(江苏专版)高考数学一轮复习第九章解析几何第八节曲线与方程教案理(含解析)苏教版

合集下载

高考数学大一轮复习第九章平面解析几何9.8曲线与方程教师用书理苏教版

高考数学大一轮复习第九章平面解析几何9.8曲线与方程教师用书理苏教版

第九章平面解析几何 9.8 曲线与方程教师用书理苏教版1.曲线与方程的定义一般地,在直角坐标系中,如果某曲线C上的点与一个二元方程f(x,y)=0的实数解建立如下的对应关系:那么,这个方程叫做曲线的方程,这条曲线叫做方程的曲线.2.求动点的轨迹方程的基本步骤【知识拓展】1.“曲线C是方程f(x,y)=0的曲线”是“曲线C上的点的坐标都是方程f(x,y)=0的解”的充分不必要条件.2.曲线的交点与方程组的关系:(1)两条曲线交点的坐标是两个曲线方程的公共解,即两个曲线方程组成的方程组的实数解;(2)方程组有几组解,两条曲线就有几个交点;方程组无解,两条曲线就没有交点.【思考辨析】判断下列结论是否正确(请在括号中打“√”或“×”)(1)f(x0,y0)=0是点P(x0,y0)在曲线f(x,y)=0上的充要条件.( √)(2)方程x2+xy=x的曲线是一个点和一条直线.( ×)(3)到两条互相垂直的直线距离相等的点的轨迹方程是x 2=y 2.( × ) (4)方程y =x 与x =y 2表示同一曲线.( × ) (5)y =kx 与x =1ky 表示同一直线.( × )1.(教材改编)已知点F (14,0),直线l :x =-14,点B 是l 上的动点,若过点B 垂直于y 轴的直线与线段BF 的垂直平分线交于点M ,则点M 的轨迹是________. 答案 抛物线解析 由已知MF =MB ,根据抛物线的定义知, 点M 的轨迹是以点F 为焦点,直线l 为准线的抛物线.2.(2016·苏州模拟)方程(2x +3y -1)(x -3-1)=0表示的曲线是________________. 答案 一条直线和一条射线解析 原方程可化为⎩⎪⎨⎪⎧2x +3y -1=0,x -3≥0或x -3-1=0,即2x +3y -1=0(x ≥3)或x =4,故原方程表示的曲线是一条射线和一条直线.3.(2016·南通模拟)已知A (-2,0),B (1,0)两点,动点P 不在x 轴上,且满足∠APO =∠BPO ,其中O 为原点,则P 点的轨迹方程是________________. 答案 (x -2)2+y 2=4(y ≠0)解析 由角的平分线性质定理得PA =2PB , 设P (x ,y ),则x +2+y 2=2x -2+y 2,整理得(x -2)2+y 2=4(y ≠0).4.过椭圆x 2a 2+y 2b2=1(a >b >0)上任意一点M 作x 轴的垂线,垂足为N ,则线段MN 中点的轨迹方程是________________.答案 x 2a 2+4y 2b2=1解析 设MN 的中点为P (x ,y ),则点M (x,2y )在椭圆上,∴x 2a 2+y 2b 2=1,即x 2a 2+4y 2b2=1(a >b >0). 5.(2016·镇江模拟)若点P 在椭圆x 29+y 2=1上,F 1,F 2分别为椭圆的左,右焦点,且满足PF 1→·PF 2→=t ,则实数t 的取值范围是____________.答案 [-7,1]解析 设P (x ,y ),F 1(-22,0),F 2(22,0),PF 1→=(-22-x ,-y ),PF 2→=(22-x ,-y ),PF 1→·PF 2→=(-22-x )(22-x )+(-y )2=x 2+y 2-8.∵P 在椭圆x 29+y 2=1上,∴y 2=1-x 29,∴t =PF 1→·PF 2→=x 2+y 2-8 =89x 2-7,∵0≤x 2≤9, ∴-7≤t ≤1,故实数t 的取值范围为[-7,1].题型一 定义法求轨迹方程例1 如图,动圆C 1:x 2+y 2=t 2,1<t <3,与椭圆C 2:x 29+y 2=1相交于A ,B ,C ,D 四点.点A 1,A 2分别为C 2的左,右顶点.求直线AA 1与直线A 2B 交点M 的轨迹方程.解 由椭圆C 2:x 29+y 2=1,知A 1(-3,0),A 2(3,0).设点A 的坐标为(x 0,y 0), 由曲线的对称性,得B (x 0,-y 0), 设点M 的坐标为(x ,y ), 直线AA 1的方程为y =y 0x 0+3(x +3).①直线A 2B 的方程为y =-y 0x 0-3(x -3).② 由①②得y 2=-y 20x 20-9(x 2-9).③又点A (x 0,y 0)在椭圆C 2上,故y 20=1-x 209.④将④代入③得x 29-y 2=1(x <-3,y <0).因此点M 的轨迹方程为x 29-y 2=1(x <-3,y <0).思维升华 应用定义法求曲线方程的关键在于由已知条件推出关于动点的等量关系式,由等量关系结合曲线定义判断是何种曲线,再设出标准方程,用待定系数法求解.已知两个定圆O 1和O 2,它们的半径分别是1和2,且O 1O 2=4.动圆M 与圆O 1内切,又与圆O 2外切,建立适当的坐标系,求动圆圆心M 的轨迹方程,并说明轨迹是何种曲线. 解 如图所示,以O 1O 2的中点O 为原点,O 1O 2所在直线为x 轴建立平面直角坐标系. 由O 1O 2=4,得O 1(-2,0),O 2(2,0).设动圆M 的半径为r ,则由动圆M 与圆O 1内切,有MO 1=r -1;由动圆M 与圆O 2外切,有MO 2=r +2. ∴MO 2-MO 1=3<4=O 1O 2.∴点M 的轨迹是以O 1、O 2为焦点,实轴长为3的双曲线的左支.∴a =32,c =2,∴b 2=c 2-a2=74. ∴点M 的轨迹方程为4x 29-4y 27=1(x ≤-32).题型二 直接法求轨迹方程例2 (2016·常州模拟)已知圆O :x 2+y 2=4,点A (3,0),以线段AB 为直径的圆内切于圆O ,记点B 的轨迹为Γ.(1)求曲线Γ的方程;(2)直线AB 交圆O 于C ,D 两点,当B 为CD 的中点时,求直线AB 的方程. 解 (1)设AB 的中点为M ,切点为N ,连结OM ,ON ,则OM +MN =ON =2,取A 关于y 轴的对称点A ′,连结A ′B ,故A ′B +AB =2(OM +MN )=4.所以点B 的轨迹是以A ′,A 为焦点,长轴长为4的椭圆. 其中,a =2,c =3,b =1,则 曲线Γ的方程为x 24+y 2=1.(2)因为B 为CD 的中点,所以OB ⊥CD ,则OB →⊥AB →. 设B (x 0,y 0),则AB →=(x 0-3,y 0), 所以x 0(x 0-3)+y 20=0.又x 204+y 20=1,解得x 0=23,y 0=±23. 则k OB =±22,k AB =∓2, 则直线AB 的方程为y =±2(x -3), 即2x -y -6=0或2x +y -6=0.思维升华 直接法求曲线方程时最关键的就是把几何条件或等量关系翻译为代数方程,要注意翻译的等价性.通常将步骤简记为建系设点、列式、代换、化简、证明这五个步骤,但最后的证明可以省略,如果给出了直角坐标系则可省去建系这一步,求出曲线的方程后还需注意检验方程的纯粹性和完备性.在平面直角坐标系xOy 中,点P (a ,b )为动点,F 1,F 2分别为椭圆x 2a 2+y 2b2=1(a >b >0)的左,右焦点.已知△F 1PF 2为等腰三角形. (1)求椭圆的离心率e ;(2)设直线PF 2与椭圆相交于A ,B 两点,M 是直线PF 2上的点,满足AM →·BM →=-2,求点M 的轨迹方程.解 (1)设F 1(-c,0),F 2(c,0)(c >0). 由题意,可得PF 2=F 1F 2,即a -c2+b 2=2c ,整理得2⎝ ⎛⎭⎪⎫c a2+c a-1=0,得c a =-1(舍去)或c a =12.所以e =12.(2)由(1)知a =2c ,b =3c ,可得椭圆方程为3x 2+4y 2=12c 2,直线PF 2的方程为y =3(x -c ).A ,B 两点的坐标满足方程组⎩⎨⎧3x 2+4y 2=12c 2,y =3x -c ,消去y 并整理,得5x 2-8cx =0. 解得x 1=0,x 2=85c ,得方程组的解⎩⎨⎧x 1=0,y 1=-3c ,⎩⎪⎨⎪⎧x 2=85c ,y 2=335c .不妨设A ⎝ ⎛⎭⎪⎫85c ,335c ,B (0,-3c ).设点M 的坐标为(x ,y ),则AM →=⎝ ⎛⎭⎪⎫x -85c ,y -335c ,BM →=(x ,y +3c ).由y =3(x -c ),得c =x -33y . 于是AM →=⎝ ⎛⎭⎪⎫8315y -35x ,85y -335x ,BM →=(x ,3x ),由AM →·BM →=-2,即⎝⎛⎭⎪⎫8315y -35x ·x +⎝ ⎛⎭⎪⎫85y -335x ·3x =-2, 化简得18x 2-163xy -15=0. 将y =18x 2-15163x 代入c =x -33y ,得c =10x 2+516x >0.所以x >0.因此,点M 的轨迹方程是18x 2-163xy -15=0(x >0). 题型三 相关点法求轨迹方程例3 (2016·盐城模拟)如图所示,抛物线C 1:x 2=4y ,C 2:x 2=-2py (p >0).点M (x 0,y 0)在抛物线C 2上,过M 作C 1的切线,切点为A ,B (M 为原点O 时,A ,B 重合于O ).当x 0=1-2时,切线MA 的斜率为-12.(1)求p 的值;(2)当M 在C 2上运动时,求线段AB 中点N 的轨迹方程(A ,B 重合于O 时,中点为O ). 解 (1)因为抛物线C 1:x 2=4y 上任意一点(x ,y )的切线斜率为y ′=x2,且切线MA 的斜率为-12, 所以点A 的坐标为(-1,14),故切线MA 的方程为y =-12(x +1)+14.因为点M (1-2,y 0)在切线MA 及抛物线C 2上, 所以y 0=-12×(2-2)+14=-3-224,①y 0=--222p=-3-222p.②由①②得p =2.(2)设N (x ,y ),A (x 1,x 214),B (x 2,x 224),x 1≠x 2.由N 为线段AB 的中点,知x =x 1+x 22,③y =x 21+x 228.④所以切线MA ,MB 的方程分别为y =x 12(x -x 1)+x 214,⑤y =x 22(x -x 2)+x 224.⑥由⑤⑥得MA ,MB 的交点M (x 0,y 0)的坐标为x 0=x 1+x 22,y 0=x 1x 24.因为点M (x 0,y 0)在C 2上,即x 20=-4y 0,所以x 1x 2=-x 21+x 226.⑦由③④⑦得x 2=43y ,x ≠0.当x 1=x 2时,A ,B 重合于原点O ,AB 的中点N 为点O ,坐标满足x 2=43y .因此AB 的中点N 的轨迹方程是x 2=43y .思维升华 “相关点法”的基本步骤(1)设点:设被动点坐标为(x ,y ),主动点坐标为(x 1,y 1). (2)求关系式:求出两个动点坐标之间的关系式⎩⎪⎨⎪⎧x 1=f x ,y ,y 1=g x ,y(3)代换:将上述关系式代入已知曲线方程,便可得到所求动点的轨迹方程.设直线x -y =4a 与抛物线y 2=4ax 交于两点A ,B (a 为定值),C 为抛物线上任意一点,求△ABC 的重心的轨迹方程. 解 设△ABC 的重心为G (x ,y ),点C 的坐标为(x 0,y 0),A (x 1,y 1),B (x 2,y 2).由方程组⎩⎪⎨⎪⎧x -y =4a ,y 2=4ax ,消去y 并整理得x 2-12ax +16a 2=0.∴x 1+x 2=12a ,y 1+y 2=(x 1-4a )+(x 2-4a )=(x 1+x 2)-8a =4a .∵G (x ,y )为△ABC 的重心,∴⎩⎪⎨⎪⎧x =x 0+x 1+x 23=x 0+12a 3,y =y 0+y 1+y 23=y 0+4a3,∴⎩⎪⎨⎪⎧x 0=3x -12a ,y 0=3y -4a .又点C (x 0,y 0)在抛物线上,∴将点C 的坐标代入抛物线的方程得 (3y -4a )2=4a (3x -12a ), 即(y -4a 3)2=4a3(x -4a ).又点C 与A ,B 不重合,∴x 0≠(6±25)a , ∴△ABC 的重心的轨迹方程为(y -4a 3)2=4a 3(x -4a )(x ≠(6±253)a ).分类讨论思想在曲线方程中的应用典例 (16分)已知抛物线y 2=2px 经过点M (2,-22),椭圆x 2a 2+y 2b2=1的右焦点恰为抛物线的焦点,且椭圆的离心率为12.(1)求抛物线与椭圆的方程;(2)若P 为椭圆上一个动点,Q 为过点P 且垂直于x 轴的直线上的一点,OP OQ=λ(λ≠0),试求Q 的轨迹.思想方法指导 (1)由含参数的方程讨论曲线类型时,关键是确定分类标准,一般情况下,根据x 2,y 2的系数与0的关系及两者之间的大小关系进行分类讨论. (2)等价变换是解题的关键:即必须分三种情况讨论轨迹方程. (3)区分求轨迹方程与求轨迹问题. 规范解答解 (1)因为抛物线y 2=2px 经过点M (2,-22), 所以(-22)2=4p ,解得p =2.[2分] 所以抛物线的方程为y 2=4x ,其焦点为F (1,0),即椭圆的右焦点为F (1,0),得c =1. 又椭圆的离心率为12,所以a =2,可得b 2=4-1=3,[4分] 故椭圆的方程为x 24+y 23=1.[5分](2)设Q (x ,y ),其中x ∈[-2,2], 设P (x ,y 0),因为P 为椭圆上一点,所以x 24+y 203=1,解得y 20=3-34x 2.[7分]由OP OQ =λ可得OP 2OQ 2=λ2, 故x 2+3-34x 2x 2+y2=λ2,得(λ2-14)x 2+λ2y 2=3,x ∈[-2,2].[10分]当λ2=14,即λ=12时,得y 2=12,点Q 的轨迹方程为y =±23,x ∈[-2,2], 此轨迹是两条平行于x 轴的线段;[12分] 当λ2<14,即0<λ<12时,得到x 23λ2-14+y 23λ2=1,此轨迹表示实轴在y 轴上的双曲线满足x ∈[-2,2]的部分;[14分] 当λ2>14,即λ>12时,得到x 23λ2-14+y 23λ2=1.此轨迹表示长轴在x 轴上的椭圆满足x ∈[-2,2]的部分.[16分]1.(2016·无锡质检)设定点M 1(0,-3),M 2(0,3),动点P 满足条件PM 1+PM 2=a +9a(其中a是正常数),则点P 的轨迹是__________. 答案 椭圆或线段解析 ∵a 是正常数,∴a +9a≥29=6.当PM 1+PM 2=6时,点P 的轨迹是线段M 1M 2;当a +9a>6时,点P 的轨迹是椭圆.2.(2016·南京模拟)已知点M 与双曲线x 216-y 29=1的左,右焦点F 1,F 2的距离之比为2∶3,则点M 的轨迹方程为________________. 答案 x 2+y 2+26x +25=0解析 F 1(-5,0),F 2(5,0),设M (x ,y ),则x +2+y 2x -2+y 2=49,化简得x 2+y 2+26x +25=0. 3.已知点P 是直线2x -y +3=0上的一个动点,定点M (-1,2),Q 是线段PM 延长线上的一点,且PM =MQ ,则Q 点的轨迹方程是____________. 答案 2x -y +5=0解析 由题意知,M 为PQ 中点, 设Q (x ,y ),则P 为(-2-x,4-y ), 代入2x -y +3=0,得2x -y +5=0.4.已知圆锥曲线mx 2+4y 2=4m 的离心率e 为方程2x 2-5x +2=0的根,则满足条件的圆锥曲线的个数为________. 答案 3解析 ∵e 是方程2x 2-5x +2=0的根, ∴e =2或e =12.mx 2+4y 2=4m 可化为x 24+y 2m=1,当它表示焦点在x 轴上的椭圆时, 有4-m 2=12,∴m =3; 当它表示焦点在y 轴上的椭圆时, 有m -4m=12,∴m =163; 当它表示焦点在x 轴上的双曲线时,可化为x 24-y 2-m=1,有4-m2=2,∴m =-12. ∴满足条件的圆锥曲线有3个.5.已知点A (1,0),直线l :y =2x -4,点R 是直线l 上的一点,若RA →=AP →,则点P 的轨迹方程为____________.答案 y =2x解析 设P (x ,y ),R (x 1,y 1),由RA →=AP →知,点A 是线段RP 的中点,∴⎩⎪⎨⎪⎧x +x12=1,y +y12=0,即⎩⎪⎨⎪⎧x 1=2-x ,y 1=-y .∵点R (x 1,y 1)在直线y =2x -4上,∴y 1=2x 1-4,∴-y =2(2-x )-4,即y =2x .6.平面直角坐标系中,已知两点A (3,1),B (-1,3),若点C 满足OC →=λ1OA →+λ2OB →(O 为原点),其中λ1,λ2∈R ,且λ1+λ2=1,则点C 的轨迹是________. 答案 直线解析 设C (x ,y ),则OC →=(x ,y ),OA →=(3,1),OB →=(-1,3),∵OC →=λ1OA →+λ2OB →,∴⎩⎪⎨⎪⎧x =3λ1-λ2,y =λ1+3λ2,又λ1+λ2=1,∴x +2y -5=0,表示一条直线.7.曲线C 是平面内与两个定点F 1(-1,0)和F 2(1,0)的距离的积等于常数a 2(a >1)的点的轨迹.给出下列三个结论: ①曲线C 过坐标原点; ②曲线C 关于坐标原点对称;③若点P 在曲线C 上,则△F 1PF 2的面积不大于12a 2.其中,所有正确结论的序号是________. 答案 ②③解析 因为原点O 到两个定点F 1(-1,0),F 2(1,0)的距离的积是1,且a >1,所以曲线C 不过原点,即①错误;因为F 1(-1,0),F 2(1,0)关于原点对称,所以PF 1·PF 2=a 2对应的轨迹关于原点对称,即②正确;因为12F PF S ∆=12PF 1·PF 2·sin∠F 1PF 2≤12PF 1·PF 2=12a 2,即△F 1PF 2的面积不大于12a 2,所以③正确.8.(2017·南通月考)已知△ABC 的顶点A ,B 坐标分别为(-4,0),(4,0),C 为动点,且满足sin B +sin A =54sin C ,则C 点的轨迹方程为______ __________.答案x 225+y 29=1(x ≠±5)解析 由sin B +sin A =54sin C 可知b +a =54c =10,则AC +BC =10>8=AB ,∴满足椭圆定义.令椭圆方程为x 2a ′2+y 2b ′2=1,则a ′=5,c ′=4,b ′=3,则轨迹方程为x 225+y 29=1(x ≠±5). 9.如图,P 是椭圆x 2a 2+y 2b2=1上的任意一点,F 1,F 2是它的两个焦点,O 为坐标原点,且OQ →=PF 1→+PF 2→,则动点Q 的轨迹方程是________.答案 x 24a 2+y 24b2=1解析 由于OQ →=PF 1→+PF 2→, 又PF 1→+PF 2→=PM →=2PO →=-2OP →, 设Q (x ,y ),则OP →=-12OQ →=(-x 2,-y 2),即P 点坐标为(-x 2,-y2),又P 在椭圆上,则有-x22a 2+-y22b 2=1,即x 24a 2+y 24b2=1.10.已知圆的方程为x 2+y 2=4,若抛物线过点A (-1,0),B (1,0)且以圆的切线为准线,则抛物线焦点的轨迹方程是________________. 答案x 24+y 23=1(y ≠0) 解析 设抛物线的焦点为F ,过A ,B ,O 作准线的垂线AA 1,BB 1,OO 1,则AA 1+BB 1=2OO 1=4, 由抛物线定义得AA 1+BB 1=FA +FB ,∴FA +FB =4>2=AB ,故F 点的轨迹是以A ,B 为焦点, 长轴长为4的椭圆(去掉长轴两端点). ∴轨迹方程为x 24+y 23=1(y ≠0).11.过点(1,0)的直线l 与中心在原点,焦点在x 轴上且离心率为22的椭圆C 相交于A 、B 两点,直线y =12x 过线段AB 的中点,同时椭圆C 上存在一点与右焦点关于直线l 对称,试求直线l 与椭圆C 的方程.解 由e =c a =22,得a 2-b 2a 2=12,从而a 2=2b 2,c =b .设椭圆C 的方程为x 2+2y 2=2b 2,A (x 1,y 1)、B (x 2,y 2),∵A 、B 在椭圆C 上,∴x 21+2y 21=2b 2,x 22+2y 22=2b 2, 两式相减得(x 21-x 22)+2(y 21-y 22)=0, 即y 1-y 2x 1-x 2=-x 1+x 2y 1+y 2.设AB 中点坐标为(x 0,y 0),则k AB =-x 02y 0,又(x 0,y 0)在直线y =12x 上,故y 0=12x 0,于是-x 02y 0=-1,即k AB =-1,故直线l 的方程为y =-x +1.右焦点(b,0)关于直线l 的对称点设为(x ′,y ′),则⎩⎪⎨⎪⎧y ′x ′-b =1,y ′2=-x ′+b2+1, 解得⎩⎪⎨⎪⎧x ′=1,y ′=1-b .由点(1,1-b )在椭圆上,得1+2(1-b )2=2b 2, ∴b =34,∴b 2=916,a 2=98.∴所求椭圆C 的方程为x 298+y 2916=1.12.(2016·连云港模拟)定圆M :(x +3)2+y 2=16,动圆N 过点F (3,0)且与圆M 相切,记圆心N 的轨迹为E . (1)求轨迹E 的方程;(2)设点A ,B ,C 在E 上运动,A 与B 关于原点对称,且AC =BC ,当△ABC 的面积最小时,求直线AB 的方程.解 (1)∵F (3,0)在圆M :(x +3)2+y 2=16内, ∴圆N 内切于圆M .∵NM +NF =4>FM ,∴点N 的轨迹E 为椭圆,且2a =4,c =3,∴b =1, ∴轨迹E 的方程为x 24+y 2=1.(2)①当AB 为长轴(或短轴)时,S △ABC =12OC ·AB =2.②当直线AB 的斜率存在且不为0时, 设直线AB 的方程为y =kx ,A (x A ,y A ),联立方程⎩⎪⎨⎪⎧x 24+y 2=1,y =kx ,得x 2A =41+4k 2,y 2A =4k 21+4k2,∴OA 2=x 2A +y 2A =+k21+4k2. 将上式中的k 替换为-1k,可得OC 2=+k 2k 2+4.∴S △ABC =2S △AOC =OA ·OC=+k21+4k 2·+k 2k 2+4=+k 2+4k 2k 2+.∵+4k 2k 2+≤+4k2+k 2+2=+k 22,∴S △ABC ≥85,当且仅当1+4k 2=k 2+4,即k =±1时等号成立,此时△ABC 面积的最小值是85.∵2>85,∴△ABC 面积的最小值是85,此时直线AB 的方程为y =x 或y =-x .*13. (2016·河北衡水中学三调)如图,已知圆E :(x +3)2+y 2=16,点F (3,0),P 是圆E 上任意一点,线段PF 的垂直平分线和半径PE 相交于点Q .(1)求动点Q 的轨迹Γ的方程;(2)设直线l 与(1)中轨迹Γ相交于A ,B 两点,直线OA ,l ,OB 的斜率分别为k 1,k ,k 2(其中k >0),△OAB 的面积为S ,以OA ,OB 为直径的圆的面积分别为S 1,S 2,若k 1,k ,k 2恰好构成等比数列,求S 1+S 2S的取值范围. 解 (1)连结QF ,根据题意,QP =QF ,则QE +QF =QE +QP =4>EF =23,故动点Q 的轨迹Γ是以E ,F 为焦点,长轴长为4的椭圆.设其方程为x 2a 2+y 2b2=1(a >b >0),可知a =2,c =3,∴b =1, ∴点Q 的轨迹Γ的方程为x 24+y 2=1.(2)设直线l 的方程为y =kx +m ,A (x 1,y 1),B (x 2,y 2).联立方程⎩⎪⎨⎪⎧y =kx +m ,x 2+4y 2=4,整理得,(1+4k 2)x 2+8kmx +4m 2-4=0, Δ=16(1+4k 2-m 2)>0,x 1+x 2=-8km 1+4k 2,x 1x 2=m 2-1+4k 2. ∵k 1,k ,k 2构成等比数列, ∴k 2=k 1k 2=kx 1+mkx 2+mx 1x 2,整理得km (x 1+x 2)+m 2=0, ∴-8k 2m 21+4k 2+m 2=0,解得k 2=14. ∵k >0,∴k =12.此时Δ=16(2-m 2)>0,解得m ∈(-2,2).又由A ,O ,B 三点不共线得m ≠0, 从而m ∈(-2,0)∪(0,2).故S =12·AB ·d =121+k 2|x 1-x 2|·|m |1+k 2=12x 1+x 22-4x 1x 2·|m |=2-m 2|m |. 又x 214+y 21=x 224+y 22=1, 则S 1+S 2=π4(x 21+y 21+x 22+y 22)=π4(34x 21+34x 22+2) =3π16[(x 1+x 2)2-2x 1x 2]+π2=5π4为定值. ∴S 1+S 2S =5π4×1-m2m2≥5π4, 当且仅当m =±1时等号成立. 综上,S 1+S 2S ∈[5π4,+∞).。

