高考数学复习《基本不等式》练习题含答案解析
高三数学基本不等式试题答案及解析

高三数学基本不等式试题答案及解析1.实数x,y满足x+2y=2,则3x+9y的最小值是________________.【答案】6【解析】3x+9y=3x+32y≥2考点:基本不等式2.(5分)(2011•重庆)若实数a,b,c满足2a+2b=2a+b,2a+2b+2c=2a+b+c,则c的最大值是.3【答案】2﹣log2【解析】由基本不等式得2a+2b≥,可求出2a+b的范围,再由2a+2b+2c=2a+b+c=2a+b2c=2a+b+2c,2c可用2a+b表达,利用不等式的性质求范围即可.解:由基本不等式得2a+2b≥,即2a+b≥,所以2a+b≥4,令t=2a+b,由2a+2b+2c=2a+b+c可得2a+b+2c=2a+b2c,所以2c=因为t≥4,所以,即,所以3故答案为:2﹣log2点评:本题考查指数的运算法则,基本不等式求最值、不等式的性质等问题,综合性较强.3.证明以下不等式:(1)已知,,求证:;(2)若,,求证:.【答案】见解析【解析】(1)构造函数因为对一切xÎR,恒有≥0,所以≤0,从而得(另解:利用重要不等式)(2)构造函数因为对一切xÎR,都有≥0,所以△=≤0,从而证得:.4.在如图所示的锐角三角形空地中, 欲建一个面积最大的内接矩形花园(阴影部分), 则其边长x为 (m).【答案】20【解析】利用均值不等式解决应用问题。
设矩形高为y, 由三角形相似得:.5.若正数x,y满足x+3y=5xy,则3x+4y的最小值是()A.B.C.5D.6【答案】C【解析】∵正数x,y满足x+3y=5xy,∴=1∴3x+4y=()(3x+4y)=+++≥+2=5当且仅当=时取等号∴3x+4y≥5即3x+4y的最小值是5故选C6.已知且,则存在,使得的概率为()A.B.C.D.【答案】D【解析】可行域是一个三角形,面积为2;又直线系与圆相切,故该三角形不被该直线系扫到的部分是一个半径为圆心角为的扇形,面积为,从而被直线系扫到部分的面积为,故所求概率为.【考点】1、不等式组表示的平面区域;2、几何概型.7.设是半径为的球面上的四个不同点,且满足,,,用分别表示△、△、△的面积,则的最大值是 .【答案】2【解析】设则有即的最大值为2.【考点】基本不等式8.若正实数满足,且恒成立,则的最大值为.【答案】1【解析】,恒成立,那么,即,所以的最大值为1.【考点】基本不等式求最值9.已知,且,则的最小值是.【答案】【解析】∵,∴==≥=,当且仅当=取等号,故最小值为.【考点】1.利用基本不等式求最值;2.转化与化归思想.10.函数y=x+(x≠0)的值域是________.【答案】(-∞,-4]∪[4,+∞)【解析】当x>0时,y=x+≥2=4,当x<0时,y=x+=-≤-2=-4.11.设a+b=2,b>0,则+的最小值为.【答案】【解析】由a+b=2,b>0.则+=+=++,由a≠0,若a>0,则原式=++≥+2=.当且仅当b=2a=时,等号成立.若a<0,则原式=---≥-+2=.当且仅当b=-2a即a=-2,b=4时等号成立.综上得当a=-2,b=4时,+取最小值.12.若实数x,y满足x2+y2+xy=1,则x+y的最大值是.【答案】【解析】∵xy≤(x+y)2,∴1=x2+y2+xy=(x+y)2-xy≥(x+y)2-(x+y)2=(x+y)2,∴(x+y)2≤,∴-≤x+y≤,当x=y=时,x+y取得最大值.13.若a>0,b>0,且a+b=2,则下列不等式恒成立的是()A.>1B.+≤2C.≥1D.a2+b2≥2【答案】D【解析】由2=a+b≥2得≤1,ab≤1,所以选项A、C不恒成立,+==≥2,选项B也不恒成立,a2+b2=(a+b)2-2ab=4-2ab≥2恒成立.故选D.14.设a+b=2,b>0,则当a=________时,+取得最小值.【答案】-2【解析】因为+=+=++≥+2=+1≥-+1=,当且仅当=,a<0,即a=-2,b=4时取等号,故+取最小值时,a=-2.15.若向量a=(x-1,2),b=(4,y)相互垂直,则9x+3y的最小值为()A.4B.6C.9D.12【答案】B【解析】由a=(x-1,2),b=(4,y)垂直得2x+y=2,∴9x+3y=32x+3y≥2 =2×3=6.16.设P是函数y= (x+1)图象上异于原点的动点,且该图象在点P处的切线的倾斜角为θ,则θ的取值范围是________.【答案】【解析】因为y′=x- (x+1)+=+≥2=,(当且仅当x=时,“=”成立)设点P(x,y)(x>0),则在点P处的切线的斜率k≥,所以tan θ≥,又θ∈[0,π),故θ∈.17.若a>0,b>0,且函数f(x)=4x3-ax2-2bx+2在x=1处有极值,则ab的最大值为________.【答案】9【解析】依题意知f′(x)=12x2-2ax-2b,∴f′(1)=0,即12-2a-2b=0,∴a+b=6.又a>0,b>0,∴ab≤2=9,当且仅当a=b=3时取等号,∴ab的最大值为918.已知,且是常数,又的最小值是,则________.【答案】7【解析】法一、,所以.又的最小值是,所以.又,所以.法二、由柯西不等式得:.以下同法一.【考点】1、重要不等式;2、解方程组;3、柯西不等式.19.已知是关于的一元二次方程的两根,若,则的取值范围是()A.B.C.D.【答案】C.【解析】由韦达定理可得..当时,当时,综上可得当时,.【考点】应用不等式性质及重要不等式处理一元二次方程根的分布问题.20.设为实常数,是定义在R上的奇函数,当时,, 若对一切成立,则的取值范围为________.