有⎨ f (n ) < 0⎩ ⎩x例 1.对任意 a ∈[-1,1] ,不等式 x 2 + (a - 4)分析:题中的不等式是关于 x 的一元二次不等式,但若把 a 看成主元,则问题可转化为 一次不等式(x - 2)a + x 2 - 4x + 4 > 0 在 a ∈[-1,1] 上恒成立的问题。
解:令 f (a ) = (x - 2)a + x 2 - 4x + 4 ,则原问题转化为 f (a ) > 0 恒成立( a ∈[-1,1] )。
当 x = 2 时,可得 f (a ) = 0 ,不合题意。
⎧ f (1) > 0当 x ≠ 2 时,应有⎨ f (-1) > 0 解之得 x < 1或x > 3。
故 x 的取值范围为(-∞,1) (3,+∞) 。
注:一般地,一次函数 f (x ) = kx + b (k ≠ 0) 在[,]上恒有 f (x ) > 0 的充要条件为⎧ f () > 0⎨ f () > 0 。
练习:对于满足|a| ≤ 2 的所有实数 a,求使不等式 x 2+ax+1>2a+x 恒成立的 x 的取值范围。
解:原不等式转化为(x-1)a+x 2-2x+1>0,设 f(a)= (x-1)a+x 2-2x+1,则 f(a)在[-2,2]上恒大于 0,故有:⎧ f (-2) > 0 ⎨ f (2) > ∴x<-1 或 x>3.⎧⎪x 2- 4x + 3 > 0即⎨⎪x 2 - 1 > 0⎧x > 3或x < 1 解得: ⎨x > 1或x < -1例 2. 已知P = (log 2 x - 1)(log a b) 2 - 6 log 2 x · log a b + log 2 x + 1(其中 a 为正常数),若当 x 在区间[1,2]内任意取值时,P 的值恒为正,求 b的取值范围。
不等式的恒成立问题基本解法9种解法

不等式的恒成立问题基本解法9种解法不等式的恒成立问题基本解法:9种解法导语:在数学中,我们经常会遇到不等式的问题,而不等式的恒成立问题则更加耐人寻味。
不等式的恒成立问题是指对于某个特定的不等式,是否存在一组解使得不等式始终成立。
解决这种问题需要灵活运用数学知识和技巧。
本文将介绍不等式的恒成立问题的基本解法,共包括9种方法。
一、置换法。
这是最简单的一种方法,即将不等式中的变量互相置换,然后观察不等式是否成立。
如果成立,则不等式恒成立。
对于x^2 +y^2 ≥ 0这个不等式,我们可以将x和y置换一下,得到y^2 + x^2 ≥ 0。
由于平方数是非负数,所以不等式始终成立。
二、加法法则。
这种方法是通过在不等式的两边同时加上相同的数来改变不等式的符号。
对于不等式2x + 3 ≥ x + 4,我们可以在两边同时加上-3,得到2x + 3 - 3 ≥ x + 4 - 3,即2x ≥ x + 1。
由于x的取值范围不限制,所以不等式恒成立。
三、减法法则。
与加法法则相似,减法法则是通过在不等式的两边同时减去相同的数来改变不等式的符号。
对于不等式2x + 3 ≥ x + 4,我们可以在两边同时减去x,得到x + 3 ≥ 4。
由于x的取值范围不限制,所以不等式恒成立。
四、乘法法则。
这种方法是通过在不等式的两边同时乘以相同的正数来改变不等式的符号。
对于不等式2x + 3 ≥ x + 4,我们可以在两边同时乘以2,得到4x + 6 ≥ 2x + 8。
由于x的取值范围不限制,所以不等式恒成立。
五、除法法则。
与乘法法则相似,除法法则是通过在不等式的两边同时除以相同的正数来改变不等式的符号。
对于不等式2x + 3 ≥ x + 4,我们可以在两边同时除以2,得到x + 3/2 ≥ 1 + x/2。
由于x的取值范围不限制,所以不等式恒成立。
六、平方法则。
这种方法是通过平方运算来改变不等式的符号。
对于不等式x^2 ≥ 0,我们可以将x^2展开为(x + 0)^2,得到x^2 + 0 ≥ 0。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
不等式恒成立问题的处理恒成立问题在解题过程中大致可分为以下几种类型:①一次函数型;②二次函数型;③ 其他类不等式恒成立一、一次函数型给定一次函数y=f(x)=ax+b(a ≠0),若y=f(x)在[m,n]内恒有f(x)>0,则根据函数的图象(直线)可得上述结论等价于同理,若在[m,n]内恒有f(x)<0,则有⎨⎧>>0)0)(m f ⎩⎨⎧<<0)(0)(n f m f 例1.对任意,不等式恒成立,求的取值范围。
]1,1[-∈a )4(2-+x a x 分析:题中的不等式是关于的一元二次不等式,但若把看成主元,则问题可转化x a 为一次不等式在上恒成立的问题。