(江苏专版)高考数学一轮复习第九章解析几何第三节圆与方程教案理(含解析)苏教版

(江苏专版)高考数学一轮复习第九章解析几何第三节圆与方程教案理(含解析)苏教版

(江苏专版)高考数学一轮复习第九章解析几何第三节圆与方程教案理(含解析)苏教版第三节圆与方程1.圆的定义及方程定义平面内与定点的距离等于定长的点的集合(轨迹)标准方程(x-a)2+(y-b)2=r2(r>0)圆心:(a,b),半径:r一般方程x2+y2+Dx+Ey+F=0,(D2+E2-4F>0)圆心:⎝⎛⎭⎪⎫-D2,-E2,半径:12D2+E2-4F2.点与圆的位置关系点M(x0,y0)与圆(x-a)2+(y-b)2=r2的位置关系:(1)若M(x0,y0)在圆外,则(x0-a)2+(y0-b)2>r2.(2)若M(x0,y0)在圆上,则(x0-a)2+(y0-b)2=r2.(3)若M(x0,y0)在圆内,则(x0-a)2+(y0-b)2<r2.[小题体验]1.设圆的方程是x2+y2+2ax+2y+(a-1)2=0,若0<a<1,则原点与圆的位置关系是________.解析:将圆的一般方程化成标准方程,得(x+a)2+(y+1)2=2a,因为0<a<1,所以(0+a)2+(0+1)2-2a=(a-1)2>0,即0+a2+0+12>2a,所以原点在圆外.答案:原点在圆外2.圆C的直径的两个端点分别是A(-1,2),B(1,4),则圆C的标准方程为________.解析:设圆心C的坐标为(a,b),则a=-1+12=0,b=2+42=3,故圆心C(0,3).半径r=12AB=12[1--1]2+4-22= 2.所以圆C的标准方程为x2+(y-3)2=2.答案:x2+(y-3)2=23.若点(1,1)在圆(x-a)2+(y+a)2=4的内部,则实数a的取值范围是________.解析:因为点(1,1)在圆(x -a )2+(y +a )2=4的内部,所以(1-a )2+(1+a )2<4. 即a 2<1,故-1<a <1. 答案:(-1,1)对于方程x 2+y 2+Dx +Ey +F =0表示圆时易忽视D 2+E 2-4F >0这一成立条件.[小题纠偏]若点(1,-1)在圆x 2+y 2-x +y +m =0外,则m 的取值范围是________.解析:由题意可知⎩⎪⎨⎪⎧-12+12-4m >0,1+-12-1-1+m >0,解得0<m <12.答案:⎝ ⎛⎭⎪⎫0,12考点一 圆的方程基础送分型考点——自主练透[题组练透]1.(2019·东台中学检测)已知圆C 经过A (5,1),B (1,3)两点,圆心在x 轴上,则圆C 的标准方程为________.解析:设圆心坐标为(a,0),则a -52+-12=a -12+-32,解得a=2,∴圆心为(2,0),半径为10,∴圆C 的标准方程为(x -2)2+y 2=10.答案:(x -2)2+y 2=102.(2018·徐州模拟)若圆C 的半径为1,点C 与点(2,0)关于点(1,0)对称,则圆C 的标准方程为____________.解析:因为点C 与点(2,0)关于点(1,0)对称,故由中点坐标公式可得C (0,0),所以所求圆的标准方程为x 2+y 2=1.答案:x 2+y 2=13.以线段AB :x +y -2=0(0≤x ≤2)为直径的圆的标准方程为____________. 解析:因为AB :x +y -2=0(0≤x ≤2), 所以A (0,2),B (2,0),AB =0-22+2-02=2 2.所以点A ,B 的中点为(1,1),故所求圆的标准方程为(x -1)2+(y -1)2=2. 答案:(x -1)2+(y -1)2=24.(2019·盐城中学测试) 圆经过点A (2,-3)和B (-2,-5). (1)若圆的面积最小,求圆的方程;(2)若圆心在直线x -2y -3=0上,求圆的方程. 解:(1)要使圆的面积最小,则AB 为圆的直径, 所以圆心为(0,-4),半径r =12AB =5,所以所求圆的方程为x 2+(y +4)2=5. (2)因为k AB =12,AB 的中点为(0,-4),所以直线AB 的中垂线方程为y +4=-2x ,即2x +y +4=0,解方程组⎩⎪⎨⎪⎧2x +y +4=0,x -2y -3=0,得⎩⎪⎨⎪⎧x =-1,y =-2.所以圆心为(-1,-2).根据两点间的距离公式得半径r =10, 因此所求圆的方程为(x +1)2+(y +2)2=10.[谨记通法]1.求圆的方程的2种方法(1)直接法:根据圆的几何性质,直接求出圆心坐标和半径,进而写出方程. (2)待定系数法:①若已知条件与圆心(a ,b )和半径r 有关,则设圆的标准方程,依据已知条件列出关于a ,b ,r 的方程组,从而求出a ,b ,r 的值;②若已知条件没有明确给出圆心或半径,则选择圆的一般方程,依据已知条件列出关于D ,E ,F 的方程组,进而求出D ,E ,F 的值.2.确定圆心位置的3种方法(1)圆心在过切点且与切线垂直的直线上. (2)圆心在圆的任意弦的垂直平分线上. (3)两圆相切时,切点与两圆圆心共线.[提醒] 解答圆的有关问题,应注意数形结合,充分运用圆的几何性质. 考点二 与圆有关的最值问题 题点多变型考点——多角探明[锁定考向]与圆有关的最值问题是命题的热点内容,它着重考查数形结合与转化思想. 常见的命题角度有: (1)斜率型最值问题; (2)截距型最值问题;(3)距离型最值问题.[题点全练]角度一:斜率型最值问题1.(2019·涞水月考)已知实数x ,y 满足方程(x -3)2+(y -3)2=6,求y x的最大值与最小值.解:方程(x -3)2+(y -3)2=6表示以(3,3)为圆心,6为半径的圆.yx的几何意义是圆上一点与原点连线的斜率, 所以设y x=k ,即y =kx .当直线y =kx 与圆相切时,斜率k 取最大值或最小值, 此时|3k -3|k 2+1=6,解得k =3±2 2.所以y x的最大值为3+22,最小值为3-2 2. 角度二:截距型最值问题2.(2018·东海高级中学测试)已知实数x ,y 满足(x -2)2+(y +1)2=1,则2x -y 的最大值为________.解析:令b =2x -y ,当直线2x -y =b 与圆相切时,b 取得最值. 由|2×2+1-b |5=1,解得b =5±5,所以2x -y 的最大值为5+ 5. 答案:5+ 53.(2019·启东模拟)已知非负实数x ,y 满足x ≠y ,且x 2+y 2x +y≤4,则S =y -2x 的最小值是________.解析:由x 2+y 2x +y≤4,得x 2+y 2≤4(x +y ),移项配方得(x -2)2+(y -2)2≤8,此不等式表示以C (2,2)为圆心,以22为半径的圆及其内部在第一象限与x 轴、y 轴正半轴的部分(除去y =x ).将S =y -2x 变形为y =2x +S ,当直线l :y =2x +S 与圆相切于第一象限时,S 取得最小值,由圆的切线性质,圆心C (2,2)到l 的距离等于半径长,即|2+S |5=22,解得S =-2-210(S =-2+210舍去).故S =y -2x 的最小值是-2-210.答案:-2-210 角度三:距离型最值问题4.已知实数x ,y 满足方程x 2+y 2-4x +1=0,求x 2+y 2的最大值和最小值.解:如图所示,x 2+y 2表示圆上的一点与原点距离的平方,由平面几何知识知,在原点和圆心连线与圆的两个交点处取得最大值和最小值.又圆心到原点的距离为2-02+0-02=2,所以x 2+y 2的最大值是(2+3)2=7+43,x 2+y 2的最小值是(2-3)2=7-4 3.[通法在握]与圆有关的最值问题的3种常见转化法 (1)形如μ=y -bx -a形式的最值问题,可转化为动直线斜率的最值问题. (2)形如t =ax +by 形式的最值问题,可转化为动直线截距的最值问题.(3)形如(x -a )2+(y -b )2形式的最值问题,可转化为动点到定点的距离的平方的最值问题.[演练冲关]1.(2019·淮安检测)已知x ,y 满足x 2+y 2-4x -6y +12=0,则x 2+y 2的最小值为________.解析:x 2+y 2-4x -6y +12=0可化为(x -2)2+(y -3)2=1,则圆心坐标为(2,3),圆的半径r =1.因为x 2+y 2表示圆上的一点与原点距离的平方,由平面几何知识知,在圆心与原点连线与圆的两个交点处取得最值,又圆心到原点的距离为2-02+3-02=13,所以x 2+y 2的最小值为(13-1)2=14-213.答案:14-2132.在平面直角坐标系xOy 中,点A (-1,0),B (1,0).若动点C 满足AC =2BC ,则△ABC 的面积的最大值是________.解析:设C (x ,y ),则(x +1)2+y 2=2(x -1)2+2y 2,化简得(x -3)2+y 2=8.其中y ≠0,从而S △ABC =12×2×|y |≤22,即△ABC 的面积的最大值是2 2.答案:2 2考点三 圆的方程的简单应用重点保分型考点——师生共研 [典例引领](2018·扬州调研)设△ABC 顶点坐标A (0,a ),B (-3a ,0),C (3a ,0),其中a >0,圆M 为△ABC 的外接圆.(1)求圆M 的方程;(2)当a 变化时,圆M 是否过某一定点,请说明理由.解:(1)设圆M 的方程为x 2+y 2+Dx +Ey +F =0(D 2+E 2-4F >0). 因为圆M 过点A (0,a ),B (-3a ,0),C (3a ,0),所以⎩⎨⎧a 2+aE +F =0,3a -3aD +F =0,3a +3aD +F =0,解得⎩⎪⎨⎪⎧D =0,E =3-a ,F =-3a .所以圆M 的方程为x 2+y 2+(3-a )y -3a =0.(2)因为圆M 的方程可化为(x 2+y 2+3y )-(3+y )a =0.由⎩⎪⎨⎪⎧x 2+y 2+3y =0,3+y =0,解得x =0,y =-3.所以圆M 过定点(0,-3).[由题悟法]圆的方程是一个二元二次方程,所以有时候我们可从函数和方程的角度对其相关问题进行分析,也可利用方程中x ,y 的取值范围来确定有关函数的值或范围.[即时应用]已知圆C 过点P (1,1),且与圆M :(x +2)2+(y +2)2=r 2(r >0)关于直线x +y +2=0对称.(1)求圆C 的方程;(2)设Q 为圆C 上的一个动点,求P Q ―→·M Q ―→的取值范围.解:(1)设圆心C (a ,b ),则⎩⎪⎨⎪⎧a -22+b -22+2=0,b +2a +2=1,解得⎩⎪⎨⎪⎧a =0,b =0,则圆C 的方程为x 2+y 2=r 2,将点P 的坐标代入得r 2=2, 故圆C 的方程为x 2+y 2=2. (2)设Q(x ,y ),则x 2+y 2=2,且P Q ―→·M Q ―→=(x -1,y -1)·(x +2,y +2)=x 2+y 2+x +y -4=x +y -2. 令x =2cos θ,y =2sin θ,所以P Q ―→·M Q ―→=x +y -2=2(sin θ+cos θ)-2 =2sin ⎝⎛⎭⎪⎫θ+π4-2, 所以P Q ―→·M Q ―→的取值范围为[-4,0].一抓基础,多练小题做到眼疾手快1.若圆的半径为3,圆心与点(2,0)关于点(1,0)对称,则圆的标准方程为________. 答案:x 2+y 2=92.在平面直角坐标系xOy 中,设点P 为圆O :x 2+y 2+2x =0上任意一点,点Q(2a ,a +3)(a ∈R),则线段P Q 长度的最小值为________.解析:圆O :x 2+y 2+2x =0,即 (x +1)2+y 2=1,表示以(-1,0)为圆心、半径为1的圆,则点Q(2a ,a +3)到圆心(-1,0)的距离d =2a +12+a +32=5a 2+10a +10=5a +12+5,所以当a =-1时,d 取得最小值为5,故线段P Q 长度的最小值为5-1.答案:5-13.若圆x 2+y 2+2ax -b 2=0的半径为2,则点(a ,b )到原点的距离为________. 解析:由半径r =12D 2+E 2-4F =124a 2+4b 2=2得,a 2+b 2=2.所以点(a ,b )到原点的距离d =a 2+b 2=2. 答案:24.若圆C 的半径为1,其圆心与点(1,0)关于直线y =x 对称,则圆C 的标准方程为________.解析:根据题意得点(1,0)关于直线y =x 对称的点(0,1)为圆心, 又半径r =1,所以圆C 的标准方程为x 2+(y -1)2=1. 答案:x 2+(y -1)2=15.(2019·兴化月考)经过点(2,0)且圆心是直线x =2与直线x +y =4的交点的圆的标准方程为________.解析:由⎩⎪⎨⎪⎧x =2,x +y =4得⎩⎪⎨⎪⎧x =2,y =2,即两直线的交点坐标为(2,2),则圆心坐标为(2,2).又点(2,0)在圆上,所以半径r =2,则圆的标准方程为(x -2)2+(y -2)2=4.答案:(x -2)2+(y -2)2=46.设P 是圆(x -3)2+(y +1)2=4上的动点,Q 是直线 x =-3上的动点,则P Q 的最小值为________.解析:如图所示,圆心M (3,-1)与定直线x =-3的最短距离为M Q =3-(-3)=6,又圆的半径为2,故所求最短距离为6-2=4.答案:4二保高考,全练题型做到高考达标1.(2019·无锡调研)设两条直线x +y -2=0,3x -y -2=0的交点为M ,若点M 在圆 (x -m )2+y 2=5内,则实数m 的取值范围为________.解析:联立⎩⎪⎨⎪⎧x +y -2=0,3x -y -2=0,解得⎩⎪⎨⎪⎧x =1,y =1,则M (1,1),由交点M 在圆(x -m )2+y 2=5的内部,可得(1-m )2+1<5,解得-1<m <3. 故实数m 的取值范围为(-1,3). 答案:(-1,3)2.已知点P (x ,y )在圆x 2+(y -1)2=1上运动,则y -1x -2的最大值与最小值分别为________.解析:设y -1x -2=k ,则k 表示点P (x ,y )与点(2,1)连线的斜率.过两点连线的直线方程为kx -y +1-2k =0,当该直线与圆相切时,k 取得最大值与最小值,由|2k |k 2+1=1,解得k =±33.答案:33,-333.已知圆C 与直线y =x 及x -y -4=0都相切,圆心在直线y =-x 上,则圆C 的方程为________________.解析:由题意知x -y =0 和x -y -4=0之间的距离为|4|2=22,所以r = 2.又因为x +y =0与x -y =0,x -y -4=0均垂直,所以由x +y =0和x -y =0联立得交点坐标为(0,0),由x +y =0和x -y -4=0联立得交点坐标为(2,-2),所以圆心坐标为(1,-1),圆C 的标准方程为(x -1)2+(y +1)2=2.答案:(x -1)2+(y +1)2=24.(2018·苏州期末)在平面直角坐标系xOy 中,已知过点A (2,-1)的圆C 和直线x +y =1相切,且圆心在直线y =-2x 上,则圆C 的标准方程为________________.解析:根据题意,设圆C 的圆心为(m ,-2m ),半径为r ,则⎩⎪⎨⎪⎧m -22+-2m +12=r 2,|m -2m -1|2=r ,解得m =1,r =2,所以圆C 的方程为(x -1)2+(y +2)2=2. 答案:(x -1)2+(y +2)2=25.已知直线l :x +my +4=0,若曲线x 2+y 2+2x -6y +1=0上存在两点P ,Q 关于直线l 对称,则m =________.解析:因为曲线x 2+y 2+2x -6y +1=0是圆(x +1)2+(y -3)2=9,若圆(x +1)2+(y -3)2=9上存在两点P ,Q 关于直线l 对称,则直线l :x +my +4=0过圆心(-1,3),所以-1+3m +4=0,解得m =-1.答案:-16.在平面直角坐标系xOy 内,若曲线C :x 2+y 2+2ax -4ay +5a 2-4=0上所有的点均在第四象限内,则实数a 的取值范围为________.解析:圆C 的标准方程为(x +a )2+(y -2a )2=4,所以圆心为(-a,2a ),半径r =2,故由题意知⎩⎪⎨⎪⎧a <0,|-a |>2,|2a |>2,解得a <-2,故实数a 的取值范围为(-∞,-2).答案:(-∞,-2)7.当方程x 2+y 2+kx +2y +k 2=0所表示的圆的面积取最大值时,直线y =(k -1)x +2的倾斜角α=________.解析:由题意可知,圆的半径r =12k 2+4-4k 2=124-3k 2≤1,当半径r 取最大值时,圆的面积最大,此时k =0,r =1,所以直线方程为y =-x +2,则有tan α=-1,又α∈[0,π),故α=3π4.答案:3π48.(2018·滨海中学检测)已知点P (0,2)为圆C :(x -a )2+(y -a )2=2a 2外一点,若圆C 上存在点Q ,使得∠CP Q =30°,则正数a 的取值范围是________.解析:由圆C :(x -a )2+(y -a )2=2a 2,得圆心为C (a ,a ),半径r =2a , ∴CP =a 2+a -22,设过P 的一条切线与圆的切点是T , 则CT =2a ,当Q 为切点时,∠CP Q 最大. ∵圆C 上存在点Q 使得∠CP Q =30°, ∴CT CP≥sin 30°,即2aa 2+a -22≥12,整理可得3a 2+2a -2≥0,解得a ≥7-13或a ≤-7-13(舍去).又点 P (0,2)为圆C :(x -a )2+(y -a )2=2a 2外一点,∴a 2+(2-a )2>2a 2,解得a <1.故正数a 的取值范围是⎣⎢⎡⎭⎪⎫7-13,1.答案:⎣⎢⎡⎭⎪⎫7-13,19.已知以点P 为圆心的圆经过点A (-1,0)和B (3,4),线段AB 的垂直平分线交圆P 于点C 和D ,且CD =410.(1)求直线CD 的方程; (2)求圆P 的方程.解:(1)由题意知,直线AB 的斜率k =1,中点坐标为(1,2). 则直线CD 的方程为y -2=-(x -1),即x +y -3=0. (2)设圆心P (a ,b ),则由点P 在CD 上得a +b -3=0.① 又因为直径CD =410, 所以PA =210, 所以(a +1)2+b 2=40.② 由①②解得⎩⎪⎨⎪⎧a =-3,b =6或⎩⎪⎨⎪⎧a =5,b =-2.所以圆心P (-3,6)或P (5,-2).所以圆P 的方程为(x +3)2+(y -6)2=40或(x -5)2+(y +2)2=40. 10.已知M (m ,n )为圆C :x 2+y 2-4x -14y +45=0上任意一点. (1)求m +2n 的最大值; (2)求n -3m +2的最大值和最小值. 解:(1)因为x 2+y 2-4x -14y +45=0的圆心C (2,7),半径r =22,设m +2n =t ,将m +2n =t 看成直线方程,因为该直线与圆有公共点, 所以圆心到直线的距离d =|2+2×7-t |12+22≤22, 解上式得,16-210≤t ≤16+210, 所以所求的最大值为16+210. (2)记点Q(-2,3), 因为n -3m +2表示直线M Q 的斜率k , 所以直线M Q 的方程为y -3=k (x +2), 即kx -y +2k +3=0. 由直线M Q 与圆C 有公共点, 得|2k -7+2k +3|1+k2≤2 2.可得2-3≤k ≤2+3,所以n -3m +2的最大值为2+3,最小值为2- 3. 三上台阶,自主选做志在冲刺名校1.(2019·宁海中学模拟)如果直线2ax -by +14=0(a >0,b >0)和函数f (x )=mx +1+1(m >0,m ≠1)的图象恒过同一个定点,且该定点始终落在圆(x -a +1)2+(y +b -2)2=25的内部或圆上,那么b a 的取值范围是________.解析:函数f (x )=m x +1+1的图象恒过点(-1,2),代入直线2ax -by +14=0,可得-2a -2b +14=0,即a +b =7.∵定点始终落在圆(x -a +1)2+(y +b -2)2=25的内部或圆上,∴a 2+b 2≤25.设b a=t ,则b =at ,代入a +b =7,可得a =71+t ,b =7t 1+t ,代入a 2+b 2≤25,可得()1+t 2×⎝ ⎛⎭⎪⎫71+t 2≤25,∴12t 2-25t +12≤0,∴34≤t ≤43.故b a 的取值范围是⎣⎢⎡⎦⎥⎤34,43. 答案:⎣⎢⎡⎦⎥⎤34,43 2.(2018·启东中学检测)已知点A (0,2)为圆M :x 2+y 2-2ax -2ay =0(a >0)外一点,圆M 上存在点T ,使得∠MAT =45°,则实数a 的取值范围是________.解析:圆M 的方程可化为(x -a )2+(y -a )2=2a 2.圆心为M (a ,a ),半径为2a .当A ,M ,T 三点共线时,∠MAT =0°最小,当AT 与圆M 相切时,∠MAT 最大.圆M 上存在点T ,使得∠MAT =45°,只需要当∠MAT 最大时,满足45°≤∠MAT <90°即可. MA =a -02+a -22=2a 2-4a +4, 此时直线AT 与圆M 相切,所以sin ∠MAT =MTMA =2a 2a 2-4a +4.因为45°≤∠MAT <90°,所以22≤sin∠MAT <1, 所以22≤2a 2a 2-4a +4<1, 解得3-1≤a <1.答案:[3-1,1)3.如图所示,一隧道内设双行线公路,其截面由一段圆弧和一个长方形构成.已知隧道总宽度AD 为6 3 m ,行车道总宽度BC 为211m ,侧墙EA ,FD 高为2 m ,弧顶高MN 为5 m.(1)建立直角坐标系,求圆弧所在的圆的方程;(2)为保证安全,要求行驶车辆顶部(设为平顶)与隧道顶部在竖直方向上的高度之差至少要有0.5 m .请计算车辆通过隧道的限制高度是多少.解:(1)以EF 所在直线为x 轴,MN 所在直线为y 轴,1 m 为单位长度建立如图所示的平面直角坐标系.则E (-33,0),F (33,0),M (0,3).由于所求圆的圆心在y 轴上,所以设圆的方程为x 2+(y -b )2=r 2,因为F (33,0),M (0,3)都在圆上, 所以⎩⎨⎧ 332+b 2=r 2,02+3-b 2=r 2,解得b =-3,r 2=36. 所以圆的方程是x 2+(y +3)2=36.(2)设限高为h ,作CP ⊥AD 交圆弧于点P ,则CP =h +0.5.将点P 的横坐标x =11代入圆的方程,得11+(y +3)2=36,解得y =2或y =-8(舍去).所以h =CP -0.5=(y +DF )-0.5=(2+2)-0.5=3.5(m).答:车辆的限制高度为3.5 m.。