【答案】【解析】设,则,所以,当时,,要使对一切成立,当时,成立;当时,,成立,综上可知.【考点】函数奇偶性、基本不等式.21.下列命题错误的是()A.若,,则B.若,则,C.若,,且,则D.若,且,则,【答案】D【解析】A选项为基本不等式,故正确;若,说明为正数且可以取0,故B正确;若,,且,则,因为基本不等式中等号成立的条件是两数相等,故C正确;基本不等式中,等号成立的条件是,既然等号不成立,定有,D选项将结论作为了条件,故错误,选D.【考点】基本不等式.22.设满足约束条件,若目标函数的最大值为4,则的最小值为 .【答案】【解析】不等式表示的平面区域如图所示阴影部分.当直线过直线与直线的交点时,目标函数取得最大值4,即,即.所以.【考点】1.线性规划;2.基本不等式.23.在如图所示的锐角三角形空地中,欲建一个面积最大的内接矩形花园(阴影部分),则其边长x为 ( )A.35m B.30m C.25m D.20m【答案】D【解析】如图所示,设另一边长为,则,所以,所以面积,当且仅当时等号成立,即当时面积最大.24.已知,则的最小值是()A.2B.C.4D.5【答案】C【解析】,,,当且仅当,即当且时,上式取等号,故的最小值为.【考点】基本不等式25.已知,,则的最小值为____________.【答案】【解析】由得,当且仅当时取等号;两边平方得,,当且仅当时取等号.【考点】基本不等式求最值.26.已知函数,对于满足的任意实数,给出下列结论:①;②;③;④,其中正确结论的序号是 .【答案】④【解析】①.因为函数是上的增函数,所以所以①不正确.②. 为上的减函数,即为上的减函数,而时,为增函数,或者取代入得,显然所以②不正确.③. ,即说明函数是上的增函数,而在区间上,所以③不正确.④. ,又,所以,即.【考点】对数运算,对数函数的单调性判断,导数运算及应用,均值不等式.27.已知函数,若,则的最大值为________.【答案】【解析】,,,当且仅当时,上式取等号,由于,即当时,取最大值,,即的最大值为.【考点】基本不等式、对数运算28.已知正数满足,,则的取值范围是______.【答案】【解析】由,,又,得,所以,故.【考点】不等式性质,基本不等式的应用.29.设、满足约束条件,若目标函数的最大值为,则的最小值为 .【答案】【解析】根据题意,由于、满足约束条件,围成了封闭的三角形区域,并且当目标函数平移到点(2,4)的最大值为,.故可知2,故答案为2.【考点】线性规划的运用点评:主要是考查了线性规划的最优解的运用,属于基础题。
基本不等式题型练习含答案

基本不等式题型练习含答案题目1:解不等式2x + 5 > 9。
解答1: 2x + 5 > 9 首先,将不等式两边都减去5。
2x > 4 然后,将不等式两边都除以2。
x > 2 所以,不等式的解集为x > 2。
题目2:解不等式3 - 2x ≤ 7。
解答2: 3 - 2x ≤ 7 首先,将不等式两边都减去3。
-2x ≤ 4 然后,将不等式两边都除以-2。
注意,因为除以负数会改变不等号的方向,所以需要将不等号反转。
x ≥ -2 所以,不等式的解集为x ≥ -2。
题目3:解不等式4x + 3 < 19。
解答3: 4x + 3 < 19 首先,将不等式两边都减去3。
4x < 16 然后,将不等式两边都除以4。
x < 4 所以,不等式的解集为x < 4。
题目4:解不等式5 - 3x > 8。
解答4: 5 - 3x > 8 首先,将不等式两边都减去5。
-3x > 3 然后,将不等式两边都除以-3。
注意,因为除以负数会改变不等号的方向,所以需要将不等号反转。
x < -1 所以,不等式的解集为x < -1。
题目5:解不等式2x - 1 ≤ 5x + 3。
解答5: 2x - 1 ≤ 5x + 3 首先,将不等式两边都减去2x。
-1 ≤ 3x + 3 然后,将不等式两边都减去3。
-4 ≤ 3x 最后,将不等式两边都除以3。
-4/3 ≤ x 所以,不等式的解集为x ≥ -4/3。
题目6:解不等式4 - 2x ≥ 10 - 3x。
解答6: 4 - 2x ≥ 10 - 3x 首先,将不等式两边都加上3x。
4 + x ≥ 10 然后,将不等式两边都减去4。
x ≥ 6 所以,不等式的解集为x ≥ 6。
题目7:解不等式2(3x + 1) > 4x + 6。
解答7: 2(3x + 1) > 4x + 6 首先,将不等式两边都展开。
高一数学 不等式、基本不等式与三角函数复习题(解析版)

0,a,b
的等比中项为
2,则
a
+
1 b
+
b
+
1的最小值为(
a
)
A.3
B.4
C.5
D.4 2
【答案】C
【详解】
∵ a + 1 + b + 1 = (a + b) + a+b = (a + b)(1 + 1 ) = 5 (a + b) ≥ 5 ⋅ 2 ab = 5,
b
a
ab
ab 4
4
等号成立当且仅当 a = b = 2,∴原式的最小值为 5.
(1)∵
a
1
sin
x,
sin
x
,
b
cos
x,1
∴ f x 1 sin x cos x sin x sin x cos x sin x cos x 1 sin 2x
2 ∴ T 2 .
2
(2) g x (1 sin x)cos x sin x sin x cos x sin x cos x
4
8
由图可得 x1 与 x2 关于 x
3 8
对称,
x1 x2
2 3 8
3 4
故选:A
9.已知
sin
6
3 5
,则
cos
4 3
(
)
4
A.
5
【答案】B
3
B.