044)2(2>+-+-x x a x ]1,1[-∈a 解:令,则原问题转化为恒成立(44)2()(2+-+-=x x a x a f 0)(>a f )。
]1,1[-∈a 当时,可得,不合题意。
2=x 0)(=a f 当时,应有解之得。
2≠x ⎩⎨⎧>->0)1(0)1(f f 31><x x 或故的取值范围为。
x ),3()1,(+∞-∞ 注:一般地,一次函数在上恒有的充要条件)0()(≠+=k b kx x f ],[βα0)(>x f 为。
⎩⎨⎧>>0)(0)(βαf f 练习:对于满足|a|2的所有实数a,求使不等式x 2+ax+1>2a+x 恒成立的x 的取值范围。
≤解:原不等式转化为(x-1)a+x 2-2x+1>0,设f(a)= (x-1)a+x 2-2x+1,则f(a)在[-2,2]上恒大于0,故有:即解得:⎩⎨⎧>>-)2(0)2(f f ⎪⎩⎪⎨⎧>->+-0103422x x x ⎩⎨⎧-<><>1113x x x x 或或∴x<-1或x>3.例2. 已知(其中a 为正常数),若P x b x b x a a =--++(log )(log )log log log 2222161·当x 在区间[1,2]内任意取值时,P 的值恒为正,求b 的取值范围。
解:P 变形为[]P b b x b a a a =-+-+(log )log log (log )222611设∴[]t x t =∈log 201,则,[]P f t b b t b a a a ==-+-+()(log )log (log )22611因此,原题变为当t 在区间[0,1]内任意取值时,f (t )恒为正,求b 的取值范围。
由充要条件,当(1) 或 (2)(log )log (log )a a a b b b 2261010-+=-+>⎧⎨⎪⎩⎪f b f b a a ()(log )()log 01016202=-+>=-+>⎧⎨⎩解(1)得-<=-=+<1322132213log a b 解(2)得-<<113log a b 故,当时,当a >113ab a <<0113<<<<a ab a时,例3 设,若当时,P>0恒成立,求x 的变P x a x a =+--+(log )()log 22221[]a ∈-22,化范围。
解:设P f a x a x x ==-+-+()(log )log log 2221221当时的图像是一条线段,所以a 在上变动时,P 恒为正值的充要条件[]a ∈-22,[]-22,是即 解得f f ()()->>⎧⎨⎩2020log log log 2222243010x x x -+>->⎧⎨⎪⎩⎪log log 2231x x ><-或即x 的取值范围是()0128,,⎛⎝ ⎫⎭⎪+∞ 二、二次函数型(1)当二次函数的定义域为R 时: 若二次函数y=ax 2+bx+c (a ≠0)大于0恒成立,则有⎩⎨⎧<∆>00a 若二次函数y=ax 2+bx+c (a ≠0)小于0恒成立,则有⎩⎨⎧<∆<0a 例1.若函数在R 上恒成立,求m 的取值范围。
y =略解:要使在R 上恒成立,即在R 上恒y =2680mx mx m +++≥成立。
时, 成立10m =80≥0m ∴= 时,,20m ≠()()236483210m m m m m >⎧⎪⎨∆=-+=-≤⎪⎩01m ∴<≤由,可知,1 201m ≤≤例2.已知函数的定义域为R ,求实数的取值范围。
])1(lg[22a x a x y +-+=a 解:由题设可将问题转化为不等式对恒成立,即有0)1(22>+-+a x a x R x ∈解得。
04)1(22<--=∆a a 311>-<a a 或所以实数的取值范围为。
a ),31()1,(+∞--∞ 练习1:.已知函数,在R 上恒成立,求的取值范围。
2()3f x x ax a =++-()0f x ≥a (2)当二次函数的定义域不是R 时,即二次函数在指定区间上的恒成立问题,可以利用韦达定理以及根与系数的分布知识求解;有时也可以转化为求最值。
例1:若时,恒成立,求的取值范围。
[]2,2x ∈-03)(2≥-++=a ax x x f a 解:,令在上的最小值为。
22()324a a f x x a ⎛⎫=+--+ ⎪⎝⎭()f x []2,2-()g a ⑴当,即时, 又 22a -<-4a >()(2)730g a f a =-=-≥73a ∴≤4a > 不存在。
a ∴⑵当,即时, 又222a-≤-≤44a -≤≤2()()3024a a g a f a ==--+≥62a ∴-≤≤ 44a -≤≤ 42a ∴-≤≤⑶当,即时,又22a->4a <-()(2)70g a f a ==+≥7a ∴≥-4a <- 74a ∴-≤<-总上所述,。