高考总复习一轮数学精品课件 第九章 平面解析几何 指点迷津(八)

高考总复习一轮数学精品课件 第九章 平面解析几何 指点迷津(八)

(2)定义法:利用曲线的定义,判断曲线类型,再由曲线的定义直接写出曲线
方程;
(3)代入法(相关点法):题中有两个动点,一个为所求,设为(x,y),另一个在已
知曲线上运动,设为(x0,y0),利用已知条件找出两个动点坐标的关系,用所求
表示已知,即
0 = (,),
将 x0,y0 代入已知曲线即得所求曲线方程;
0 = (,),
= (),
(4)参数法:引入参数 t,求出动点(x,y)与参数 t 之间的关系
消去参数即
= (),
得所求轨迹方程;
(5)交轨法:引入参数表示两动曲线的方程,将参数消去,得到两动曲线交点
的轨迹方程.
一、直接法求轨迹方程
例1.已知圆C:x2+y2+2x-4y+1=0,O为坐标原点,动点P在圆C外,过点P作圆C
=(x1-x,-y)=(0,-y).
因为=λ,所以(0,y-y1)=λ(0,-y),
所以 y-y1=-λy,即 y1=(1+λ)y.
因为点
2 2
P(x1,y1)在椭圆 4 +y =1
2
+(1+λ)2y2=1
4
21
上,所以 4
2

+ 12 =1,所以 4 +(1+λ)2y2=1,所以
第九章
指点迷津(八)
求曲线轨迹方程的方法
曲线C与方程F(x,y)=0满足两个条件:(1)曲线C上点的坐标都是方程
F(x,y)=0的解;(2)以方程F(x,y)=0的解为坐标的点都在曲线C上.则称曲线C
为方程F(x,y)=0的曲线,方程F(x,y)=0为曲线C的方程.求曲线方程的基本方