5
C. 4 5
【详解】
D.- 3 5
cos
4 3
cos(3 2
(
6
)]
sin(
6
高三数学基本不等式试题答案及解析

高三数学基本不等式试题答案及解析1.若且(I)求的最小值;(II)是否存在,使得?并说明理由.【答案】(1)最小值为;(2)不存在a,b,使得.【解析】(1)根据题意由基本不等式可得:,得,且当时等号成立,则可得:,且当时等号成立.所以的最小值为;(2)由(1)知,,而事实上,从而不存在a,b,使得.试题解析:(1)由,得,且当时等号成立.故,且当时等号成立.所以的最小值为.(2)由(1)知,.由于,从而不存在a,b,使得.【考点】1.基本不等式的应用;2.代数式的处理2.已知点A(m,n)在直线x+2y-1=0上,则2m+4n的最小值为________.【答案】2【解析】因为点A(m,n)在直线x+2y-1=0上,所以有m+2n=1;2m+4n=2m+22n≥2=2=2,当且仅当m=2n时“=”成立.3.已知,且,成等比数列,则xy( )A.有最大值e B.有最大值C.有最小值e D.有最小值【答案】C【解析】解:因为,所以又,成等比数列,所以(当且仅当即时等号成立)所以,故选C.【考点】1、基本不等式的应用;2、对数函数的性质.4.设正实数x,y,z满足x2﹣3xy+4y2﹣z=0,则当取得最小值时,x+2y﹣z的最大值为()A.0B.C.2D.【答案】C【解析】∵x2﹣3xy+4y2﹣z=0,∴z=x2﹣3xy+4y2,又x,y,z为正实数,∴=+﹣3≥2﹣3=1(当且仅当x=2y时取“=”),即x=2y(y>0),∴x+2y﹣z=2y+2y﹣(x2﹣3xy+4y2)=4y﹣2y2=﹣2(y﹣1)2+2≤2.∴x+2y﹣z的最大值为2.故选C.5.若2x+2y=1,则x+y的取值范围是()A.[0,2]B.[﹣2,0]C.[﹣2,+∞)D.(﹣∞,﹣2]【答案】D【解析】∵1=2x+2y≥2•(2x2y),变形为2x+y≤,即x+y≤﹣2,当且仅当x=y时取等号.则x+y的取值范围是(﹣∞,﹣2].故选D.6.设是半径为的球面上的四个不同点,且满足,,,用分别表示△、△、△的面积,则的最大值是 .【答案】2【解析】设则有即的最大值为2.【考点】基本不等式7.若(其中,),则的最小值等于.【答案】.【解析】,因此的最小值等于.【考点】基本不等式8.已知正数满足,则的最小值为.【答案】9【解析】由,得,当且仅当,即,也即时等号成立,故最小值是9.【考点】基本不等式.9.若正实数满足,且恒成立,则的最大值为.【答案】1【解析】,恒成立,那么,即,所以的最大值为1.【考点】基本不等式求最值10.已知,且,则的最小值是.【答案】【解析】∵,∴==≥=,当且仅当=取等号,故最小值为.【考点】1.利用基本不等式求最值;2.转化与化归思想.11.若正数x,y满足x+3y=5xy,则3x+4y的最小值是()A.B.C.5D.6【答案】C【解析】因为x>0,y>0,x+3y=5xy,所以+=1,所以(+)(3x+4y)=++++≥+2×=5,当且仅当=时,等号成立,所以选C.12.设,,若,则的最小值为A.B.6C.D.【答案】A【解析】因为,,,所以,;所以,当且仅当时,“=”成立,故答案为A.【考点】基本不等式13.在平面直角坐标系xoy中,过坐标原点的一条直线与函数的图像交于P、Q两点,则线段PQ长的最小值是____【答案】【解析】因为过坐标原点的一条直线与函数的图像交于P、Q两点,则线段PQ长,由对称性只要研究部分,设,所以,所以当且仅当时取等号.所以的最小值为.故填.【考点】1.直线与双曲线的关系.2.两点间的距离.3.基本不等式的应用.14.在实数集中定义一种运算“”,对任意,为唯一确定的实数,且具有性质:(1)对任意,;(2)对任意,.则函数的最小值为()A.B.C.D.【答案】B【解析】依题意可得,当且仅当时“=”成立,所以函数的最小值为,选.【考点】基本不等式,新定义问题.15.已知函数f(x)=.(1)若f(x)>k的解集为{x|x<-3,或x>-2},求k的值;(2)对任意x>0,f(x)≤t恒成立,求t的取值范围.【答案】(1)k=-(2)【解析】(1)f(x)>k⇔kx2-2x+6k<0.由已知{x|x<-3,或x>-2}是其解集,得kx2-2x+6k=0的两根是-3,-2,由根与系数的关系可知(-2)+(-3)=,即k=-.(2)∵x>0,f(x)==≤=.当且仅当x=时取等号,由已知f(x)≤t对任意x>0恒成立,故t≥.即t的取值范围是.16.(-6≤a≤3)的最大值为 ().A.9B.C.3D.【答案】B【解析】由于-6≤a≤3,所以=≤,当且仅当a=-时等号成立.17.若直线ax+by+1=0(a>0,b>0)平分圆x2+y2+8x+2y+1=0,则+的最小值为________.【答案】16【解析】直线平分圆,∴直线过圆心,又圆心坐标为(-4,-1),∴-4a-b+1=0,∴4a+b=1,∴+=(4a+b) =4+++4≥16,当且仅当b=4a,即a=,b=时等号成立,∴+的最小值为16.18.在直角坐标系中,定义两点之间的“直角距离”为,现给出四个命题:①已知,则为定值;②用表示两点间的“直线距离”,那么;③已知为直线上任一点,为坐标原点,则的最小值为;④已知三点不共线,则必有.A.②③B.①④C.①②D.①②④【答案】C【解析】①;②【考点】1.基本不等式;2.三角函数的性质.19.设均为正数,且证明:(1);(2).【答案】(1)证明:见解析;(2)证明:见解析.【解析】(1)利用基本不等式,得到,,,利用,首先得到,得证;(2)为应用,结合求证式子的左端,应用基本不等式得到,,,同向不等式两边分别相加,即得证.试题解析:(1),,, 2分所以 4分所以 5分(2),, 7分10分【考点】基本不等式,不等式证明方法.20.已知,,则的最小值为____________.【答案】【解析】由得,当且仅当时取等号;两边平方得,,当且仅当时取等号.【考点】基本不等式求最值.21.已知函数的定义域为,则实数的取值范为 .【答案】【解析】由函数定义域可知为正数,根据均值不等式,恒成立即可.【考点】均值不等式求最值.22.在矩形ABCD中,|AB|=2,|AD|=2,E、F、G、H分别为矩形四条边的中点,以HF、GE所在直线分别为x,y轴建立直角坐标系(如图所示).若R、R′分别在线段0F、CF上,且.(Ⅰ)求证:直线ER与GR′的交点P在椭圆:+=1上;(Ⅱ)若M、N为椭圆上的两点,且直线GM与直线GN的斜率之积为,求证:直线MN过定点;并求△GMN面积的最大值.【答案】详见解析;直线MN过定点(0,-3),△GMN面积的最大值.【解析】先计算出E、R、G、R′各点坐标,得出直线ER与GR′的方程,解得其交点坐标代入满足椭圆方程即可; 先讨论直线MN的斜率不存在时的情况;再讨论斜率存在时,用斜截式设出直线MN方程.与椭圆方程联立,用“设而不求”的方法通过韦达定理得出b为定值-3或1,又当b=1时,直线GM与直线GN的斜率之积为0,所以舍去.