72a -≤≤变式2:若时,恒成立,求的取值范围。
[]2,2x ∈-()2f x ≥a 解法一:分析:题目中要证明在上恒成立,若把移到等号的左边,a x f ≥)([]2,2-a 则把原题转化成左边二次函数在区间时恒大于等于0的问题。
[]2,2-i a略解:,即在上成立。
2()320f x x ax a =++--≥2()10f x x ax a =++-≥[]2,2-⑴ ()2410a a ∆=--≤22a ∴--≤≤-+⑵24(1)0(2)0(2)02222a a f f a a ⎧∆=-->⎪≥⎪⎪⎨-≥⎪⎪-≥-≤-⎪⎩或2225--≤≤-∴a 综上所述,。
2225-≤≤-a 解法二:(利用根的分布情况知识)⑴当,即时, 不存在。
22a -<-4a >()(2)732g a f a =-=-≥()54,3a ∴≤∉+∞a ∴⑵当,即时,,222a-≤-≤44a -≤≤2()()3224a a g a f a ==--+≥222222-≤≤-a -2224-≤≤-∴a ⑶当,即时,, 22a->4a <-()(2)72g a f a ==+≥5a ∴≥-54a ∴-≤<-综上所述。
2225-≤≤-a 例2.已知函数在其定义域内恒为非负,求方程f x x m x m ()()()=-+++2525的根的取值范围。
2121xm m +=-+||解:因为f (x )恒为非负,则解得,方程化为∆=+-+≤()()m m 58502-≤≤53m 2121x m m =+-+()(||)当时,则 所以-≤≤52m 2121x m m =+-+()()2231422x m m m =-++=--+()所以当时,则242x x ≤≤,23<≤m 211131822x m m m m =+-=-<-≤()(),所以所以方程的根的取值范围是log 233<≤x (]-∞,3例2.设,当时,恒成立,求实数的取值22)(2+-=mx x x f ),1[+∞-∈x m x f ≥)(m 范围。
解:设,则当时,恒成立m mx x x F -+-=22)(2),1[+∞-∈x 0)(≥x F 当时,显然成立;120)2)(1(4<<-<+-=∆m m m 即0)(>x F 当时,如图,恒成立的充要条件为:0≥∆0)(≥x F 解得。
⎪⎪⎩⎪⎪⎨⎧-≤--≥-≥∆1220)1(0m F 23-≤≤-m 综上可得实数的取值范围为。
m )1,3[-三、其他类不等式恒成立问题一般转化为求最值将不等式恒成立问题转化为求函数最值问题的一种处理方法,其一般类型有:1)恒成立a x f >)(min )(x f a <⇔2)恒成立a x f <)(max)(x f a >⇔例1.已知,当时,x x x x g a x x x f 4042)(,287)(232-+=--=]3,3[-∈x 恒成立,求实数的取值范围。
)()(x g x f ≤a 解:设,c x x x x g x f x F -++-=-=1232)()()(23则由题可知对任意恒成立0)(≤x F ]3,3[-∈x 令,得01266)(2'=++-=x x x F 21=-=x x 或而,20)2(,7)1(a F a F -=-=-,9)3(,45)3(a F a F -=-=-∴045)(max ≤-=a x F ∴即实数的取值范围为。
45≥a a ),45[+∞例2.函数,若对任意,恒成立,求),1[,2)(2+∞∈++=x xax x x f ),1[+∞∈x 0)(>x f 实数的取值范围。
a解:若对任意,恒成立,),1[+∞∈x 0)(>x f 即对,恒成立,),1[+∞∈x 02)(2>++=xax x x f 考虑到不等式的分母,只需在时恒成立而得),1[+∞∈x 022>++a x x ),1[+∞∈x 而抛物线在的最小值得a x x x g ++=2)(2),1[+∞∈x 03)1()(min >+==a g x g 3->a 注:本题还可将变形为,讨论其单调性从而求出最小值。
)(x f 2)(++=xax x f )(x f 分离变量法若所给的不等式能通过恒等变形使参数与主元分离于不等式两端,从而问题转化为求主元函数的最值,进而求出参数范围。
这种方法本质也还是求最值,但它思路更清晰,操作性更强。
一般地有:1)恒成立为参数)a a g x f )(()(<max )()(x f a g >⇔2)恒成立为参数)a a g x f )(()(>max )()(x f a g <⇔实际上,上题就可利用此法解决。