(江苏专版)高考数学一轮复习第九章解析几何第六节双曲线教案理(含解析)苏教版

(江苏专版)高考数学一轮复习第九章解析几何第六节双曲线教案理(含解析)苏教版

(江苏专版)高考数学一轮复习第九章解析几何第六节双曲线教案理(含解析)苏教版第六节双曲线1.双曲线的定义平面内与两个定点F1,F2的距离的差的绝对值等于非零常数(小于F1F2)的点的轨迹叫做双曲线.这两个定点叫做双曲线的焦点,两焦点间的距离叫做双曲线的焦距.集合P={M||MF1-MF2|=2a},F1F2=2c,其中a,c为常数且a>0,c>0.(1)当2a<F1F2时,P点的轨迹是双曲线;(2)当2a=F1F2时,P点的轨迹是两条射线;(3)当2a>F1F2时,P点不存在.2.双曲线的标准方程和几何性质标准方程x2a2-y2b2=1(a>0,b>0)y2a2-x2b2=1(a>0,b>0) 图形性质范围x≤-a或x≥a,y∈R y≤-a或y≥a,x∈R对称性对称轴:坐标轴对称中心:原点顶点顶点坐标:A1(-a,0),A2(a,0) 顶点坐标:A1(0,-a),A2(0,a)渐近线y=±bax y=±abx离心率e=ca,e∈(1,+∞)a,b,c的关系c2=a2+b2实虚轴线段A1A2叫做双曲线的实轴,它的长A1A2=2a;线段B1B2叫做双曲线的虚轴,它的长B1B2=2b;a叫做双曲线的实半轴长,b叫做双曲线的虚半轴长[小题体验]1.双曲线x 2-5y 2=10的焦距为________.解析:∵双曲线的标准方程为x 210-y 22=1,∴a 2=10,b 2=2,∴c 2=a 2+b 2=12,c =23,故焦距为4 3.答案:4 32.双曲线2x 2-y 2=8的实轴长为________.解析:双曲线2x 2-y 2=8的标准方程为x 24-y 28=1,实轴长为2a =4.答案:43.已知双曲线x 2a 2-y 25=1的右焦点为(3,0),则该双曲线的离心率等于________.解析:∵右焦点为(3,0),∴c =3.∴a 2=c 2-b 2=9-5=4,∴a =2,∴e =c a =32.答案:321.双曲线的定义中易忽视2a <F 1F 2这一条件.若2a =F 1F 2,则轨迹是以F 1,F 2为端点的两条射线,若2a >F 1F 2,则轨迹不存在.2.双曲线的标准方程中对a ,b 的要求只是a >0,b >0,易误认为与椭圆标准方程中a ,b 的要求相同.若a >b >0,则双曲线的离心率e ∈(1,2); 若a =b >0,则双曲线的离心率e =2; 若0<a <b ,则双曲线的离心率e ∈(2,+∞).3.注意区分双曲线中的a ,b ,c 大小关系与椭圆中的a ,b ,c 关系,在椭圆中a 2=b 2+c 2,而在双曲线中c 2=a 2+b 2.4.易忽视渐近线的斜率与双曲线的焦点位置关系.当焦点在x 轴上,渐近线斜率为±b a,当焦点在y 轴上,渐近线斜率为±a b.[小题纠偏]1.设P 是双曲线x 216-y 220=1上一点,F 1,F 2分别是双曲线左、右两个焦点,若PF 1=9,则PF 2等于________.解析:由题意知PF 1=9<a +c =10,所以P 点在双曲线的左支,则有PF 2-PF 1=2a =8,故PF 2=PF 1+8=17.答案:172.若a >1,则双曲线x 2a 2-y 2=1的离心率的取值范围是________.解析:由题意得双曲线的离心率e =a 2+1a .即e 2=a 2+1a 2=1+1a2.因为a >1,所以0<1a2<1,所以1<1+1a2<2,所以1<e < 2.答案:(1,2)3.离心率为3,且经过(-3,2)的双曲线的标准方程为________.解析:当双曲线的焦点在x 轴上时,设方程为x 2a 2-y 2b2=1.则有⎩⎪⎨⎪⎧ ca=3,3a 2-4b 2=1,a 2+b 2=c 2.解得⎩⎪⎨⎪⎧a 2=1,b 2=2.所以所求双曲线的标准方程为x 2-y 22=1. 当双曲线焦点在y 轴上时,设方程为y 2a 2-x 2b2=1.则有⎩⎪⎨⎪⎧ca=3,4a 2-3b 2=1,a 2+b 2=c 2.解得⎩⎪⎨⎪⎧a 2=52,b 2=5.所以所求双曲线的标准方程为y 252-x 25=1. 答案:x 2-y 22=1或y 252-x 25=1考点一 双曲线的标准方程 基础送分型考点——自主练透[题组练透]1.若方程x 2k -3+y 2k +3=1(k ∈R)表示双曲线,则k 的取值范围是________.解析:依题意可知(k -3)(k +3)<0,解得-3<k <3. 答案:(-3,3)2.已知双曲线C :x 2a 2-y 2b 2=1的离心率e =54,且其右焦点为F 2(5,0),则双曲线C 的标准方程为________.解析:因为所求双曲线的右焦点为F 2(5,0)且离心率为e =c a =54,所以c =5,a =4,b2=c 2-a 2=9,所以所求双曲线的标准方程为x 216-y 29=1.答案:x 216-y 29=13.若以F 1(-3,0),F 2(3,0)为焦点的双曲线过点(2,1),则该双曲线的标准方程为________.解析:依题意,设题中的双曲线方程是x 2a 2-y 2b2=1(a >0,b >0),则有⎩⎪⎨⎪⎧4a 2-1b2=1,a 2+b 2=3,解得a 2=2,b 2=1.因此该双曲线的标准方程是x 22-y 2=1.答案:x 22-y 2=14.(2019·苏锡常镇调研)已知双曲线Γ过点(2,3),且与双曲线x 24-y 2=1有相同的渐近线,则双曲线Γ的标准方程为________.解析:依题意,设所求双曲线的标准方程为x 24-y 2=λ,将点(2,3)的坐标代入,得1-3=λ,∴λ=-2,∴所求双曲线的方程为x 24-y 2=-2,其标准方程为y 22-x 28=1.答案:y 22-x 28=1[谨记通法]求双曲线标准方程的一般方法(1)待定系数法:设出双曲线方程的标准形式,根据已知条件,列出参数a ,b ,c 的方程并求出a ,b ,c 的值.与双曲线x 2a 2-y 2b 2=1有相同渐近线时,可设所求双曲线方程为x 2a 2-y 2b2=λ(λ≠0).(2)定义法:依定义得出距离之差的等量关系式,求出a 的值,由定点位置确定c 的值. 考点二 双曲线的定义重点保分型考点——师生共研[典例引领]1.设F 1,F 2分别是双曲线x 2a 2-y 2b2=1的左、右焦点,若双曲线上存在点A ,使∠F 1AF 2=90°且AF 1=3AF 2,则双曲线的离心率为________.解析:因为∠F 1AF 2=90°, 故AF 21+AF 22=F 1F 22=4c 2, 又AF 1=3AF 2,且AF 1-AF 2=2a ,故10a 2=4c 2,故c 2a 2=52,故e =c a =102. 答案:1022.(2018·海门中学检测)已知双曲线x 2-y 224=1的两个焦点为F 1,F 2,P 为双曲线右支上一点.若PF 1=43PF 2,则△F 1PF 2的面积为________.解析:由双曲线的定义可得PF 1-PF 2=13PF 2=2a =2,解得PF 2=6,故PF 1=8, 又F 1F 2=10,由勾股定理可知三角形PF 1F 2为直角三角形, 因此S △PF 1F 2=12PF 1·PF 2=24.答案:24[由题悟法]应用双曲线的定义需注意的问题在双曲线的定义中要注意双曲线上的点(动点)具备的几何条件,即“到两定点(焦点)的距离之差的绝对值为一常数,且该常数必须小于两定点的距离”.若定义中的“绝对值”去掉,点的轨迹是双曲线的一支.同时注意定义的转化应用.[即时应用]1.设F 1,F 2分别为双曲线x 2a 2-y 2b2=1(a >0,b >0)的左、右焦点,双曲线上存在一点P使得PF 1+PF 2=3b ,PF 1·PF 2=94ab ,则该双曲线的离心率为________.解析:由题设条件得PF 1+PF 2=3b ,由双曲线的定义得|PF 1-PF 2|=2a ,两个式子平方相减得PF 1·PF 2=9b 2-4a 24,则9b 2-4a 24=94ab ,整理得(3b -4a )·(3b +a )=0,即b a =43,所以e =1+⎝ ⎛⎭⎪⎫b a 2=53. 答案:532.设双曲线x 24-y 22=1的左、右焦点分别为F 1,F 2,过F 1的直线l 交双曲线左支于A ,B两点,则BF 2+AF 2的最小值为________.解析:由双曲线的标准方程为x 24-y 22=1,得a =2,由双曲线的定义可得AF 2-AF 1=4,BF 2-BF 1=4, 所以AF 2-AF 1+BF 2-BF 1=8. 因为AF 1+BF 1=AB ,当AB 是双曲线的通径时,AB 最小, 所以(AF 2+BF 2)min =AB min +8=2b2a+8=10.答案:10考点三 双曲线的几何性质 题点多变型考点——多角探明 [锁定考向]双曲线的几何性质是高考命题的热点. 常见的命题角度有:(1)求双曲线的离心率或范围; (2)求双曲线的渐近线方程; (3)双曲线性质的应用.[题点全练]角度一:求双曲线的离心率或范围1.(2018·海安高三质量测试)在平面直角坐标系xOy 中,已知双曲线x 2a 2-y 2b 2=1(a >0,b >0)的渐近线方程为y =±3x ,则该双曲线的离心率为________.解析:由题意知b a=3,即b 2=3a 2,所以c 2=a 2+b 2=4a 2,所以e =c a=2.答案:22.(2017·全国卷Ⅰ)已知双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的右顶点为A ,以A 为圆心,b 为半径作圆A ,圆A 与双曲线C 的一条渐近线交于M ,N 两点.若∠MAN =60°,则C 的离心率为________.解析:双曲线的右顶点为A (a,0),设点M ,N 在渐近线y =bax ,即bx -ay =0上,则圆心A 到此渐近线的距离d =|ba -a ×0|b 2+a 2=abc .又因为∠MAN =60°,圆的半径为b ,所以b ·sin60°=ab c,即3b 2=ab c ,所以e =23=233. 答案:233角度二:求双曲线的渐近线方程3.(2019·徐州调研)若双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的离心率为10,则双曲线C的渐近线方程为________.解析:∵双曲线C 的离心率为10,∴e =c a=10,则c 2=10a 2=a 2+b 2,得b 2=9a 2,即b =3a ,则双曲线C 的渐近线方程为y =±b ax =±3x .答案:y =±3x角度三:双曲线性质的应用4.已知点F 1,F 2分别为双曲线x 2a 2-y 2b 2=1(a >0,b >0)的左、右焦点,P 为双曲线右支上的任意一点,若PF 21PF 2的最小值为9a ,则双曲线的离心率为________.解析:在双曲线中,P 为右支上一点,则PF 1=PF 2+2a ,则PF 21PF 2=PF 2+2a2PF 2=PF 2+4a2PF 2+4a ≥24a 2+4a =8a (当且仅当PF 2=2a 时取等号),因为已知⎝ ⎛⎭⎪⎫PF 21PF 2min =9a ,故PF 2≠2a ,在双曲线右支上点P 满足(PF 2)min =c -a ,则c -a >2a ,即c >3a ,故e >3,又由PF 21PF 2≥9a ,即c +a 2c -a≥9a 可得e ≤2或e ≥5,综上可得,e ≥5,故当PF 21PF 2取最小值9a 时,e =5.答案:5[通法在握]与双曲线几何性质有关问题的解题策略(1)求双曲线的离心率(或范围).依据题设条件,将问题转化为关于a ,c 的等式(或不等式),解方程(或不等式)即可求得.(2)求双曲线的渐近线方程.依据题设条件,求双曲线中a ,b 的值或a 与b 的比值,进而得出双曲线的渐近线方程.(3)求双曲线的方程.依据题设条件,求出a ,b 的值或依据双曲线的定义,求双曲线的方程.(4)求双曲线焦点(焦距)、实虚轴的长.依题设条件及a ,b ,c 之间的关系求解.[演练冲关]1.(2019·通州模拟)在平面直角坐标系xOy 中,正方形ABCD 的四个顶点都在双曲线x 2a 2-y 2b2=1(a >0,b >0)上,若双曲线的焦点在正方形的外部,则该双曲线的离心率的取值范围是________.解析:由题意,可设正方形与双曲线的某个交点为A (m ,m ),则双曲线m 2a 2-m 2b 2=1,可得m 2=a 2b 2b 2-a2<c 2,即c 2b 2-c 2a 2>a 2b 2,又c 2=b 2+a 2,化简可得c 4-3c 2a 2+a 4>0,即e 4-3e 2+1>0,又e >1,解得e >1+52, 故该双曲线的离心率的取值范围是⎝ ⎛⎭⎪⎫1+52,+∞.答案:⎝⎛⎭⎪⎫1+52,+∞2.(2018·无锡调研)双曲线C :y 2a 2-x 2b 2=1(a >0,b >0)的离心率为54,焦点到渐近线的距离为3,则C 的实轴长等于________.解析:因为e =c a =54,所以c =54a ,设双曲线的一条渐近线方程为y =abx ,即ax -by =0,焦点为(0,c ),所以bc a 2+b2=b =3,所以a =c 2-b 2=2516a 2-9,所以a 2=16,即a =4,故2a =8.答案:83.(2018·盐城二模)已知双曲线x 2a 2-y 2b 2=1(a >0,b >0)的右焦点为F ,直线y =43x 与双曲线相交于A ,B 两点.若AF ⊥BF ,则双曲线的渐近线方程为________.解析:由题意可知,双曲线x 2a 2-y 2b2=1(a >0,b >0)的右焦点为F (c,0),联立⎩⎪⎨⎪⎧y =43x ,x 2a 2-y2b 2=1,整理得(9b 2-16a 2)x 2=9a 2b 2,即x 2=9a 2b29b 2-16a2,∴A 与B 关于原点对称, 设A ⎝ ⎛⎭⎪⎫x ,43x ,B ⎝⎛⎭⎪⎫-x ,-43x , 则FA ―→=⎝ ⎛⎭⎪⎫x -c ,43x ,FB ―→=⎝ ⎛⎭⎪⎫-x -c ,-43x ,∵AF ⊥BF ,∴FA ―→·FB ―→=0, 即(x -c )(-x -c )+43x ×⎝ ⎛⎭⎪⎫-43x =0,整理得c 2=259x 2,∴a 2+b 2=259×9a 2b29b 2-16a2,即9b 4-32a 2b 2-16a 4=0, ∴(b 2-4a 2)(9b 2+4a 2)=0,∵a >0,b >0,∴9b 2+4a 2≠0,∴b 2-4a 2=0,故b =2a , ∴双曲线的渐近线方程为y =±b ax =±2x . 答案:y =±2x4.已知双曲线x 2-y 23=1的左顶点为A 1,右焦点为F 2,P 为双曲线右支上一点,则PA 1―→·PF 2―→的最小值为________.解析:由题可知A 1(-1,0),F 2(2,0).设P (x ,y )(x ≥1),则PA 1―→=(-1-x ,-y ),PF 2―→=(2-x ,-y ),PA 1―→·PF 2―→=(-1-x )(2-x )+y 2=x 2-x -2+y 2=x 2-x -2+3(x 2-1)=4x 2-x -5.因为x ≥1,函数f (x )=4x 2-x -5的图象的对称轴为x =18,所以当x =1时,PA 1―→·PF 2―→取得最小值-2.答案:-2一抓基础,多练小题做到眼疾手快1.(2019·滨湖月考)已知双曲线的渐近线方程为y =±23x ,实轴长为12,则该双曲线的标准方程为________________.解析:∵双曲线的渐近线方程为y =±23x ,实轴长为12,∴当双曲线的焦点在x 轴上时,设双曲线方程为x 2a 2-y 2b 2=1,a >0,b >0,此时⎩⎪⎨⎪⎧b a =23,2a =12,解得a =6,b =4,∴双曲线方程为x 236-y 216=1.当双曲线的焦点在y 轴上时,设双曲线方程为y 2a 2-x2b2=1,a >0,b >0,此时⎩⎪⎨⎪⎧a b =23,2a =12,解得a =6,b =9,∴双曲线方程为y 236-x 281=1.答案:x 236-y 216=1或y 236-x 281=12.已知双曲线x 2+my 2=1的虚轴长是实轴长的2倍,则实数m 的值是________. 解析:依题意得m <0,双曲线方程是x 2-y 2-1m=1,于是有-1m =2×1,m =-14. 答案:-143.若双曲线x 2a 2-y 2b 2=1(a >0,b >0)的离心率为3,则其渐近线方程为________.解析:由条件e =3,即c a =3,得c 2a 2=a 2+b 2a 2=1+b 2a 2=3,所以ba=2,所以双曲线的渐近线方程为y =±2x . 答案:y =±2x4.(2018·苏州高三暑假测试)双曲线x 2m-y 2=1(m >0)的右焦点与抛物线y 2=8x 的焦点重合,则m =________.解析:因为双曲线的右焦点为(m +1,0),抛物线的焦点为(2,0),所以m +1=2,解得m =3.答案:35.(2019·常州一中检测)在平面直角坐标系xOy 中,若双曲线x 2m2-y 2=1(m >0)的一条渐近线方程为x -3y =0,则实数m 的值为________.解析:∵双曲线x 2m2-y 2=1(m >0)的渐近线方程为x ±my =0,已知其中一条渐近线方程为x -3y =0,∴m = 3. 答案: 36.(2018·苏北四市摸底)已知双曲线x 2-y 2m2=1(m >0)的一条渐近线方程为x +3y =0,则实数m =________.解析:双曲线x 2-y 2m2=1(m >0)的渐近线为y =±mx ,又因为该双曲线的一条渐近线方程为x +3y =0,所以m =33. 答案:33二保高考,全练题型做到高考达标1.双曲线x 2a 2-y 2b2=1的两条渐近线互相垂直,那么它的离心率为________.解析:由渐近线互相垂直可知⎝ ⎛⎭⎪⎫-b a ·b a=-1,即a 2=b 2,即c 2=2a 2,即c =2a ,所以e = 2.答案: 22.(2018·常州期末) 双曲线x 24-y 212=1的右焦点与左准线之间的距离是________.解析:因为a 2=4,b 2=12,所以c 2=16,即右焦点为(4,0),又左准线为x =-a 2c=-1,故右焦点到左准线的距离为5.答案:53.(2018·南京学情调研)在平面直角坐标系xOy 中,双曲线C :x 2a 2-y 24=1(a >0)的一条渐近线与直线y =2x +1平行,则实数a =________.解析:由双曲线的方程可知其渐近线方程为y =±2ax .因为一条渐近线与直线y =2x +1平行,所以2a=2,解得a =1.答案:14.已知直线l 与双曲线C :x 2-y 2=2的两条渐近线分别交于A ,B 两点,若AB 的中点在该双曲线上,O 为坐标原点,则△AOB 的面积为________.解析:由题意得,双曲线的两条渐近线方程为y =±x ,设A (x 1,x 1),B (x 2,-x 2), 所以AB 中点坐标为⎝ ⎛⎭⎪⎫x 1+x 22,x 1-x 22,所以⎝⎛⎭⎪⎫x 1+x 222-⎝ ⎛⎭⎪⎫x 1-x 222=2,即x 1x 2=2,所以S △AOB =12OA ·OB =12|2x 1|·|2x 2|=x 1x 2=2.答案:25.(2018·镇江期末)双曲线x 2a 2-y 2b2=1(a >0,b >0)的焦点到相应准线的距离等于实轴长,则双曲线的离心率为________.解析:由题意c -a 2c =2a ,即⎝ ⎛⎭⎪⎫c a 2-2·c a -1=0,e 2-2e -1=0,解得e =1± 2.又因为双曲线的离心率大于1,故双曲线的离心率为1+ 2. 答案:1+ 26.(2019·连云港调研)渐近线方程为y =±2x ,一个焦点的坐标为(10,0)的双曲线的标准方程为________.解析:∵双曲线的渐近线方程为y =±2x ,∴设双曲线方程为x 2-y 24=λ(λ≠0),∵一个焦点的坐标为(10,0),∴(10)2=λ+4λ,解得λ=2,∴双曲线的标准方程为x 22-y 28=1.答案:x 22-y 28=17.(2019·淮安模拟)已知双曲线x 2a 2-y 2b2=1的一个焦点与圆x 2+y 2-10x =0的圆心重合,且双曲线的离心率等于5,则该双曲线的标准方程为________.解析:将圆x 2+y 2-10x =0化成标准方程,得(x -5)2+y 2=25, 则圆x 2+y 2-10x =0的圆心为(5,0).∴双曲线x 2a 2-y 2b 2=1的一个焦点为F (5,0),又该双曲线的离心率等于5,∴c =5,且ca=5,∴a 2=5,b 2=c 2-a 2=20,故该双曲线的标准方程为x 25-y 220=1.答案:x 25-y 220=18.已知双曲线x 2a 2-y 2b2=1(a >0,b >0)的左、右焦点分别为F 1,F 2,点P 在双曲线的右支上,且PF 1=4PF 2,则双曲线的离心率e 的最大值为________.解析:由双曲线定义知PF 1-PF 2=2a , 又已知PF 1=4PF 2,所以PF 1=83a ,PF 2=23a ,在△PF 1F 2中,由余弦定理得cos ∠F 1PF 2=649a 2+49a 2-4c 22·83a ·23a =178-98e 2,要求e 的最大值,即求cos ∠F 1PF 2的最小值,因为cos ∠F 1PF 2≥-1,所以cos ∠F 1PF 2=178-98e 2≥-1,解得e ≤53,即e 的最大值为53.答案:539.已知双曲线的中心在原点,焦点F 1,F 2在坐标轴上,离心率为2,且过点(4,-10),点M (3,m )在双曲线上.(1)求双曲线的方程; (2)求证:MF 1―→·MF 2―→=0; (3)求△F 1MF 2的面积.解:(1)因为e =2,则双曲线的实轴、虚轴相等. 所以可设双曲线方程为x 2-y 2=λ. 因为双曲线过点(4,-10), 所以16-10=λ,即λ=6. 所以双曲线方程为x 2-y 2=6.(2)证明:设MF 1―→=(-23-3,-m ), MF 2―→=(23-3,-m ).所以MF 1―→·MF 2―→=(3+23)×(3-23)+m 2=-3+m 2, 因为M 点在双曲线上, 所以9-m 2=6,即m 2-3=0, 所以MF 1―→·MF 2―→=0.(3)因为△F 1MF 2的底边长F 1F 2=4 3. 由(2)知m =± 3.所以△F 1MF 2的高h =|m |=3,所以S △F 1MF 2=12×43×3=6.10.(2018·启东中学检测)已知双曲线y 2a 2-x 2b2=1(a >0,b >0)的两个焦点分别为F 1,F 2,一条渐近线方程为2x +y =0,且焦点到这条渐近线的距离为1.(1)求此双曲线的方程; (2)若点M ⎝⎛⎭⎪⎫55,m 在双曲线上,求证:点M 在以F 1F 2为直径的圆上. 解:(1)依题意得⎩⎪⎨⎪⎧ab=2,2×0+c5=1,a 2+b 2=c 2,解得⎩⎪⎨⎪⎧a =2,b =1,故双曲线的方程为y 24-x 2=1.(2)证明:因为点M ⎝ ⎛⎭⎪⎫55,m 在双曲线上,所以m 24-15=1.所以m 2=245,又双曲线y 24-x 2=1的焦点为F 1(0,-5),F 2(0,5),所以MF 1―→·MF 2―→=⎝ ⎛⎭⎪⎫-55,-5-m ·⎝ ⎛⎭⎪⎫-55,5-m =⎝ ⎛⎭⎪⎫552-(5)2+m 2=15-5+245=0,所以MF 1⊥MF 2,所以点M 在以F 1F 2为直径的圆上. 三上台阶,自主选做志在冲刺名校1.在平面直角坐标系xOy 中,若双曲线x 29-y 2m=1的两条渐近线的夹角为60°,则双曲线的离心率为________.解析:∵双曲线的两条渐近线的夹角为60°,且渐近线关于x ,y 轴对称, 若夹角在x 轴上,则双曲线的两条渐近线的倾斜角分别为30°,150°,斜率为±33,故b a =33. ∵c 2=a 2+b 2,∴c 2-a 2a 2=13,即e 2-1=13,解得e =233.若夹角在y 轴上,则双曲线的两条渐近线的倾斜角分别为60°,120°,斜率为±3,故b a= 3.同理可求得e =2.综上,e =233或2.答案:233或22.(2018·南通中学高三数学练习)已知点F 是双曲线x 2a 2-y 2b2=1(a >0,b >0)的左焦点,点E 是该双曲线的右顶点,过点F 且垂直于x 轴的直线与双曲线交于A ,B 两点.若△ABE 是锐角三角形,则该双曲线的离心率e 的取值范围是________.解析:由题意得F (-c,0),A ⎝ ⎛⎭⎪⎫-c ,b 2a ,B ⎝ ⎛⎭⎪⎫-c ,-b 2a ,E (a ,0).因为△ABE 是锐角三角形,所以EA ―→·EB ―→>0,即EA ―→·EB ―→=⎝ ⎛⎭⎪⎫-c -a ,b 2a ·⎝ ⎛⎭⎪⎫-c -a ,-b 2a >0.整理,得3e2+2e >e 4.所以e 3-e -2e -2=e (e +1)(e -1)-2(e +1)=(e +1)2(e -2)<0,解得0<e <2.又e >1,所以e ∈(1,2).答案:(1,2)3.已知椭圆C 1的方程为x 24+y 2=1,双曲线C 2的左、右焦点分别是C 1的左、右顶点,而C 2的左、右顶点分别是C 1的左、右焦点,O 为坐标原点.(1)求双曲线C 2的方程;(2)若直线l :y =kx +2与双曲线C 2恒有两个不同的交点A 和B ,且OA ―→·OB ―→>2,求k 的取值范围.解:(1)设双曲线C 2的方程为x 2a 2-y 2b2=1(a >0,b >0),则a 2=4-1=3,c 2=4, 再由a 2+b 2=c 2,得b 2=1, 故双曲线C 2的方程为x 23-y 2=1.(2)将y =kx +2代入x 23-y 2=1,得(1-3k 2)x 2-62kx -9=0.由直线l 与双曲线C 2交于不同的两点,得⎩⎨⎧1-3k 2≠0,Δ=-62k2+361-3k2=361-k2>0,所以k 2<1且k 2≠13.①设A (x 1,y 1),B (x 2,y 2), 则x 1+x 2=62k 1-3k 2,x 1x 2=-91-3k2.所以x 1x 2+y 1y 2=x 1x 2+(kx 1+2)(kx 2+2) =(k 2+1)x 1x 2+2k (x 1+x 2)+2=3k 2+73k 2-1. 又因为OA ―→·OB ―→>2, 即x 1x 2+y 1y 2>2, 所以3k 2+73k 2-1>2,即-3k 2+93k 2-1>0, 解得13<k 2<3.②由①②得13<k 2<1,故k 的取值范围为⎝ ⎛⎭⎪⎫-1,-33∪⎝ ⎛⎭⎪⎫33,1.。