从而证明出MN过定点(0,-3).最后算出点到直线的距离及MN的距离,得出△GMN面积是一个关于的代数式,由及知:,用换元法利用基本不等式求出△GMN面积的最大值是.试题解析:(Ⅰ)∵,∴, 1分又则直线的方程为① 2分又则直线的方程为②由①②得∵∴直线与的交点在椭圆上 4分(Ⅱ)①当直线的斜率不存在时,设不妨取∴ ,不合题意 5分②当直线的斜率存在时,设联立方程得则7分又即将代入上式得解得或(舍)∴直线过定点 10分∴,点到直线的距离为∴由及知:,令即∴当且仅当时, 13分【考点】1.直线的方程;2.解析几何;3.基本不等式.23.设,若直线与轴相交于点,与轴相交于点,且坐标原点到直线的距离为,则的面积的最小值为A.B.2C.3D.4【答案】C【解析】原点到直线的距离,,在直线的方程中,令可得,即直线与轴交于点,令可得,即直线与轴交于点,,当且仅当时上式取等号,由于,故当时,面积取最小值.【考点】原点到直线的距离,,在直线的方程中,令可得,即直线与轴交于点,令可得,即直线与轴交于点,,当且仅当时上式取等号,由于,故当时,面积取最小值.24.已知正数满足,,则的取值范围是______.【答案】【解析】由,,又,得,所以,故.【考点】不等式性质,基本不等式的应用.25.设若是与的等比中项,则的最小值【答案】4【解析】根据题意,由于若是与的等比中项,则可知,则,当a=b时等号成立故答案为4.【考点】不等式的运用点评:主要是考查了均值不等式来求解最值的运用,属于中档题。
高三数学基本不等式试题答案及解析

高三数学基本不等式试题答案及解析1. [2014·兰州调研]设x、y、z>0,a=x+,b=y+,c=z+,则a、b、c三数()A.至少有一个不大于2B.都小于2C.至少有一个不小于2D.都大于2【答案】C【解析】假设a、b、c都小于2,则a+b+c<6.而事实上a+b+c=x++y++z+≥2+2+2=6与假设矛盾,∴a,b,c中至少有一个不小于2.2.若方程有实根,则实数的取值范围是___________.[【答案】【解析】原方程可变为:,【考点】方程及重要不等式.3.阅读:已知、,,求的最小值.解法如下:,当且仅当,即时取到等号,则的最小值为.应用上述解法,求解下列问题:(1)已知,,求的最小值;(2)已知,求函数的最小值;(3)已知正数、、,,求证:.【答案】(1)9;(2)18;(3)证明见解析.【解析】本题关键是阅读给定的材料,弄懂弄清给定材料提供的方法(“1”的代换),并加以运用.主要就是,展开后就可应用基本不等式求得最值.(1);(2)虽然没有已知的“1”,但观察求值式子的分母,可以凑配出“1”:,因此有,展开后即可应用基本不等式;(3)观察求证式的分母,结合已知有,因此有此式中关键是凑配出基本不等式所需要的两项,如与合并相加利用基本不等式有,从而最终得出. (1),2分而,当且仅当时取到等号,则,即的最小值为. 5分(2), 7分而,,当且仅当,即时取到等号,则,所以函数的最小值为. 10分(3)当且仅当时取到等号,则. 16分【考点】阅读材料问题,“1”的代换,基本不等式.4.在如图所示的锐角三角形空地中, 欲建一个面积最大的内接矩形花园(阴影部分), 则其边长x 为 (m).【答案】20【解析】利用均值不等式解决应用问题。
设矩形高为y, 由三角形相似得:.5.设A、B、C、D是半径为2的球面上的四点,且满足,的最大值是 _______ .【答案】8【解析】由已知得,,当且仅当时等号成立,因此最大值为8.【考点】球的性质.6.设a、b、c均为正数,且a+b+c=1.证明:(1)ab+bc+ca≤;(2)≥1【答案】(1)见解析(2)见解析【解析】(1)由a2+b2≥2ab,b2+c2≥2bc,c2+a2≥2ca,得a2+b2+c2≥ab+bc+ca.由题设得(a+b+c)2=1,即a2+b2+c2+2ab+2bc+2ca=1.所以3(ab+bc+ca)≤1,即ab+bc+ca≤.(2)因为+b≥2a,+c≥2b,+a≥2c,故+(a+b+c)≥2(a+b+c),即≥a+b+c.所以≥1.7.若,其中为虚数单位,则_________.【答案】【解析】,所以.【考点】复数基本运算.8.已知函数在时取得最小值,则____________.【答案】【解析】由题意得时取得最小值,所以.【考点】重要不等式.9.若(其中,),则的最小值等于.【答案】.【解析】,因此的最小值等于.【考点】基本不等式10.设均为正实数,且,则的最小值为____________.【答案】16【解析】由,化为,整理为,∵均为正实数,∴,∴,解得,即,当且仅当时取等号,∴的最小值为16,故答案为:16.【考点】基本不等式.11.若a、b∈R,且ab>0,则下列不等式中,恒成立的是()A.a2+b2>2ab B.a+b≥2C.+>D.+≥2【答案】D【解析】对于选项A,a2+b2≥2ab,所以选项A错;对于选项B、C,虽然ab>0,只能说明a、b同号,若a、b都小于0时,选项B、C错;对选项D,∵ab>0,∴>0,>0,则+≥2.故选D.12.若直线ax-by+2=0(a>0,b>0)被圆x2+y2+2x-4y+1=0截得的弦长为4,则+的最小值为() A.B.C.+D.+2【答案】C【解析】圆的标准方程为(x+1)2+(y-2)2=4,所以圆心坐标为(-1,2),半径为r=2.因为直线被圆截得的弦长为4,所以直线ax-by+2=0过圆心,所以-a-2b+2=0,即a+2b=2,所以+b=1,所以+=(+)(+b)=+1++≥+2=+.当且仅当=,a=b时取等号,所以+的最小值为+.故选C.13.在实数集中定义一种运算“”,对任意,为唯一确定的实数,且具有性质:(1)对任意,;(2)对任意,.则函数的最小值为()A.B.C.D.【答案】B【解析】依题意可得,当且仅当时“=”成立,所以函数的最小值为,选.【考点】基本不等式,新定义问题.14.若a,b∈R,且ab>0,则下列不等式中,恒成立的是()A.a+b≥2 B.>C.≥2D.a2+b2>2ab【答案】C【解析】因为ab>0,所以>0,>0,即≥2 =2,所以选C.15.设x,y∈R,a>1,b>1,若a x=b y=3,a+b=2,则的最大值为() A.B.1C.D.2【答案】B【解析】由a x=b y=3得=log3a,=log3b,所以=log3ab≤log3=log3=1.16.设a+b=2,b>0,则当a=________时,+取得最小值.【答案】-2【解析】因为+=+=++≥+2=+1≥-+1=,当且仅当=,a<0,即a=-2,b=4时取等号,故+取得最小值时,a=-2.17.已知函数f(x)=4x+ (x>0,a>0)在x=3时取得最小值,则a=________.【答案】36【解析】∵x>0,a>0,∴f(x)=4x+≥2=4 ,当且仅当4x=(x>0)即x=时f(x)取得最小值,由题意得=3,∴a=36.18.