2020版高考数学一轮复习第九章平面解析几何第8讲曲线与方程教案理(含解析)新人教A版

2020版高考数学一轮复习第九章平面解析几何第8讲曲线与方程教案理(含解析)新人教A版

第8讲 曲线与方程基础知识整合1.曲线与方程在平面直角坐标系中,如果某曲线C (看作满足某种条件的点的集合或轨迹)上的点与一个二元方程的实数解建立了如下的关系:(1)曲线上点的坐标都是□01这个方程的解; (2)以这个方程的解为坐标的点都在□02曲线上. 那么,这个方程叫做曲线的方程;这条曲线叫做方程的曲线. 2.曲线的交点设曲线C 1的方程为F 1(x ,y )=0,曲线C 2的方程为F 2(x ,y )=0,则C 1,C 2的交点坐标即为方程组⎩⎪⎨⎪⎧F 1x ,y =0,F 2x ,y =0的□03实数解,若此方程组无解,则两曲线无交点. 3.求动点的轨迹方程的一般步骤 (1)建系——建立适当的坐标系; (2)设点——设轨迹上的任一点P (x ,y ); (3)列式——列出动点P 所满足的关系式;(4)代换——依条件式的特点,选用距离公式、斜率公式等将其转化为关于x ,y 的方程式,并化简;(5)证明——证明所求方程即为符合条件的动点轨迹方程.1.“曲线C 是方程f (x ,y )=0的曲线”是“曲线C 上的点的坐标都是方程f (x ,y )=0的解”的充分不必要条件.2.求轨迹问题常用的数学思想(1)函数与方程思想:求平面曲线的轨迹方程就是将几何条件(性质)表示为动点坐标x ,y 的方程及函数关系.(2)数形结合思想:由曲线的几何性质求曲线方程是“数”与“形”的有机结合. (3)等价转化思想:通过坐标系使“数”与“形”相互结合,在解决问题时又需要相互转化.1.(2019·云南质量检测)已知M (-2,0),N (2,0),则以MN 为斜边的直角三角形的直角顶点P 的轨迹方程为( )A .x 2+y 2=2B .x 2+y 2=4 C .x 2+y 2=2(x ≠±2) D .x 2+y 2=4(x ≠±2)答案 D解析 MN 的中点为原点O ,易知|OP |=12|MN |=2,∴P 的轨迹是以原点O 为圆心,2为半径的圆,除去与x 轴的两个交点,即顶点P 的轨迹方程为x 2+y 2=4(x ≠±2),故选D.2.(2019·金华模拟)已知点P 是直线2x -y +3=0上的一个动点,定点M (-1,2),Q 是线段PM 延长线上的一点,且|PM |=|MQ |,则Q 点的轨迹方程是( )A .2x +y +1=0B .2x -y -5=0C .2x -y -1=0D .2x -y +5=0答案 D解析 设Q (x ,y ),则P 为(-2-x,4-y ),代入2x -y +3=0,得Q 点的轨迹方程为2x -y +5=0.3.已知平面内有一条线段AB ,其长度为4,动点P 满足|PA |-|PB |=3,O 为AB 的中点,则|OP |的最小值为( )A .1 B.32 C .2 D .3答案 B解析 以AB 中点为原点,中垂线为y 轴建立直角坐标系,P 点的轨迹为双曲线c =2,a =1.5,∴|OP |min =a =1.5.4.已知圆的方程为x 2+y 2=4,若抛物线过点A (-1,0),B (1,0)且以圆的切线为准线,则抛物线的焦点轨迹方程是________.答案x 24+y 23=1(y ≠0) 解析 设抛物线焦点为F ,过A ,B ,O 作准线的垂线AA 1,BB 1,OO 1,则|AA 1|+|BB 1|=2|OO 1|=4,由抛物线定义得|AA 1|+|BB 1|=|FA |+|FB |,所以|FA |+|FB |=4,故F 点的轨迹是以A ,B 为焦点,长轴长为4的椭圆(去掉长轴两端点),所以抛物线的焦点轨迹方程为x 24+y 23=1(y ≠0). 5.(2019·人大附中模拟)在平面直角坐标系xOy 中,设点P (x ,y ),M (x ,-4),以线段PM 为直径的圆经过原点O .则动点P 的轨迹方程为________.答案 x 2=4y解析 由题意可得OP ⊥OM ,所以OP →·OM →=0,所以(x ,y )·(x ,-4)=0,即x 2-4y =0,所以动点P 的轨迹方程为x 2=4y .6.(2019·武汉模拟)如图,设P 是圆x 2+y 2=25上的动点,点D 是P 在x 轴上的投影,M 为PD 上一点,且|MD |=45|PD |.当P 在圆上运动时,点M 的轨迹C 的方程为________.答案x 225+y 216=1 解析 设点M 的坐标为(x ,y ),点P 的坐标为(x P ,y P ),由已知得⎩⎪⎨⎪⎧x P =x ,y P =54y ,因为P在圆上,所以x 2+⎝ ⎛⎭⎪⎫54y 2=25,即轨迹C 的方程为x 225+y 216=1.核心考向突破考向一 定义法求轨迹例1 (2019·大庆模拟)已知圆C 1:(x +3)2+y 2=1和圆C 2:(x -3)2+y 2=9,动圆M 同时与圆C 1及圆C 2相外切,求动圆圆心M 的轨迹方程.解 如图所示,设动圆M 与圆C 1及圆C 2分别外切于点A 和点B ,则有|MC 1|-|AC 1|=|MA |,|MC 2|-|BC 2|=|MB |.又|MA |=|MB |,所以|MC 2|-|MC 1|=|BC 2|-|AC 1|=3-1=2,即动点M 到两定点C 2,C 1的距离的差是常数2,且2<|C 1C 2|=6,|MC 2|>|MC 1|,故动圆圆心M 的轨迹为以定点C 2,C 1为焦点的双曲线的左支,则2a =2,所以a =1.又c =3,则b 2=c 2-a 2=8.设动圆圆心M 的坐标为(x ,y ),则动圆圆心M 的轨迹方程为x 2-y 28=1(x ≤-1).触类旁通定义法求轨迹方程及其注意点(1)在利用圆锥曲线的定义法求轨迹方程时,若所求的轨迹符合某种圆锥曲线的定义,则根据曲线的方程,写出所求的轨迹方程.利用定义法求轨迹方程时,还要看轨迹是否是完整的圆、椭圆、双曲线、抛物线,如果不是完整的曲线,则应对其中的变量x 或y 进行限制.即时训练 1.(2019·福建模拟)设动点P (x ,y )(y ≥0)到定点F (0,1)的距离比它到x 轴的距离大1,记点P 的轨迹为曲线C .(1)求点P 的轨迹方程;(2)设圆M 过点A (0,2),且圆心M 在曲线C 上,EG 是圆M 在x 轴上截得的弦,试探究当M 运动时,弦长|EG |是否为定值?为什么?解 (1)依题意知,动点P 到定点F (0,1)的距离等于P 到直线y =-1的距离,故曲线C 是以原点为顶点,F (0,1)为焦点的抛物线.∵p2=1,∴p =2,∴曲线C 的方程是x 2=4y . (2)设圆的圆心为M (a ,b ),∵圆M 过点A (0,2),∴圆的方程为(x -a )2+(y -b )2=a2+(b -2)2.令y =0得x 2-2ax +4b -4=0.设圆M 与x 轴的两交点分别为E (x 1,0),G (x 2,0),不妨设x 1>x 2,由求根公式得x 1=2a +4a 2-16b +162,x 2=2a -4a 2-16b +162,∴x 1-x 2=4a 2-16b +16.又∵点M (a ,b )在抛物线x 2=4y 上,∴a 2=4b , ∴x 1-x 2=16=4,即|EG |=4, ∴当M 运动时,弦长|EG |为定值4. 考向二 直接法求轨迹方程角度1 利用动点满足的关系式求轨迹例2 在平面直角坐标系xOy 中,已知点A (0,-1),B 点在直线y =-3上,M 点满足MB →∥OA →,MA →·AB →=MB →·BA →,M 点的轨迹为曲线C .(1)求曲线C 的方程;(2)P 为曲线C 上的动点,l 为曲线C 在P 点处的切线,求O 点到l 距离的最小值. 解 (1)设M (x ,y ).由已知得B (x ,-3),又A (0,-1),所以MA →=(-x ,-1-y ),MB →=(0,-3-y ),AB →=(x ,-2).再由题意可知(MA →+MB →)·AB →=0,即(-x ,-4-2y )·(x ,-2)=0, 所以曲线C 的方程为y =14x 2-2.(2)设P (x 0,y 0)为曲线C :y =14x 2-2上一点,因为y ′=12x ,所以l 的斜率为12x 0,因此直线l 的方程为y -y 0=12x 0(x -x 0),即x 0x -2y +2y 0-x 20=0,所以O 点到l 的距离d =|2y 0-x 20|x 20+4.又y 0=14x 20-2,所以d =12x 20+4x 20+4=12⎝ ⎛⎭⎪⎫x 20+4+4x 20+4≥2,当x 0=0时取等号,所以O 点到l 距离的最小值为2. 角度2 无明确等量关系求轨迹方程例3 已知动圆过定点A (4,0),且在y 轴上截得的弦MN 的长为8. (1)求动圆圆心的轨迹C 的方程;(2)已知点B (-1,0),设不垂直于x 轴的直线l 与轨迹C 交于不同的两点P ,Q ,若x 轴是∠PBQ 的平分线,证明直线l 过定点.解 (1)如图,设动圆圆心为O 1(x ,y ),由题意得|O 1A |=|O 1M |, 当O 1不在y 轴上时,过O 1作O 1H ⊥MN 交MN 于点H ,则点H 是MN 的中点, ∴|O 1M |=x 2+42, 又|O 1A |=x -2+y 2,∴x -2+y 2=x 2+42,化简得y 2=8x (x ≠0).又当O 1在y 轴上时,O 1与O 重合,点O 1的坐标为(0,0)也满足方程y 2=8x , ∴动圆圆心的轨迹C 的方程为y 2=8x .(2)证明:由题意,设直线l 的方程为y =kx +b (k ≠0),P (x 1,y 1),Q (x 2,y 2),将y =kx +b 代入y 2=8x 中,得k 2x 2+(2bk -8)x +b 2=0.其中Δ=-32kb +64>0.由根与系数的关系,得x 1+x 2=8-2bkk2,① x 1x 2=b 2k2,②∵x 轴是∠PBQ 的平分线,所以y 1x 1+1=-y 2x 2+1,即y 1(x 2+1)+y 2(x 1+1)=0,(kx 1+b )(x 2+1)+(kx 2+b )(x 1+1)=0, 2kx 1x 2+(b +k )(x 1+x 2)+2b =0,③将①②代入③,得2kb 2+(k +b )(8-2bk )+2k 2b =0,∴k =-b ,此时Δ>0,∴直线l 的方程为y =k (x -1),即直线l 过定点(1,0). 触类旁通直接法求轨迹方程应注意的问题直接法求曲线方程时最关键的就是把几何条件或等量关系翻译为代数方程,要注意翻译的等价性.通常将步骤简记为建系设点、列式、代换、化简、证明这五个步骤,但最后的证明可以省略.如果给出了直角坐标系则可省去建系这一步.求出曲线的方程后还需注意检验方程的纯粹性和完备性.即时训练 2.已知|AB |=2,动点P 满足|PA |=2|PB |,求动点P 的轨迹方程. 解 如图所示,以AB 的中点O 为原点,直线AB 为x 轴建立如图所示的平面直角坐标系,则A (-1,0),B (1,0).设P (x ,y ),因为|PA |=2|PB |,所以x +2+y 2=2x -2+y 2,整理得x 2+y 2-103x +1=0,即⎝ ⎛⎭⎪⎫x -532+y 2=169.所以动点P 的轨迹方程为⎝ ⎛⎭⎪⎫x -532+y 2=169.3.如图,过点P (2,4)作两条互相垂直的直线l 1,l 2,若l 1交x 轴非负半轴于A 点,l 2交y 轴非负半轴于B 点,求线段AB 的中点M 的轨迹方程.解 设点M 坐标为(x ,y ).因为M (x ,y )为线段AB 的中点,所以点A ,B 的坐标分别为A (2x,0),B (0,2y ). 当x ≠1时,因为l 1⊥l 2,且l 1,l 2过点P (2,4), 所以k PA ·k PB =-1,即0-42x -2·2y -40-2=-1(x ≠1),化简得x +2y -5=0(x ≠1).当x =1时,A ,B 分别为(2,0),(0,4), 所以线段AB 的中点为(1,2), 满足方程x +2y -5=0(x ≥0,y ≥0).综上得M 的轨迹方程为x +2y -5=0(x ≥0,y ≥0). 考向三 代入法求轨迹方程例4 (2017·全国卷Ⅱ)设O 为坐标原点,动点M 在椭圆C :x 22+y 2=1上,过M 作x 轴的垂线,垂足为N ,点P 满足NP →= 2 NM →.(1)求点P 的轨迹方程;(2)设点Q 在直线x =-3上,且OP →·PQ →=1.证明:过点P 且垂直于OQ 的直线l 过C 的左焦点F .解 (1)设P (x ,y ),M (x 0,y 0),则N (x 0,0),NP →=(x -x 0,y ),NM →=(0,y 0). 由NP →= 2 NM →得x 0=x ,y 0=22y .因为点M (x 0,y 0)在C 上,所以x 22+y 22=1.因此点P 的轨迹方程为x 2+y 2=2.(2)证明:由题意知F (-1,0).设Q (-3,t ),P (m ,n ),则 OQ →=(-3,t ),PF →=(-1-m ,-n ), OQ →·PF →=3+3m -tn ,OP →=(m ,n ),PQ →=(-3-m ,t -n ).由OP →·PQ →=1得-3m -m 2+tn -n 2=1, 又由(1)知m 2+n 2=2,故3+3m -tn =0.所以OQ →·PF →=0,即OQ →⊥PF →.又过点P 存在唯一直线垂直于OQ ,所以过点P 且垂直于OQ 的直线l 过C 的左焦点F . 触类旁通代入法求轨迹方程的四个步骤(1)设出所求动点坐标P (x ,y ).寻求所求动点P x ,y 与已知动点Q x ′,y的关系.建立P ,Q 两坐标间的关系,并表示出x ′,y ′. 将x ′,y ′代入已知曲线方程中化简求解.即时训练 4.(2019·安徽合肥调研检测)已知M 为椭圆C :x 225+y 29=1上的动点,过点M作x 轴的垂线,垂足为D ,点P 满足PD →=53MD →.(1)求动点P 的轨迹E 的方程;(2)若A ,B 两点分别为椭圆C 的左、右顶点,F 为椭圆C 的左焦点,直线PB 与椭圆C 交于点Q ,直线QF ,PA 的斜率分别为k QF ,k PA ,求k QFk PA的取值范围. 解 (1)设P (x ,y ),M (m ,n ),依题意知D (m,0),且y ≠0. 由PD →=53MD →,得(m -x ,-y )=53(0,-n ),则有⎩⎪⎨⎪⎧m -x =0,-y =-53n ⇒⎩⎪⎨⎪⎧m =x ,n =35y .又M (m ,n )为椭圆C :x 225+y 29=1上的点,∴x 225+⎝ ⎛⎭⎪⎫35y 29=1,即x 2+y 2=25, 故动点P 的轨迹E 的方程为x 2+y 2=25(y ≠0). (2)依题意知A (-5,0),B (5,0),F (-4,0), 设Q (x 0,y 0),∵线段AB 为圆E 的直径,∴AP ⊥BP ,设直线PB 的斜率为k PB ,则k PA =-1k PB,k QF k PA =k QF-1k PB=-k QF k PB =-k QF k QB =-y 0x 0+4·y 0x 0-5=-y 20x 0+x 0-=-9⎝ ⎛⎭⎪⎫1-x 2025x 0+x 0-=925x 20-x 0+x 0-=925x 0+x 0+4=925⎝ ⎛⎭⎪⎫1+1x 0+4, ∵点P 不同于A ,B 两点且直线QF 的斜率存在, ∴-5<x 0<5且x 0≠-4, 又y =1x +4在(-5,-4)和(-4,5)上都是减函数, ∴925⎝ ⎛⎭⎪⎫1+1x 0+4∈(-∞,0)∪⎝ ⎛⎭⎪⎫25,+∞, 故k QF k PA 的取值范围是(-∞,0)∪⎝ ⎛⎭⎪⎫25,+∞.考向四 参数法求轨迹方程例5 (2019·湖北武汉模拟)在平面直角坐标系xOy 中取两个定点A 1(-6,0),A 2(6,0),再取两个动点N 1(0,m ),N 2(0,n ),且mn =2.(1)求直线A 1N 1与A 2N 2的交点M 的轨迹C 的方程;(2)过R (3,0)的直线与轨迹C 交于P ,Q 两点,过点P 作PN ⊥x 轴且与轨迹C 交于另一点N ,F 为轨迹C 的右焦点,若RP →=λRQ →(λ>1),求证:NF →=λFQ →.解 (1)依题意知,直线A 1N 1的方程为y =m6(x +6),①直线A 2N 2的方程为y =-n6(x -6),②设M (x ,y )是直线A 1N 1与A 2N 2的交点, ①×②得y 2=-mn6(x 2-6),又mn =2,整理得x 26+y 22=1.故点M 的轨迹C 的方程为x 26+y 22=1.(2)证明:设过点R 的直线l :x =ty +3,P (x 1,y 1),Q (x 2,y 2),则N (x 1,-y 1),由⎩⎪⎨⎪⎧x =ty +3,x 26+y22=1,消去x ,得(t 2+3)y 2+6ty +3=0,(*) 所以y 1+y 2=-6t t 2+3,y 1y 2=3t 2+3. 由RP →=λRQ →,得(x 1-3,y 1)=λ(x 2-3,y 2), 故x 1-3=λ(x 2-3),y 1=λy 2,由(1)得F (2,0),要证NF →=λFQ →, 即证(2-x 1,y 1)=λ(x 2-2,y 2), 只需证2-x 1=λ(x 2-2),y 1=λy 2, 只需x 1-3x 2-3=-x 1-2x 2-2, 即证2x 1x 2-5(x 1+x 2)+12=0,又x 1x 2=(ty 1+3)(ty 2+3)=t 2y 1y 2+3t (y 1+y 2)+9,x 1+x 2=ty 1+3+ty 2+3=t (y 1+y 2)+6,所以2t 2y 1y 2+6t (y 1+y 2)+18-5t (y 1+y 2)-30+12=0,即2t 2y 1y 2+t (y 1+y 2)=0, 而2t 2y 1y 2+t (y 1+y 2)=2t 2·3t 2+3-t ·6tt 2+3=0成立,即证. 触类旁通参数法求轨迹方程的步骤(1)选取参数k ,用k 表示动点M 的坐标.得出动点M 的参数方程⎩⎪⎨⎪⎧x =f k ,y =gk消去参数k ,得M 的轨迹方程. 由k 的范围确定x ,y 的范围.即时训练 5.已知椭圆x 2a 2+y 2b2=1(a >b >0)的左、右焦点分别为F 1,F 2,上、下顶点分别是B 1,B 2,C 是线段B 1F 2的中点,若B 1F 1→·B 1F 2→=2,且CF 1→⊥B 1F 2→.(1)若点Q 是椭圆上任意一点,A (9,6),求|QA |-|QF 1|的最小值;(2)若点M ,N 是椭圆上的两个动点,M ,N 两点处的切线相交于点P ,当PM →·PN →=0时,求点P 的轨迹方程.解 (1)由题意得F 1(-c,0),F 2(c,0),B 1(0,b ),则C ⎝ ⎛⎭⎪⎫c 2,b 2,由⎩⎪⎨⎪⎧ B 1F 1→·B 1F 2→=2,CF 1→⊥B 1F 2→,得⎩⎪⎨⎪⎧ -c ,-b c ,-b =2,⎝ ⎛⎭⎪⎫-3c 2,-b 2c ,-b =0,即⎩⎪⎨⎪⎧ b 2-c 2=2,b 2=3c 2,解得⎩⎪⎨⎪⎧ b 2=3,c 2=1,从而a 2=4,所以椭圆的方程为x 24+y 23=1.由椭圆的定义得|QF 1|+|QF 2|=4,所以|QA |-|QF 1|=|QA |-(4-|QF 2|)=|QA |+|QF 2|-4,而|QA |+|QF 2|≥|AF 2|=-2+-2=10,所以|QA |-|QF 1|的最小值为6.(2)设P (x 0,y 0),①当PM ⊥x 轴,或PN ⊥x 轴时,可知P (2,3)或P (2,-3)或P (-2,3)或P (-2,-3).②当PM 与x 轴不垂直且不平行时,x 0≠±2,设直线PM 的斜率为k ,则k ≠0,PN 的斜率为-1k ,直线PM 的方程为y -y 0=k (x -x 0),由⎩⎪⎨⎪⎧y -y 0=k x -x 0,x 24+y23=1,得(3+4k 2)x 2+8k (y 0-kx 0)x +4(y 0-kx 0)2-12=0.因为直线PM 与椭圆相切,所以Δ=0,即4k 2(y 0-kx 0)2-(3+4k 2)[(y 0-kx 0)2-3]=0,即(x 20-4)k 2-2x 0y 0k +y 20-3=0,所以k 是方程(x 20-4)k 2-2x 0y 0k +y 20-3=0的一个根,同理-1k 是方程(x 20-4)k 2-2x 0y 0k +y 20-3=0的另一个根,所以k ·⎝ ⎛⎭⎪⎫-1k =y 20-3x 20-4,即x 20+y 20=7,其中x 0≠±2,所以点P的轨迹方程为x2+y2=7(x≠±2).P(2,3)或P(2,-3)或P(-2,3)或P(-2,-3)满足上式,综上,点P的轨迹方程为x2+y2=7.。

(江苏专用)高考数学大一轮复习 第九章 平面解析几何 9.3 圆的方程教师用书 理 苏教版-苏教版高

(江苏专用)高考数学大一轮复习 第九章 平面解析几何 9.3 圆的方程教师用书 理 苏教版-苏教版高

第九章平面解析几何 9.3 圆的方程教师用书理苏教版圆的定义与方程定义平面内到定点的距离等于定长的点的集合叫圆方程标准(x-a)2+(y-b)2=r2(r>0)圆心(a,b)半径为r一般x2+y2+Dx+Ey+F=0充要条件:D2+E2-4F>0圆心坐标:(-D2,-E2)半径r=12D2+E2-4F【知识拓展】1.确定圆的方程的方法和步骤确定圆的方程主要方法是待定系数法,大致步骤为(1)根据题意,选择标准方程或一般方程;(2)根据条件列出关于a,b,r或D,E,F的方程组;(3)解出a,b,r或D,E,F代入标准方程或一般方程.2.点与圆的位置关系点和圆的位置关系有三种.圆的标准方程(x-a)2+(y-b)2=r2,点M(x0,y0)(1)点在圆上:(x0-a)2+(y0-b)2=r2;(2)点在圆外:(x0-a)2+(y0-b)2>r2;(3)点在圆内:(x0-a)2+(y0-b)2<r2.【思考辨析】判断下列结论是否正确(请在括号中打“√”或“×”)(1)确定圆的几何要素是圆心与半径.( √)(2)已知点A(x1,y1),B(x2,y2),则以AB为直径的圆的方程是(x-x1)(x-x2)+(y-y1)(y-y2)=0.( √)(3)方程Ax 2+Bxy +Cy 2+Dx +Ey +F =0表示圆的充要条件是A =C ≠0,B =0,D 2+E 2-4AF >0.( √ )(4)方程x 2+2ax +y 2=0一定表示圆.( × )(5)若点M (x 0,y 0)在圆x 2+y 2+Dx +Ey +F =0外,则x 20+y 20+Dx 0+Ey 0+F >0.( √ )1.(教材改编)圆心是(-2,3),且经过原点的圆的标准方程为______________. 答案 (x +2)2+(y -3)2=13 解析 易得r =13.2.已知圆C :(x -3)2+(y -4)2=1和两点A (-m,0),B (m ,0)(m >0),若圆C 上存在点P ,使得∠APB =90°,则m 的最大值为________. 答案 6解析 根据题意,画出示意图,如图所示,则圆心C 的坐标为(3,4),半径r =1,且AB =2m . 因为∠APB =90°,连结OP , 易知OP =12AB =m .要求m 的最大值,即求圆C 上的点P 到原点O 的最大距离. 因为OC =32+42=5, 所以(OP )max =OC +r =6, 即m 的最大值为6.3.(2016·某某检测)当a 为任意实数时,直线(a -1)x -y +a +1=0恒过定点C ,则以点C 为圆心,5为半径的圆的方程为______________. 答案 x 2+y 2+2x -4y =0解析 将方程分离参数a 可得a (x +1)-(x +y -1)=0,方程表示过两直线的交点,由⎩⎪⎨⎪⎧x +1=0,x +y -1=0得交点为(-1,2),故圆的方程为(x +1)2+(y -2)2=5,即x 2+y 2+2x -4y=0.4.(教材改编)圆C 的圆心在x 轴上,并且过点A (-1,1)和B (1,3),则圆C 的方程为_______.答案 x 2+y 2-4x -6=0 解析 设圆心坐标为C (a,0), ∵点A (-1,1)和B (1,3)在圆C 上, ∴CA =CB , 即a +12+1=a -12+9,解得a =2, ∴圆心为C (2,0), 半径CA =2+12+1=10,∴圆C 的方程为(x -2)2+y 2=10,即x 2+y 2-4x -6=0.5.(2016·某某)已知a ∈R ,方程a 2x 2+(a +2)y 2+4x +8y +5a =0表示圆,则圆心坐标是________,半径是________. 答案 (-2,-4) 5解析 由已知方程表示圆,则a 2=a +2, 解得a =2或a =-1.当a =2时,方程不满足表示圆的条件,故舍去. 当a =-1时,原方程为x 2+y 2+4x +8y -5=0, 化为标准方程为(x +2)2+(y +4)2=25, 表示以(-2,-4)为圆心,半径为5的圆.题型一 求圆的方程例1 (1)(2016·某某)已知圆C 的圆心在x 轴的正半轴上,点M (0,5)在圆C 上,且圆心到直线2x -y =0的距离为455,则圆C 的方程为________________.(2)(2015·课标全国Ⅰ)一个圆经过椭圆x 216+y 24=1的三个顶点,且圆心在x 轴的正半轴上,则该圆的标准方程为________.答案 (1)x 2+y 2-4x -5=0 (2)⎝ ⎛⎭⎪⎫x -322+y 2=254解析 (1)因为圆C 的圆心在x 轴的正半轴上,设C (a,0),且a >0, 所以圆心到直线2x -y =0的距离d =2a5=455,解得a =2,所以圆C 的半径r =CM =4+5=3,所以圆C 的方程为(x -2)2+y 2=9, 即x 2+y 2-4x -5=0.(2)由题意知圆过(4,0),(0,2),(0,-2)三点, (4,0),(0,-2)两点的垂直平分线方程为y +1=-2(x -2),令y =0,解得x =32,圆心为⎝ ⎛⎭⎪⎫32,0,半径为52. 所以圆的标准方程为(x -32)2+y 2=254.思维升华 (1)直接法:根据圆的几何性质,直接求出圆心坐标和半径,进而写出方程. (2)待定系数法①若已知条件与圆心(a ,b )和半径r 有关,则设圆的标准方程,依据已知条件列出关于a ,b ,r 的方程组,从而求出a ,b ,r 的值;②若已知条件没有明确给出圆心或半径,则选择圆的一般方程,依据已知条件列出关于D ,E ,F 的方程组,进而求出D ,E ,F 的值.(2016·苏北四市联考)已知圆C 关于y 轴对称,经过点A (1,0),且被x 轴分成两段弧,弧长之比为1∶2,则圆C 的标准方程为________________. 答案 x 2+(y ±33)2=43解析 ∵圆C 关于y 轴对称,∴可设C (0,b ),设圆C 的半径为r ,则圆C 的标准方程为x 2+(y -b )2=r 2,依题意,得⎩⎪⎨⎪⎧12+-b2=r 2,|b |=12r ,解得⎩⎪⎨⎪⎧r 2=43,b =±33,于是圆C 的标准方程为x 2+(y ±33)2=43. 题型二 与圆有关的最值问题例2 (2016·某某检测)已知点(x ,y )在圆(x -2)2+(y +3)2=1上,求x +y 的最大值和最小值.解 设t =x +y ,则y =-x +t ,t 可视为直线y =-x +t 的纵截距,∴x +y 的最大值和最小值就是直线与圆有公共点时直线纵截距的最大值和最小值,即直线与圆相切时的纵截距.由直线与圆相切得圆心到直线的距离等于半径,即|2+-3-t |2=1,解得t =2-1或t =-2-1.∴x +y 的最大值为2-1,最小值为-2-1. 引申探究1.在例2的条件下,求y x的最大值和最小值.解 y x 可视为点(x ,y )与原点连线的斜率,y x的最大值和最小值就是与该圆有公共点的过原点的直线斜率的最大值和最小值,即直线与圆相切时的斜率.设过原点的直线的方程为y =kx ,由直线与圆相切得圆心到直线的距离等于半径,即|2k +3|k 2+1=1,解得k =-2+233或k =-2-233.∴y x 的最大值为-2+233,最小值为-2-233. 2.在例2的条件下,求x 2+y 2+2x -4y +5的最大值和最小值. 解x 2+y 2+2x -4y +5=x +12+y -22,求它的最值可视为求点(x ,y )到定点(-1, 2)的距离的最值,可转化为圆心(2,-3)到定点(-1,2)的距离与半径的和或差.又圆心到定点(-1,2)的距离为34,∴x 2+y 2+2x -4y +5的最大值为34+1,最小值为34-1. 思维升华 与圆有关的最值问题的常见类型及解题策略(1)与圆有关的长度或距离的最值问题的解法.一般根据长度或距离的几何意义,利用圆的几何性质数形结合求解.(2)与圆上点(x ,y )有关代数式的最值的常见类型及解法.①形如u =y -bx -a型的最值问题,可转化为过点(a ,b )和点(x ,y )的直线的斜率的最值问题;②形如t =ax +by 型的最值问题,可转化为动直线的截距的最值问题;③形如(x -a )2+(y -b )2型的最值问题,可转化为动点到定点(a ,b )的距离平方的最值问题.(2016·某某模拟)已知实数x ,y 满足方程x 2+y 2-4x +1=0.求:(1)y x的最大值和最小值; (2)y -x 的最小值; (3)x 2+y 2的最大值和最小值.解 (1)如图,方程x 2+y 2-4x +1=0表示以点(2,0)为圆心,以3为半径的圆.设yx=k,即y=kx,则圆心(2,0)到直线y=kx的距离为半径,即直线与圆相切时,斜率取得最大值、最小值.由|2k-0|k2+1=3,解得k2=3,∴k max=3,k min=- 3.(2)设y-x=b,则y=x+b,当且仅当直线y=x+b与圆切于第四象限时,截距b取最小值,由点到直线的距离公式,得|2-0+b|2=3,即b=-2±6,故(y-x)min=-2- 6.(3)x2+y2是圆上的点与原点的距离的平方,故连结OC,与圆交于B点,并延长交圆于C′,则(x2+y2)max=(OC′)2=(2+3)2=7+43,(x2+y2)min=OB2=(2-3)2=7-4 3.题型三与圆有关的轨迹问题例3 (2016·某某模拟)已知圆x2+y2=4上一定点A(2,0),B(1,1)为圆内一点,P,Q为圆上的动点.(1)求线段AP中点的轨迹方程;(2)若∠PBQ=90°,求线段PQ中点的轨迹方程.解(1)设AP的中点为M(x,y),由中点坐标公式可知,P点坐标为(2x-2,2y).因为P点在圆x2+y2=4上,所以(2x-2)2+(2y)2=4,故线段AP中点的轨迹方程为(x-1)2+y2=1.(2)设PQ的中点为N(x,y),在Rt△PBQ中,PN=BN.设O为坐标原点,连结ON,则ON⊥PQ,所以OP2=ON2+PN2=ON2+BN2,所以x 2+y 2+(x -1)2+(y -1)2=4.故线段PQ 中点的轨迹方程为x 2+y 2-x -y -1=0.思维升华 求与圆有关的轨迹问题时,根据题设条件的不同常采用以下方法 (1)直接法,直接根据题目提供的条件列出方程. (2)定义法,根据圆、直线等定义列方程. (3)几何法,利用圆的几何性质列方程.(4)代入法,找到要求点与已知点的关系,代入已知点满足的关系式等.(2016·某某模拟)设定点M (-3,4),动点N 在圆x 2+y 2=4上运动,以OM 、ON为两边作平行四边形MONP ,求点P 的轨迹.解 如图所示,设P (x ,y ),N (x 0,y 0),则线段OP 的中点坐标为⎝ ⎛⎭⎪⎫x 2,y 2,线段MN 的中点坐标为⎝⎛⎭⎪⎫x 0-32,y 0+42.由于平行四边形的对角线互相平分,故x 2=x 0-32,y 2=y 0+42.从而⎩⎪⎨⎪⎧x 0=x +3,y 0=y -4.又N (x +3,y -4)在圆上,故(x +3)2+(y -4)2=4. 因此所求轨迹为圆:(x +3)2+(y -4)2=4,但应除去两点⎝ ⎛⎭⎪⎫-95,125和⎝ ⎛⎭⎪⎫-215,285(点P 在直线OM 上的情况).21.利用几何性质巧设方程求半径典例 在平面直角坐标系xOy 中,曲线y =x 2-6x +1与坐标轴的交点都在圆C 上,求圆C 的方程.思想方法指导 本题可采用两种方法解答,即代数法和几何法.(1)一般解法(代数法):可以求出曲线y =x 2-6x +1与坐标轴的三个交点,设圆的方程为一般式,代入点的坐标求解析式.(2)巧妙解法(几何法):利用圆的性质,知道圆心一定在圆上两点连线的垂直平分线上,从而设圆的方程为标准式,简化计算,显然几何法比代数法的计算量小,因此平时训练多采用几何法解题.规X 解答解 一般解法 (代数法)曲线y =x 2-6x +1与y 轴的交点为(0,1),与x 轴的交点为(3+22,0),(3-22,0),设圆的方程是x 2+y 2+Dx +Ey +F =0(D 2+E 2-4F >0),则有⎩⎨⎧1+E +F =0,3+222+D3+22+F =0,3-222+D3-22+F =0,解得⎩⎪⎨⎪⎧D =-6,E =-2,F =1,故圆的方程是x 2+y 2-6x -2y +1=0.巧妙解法 (几何法)曲线y =x 2-6x +1与y 轴的交点为(0,1),与x 轴的交点为(3+22,0),(3-22,0).故可设C 的圆心为(3,t ),则有32+(t -1)2=(22)2+t 2,解得t =1. 则圆C 的半径为32+t -12=3,所以圆C 的方程为(x -3)2+(y -1)2=9, 即x 2+y 2-6x -2y +1=0.1.(2017·某某检测)圆心在y 轴上,且过点(3,1)的圆与x 轴相切,则该圆的方程是______. 答案 x 2+y 2-10y =0解析 根据题意,设圆心坐标为(0,r ),半径为r ,则32+(r -1)2=r 2,解得r =5,所以圆的方程为x 2+y 2-10y =0.2.已知圆M 的圆心M 在y 轴上,半径为1,直线l :y =2x +2被圆M 所截得的弦长为455,且圆心M 在直线l 的下方,则圆M 的标准方程是__________. 答案 x 2+(y -1)2=1 解析 点M 到l 的距离d =1-2552=55. 设M (0,a ),所以|2-a |5=55,所以a =1或a =3.又因为a <2×0+2=2,所以a =1. 所以圆M 的标准方程为x 2+(y -1)2=1.3.若直线ax +2by -2=0(a >0,b >0)始终平分圆x 2+y 2-4x -2y -8=0的周长,则1a +2b的最小值为________.答案 3+2 2解析 由题意知圆心C (2,1)在直线ax +2by -2=0上, ∴2a +2b -2=0,整理得a +b =1, ∴1a +2b =(1a +2b )(a +b )=3+b a +2a b≥3+2b a ×2ab =3+22, 当且仅当b a=2ab,即b =2-2,a =2-1时,等号成立.∴1a +2b的最小值为3+2 2.4.点P (4,-2)与圆x 2+y 2=4上任一点连线的中点的轨迹方程是________________. 答案 (x -2)2+(y +1)2=1解析 设圆上任一点坐标为(x 0,y 0),x 20+y 20=4,连线中点坐标为(x ,y ),则⎩⎪⎨⎪⎧2x =x 0+4,2y =y 0-2⇒⎩⎪⎨⎪⎧x 0=2x -4,y 0=2y +2,代入x 20+y 20=4,得(x -2)2+(y +1)2=1.5.圆C 的圆心在y 轴正半轴上,且与x 轴相切,被双曲线x 2-y 23=1的渐近线截得的弦长为3,则圆C 的标准方程为______________. 答案 x 2+(y -1)2=1解析 依题意得,题中的双曲线的一条渐近线的斜率为3,倾斜角为60°,结合图形(图略)可知,所求的圆C 的圆心坐标是(0,1),半径是1,因此其方程是x 2+(y -1)2=1. 6.(2016·某某模拟)已知P 是直线l :3x -4y +11=0上的动点,PA ,PB 是圆x 2+y 2-2x -2y +1=0的两条切线(A ,B 是切点),C 是圆心,那么四边形PACB 的面积的最小值是__________. 答案3解析 圆的方程可化为(x -1)2+(y -1)2=1, 则C (1,1),当PC 最小时,四边形PACB 的面积最小, (PC )min =|3-4+11|32+42=2,此时PA =PB = 3. 所以四边形PACB 的面积S =2×12×3×1= 3.7.(2016·某某模拟)已知圆C 过点(-1,0),且圆心在x 轴的负半轴上,直线l :y =x +1被该圆所截得的弦长为22,则过圆心且与直线l 平行的直线方程为________________. 答案 x -y +3=0解析 设圆的方程为(x -a )2+y 2=r 2(a <0),因为圆C 过点(-1,0),且直线l :y =x +1被该圆所截得的弦长为22,所以⎩⎪⎨⎪⎧-1-a 2=r 2,|a +1|22+22=r 2,解得⎩⎪⎨⎪⎧a =-3,r 2=4,即圆心坐标为(-3,0),则所求直线为y =x +3,即x -y +3=0.8.过点P (1,1)的直线,将圆形区域{(x ,y )|x 2+y 2≤4}分为两部分,使得这两部分的面积之差最大,则该直线的方程为______________. 答案 x +y -2=0解析 当圆心与点P 的连线和过点P 的直线垂直时,符合条件.圆心O 与点P 连线的斜率k =1,所求直线方程为y -1=-(x -1),即x +y -2=0. 9.已知D 是由不等式组⎩⎪⎨⎪⎧x -2y ≥0, x +3y ≥0所确定的平面区域,则圆x 2+y 2=4在区域D 内的弧长为________. 答案π2解析 作出可行域D 及圆x 2+y 2=4,如图所示,图中阴影部分所在圆心角θ=α-β所对的弧长即为所求.易知图中两直线的斜率分别为12,-13,即tan α=12,tan β=-13,tan θ=tan(α-β)=12+131-12×13=1,得θ=π4,故弧长l =θ·R =π4×2=π2(R 为圆的半径).10.在平面直角坐标系中,O 为原点,A (-1,0),B (0,3),C (3,0),动点D 满足|CD →|=1,则|OA →+OB →+OD →|的最大值是________.答案 7+1解析 设D (x ,y ),由CD →=(x -3,y )及|CD →|=1,知(x -3)2+y 2=1,即动点D 的轨迹为以点C 为圆心的单位圆,又OA →+OB →+OD →=(-1,0)+(0,3)+(x ,y )=(x-1,y +3),∴|OA →+OB →+OD →|=x -12+y +32. 问题转化为圆(x -3)2+y 2=1上的点与点P (1,-3)间距离的最大值.∵圆心C (3,0)与点P (1,-3)之间的距离为d =3-12+0+32=7, 故x -12+y +32的最大值为7+1.11.已知圆C 经过P (4,-2),Q (-1,3)两点,且在y 轴上截得的线段的长为43,半径小于5.(1)求直线PQ 与圆C 的方程;(2)若直线l ∥PQ ,且l 与圆C 交于点A ,B ,且以线段AB 为直径的圆经过坐标原点,求直线l 的方程.解 (1)由题意知直线PQ 的方程为x +y -2=0.设圆心C (a ,b ),半径为r ,由于线段PQ 的垂直平分线的方程是y -12=x -32, 即y =x -1,所以b =a -1.①由圆C 在y 轴上截得的线段的长为43,知r 2=(23)2+a 2,可得(a +1)2+(b -3)2=12+a 2,②由①②得a =1,b =0或a =5,b =4.当a =1,b =0时,r 2=13,满足题意,当a =5,b =4时,r 2=37,不满足题意.故圆C 的方程为(x -1)2+y 2=13.(2)设直线l 的方程为y =-x +m (m ≠2), A (x 1,m -x 1),B (x 2,m -x 2).由题意可知OA ⊥OB ,即OA →·OB →=0,∴x 1x 2+(m -x 1)(m -x 2)=0,化简得2x 1x 2-m (x 1+x 2)+m 2=0.③由⎩⎪⎨⎪⎧ y =-x +m ,x -12+y 2=13得 2x 2-2(m +1)x +m 2-12=0,∴x 1+x 2=m +1,x 1x 2=m 2-122, 代入③,得m 2-12-m ·(1+m )+m 2=0,∴m =4或m =-3,经检验都满足题意,∴直线l 的方程为x +y -4=0或x +y +3=0. 12.在平面直角坐标系xOy 中,已知圆P 在x 轴上截得线段长为22,在y 轴上截得线段长为2 3.(1)求圆心P 的轨迹方程;(2)若P 点到直线y =x 的距离为22,求圆P 的方程. 解 (1)设P (x ,y ),圆P 的半径为r .则y 2+2=r 2,x 2+3=r 2.∴y 2+2=x 2+3,即y 2-x 2=1.∴圆心P 的轨迹方程为y 2-x 2=1.(2)设P 点的坐标为(x 0,y 0),则|x 0-y 0|2=22,即|x 0-y 0|=1. ∴y 0-x 0=±1,即y 0=x 0±1.①当y 0=x 0+1时,由y 20-x 20=1,得(x 0+1)2-x 20=1.∴⎩⎪⎨⎪⎧ x 0=0,y 0=1,∴r 2=3.∴圆P 的方程为x 2+(y -1)2=3.②当y 0=x 0-1时,由y 20-x 20=1,得(x 0-1)2-x 20=1.∴⎩⎪⎨⎪⎧ x 0=0,y 0=-1,∴r 2=3.∴圆P 的方程为x 2+(y +1)2=3.综上所述,圆P 的方程为x 2+(y ±1)2=3.*13.已知M 为圆C :x 2+y 2-4x -14y +45=0上任意一点,且点Q (-2,3).(1)求MQ 的最大值和最小值;(2)若M (m ,n ),求n -3m +2的最大值和最小值. 解 (1)由圆C :x 2+y 2-4x -14y +45=0,可得(x -2)2+(y -7)2=8, 所以圆心C 的坐标为(2,7),半径r =2 2. 又QC =2+22+7-32=4 2. 所以(MQ )max =42+22=62,(MQ )min =42-22=2 2.(2)可知n -3m +2表示直线MQ 的斜率, 设直线MQ 的方程为y -3=k (x +2), 即kx -y +2k +3=0,n -3m +2=k . 由直线MQ 与圆C 有交点,所以|2k -7+2k +3|1+k2≤22, 可得2-3≤k ≤2+3,所以n -3m +2的最大值为2+3,最小值为2- 3.。