某公司购买一批机器投入生产,据市场分析每台机器生产的产品可获得的总利润y(单位:万元)与机器运转时间x(单位:年)的关系为y=-x2+18x-25(x∈N*).则当每台机器运转______年时,年平均利润最大,最大值是______万元.【答案】58【解析】由题意知每台机器运转x年的年平均利润为=18-(x+),而x>0,故≤18-=8,当且仅当x=5时,年平均利润最大,最大值为8万元.19.设,若,则的最大值为()A.2B.3C.4D.【答案】B【解析】由得,,∴,又,∴,即,当且仅当,即时取等号,所以. 故.【考点】基本不等式.20.已知当取得最小值时,直线与曲线的交点个数为【答案】2【解析】∵,∴当且仅当,即时,取得最小值8,故曲线方程为时,方程化为;当时,方程化为,当时,方程化为,当时,无意义,由圆锥曲线可作出方程和直线与的图象,由图象可知,交点的个数为2.【考点】基本不等式,直线与圆锥曲线的位置关系.21.如图,某小区拟在空地上建一个占地面积为2400平方米的矩形休闲广场,按照设计要求,休闲广场中间有两个完全相同的矩形绿化区域,周边及绿化区域之间是道路(图中阴影部分),道路的宽度均为2米.怎样设计矩形休闲广场的长和宽,才能使绿化区域的总面积最大?并求出其最大面积.【答案】当休闲广场的长为米,宽为米时,绿化区域总面积最大值,最大面积为平方米.【解析】先将休闲广场的长度设为米,并将宽度也用进行表示,并将绿化区域的面积表示成的函数表达式,利用基本不等式来求出绿化区域面积的最大值,但是要注意基本不等式适用的三个条件.试题解析:设休闲广场的长为米,则宽为米,绿化区域的总面积为平方米,6分, 8分因为,所以,当且仅当,即时取等号 12分此时取得最大值,最大值为.答:当休闲广场的长为米,宽为米时,绿化区域总面积最大值,最大面积为平方米.14分【考点】矩形的面积、基本不等式22.若,且,则下列不等式中,恒成立的是()A.B.C.D.【答案】C【解析】因为,则或,则排除与;由于恒成立,当且仅当时,取“=”,故错;由于,则,即,所以选.【考点】基本不等式.23.在矩形ABCD中,|AB|=2,|AD|=2,E、F、G、H分别为矩形四条边的中点,以HF、GE所在直线分别为x,y轴建立直角坐标系(如图所示).若R、R′分别在线段0F、CF上,且.(Ⅰ)求证:直线ER与GR′的交点P在椭圆:+=1上;(Ⅱ)若M、N为椭圆上的两点,且直线GM与直线GN的斜率之积为,求证:直线MN过定点;并求△GMN面积的最大值.【答案】详见解析;直线MN过定点(0,-3),△GMN面积的最大值.【解析】先计算出E、R、G、R′各点坐标,得出直线ER与GR′的方程,解得其交点坐标代入满足椭圆方程即可; 先讨论直线MN的斜率不存在时的情况;再讨论斜率存在时,用斜截式设出直线MN方程.与椭圆方程联立,用“设而不求”的方法通过韦达定理得出b为定值-3或1,又当b=1时,直线GM与直线GN的斜率之积为0,所以舍去.从而证明出MN过定点(0,-3).最后算出点到直线的距离及MN的距离,得出△GMN面积是一个关于的代数式,由及知:,用换元法利用基本不等式求出△GMN面积的最大值是.试题解析:(Ⅰ)∵,∴, 1分又则直线的方程为① 2分又则直线的方程为②由①②得∵∴直线与的交点在椭圆上 4分(Ⅱ)①当直线的斜率不存在时,设不妨取∴ ,不合题意 5分②当直线的斜率存在时,设联立方程得则7分又即将代入上式得解得或(舍)∴直线过定点 10分∴,点到直线的距离为∴由及知:,令即∴当且仅当时, 13分【考点】1.直线的方程;2.解析几何;3.基本不等式.24.已知不等式2|x-3|+|x-4|<2a.(Ⅰ)若a=1,求不等式的解集;(Ⅱ)若已知不等式的解集不是空集,求a的取值范围.【答案】(Ⅰ);(Ⅱ).【解析】(Ⅰ)先令,得,再分类去绝对值解不等式;(Ⅱ)设,去绝对值得,根据原不等式解集为空集得,从而求得.试题解析:(Ⅰ)当时,不等式即为,若,则,,舍去;若,则,;若,则,.综上,不等式的解集为.(5分)(Ⅱ)设,则,,,,即的取值范围为.(10分)【考点】含绝对值不等式的解法.25.已知,且满足,则的最小值为【答案】【解析】∵,且满足,∴,=,当且仅当时,的最小值为。
高中试卷-2.2 基本不等式 练习(1)(含答案)

第二章 一元二次函数、方程和不等式2.2等式性质与不等式性质(共2课时)(第1课时)一、选择题1.(2019·内蒙古集宁一中高一期末)下列不等式一定成立的是( )A .a b2B .a b 2≤C .x +1x ≥2D .x 2+1x 2≥2【答案】D【解析】当a ,b ,x 都为负数时,A,C 选项不正确.当a ,b 为正数时,B 选项不正确.根据基本不等式,有x 2+1x 2≥=2,故选D.2.(2019山东师范大学附中高一期中)已知x >0,函数9y x x=+的最小值是( )A .2B .4C .6D .8【答案】C【解析】∵x >0,∴函数96y x x =+³=,当且仅当x=3时取等号,∴y 的最小值是6.故选:C .3.(2019广东高一期末)若正实数a ,b 满足a +b =1,则下列说法正确的是( )A .ab 有最小值14BC .1a +1b 有最小值4D .a 2+b 2【答案】C【解析】∵a >0,b >0,且a +b =1;∴1=a +b ≥∴ab ≤14;∴ab 有最大值14,∴选项A 错误;=a +b =1+1+=2,∴B 项错误.1a+1b ==1ab ≥4,∴1a +1b 有最小值4,∴C 正确;a 2+b 2=(a +b )2―2ab =1―2ab ≥1―2×14=12,∴a 2+b 2的最小值是12,不是∴D 错误.4.(2019·柳州市第二中学高一期末)若x >―5,则x +4x 5的最小值为( )A .-1B .3C .-3D .1【解析】x +4x5=x +5+4x 5―5≥2×2―5=―1,当且仅当x =―3时等号成立,故选A.5.(2019吉林高一月考)若()12f x x x =+- (2)x >在x n =处取得最小值,则n =( )A .52B .3C .72D .4【答案】B 【解析】:当且仅当时,等号成立;所以,故选B.6.(2019·广西桂林中学高一期中)已知5x 2³,则f(x)= 24524x x x -+-有A .最大值B .最小值C .最大值1D .最小值1【答案】D【解析】()()()2211112122222x f x x x x -+éù==-+³=ê--ëû当122x x -=-即3x =或1(舍去)时, ()f x 取得最小值1二、填空题7.(2019·宁夏银川一中高一期末)当1x £-时,1()1f x x x =++的最大值为__________.【答案】-3.【解析】当1x £-时,()11[(1)111f x x x x x =+=--+--++又1(1)21x x -+-³+,()11[(1)1311f x x x x x =+=--+--£-++,故答案为:-38.(2019·上海市北虹高级中学高一期末)若0m >,0n >,1m n +=,且41m n+的最小值是___.【答案】9【解析】∵0m >,0n >,1m n +=,4()5414519n m m n m n m n m n æö\+=++=+++=ç÷èø…,当且仅当12,33n m == 时“=”成立,故答案为9.9.(2019·浙江高一期末)已知0a >,0b >,若不等式212ma b a b+³+恒成立,则m 的最大值为【答案】9.【解析】由212m a b a b +³+得()212m a b a b æö£++ç÷èø恒成立,而()212225a b a b a b b a æö++=++ç÷èø5549³+=+=,故9m £,所以m 的最大值为9.10.(2019·浙江高一月考)设函数24()(2)(0)f x x x x x=-++>.若()4f x =,则x =________.【答案】2【解析】因为2(2)0y x =-³,当2x =时,取最小值;又0x >时,44y x x=+³=,当且仅当06(,),即2x =时,取最小值;所以当且仅当2x =时,24()(2)f x x x x=-++取最小值(2)4f =.即()4f x =时,2x =.故答案为2三、解答题11.(2016·江苏高一期中)已知a >0,b >0,且4a +b =1,求ab 的最大值;(2)若正数x ,y 满足x +3y =5xy ,求3x +4y 的最小值;(3)已知x <54,求f (x )=4x -2+145x -的最大值;【答案】(1)的最大值;(2)的最小值为5;(3)函数的最大值为【解析】(1),当且仅当,时取等号,故的最大值为(2),当且仅当即时取等号(3)当且仅当,即时,上式成立,故当时,函数的最大值为.12.(2019·福建高一期中)设0,0,1a b a b >>+= 求证:1118a b ab++³ 【答案】可以运用多种方法。
高中数学基本不等式练习题(含答案)

基本不等式【习题1】已知实数且, 则的最小值是.【习题2】若实数且, 则的最小值是, 的最小值是.【习题3】已知满足方程, 当时, 则的最小值为_______.【习题4】已知为实数, 且, 则的最小值为_______.【习题5】已知, , 则的取值范围为 .【习题6】已知, , 则的最小值为.【习题7】若实数满足, 则的范围是.【习题8】的三边成等差, 且, 则的取值范围是.【习题9】已知二次不等式对任意实数恒成立, 则的最小值为___________【习题10】实数满足, 设, 则 .【习题11】非零向量夹角为, 且, 则的取值范围为.【习题12】已知, 且, 若总成立, 则正实数的取值范围是_______.【习题13】正实数满足, 则的最小值为 .【习题14】已知实数满足则的最小值为, 的最小值为.【习题15】已知直线(其中)与圆相交于、两点, 为坐标原点, 且, 则的最小值为 .【习题16】设, 满足, 则的最小值是______.【习题17】已知正实数 , 满足: , 则 的最大值是 .【习题18】已知正数 满足 , 则 的最小值为________.【习题19】已知 , , 且 , 则 的最小值是_______, 此时 _______.【习题20】已知 , 且 , 则 的最小值是 ; 的最大值是 .【习题21】已知实数 , 满足 , 且 , 则 的最小值是 ( )A. 33B. 26C. 25D. 21【习题22】若实数 满足 , 则 的最小值是 .【习题23】已知实数 , 满足: , 且 , 则 的取值范围是 .【习题24】实数 满足 , 则 的最小值是________.【习题25】已知实数 , 若 , 则 的值域为 .【习题26】设 为正实数, 则 的最小值为 .【习题27】若正数 满足 , 则 的最小值是 .【习题28】若存在正实数 , 使得 , 则实数 的最大值为_________.【习题29】若 , , 则 的最小值为___________.【习题30】已知正数 满足 , 则 的最大值为__________, 当且仅当___________.【习题31】已知,1,0=+>>b a b a 则bb a 214+-的最小值等于 . 【习题32】已知 , 则 的取值范围为__________.【习题33】已知实数 满足 , 则 的最小值为________, 的最小值为_______.【习题34】已知实数 满足 , 则 的取值范围是________.【习题35】已知 , , 且满足 , 则 的最小值为________.【习题36】已知非负实数 满足 ,则 的最大值.....【习题37】若 , , 则 的最大值为_______.【习题38】设正实数, 则的最小值为()... A...... B...... C...... D.【习题39】已知均为正数, 且, , 则的最小值为_________.【习题40】设实数且满足, 则使不等式恒成立的的最大值为______.【习题41】若, 且, 则的取值范围是______.【习题42】已知正实数满足, 则的最小值为________.【习题43】已知实数满足, 则的取值范围是_________.【习题44】已知实数满足, 且, 则的最大值为___________.【习题45】若正数满足, 则的最小值为( )A. 1B. 6C. 9D. 16【习题46】若正实数满足, 且不等式恒成立, 则实数的取值范围是. 【习题47】已知为正实数, 若, 则的最小值为.【习题48】若正数满足, 则的最大值为_________.【习题49】若实数和满足,则的取值范围为__________________.【习题50】设, , 则的最小值是.基本不等式(答案)【习题1】已知实数 且 , 则 的最小值是 .【答案】1【习题2】若实数 且 , 则 的最小值是 , 的最小值是 .【答案】 ,【习题3】已知 满足方程 , 当 时, 则 的最小值为_______.【答案】8【习题4】已知 为实数, 且 , 则 的最小值为_______. 【答案】3322+【习题5】已知 , , 则 的取值范围为 . 【答案】]22,22[-【习题6】已知 , , 则 的最小值为 .【习题7】若实数 满足 , 则 的范围是 .【答案】]0,2[-【习题8】 的三边 成等差, 且 , 则 的取值范围是 . 【答案】]7,6(【习题9】已知 二次不等式 对任意实数 恒成立, 则 的最小值为___________【答案】8【习题10】实数 满足 , 设 , 则 . 【答案】85【习题11】非零向量 夹角为 , 且 , 则 的取值范围为 . 【答案】]3,1(【习题12】已知 , 且 , 若 总成立, 则正实数 的取值范围是_______.【答案】),1[+∞【习题13】正实数 满足 , 则 的最小值为 .【答案】36-【习题14】已知实数 满足 则 的最小值为 , 的最小值为 . 【答案】3627+;845【习题15】已知直线 (其中 )与圆 相交于 、 两点, 为坐标原点, 且 , 则 的最小值为 .