高考数学一轮总复习 第九篇 解析几何初步教案 理 苏教版

高考数学一轮总复习 第九篇 解析几何初步教案 理 苏教版

第九篇 解析几何初步第1讲 直线的方程知 识 梳 理1.直线的倾斜角与斜率 (1)直线的倾斜角①定义:在平面直角坐标系中,对于一条与x 轴相交的直线,把x 轴所在的直线绕着交点按逆时针方向旋转到和直线重合时所转过的最小正角称为这条直线的倾斜角.当直线l 与x 轴平行或重合时,规定它的倾斜角为0. ②倾斜角的范围为[0,π). (2)直线的斜率①定义:一条直线的倾斜角α的正切值叫做这条直线的斜率,斜率常用小写字母k 表示,即k =tan α,倾斜角是90°的直线斜率不存在. ②过两点的直线的斜率公式经过两点P 1(x 1,y 1),P 2(x 2,y 2)(x 1≠x 2)的直线的斜率公式为k =y 2-y 1x 2-x 1. 2.直线方程的五种形式111222(1)若x 1≠x 2,且y 1≠y 2时,方程为y -y 1y 2-y 1=x -x 1x 2-x 1. (2)若x 1=x 2,且y 1≠y 2时,直线垂直于x 轴,方程为x =x 1. (3)若x 1≠x 2,且y 1=y 2时,直线垂直于y 轴,方程为y =y 1. 4.线段的中点坐标公式若点P 1、P 2的坐标分别为(x 1,y 1)、(x 2,y 2),线段P 1P 2的中点M 的坐标为(x ,y ),则⎩⎪⎨⎪⎧x =x 1+x 22,y =y 1+y 22,此公式为线段P 1P 2的中点坐标公式.辨 析 感 悟1.对直线的倾斜角与斜率的理解(1)坐标平面内的任何一条直线均有倾斜角与斜率.(³) (2)过点M (a ,b ),N (b ,a )(a ≠b )的直线的倾斜角是45°.(³)(3)(教材习题改编)若三点A (2,3),B (a,1),C (0,2)共线,则a 的值为-2.(√) 2.对直线的方程的认识(4)经过点P (x 0,y 0)的直线都可以用方程y -y 0=k (x -x 0)表示.(³)(5)经过任意两个不同的点P 1(x 1,y 1),P 2(x 2,y 2)的直线都可以用方程(y -y 1)(x 2-x 1)=(x -x 1)(y 2-y 1)表示.(√)(6)直线l 过点P (1,2)且在两坐标轴上的截距相等,则直线l 的方程为x +y -3=0.(³) [感悟²提升]1.直线的倾斜角与斜率的关系 斜率k 是一个实数,当倾斜角α≠90°时,k =tan α.直线都有斜倾角,但并不是每条直线都存在斜率,倾斜角为90°的直线无斜率,如(1). 2.三个防范 一是根据斜率求倾斜角,要注意倾斜角的范围,如(2);二是求直线方程时,若不能断定直线是否具有斜率时,应对斜率存在与不存在加以讨论,如(4);三是在用截距式时,应先判断截距是否为0,若不确定,则需分类讨论,如(6).考点一 直线的倾斜角和斜率【例1】 (1)直线x sin α+y +2=0的倾斜角的取值范围是________.(2)若直线l 与直线y =1,x =7分别交于点P ,Q ,且线段PQ 的中点坐标为(1,-1),则直线l 的斜率为________.解析 (1)设直线的倾斜角为θ,则有tan θ=-sin α,其中sin α∈[-1,1],又θ∈[0,π),所以0≤θ≤π4或3π4≤θ<π.(2)依题意,设点P (a,1),Q (7,b ),则有⎩⎪⎨⎪⎧a +7=2,b +1=-2,解得a =-5,b =-3,从而可知直线l 的斜率为-3-17+5=-13.答案 (1)⎣⎢⎡⎦⎥⎤0,π4∪⎣⎢⎡⎭⎪⎫3π4,π (2)-13 规律方法 直线倾斜角的范围是[0,π),而这个区间不是正切函数的单调区间,因此根据斜率求倾斜角的范围时,要分⎣⎢⎡⎭⎪⎫0,π2与⎝ ⎛⎭⎪⎫π2,π两种情况讨论.由正切函数图象可以看出当α∈⎣⎢⎡⎭⎪⎫0,π2时,斜率k ∈[0,+∞);当α=π2时,斜率不存在;当α∈⎝ ⎛⎭⎪⎫π2,π时,斜率k ∈(-∞,0).【训练1】 经过P (0,-1)作直线l ,若直线l 与连接A (1,-2),B (2,1)的线段总有公共点,求直线l 的倾斜角α的范围. 解 法一如图所示,k PA =-2- -11-0=-1,k PB =1- -12-0=1,由图可观察出:直线l 倾斜角α的范围是⎣⎢⎡⎭⎪⎫3π4,π∪⎣⎢⎡⎦⎥⎤0,π4.法二 由题意知,直线l 存在斜率.设直线l 的斜率为k ,则直线l 的方程为y +1=kx ,即kx -y -1=0.∵A ,B 两点在直线的两侧或其中一点在直线l 上. ∴(k +2-1)(2k -1-1)≤0,即2(k +1)(k -1)≤0. ∴-1≤k ≤1.∴直线l 的倾斜角α的范围是⎣⎢⎡⎭⎪⎫3π4,π∪⎣⎢⎡⎦⎥⎤0,π4.考点二 求直线的方程【例2】 求适合下列条件的直线方程:(1)经过点P (3,2),且在两坐标轴上的截距相等; (2)过点A (-1,-3),斜率是直线y =3x 的斜率的-14.(3)过点A (1,-1)与已知直线l 1:2x +y -6=0相交于B 点,且|AB |=5.解 (1)法一 设直线l 在x ,y 轴上的截距均为a ,若a =0,即l 过点(0,0)和(3,2), ∴l 的方程为y =23x ,即2x -3y =0.若a ≠0,则设l 的方程为x a +y a=1, ∵l 过点(3,2),∴3a +2a=1,∴a =5,∴l 的方程为x +y -5=0,综上可知,直线l 的方程为2x -3y =0或x +y -5=0. 法二 由题意,所求直线的斜率k 存在且k ≠0, 设直线方程为y -2=k (x -3),令y =0,得x =3-2k,令x =0,得y =2-3k ,由已知3-2k =2-3k ,解得k =-1或k =23,∴直线l 的方程为y -2=-(x -3)或y -2=23(x -3),即x +y -5=0或2x -3y =0. (2)设所求直线的斜率为k ,依题意k =-14³3=-34.又直线经过点A (-1,-3),因此所求直线方程为y +3=-34(x +1),即3x +4y +15=0.(3)过点A (1,-1)与y 轴平行的直线为x =1.解方程组⎩⎪⎨⎪⎧x =1,2x +y -6=0,求得B 点坐标为(1,4),此时|AB |=5, 即x =1为所求.设过A (1,-1)且与y 轴不平行的直线为y +1=k (x -1),解方程组⎩⎪⎨⎪⎧2x +y -6=0,y +1=k x -1 ,得两直线交点为⎩⎪⎨⎪⎧x =k +7k +2,y =4k -2k +2.(k ≠-2,否则与已知直线平行) 则B 点坐标为⎝ ⎛⎭⎪⎫k +7k +2,4k -2k +2.由已知⎝⎛⎭⎪⎫k +7k +2-12+⎝ ⎛⎭⎪⎫4k -2k +2+12=52,解得k =-34,∴y +1=-34(x -1),即3x +4y +1=0.综上可知,所求直线的方程为x =1或3x +4y +1=0.规律方法 在求直线方程时,应先选择适当的直线方程的形式,并注意各种形式的适用条件,用斜截式及点斜式时,直线的斜率必须存在,而两点式不能表示与坐标轴垂直的直线,截距式不能表示与坐标轴垂直或经过原点的直线,故在解题时,若采用截距式,应注意分类讨论,判断截距是否为零;若采用点斜式,应先考虑斜率不存在的情况. 【训练2】 △ABC 的三个顶点为A (-3,0),B (2,1),C (-2,3),求: (1)BC 所在直线的方程;(2)BC 边上中线AD 所在直线的方程; (3)BC 边的垂直平分线DE 的方程.解 (1)因为直线BC 经过B (2,1)和C (-2,3)两点,由两点式得BC 的方程为y -13-1=x -2-2-2,即x +2y -4=0.(2)设BC 中点D 的坐标为(x ,y ), 则x =2-22=0,y =1+32=2.BC 边的中线AD 过A (-3,0),D (0,2)两点,由截距式得AD 所在直线方程为x -3+y2=1,即2x -3y +6=0.(3)BC 的斜率k 1=-12,则BC 的垂直平分线DE 的斜率k 2=2,由点斜式得直线DE 的方程为y-2=2(x -0),即2x -y +2=0.【例3】 已知直线l 过点P (3,2),且与x 轴、y 轴的正半轴分别交于A 、B 两点,如右图所示,求△ABO 的面积的最小值及此时直线l 的方程.审题路线 根据截距式设所求直线l 的方程⇒把点P 代入,找出截距的关系式⇒运用基本不等式求S △ABO ⇒运用取等号的条件求出截距⇒得出直线l 的方程. 解 设A (a,0),B (0,b ),(a >0,b >0),则直线l 的方程为x a +y b=1, ∵l 过点P (3,2),∴3a +2b=1.∴1=3a +2b ≥26ab,即ab ≥24.∴S △ABO =12ab ≥12.当且仅当3a =2b ,即a =6,b =4.△ABO 的面积最小,最小值为12. 此时直线l 的方程为:x 6+y4=1.即2x +3y -12=0.规律方法 (1)与函数相结合的问题:解决这类问题,一般是利用直线方程中的x ,y 的关系,将问题转化为关于x (或y )的某函数,借助函数的性质解决;(2)与方程、不等式相结合的问题:一般是利用方程、不等式的有关知识(如方程解的个数、根的存在问题,不等式的性质、基本不等式等)来解决.【训练3】 在例3的条件下,求直线l 在两轴上的截距之和最小时直线l 的方程. 解 设l 的斜率为k (k <0),则l 的方程为y =k (x -3)+2,令x =0,得B (0,2-3k ),令y=0,得A ⎝⎛⎭⎪⎫3-2k,0,∴l 在两轴上的截距之和为2-3k +3-2k=5+⎣⎢⎡⎦⎥⎤ -3k +⎝ ⎛⎭⎪⎫-2k ≥5+26,当且仅当k =-63时,等号成立. ∴k =-63时,l 在两轴上截距之和最小, 此时l 的方程为6x +3y -36-6=0.1.求斜率可用k =tan α(α≠90°),其中α为倾斜角,由此可见倾斜角与斜率相互联系不可分割,牢记:“斜率变化分两段,90°是分界,遇到斜率要谨记,存在与否需讨论”. 2.求直线方程中一种重要的方法就是先设直线方程,再求直线方程中的系数,这种方法叫待定系数法.思想方法9——分类讨论思想在求直线方程中的应用【典例】 在平面直角坐标系中,已知矩形ABCD ,AB =2,BC =1,AB 、AD 边分别在x 轴、y 轴的正半轴上,A 点与坐标原点重合.将矩形折叠,使A 点落在线段DC 上.若折痕所在直线的斜率为k ,试写出折痕所在直线的方程.解 (1)当k =0时,此时A 点与D 点重合,折痕所在的直线方程为y =12.(2)当k ≠0时,将矩形折叠后A 点落在线段CD 上的点为G (a,1). 所以A 与G 关于折痕所在的直线对称, 有k AG ²k =-1,1ak =-1⇒a =-k .故G 点坐标为G (-k,1),从而折痕所在的直线与AG 的交点坐标(线段AG 的中点)为M ⎝ ⎛⎭⎪⎫-k 2,12. 折痕所在的直线方程为y -12=k ⎝ ⎛⎭⎪⎫x +k 2,即y =kx +k 22+12.∴k =0时,y =12;k ≠0时,y =kx +k 22+12.[反思感悟] (1)求直线方程时,要考虑对斜率是否存在、截距相等时是否为零以及相关位置关系进行分类讨论.(2)本题需对斜率k 为0和不为0进行分类讨论,易错点是忽略斜率不存在的情况. 【自主体验】1.若直线过点P ⎝ ⎛⎭⎪⎫-3,-32且被圆x 2+y 2=25截得的弦长是8,则该直线的方程为____________________.解析 若直线的斜率不存在,则该直线的方程为x =-3,代入圆的方程解得y =±4,故该直线被圆截得的弦长为8,满足条件;若直线的斜率存在,不妨设直线的方程为y +32=k (x+3),即kx -y +3k -32=0,因为该直线被圆截得的弦长为8,故半弦长为4.又圆的半径为5,则圆心(0,0)到直线的距离为52-42=⎪⎪⎪⎪⎪⎪3k -32k 2+1,解得k =-34,此时该直线的方程为3x+4y +15=0.答案 x =-3或3x +4y +15=02.已知两点A (-1,2),B (m,3),则直线AB 的方程为________. 解析 当m =-1时,直线AB 的方程为x =-1, 当m ≠-1时,直线AB 的方程为y -2=1m +1(x +1), 即y =1m +1(x +1)+2. 答案 x =-1或y =1m +1(x +1)+2基础巩固题组(建议用时:40分钟)一、填空题1.直线3x -y +a =0(a 为常数)的倾斜角为________.解析 直线的斜率为k =tan α=3,又因为α∈[0,π),所以α=π3.答案π32.已知直线l 经过点P (-2,5),且斜率为-34.则直线l 的方程为________.解析 由点斜式,得y -5=-34(x +2),即3x +4y -14=0. 答案 3x +4y -14=03.(2014²长春模拟)若点A (4,3),B (5,a ),C (6,5)三点共线,则a 的值为________. 解析 ∵k AC =5-36-4=1,k AB =a -35-4=a -3.由于A ,B ,C 三点共线,所以a -3=1,即a =4. 答案 44.(2014²泰州模拟)直线3x -4y +k =0在两坐标轴上的截距之和为2,则实数k =________. 解析 令x =0,得y =k 4;令y =0,得x =-k3.则有k 4-k3=2,所以k =-24.答案 -245.若直线(2m 2+m -3)x +(m 2-m )y =4m -1在x 轴上的截距为1,则实数m =________. 解析 由题意可知2m 2+m -3≠0,即m ≠1且m ≠-32,在x 轴上截距为4m -12m 2+m -3=1,即2m2-3m -2=0,解得m =2或-12.答案 2或-126.(2014²佛山调研)直线ax +by +c =0同时要经过第一、第二、第四象限,则a ,b ,c 应满足________.①ab >0,bc <0;②ab >0,bc >0;③ab <0,bc >0;④ab <0,bc <0.解析 由题意,令x =0,y =-c b >0;令y =0,x =-c a>0.即bc <0,ac <0,从而ab >0. 答案 ①7.(2014²淮阳模拟)直线l 经过点A (1,2),在x 轴上的截距的取值范围是(-3,3),则其斜率的取值范围是________.解析 设直线的斜率为k ,如图,过定点A 的直线经过点B 时,直线l 在x 轴上的截距为3,此时k =-1;过定点A 的直线经过点C 时,直线l 在x 轴的截距为-3,此时k =12,满足条件的直线l 的斜率范围是(-∞,-1)∪⎝ ⎛⎭⎪⎫12,+∞. 答案 (-∞,-1)∪⎝ ⎛⎭⎪⎫12,+∞8.一条直线经过点A (-2,2),并且与两坐标轴围成的三角形的面积为1,则此直线的方程为________.解析 设所求直线的方程为x a +yb=1,∵A (-2,2)在直线上,∴-2a +2b=1.①又因直线与坐标轴围成的三角形面积为1, ∴12|a |²|b |=1.② 由①②可得(1)⎩⎪⎨⎪⎧a -b =1,ab =2或(2)⎩⎪⎨⎪⎧a -b =-1,ab =-2.由(1)解得⎩⎪⎨⎪⎧a =2,b =1或⎩⎪⎨⎪⎧a =-1,b =-2,方程组(2)无解.故所求的直线方程为x 2+y 1=1或x -1+y-2=1, 即x +2y -2=0或2x +y +2=0为所求直线的方程. 答案 x +2y -2=0或2x +y +2=0 二、解答题9.(2014²临沂月考)设直线l 的方程为(a +1)x +y +2-a =0(a ∈R ). (1)若l 在两坐标轴上的截距相等,求l 的方程; (2)若l 不经过第二象限,求实数a 的取值范围.解 (1)当直线过原点时,该直线在x 轴和y 轴上的截距为0,当然相等.∴a =2,方程即为3x +y =0.当直线不过原点时,由截距存在且均不为0, 得a -2a +1=a -2,即a +1=1, ∴a =0,方程即为x +y +2=0.综上,l 的方程为3x +y =0或x +y +2=0. (2)将l 的方程化为y =-(a +1)x +a -2,∴⎩⎪⎨⎪⎧- a +1 >0,a -2≤0或⎩⎪⎨⎪⎧- a +1 =0,a -2≤0.