【答案】2【习题16】设 , 满足 , 则 的最小值是______. 【答案】332-【习题17】已知正实数 , 满足: , 则 的最大值是 . 【答案】3332+【习题18】已知正数 满足 , 则 的最小值为________. 【答案】222-【习题19】已知 , , 且 , 则 的最小值是_______, 此时 _______. 【答案】212+;2【习题20】已知 , 且 , 则 的最小值是 ; 的最大值是. 【答案】16;413-【习题21】已知实数 , 满足 , 且 , 则 的最小值是 ( )A. 33B. 26C. 25D. 21【答案】C【习题22】若实数 满足 , 则 的最小值是 .【答案】2【习题23】已知实数 , 满足: , 且 , 则 的取值范围是 . 【答案】]23,12[-【习题24】实数 满足 , 则 的最小值是________. 【答案】224-【习题25】已知实数 , 若 , 则 的值域为 . 【答案】]716,0[【习题26】设 为正实数, 则 的最小值为 .【答案】222-【习题27】若正数 满足 , 则 的最小值是 .【答案】5【习题28】若存在正实数 , 使得 , 则实数 的最大值为_________. 【答案】51 【习题29】若 , , 则 的最小值为___________. 【答案】212- 【习题30】已知正数 满足 , 则 的最大值为__________, 当且仅当___________. 【答案】31;1=x 【习题31】已知,1,0=+>>b a b a 则b b a 214+-的最小值等于 . 【答案】9【习题32】已知 , 则 的取值范围为__________.【答案】)1,2[--【习题33】已知实数 满足 , 则 的最小值为________, 的最小值为_______.【答案】 , 1【习题34】已知实数 满足 , 则 的取值范围是________.【答案】]3,3[-【习题35】已知 , , 且满足 , 则 的最小值为________. 【答案】223+【习题36】已知非负实数 满足 , 则 的最大值..... 【答案】241+【习题37】若 , , 则 的最大值为_______. 【答案】51【习题38】设正实数 , 则 的最小值为( )... A...... B...... C...... D.【答案】A【习题39】已知 均为正数, 且 , , 则 的最小值为_________. 【答案】23【习题40】设实数 且满足 , 则使不等式 恒成立的 的最大值为______. 【答案】522+【习题41】若 , 且 , 则 的取值范围是______. 【答案】]4,34[ 【习题42】已知正实数 满足 , 则 的最小值为________.【答案】55【习题43】已知实数 满足 , 则 的取值范围是_________. 【答案】9[1,]8【习题44】已知实数 满足 , 且 , 则 的最大值为___________. 【答案】3097【习题45】若正数 满足 , 则 的最小值为( )A. 1B. 6C. 9D. 16【答案】B【习题46】若正实数 满足 , 且不等式 恒成立, 则实数 的取值范围是 .【答案】(]5,3,2⎡⎫-∞-+∞⎪⎢⎣⎭【习题47】已知 为正实数, 若 , 则 的最小值为 .【答案】222+【习题48】若正数 满足 , 则 的最大值为_________.【答案】432【习题49】若实数和满足,则的取值范围为__________________. 【答案】]2,1(【习题50】设, , 则的最小值是【答案】24。
基本不等式30题解析

基本不等式30题解析一、多选题1.(23-24高一下·山东济宁·阶段练习)已知正实数,x y 满足2x y xy +=,则()A .16xy ≥B .29x y +≥C .6x y +>D .1831x y+≥-2.(21-22高一下·全国·开学考试)下列不等式一定成立的是()A .()21lg lg 04x x x ⎛⎫+≥> ⎝⎭B .()lgeln 21lg x x x+>>C .()21012x x x ≥>+D .()1121x x <∈+R 【答案】AD【分析】结合对数函数的单调性利用基本不等式判断A ,举反例判断BC ,根据指数函数的有界性判断D.3.(23-24高一上·安徽芜湖·阶段练习)已知,a b 均为实数,则()222a b a b ab+++的可能值为()A .43B .34C .1D .24.(22-23高一下·陕西西安·阶段练习)若62,63a b ==,则下列不等关系正确的有()A2B .114a b+>C .2212a b +>D .14ab <【答案】BCD【分析】根据题意分析可知()1,,0,1a b a b +=∈,结合不等式性质以及基本不等式逐项5.(23-24高三下·河南·阶段练习)已知位于第一象限的点(),a b 在曲线1x y+=上,则()A .()()111a b --=-B .4ab ≥C .49a b +≤D .221223a b +≥6.(23-24高一下·云南·阶段练习)已知p q 、为函数()lg f x x t =-的两个不相同的零点,则下列式子一定正确的是()A .222p q +<B .228p q +>C .33log log 0p q ⋅<D .1pq =由图可知,当0t >时,直线设p q <,则01p q <<<,由由()lg 0f q q t =-=,可得lg 对于A 选项,222p q pq +>=对于B 选项,2222p q p ++>对于C 选项,33log log 1p <=对于D 选项,由上可知1pq =故选:CD.7.(2024高三·全国·专题练习)已知x ≥1,则下列函数的最小值为2的有()A .22x y x =+B .2y =C .13y x x=-D .411y x x =-++【答案】ACD 【详解】因为x ≥1,所以+≥2(当且仅当x =2时取等号);y ==+>2,等号取不到;因为函数y =3x -在[1,+∞)上单调递增,所以3x -≥2;因为x ≥1,所以y =x -1+=x +1+-2≥4-2=2(当且仅当x =1时取等号).故选ACD.8.(2024高三·全国·专题练习)(多选)已知△ABC 的三个内角A ,B ,C 所对的边分别为a ,b ,c .若b =1,且a 2-c 2=2,则下列结论正确的是()A .a <32B .tan A +3tanC =0C .角B 的最大值为3πD .△ABC 的外接圆面积的最小值为π9.(23-24高一下·重庆·阶段练习)如图所示,在ABC 中,4BC =,且M 点为BC 边的中点,则下列结论正确的有()A .设G 是AM 的中点,则0GA GB GC ++=B .sin sin BAM ACCAM AB∠=∠C .若π3BAC ∠=,则AM的最小值为D .若π6BAM ∠=,则AC 边的最小值为2【详解】对于B ,分别在ABM 和ACM △中由正弦定理可得sin sin sin sin AMB BAMAC CM AMC CAM ⎧=⎪⎪∠∠⎨⎪=⎪∠∠⎩,因为2πBM CM AMB AMC ==⎧⎨∠+∠=⎩,则sinsin AB CAMAC BAM ∠=∠,正确;对于C ,在ABC 中,由余弦定理可得2216b c bc +-=,所以22162b c bc bc +=+≥,则16bc ≤,当且仅当4bc ==时取等,又2AB AC AM +=,所以AM AM ===,当且仅当4b c ==时取等,故AM 最大值为对于D ,在ABM 中,由正弦定理可得242πsin 6R==,故ABM 的外接圆圆O 的半径为2R =,则点A 在优弧 BM上运动,则AC 的最小值为2OC R R -=-=-,正确.故选:BD10.(2024·贵州毕节·二模)已知252100a b ==,则下列式子中正确的有()A .211a b+=B .121a b+=C .8ab >D .29a b +>【答案】BCD 【分析】由指对互化得到25log 100a =,2log 100b =,进而结合对数运算性质和基本不等式的应用即可求解.【详解】11.(2024·江苏·一模)已知,x y ∈R ,且123x =,124y =,则()A .y x >B .1x y +>C .14xy <D <【答案】ACD 【分析】用对数表示x ,y ,利用对数函数的性质、对数的计算、基本不等式等即可逐项计算得到答案.【详解】12.(23-24高一下·安徽宿州·开学考试)若正实数,a b 满足1a b +=,则下列选项中正确的是()A .ab 有最大值14B .122a b->C .14a b+的最小值是10D【答案】AB 【分析】利用均值不等式和“1”的妙用判断ACD ,由12a b b -=-讨论b 的范围判断B 即可.【详解】选项A :因为,a b 为正实数,所以2124a b ab +⎛⎫≤= ⎪⎝⎭,当且仅当12a b ==时等号成立,所以ab 有最大值14,A 说法正确;选项B :由1a b +=可得12a b b -=-,因为,a b 为正实数,所以01b <<,1121b -<-<,所以1212222a b b --<=<,B 说法正确;选项C :由题意可得()14144559a b a b a b a b b a ⎛⎫+=++=++≥+= ⎪⎝⎭,当且仅当4a bb a =,即13a =,23b =时等号成立,所以14a b +的最小值是9,C 说法错误;选项D :由A 得212a b =++=+≤,当且仅当12a b ==,不存在最小值,D 说法错误;故选:AB13.(23-24高一上·江苏连云港·期末)下列各函数中,最小值为2的是()A .2610y x x =-+B .3y x =-+C .1y xx=+D .2y =14.(23-24高三下·广东·阶段练习)若0a >,0b >,8a b +=,则下列不等式恒成立的是()A 4≤B 4+≥C .2232a b +≥D .1498a b +≥【详解】15.(23-24高一下·河南信阳·阶段练习)已知0x >,0y >,且24x y +=,则()A .ln ln ln2x y +≤B .248x y +<C .1294x y +≥D .324e e x x y-≥16.(23-24高一下·内蒙古鄂尔多斯·开学考试)下列函数中,最小值是4的有()A .()134x f x x=++B .()f x =C .()()31011f x x x x=+<<D .()f x =17.(23-24高三下·重庆大足·阶段练习)设正实数0x >,0y >,且满足3x y xy ++=,则()A .413x y +≥B .9xy ≤C .2218x y +≤D .1123x y +≥18.(2024·贵州贵阳·一模)已知0,0a b >>,且2a b +=,则()A .22a b+≥B .112a b+≥C .22log log 1a b +≤D .222a b +≥【答案】ABCD【分析】首先结合选项变形,再根据基本不等式,即可判断选项.19.(2024·河南信阳·一模)已知正数,m n 满足322m n+=,则()A .12mn ≥B .222m n +≥C .32m n +≥D .2,(0,),()2m n m n mn mn-∃∈+∞≥20.(23-24高一上·广东茂名·期中)下面命题正确的是()A .“1a >”是“11a<”的充分不必要条件B .命题“x ∃∈R ,使20x ax a ++<”是假命题,则实数a 的取值范围为04a ≤≤C .不等式21x>的解集是(),2-∞D .设a +∈R ,则24a a+的最小值为4.21.(23-24高三上·湖南常德·期末)已知0a b >>,则下列不等式一定成立的是()A .11a ba b >++B .2ab a b +C .()ln 2a b ab ++>D .111ln 1ln a b<22.(23-24高一上·江苏无锡·阶段练习)已知0a b >>,则下列不等式可能成立,也可能不成立的是()A .22()(1)a b b +>+B .11b b a a ->-2223.(23-24高一上·浙江·期末)设正实数,a b满足2a b+=,则()A.11a b+的最小值为2B.1122a b a b+++的最大值为23C2D.3ab b-的最大值为1424.(23-24高三下·河北·阶段练习)已知正数,a b 满足()()111a b --=,则下列选项正确的是()A .111a b+=B .25ab b+³C .4a b +≥D .228a b +≥25.(22-23高一上·江苏宿迁·期中)已知3824a b ==,则a ,b 满足的关系是()A .111a b+=B .112a b+=C .()()22112a b -+-<D .()()22112a b -+->26.(23-24高一上·河北石家庄·期末)下列说法正确的是()A .若a b >,则22a b >B .44ππcos sin 882-=27.(23-24高一上·安徽马鞍山·期末)若,m n 均为正数,且满足22m n +=,则()A .mn的最大值为12B .11m n+的最小值为3+C .24m n +的最小值为4D .2mm n+的最小值为1+28.(23-24高三下·云南昆明·阶段练习)已知0a b >>,下列说法正确的是()A .11a b b a+>+B .2b a a b+>C .若0c >,则b b ca a c+<+D .若c d >,则a c b d->-【答案】ABC29.(23-24高三上·海南·期末)已知0,0a b >>,且4a b ab +-=,则()A .3a b +≥B .104ab <≤或94ab ≥C .221(1)(1)2a b -+-≤D .11413a b <+≤或114a b+≥试卷第21页,共21页30.(23-24高一上·浙江杭州·期中)已知0,0a b >>,且1a b +=,则()A .41ab >B .2728a b +≥C .41912a b +≥D 2≤。