∴a ≤-1.综上可知a 的取值范围是(-∞,-1].10.已知直线l 过点M (2,1),且分别与x 轴、y 轴的正半轴交于A ,B 两点,O 为原点,是否存在使△ABO 面积最小的直线l ?若存在,求出直线l 的方程;若不存在,请说明理由. 解 存在.理由如下:设直线l 的方程为y -1=k (x -2)(k <0),则A ⎝ ⎛⎭⎪⎫2-1k ,0,B (0,1-2k ),△AOB 的面积S =12(1-2k )⎝ ⎛⎭⎪⎫2-1k =12⎣⎢⎡⎦⎥⎤4+ -4k +⎝ ⎛⎭⎪⎫-1k ≥12(4+4)=4.当且仅当-4k =-1k ,即k =-12时,等号成立,故直线l 的方程为y -1=-12(x -2),即x +2y -4=0.能力提升题组 (建议用时:25分钟)一、填空题1.(2014²北京海淀一模)已知点A (-1,0),B (cos α,sin α),且|AB |=3,则直线AB 的方程为________.解析 |AB |= cos α+1 2+sin 2α=2+2cos α=3,所以cos α=12,sin α=±32,所以k AB =±33,即直线AB 的方程为y =±33(x +1),所以直线AB 的方程为y =33x +33或y =-33x -33. 答案 y =33x +33或y =-33x -332.若直线l :y =kx -3与直线2x +3y -6=0的交点位于第一象限,则直线l 的倾斜角的取值范围是________. 解析如图,直线l :y =kx -3,过定点P (0,-3),又A (3,0),∴k PA =33,则直线PA 的倾斜角为π6,满足条件的直线l 的倾斜角的范围是⎝ ⎛⎭⎪⎫π6,π2. 答案 ⎝⎛⎭⎪⎫π6,π23.已知直线x +2y =2分别与x 轴、y 轴相交于A ,B 两点,若动点P (a ,b )在线段AB 上,则ab 的最大值为________.解析 直线方程可化为x2+y =1,故直线与x 轴的交点为A (2,0),与y 轴的交点为B (0,1),由动点P (a ,b )在线段AB 上,可知0≤b ≤1,且a +2b =2,从而a =2-2b ,故ab =(2-2b )b=-2b 2+2b =-2⎝ ⎛⎭⎪⎫b -122+12,由于0≤b ≤1,故当b =12时,ab 取得最大值12.答案 12二、解答题 4.如图,射线OA ,OB 分别与x 轴正半轴成45°和30°角,过点P (1,0)作直线AB 分别交OA ,OB 于A ,B 两点,当AB 的中点C 恰好落在直线y =12x 上时,求直线AB 的方程.解 由题意可得k OA =tan 45°=1,k OB =tan(180°-30°)=-33,所以直线l OA :y =x ,l OB :y =-33x , 设A (m ,m ),B (-3n ,n ), 所以AB 的中点C ⎝⎛⎭⎪⎫m -3n 2,m +n 2,由点C 在y =12x 上,且A ,P ,B 三点共线得⎩⎪⎨⎪⎧m +n 2=12²m -3n 2,m -0m -1=n -0-3n -1,解得m =3,所以A (3,3).又P (1,0),所以k AB =k AP =33-1=3+32,所以l AB :y =3+32(x -1),即直线AB 的方程为(3+3)x -2y -3-3=0.第2讲 两条直线的位置关系知 识 梳 理1.两条直线平行与垂直的判定 (1)两条直线平行对于两条不重合的直线l 1、l 2,其斜率分别为k 1、k 2,则有l 1∥l 2⇔k 1=k 2.特别地,当直线l 1、l 2的斜率都不存在时,l 1与l 2的关系为平行.(2)两条直线垂直①如果两条直线l 1、l 2的斜率存在,设为k 1、k 2,则l 1⊥l 2⇔k 1k 2=-1.②如果l 1、l 2中有一条直线的斜率不存在,另一条直线的斜率为0时,l 1与l 2的关系为垂直. 2.两直线相交交点:直线l 1:A 1x +B 1y +C 1=0和l 2:A 2x +B 2y +C 2=0的公共点的坐标与方程组⎩⎪⎨⎪⎧A 1x +B 1y +C 1=0A 2x +B 2y +C 2=0的解一一对应.相交⇔方程组有唯一解,交点坐标就是方程组的解; 平行⇔方程组无解; 重合⇔方程组有无数个解. 3.三种距离公式(1)平面上的两点P 1(x 1,y 1),P 2(x 2,y 2)间的距离公式P 1P 2= x 1-x 2 2+ y 1-y 2 2. 特别地,原点O (0,0)与任一点P (x ,y )的距离OP =x 2+y 2. (2)点P 0(x 0,y 0)到直线l :Ax +By +C =0的距离d =|Ax 0+By 0+C |A 2+B 2.(3)两条平行线Ax +By +C 1=0与Ax +By +C 2=0间的距离为d =|C 1-C 2|A 2+B2.辨 析 感 悟1.对两条直线平行与垂直的理解(1)当直线l 1和l 2的斜率都存在时,一定有k 1=k 2⇒l 1∥l 2.(³) (2)如果两条直线l 1与l 2垂直,则它们的斜率之积一定等于-1.(³)(3)(2013²天津卷改编)已知过点P (2,2)斜率为-12的直线且与直线ax -y +1=0垂直,则a=2.(√)2.对距离公式的理解(4)点P (x 0,y 0)到直线y =kx +b 的距离为|kx 0+b |1+k2.(³) (5)直线外一点与直线上一点的距离的最小值就是点到直线的距离.(√) (6)(教材习题改编)两平行直线2x -y +1=0,4x -2y +1=0间的距离是0.(³) [感悟²提升]三个防范 一是在判断两条直线的位置关系时,首先应分析直线的斜率是否存在.两条直线都有斜率,可根据判定定理判断,若直线无斜率时,要单独考虑.如(2)中忽视了斜率不存在的情况;二是求点到直线的距离时,若给出的直线不是一般式,则应化为一般式,如(4); 三是求两平行线之间的距离时,应先将方程化为一般式,且x ,y 的系数对应相同,如(6).考点一 两条直线平行与垂直【例1】 已知直线l 1:ax +2y +6=0和直线l 2:x +(a -1)y +a 2-1=0. (1)试判断l 1与l 2是否平行; (2)l 1⊥l 2时,求a 的值. 解 (1)法一 当a =1时,l 1:x +2y +6=0, l 2:x =0,l 1不平行于l 2;当a =0时,l 1:y =-3,l 2:x -y -1=0,l 1不平行于l 2;当a ≠1且a ≠0时,两直线可化为l 1:y =-a 2x -3,l 2:y =11-a x -(a +1),l 1∥l 2⇔⎩⎪⎨⎪⎧-a 2=11-a ,-3≠- a +1 ,解得a =-1,综上可知,a =-1时,l 1∥l 2,否则l 1与l 2不平行.法二 由A 1B 2-A 2B 1=0,得a (a -1)-1³2=0,由A 1C 2-A 2C 1≠0,得a (a 2-1)-1³6≠0, ∴l 1∥l 2⇔⎩⎪⎨⎪⎧a a -1 -1³2=0,a a 2-1 -1³6≠0,⇔⎩⎪⎨⎪⎧a 2-a -2=0,a a 2-1 ≠6⇒a =-1,故当a =-1时,l 1∥l 2,否则l 1与l 2不平行.(2)法一 当a =1时,l 1:x +2y +6=0,l 2:x =0,l 1与l 2不垂直,故a =1不成立; 当a =0时,l 1:y =-3,l 2:x -y -1=0,l 1不垂直于l 2; 当a ≠1且a ≠0时,l 1:y =-a 2x -3,l 2:y =11-ax -(a +1),由⎝ ⎛⎭⎪⎫-a 2²11-a=-1⇒a =23.法二 由A 1A 2+B 1B 2=0得a +2(a -1)=0⇒a =23.规律方法 (1)也要考虑到斜率不存在的特殊情况.同时还要注意x ,y 的系数不能同时为零这一隐含条件. (2)在判断两直线的平行、垂直时,也可直接利用直线方程的系数间的关系得出结论. 【训练1】 (2014²长沙模拟)已知过点A (-2,m )和点B (m,4)的直线为l 1,直线2x +y -1=0为l 2,直线x +ny +1=0为l 3.若l 1∥l 2,l 2⊥l 3,则实数m +n 的值为________.解析 ∵l 1∥l 2,∴k AB =4-m m +2=-2,解得m =-8,又∵l 2⊥l 3,∴⎝ ⎛⎭⎪⎫-1n ³(-2)=-1,解得n =-2,∴m +n =-10. 答案 -10考点二 两条直线的交点问题【例2】 求经过直线l 1:3x +2y -1=0和l 2:5x +2y +1=0的交点,且垂直于直线l 3:3x -5y +6=0的直线l 的方程.解 法一 先解方程组⎩⎪⎨⎪⎧3x +2y -1=0,5x +2y +1=0,得l 1,l 2的交点坐标为(-1,2), 再由l 3的斜率35求出l 的斜率为-53,于是由直线的点斜式方程求出l :y -2=-53(x +1),即5x +3y -1=0.法二 由于l ⊥l 3,故l 是直线系5x +3y +C =0中的一条,而l 过l 1,l 2的交点(-1,2), 故5³(-1)+3³2+C =0,由此求出C =-1,故l 的方程为5x +3y -1=0.法三 由于l 过l 1,l 2的交点,故l 是直线系3x +2y -1+λ(5x +2y +1)=0中的一条, 将其整理,得(3+5λ)x +(2+2λ)y +(-1+λ)=0. 其斜率-3+5λ2+2λ=-53,解得λ=15,代入直线系方程即得l 的方程为5x +3y -1=0.规律方法 运用直线系方程,有时会给解题带来方便,常见的直线系方程有: (1)与直线Ax +By +C =0平行的直线系方程是Ax +By +m =0(m ≠C );(2)与直线Ax +By +C =0垂直的直线系方程是Bx -Ay +m =0;(3)过直线l 1:A 1x +B 1y +C 1=0与l 2:A 2x +B 2y +C 2=0的交点的直线系方程为A 1x +B 1y +C 1+λ(A 2x +B 2y +C 2)=0(其中λ∈R ,此直线系不包括l 2).【训练2】 直线l 被两条直线l 1:4x +y +3=0和l 2:3x -5y -5=0截得的线段的中点为P (-1,2),求直线l 的方程.解 法一 设直线l 与l 1的交点为A (x 0,y 0),由已知条件,得直线l 与l 2的交点为B (-2-x 0,4-y 0),并且满足⎩⎪⎨⎪⎧4x 0+y 0+3=0,3 -2-x 0 -5 4-y 0 -5=0,即⎩⎪⎨⎪⎧4x 0+y 0+3=0,3x 0-5y 0+31=0,解得⎩⎪⎨⎪⎧x 0=-2,y 0=5,因此直线l 的方程为y -25-2=x - -1 -2- -1,即3x +y +1=0.法二 设直线l 的方程为y -2=k (x +1), 即kx -y +k +2=0.由⎩⎪⎨⎪⎧kx -y +k +2=0,4x +y +3=0,得x =-k -5k +4.由⎩⎪⎨⎪⎧kx -y +k +2=0,3x -5y -5=0,得x =-5k -155k -3.则-k -5k +4+-5k -155k -3=-2,解得k =-3. 因此直线l 的方程为y -2=-3(x +1),即3x +y +1=0.考点三 距离公式的应用【例3】 已知三条直线:l 1:2x -y +a =0(a >0);l 2:-4x +2y +1=0;l 3:x +y -1=0,且l 1与l 2间的距离是7510.(1)求a 的值;(2)能否找到一点P ,使P 同时满足下列三个条件: ①点P 在第一象限;②点P 到l 1的距离是点P 到l 2的距离的12;③点P 到l 1的距离与点P 到l 3的距离之比是2∶ 5.若能,求点P 的坐标;若不能,说明理由.解 (1)直线l 2:2x -y -12=0,所以两条平行线l 1与l 2间的距离为d =⎪⎪⎪⎪⎪⎪a -⎝ ⎛⎭⎪⎫-1222+ -12=7510, 所以⎪⎪⎪⎪⎪⎪a +125=7510,即⎪⎪⎪⎪⎪⎪a +12=72,又a >0,解得a =3. (2)假设存在点P ,设点P (x 0,y 0),若P 点满足条件②,则P 点在与l 1,l 2平行的直线l ′:2x -y +c =0上,且|c -3|5=12⎪⎪⎪⎪⎪⎪c +125,即c =132或116,所以2x 0-y 0+132=0或2x 0-y 0+116=0;若P 点满足条件③,由点到直线的距离公式, 有|2x 0-y 0+3|5=25|x 0+y 0-1|2,即|2x 0-y 0+3|=|x 0+y 0-1|, 所以x 0-2y 0+4=0或3x 0+2=0; 由于P 在第一象限, 所以3x 0+2=0不可能.联立方程2x 0-y 0+132=0和x 0-2y 0+4=0,解得⎩⎪⎨⎪⎧x 0=-3,y 0=12 舍去 ;联立方程2x 0-y 0+116=0和x 0-2y 0+4=0,解得⎩⎪⎨⎪⎧x 0=19,y 0=3718.所以存在P ⎝ ⎛⎭⎪⎫19,3718同时满足三个条件.规律方法 (1)在应用两条平行直线间的距离公式时.要注意两直线方程中x ,y 的系数必须对应相同.(2)第(2)问是开放探索性问题,要注意解决此类问题的一般策略.【训练3】 (1)已知直线l 过点P (3,4)且与点A (-2,2),B (4,-2)等距离,则直线l 的方程为________.(2)已知两条平行直线,l 1:mx +8y +n =0与l 2:2x +my -1=0间的距离为5,则直线l 1的方程为________.解析 (1)由题意可知所求直线斜率存在,故设所求直线方程为y -4=k (x -3),即kx -y +4-3k =0,由已知,得|-2k -2+4-3k |1+k 2=|4k +2+4-3k |1+k 2, ∴k =2或-23.∴所求直线l 的方程为2x -y -2=0或2x +3y -18=0.(2)∵l 1∥l 2,∴m 2=8m ≠n-1,∴⎩⎪⎨⎪⎧m =4,n ≠-2或⎩⎪⎨⎪⎧m =-4,n ≠2.①当m =4时,直线l 1的方程为4x +8y +n =0,把l 2的方程写成4x +8y -2=0, ∴|n +2|16+64=5,解得n =-22或18.故所求直线的方程为2x +4y -11=0或2x +4y +9=0.②当m =-4时,直线l 1的方程为4x -8y -n =0,l 2的方程为4x -8y -2=0, ∴|-n +2|16+64=5,解得n =-18或22.故所求直线的方程为2x -4y +9=0或2x -4y -11=0.答案 (1)2x +3y -18=0或2x -y -2=0 (2)2x ±4y +9=0或2x ±4y -11=0两直线的位置关系要考虑平行、垂直和重合.对于斜率都存在且不重合的两条直线l 1,l 2,l 1∥l 2⇔k 1=k 2;l 1⊥l 2⇔k 1²k 2=-1.若有一条直线的斜率不存在,那么另一条直线的斜率一定要特别注意.思想方法10——对称变换思想的应用【典例】 已知直线l :2x -3y +1=0,点A (-1,-2).求: (1)点A 关于直线l 的对称点A ′的坐标;(2)直线m :3x -2y -6=0关于直线l 的对称直线m ′的方程; (3)直线l 关于点A (-1,-2)对称的直线l ′的方程.解 (1)设A ′(x ,y ),再由已知⎩⎪⎨⎪⎧y +2x +1²23=-1,2³x -12-3³y -22+1=0.解得⎩⎪⎨⎪⎧x =-3313,y =413.∴A ′⎝ ⎛⎭⎪⎫-3313,413. (2)在直线m 上取一点,如M (2,0),则M (2,0)关于直线l 的对称点必在m ′上. 设对称点为M ′(a ,b ),则⎩⎪⎨⎪⎧2³⎝ ⎛⎭⎪⎫a +22-3³⎝ ⎛⎭⎪⎫b +02+1=0,b -0a -2³23=-1.解得M ′⎝ ⎛⎭⎪⎫613,3013.设m 与l 的交点为N ,则由⎩⎪⎨⎪⎧2x -3y +1=0,3x -2y -6=0,得N (4,3).又∵m ′经过点N (4,3),∴由两点式得直线方程为9x -46y +102=0. (3)设P (x ,y )为l ′上任意一点, 则P (x ,y )关于点A (-1,-2)的对称点为P ′(-2-x ,-4-y ),∵P ′在直线l 上,∴2(-2-x )-3(-4-y )+1=0, 即2x -3y -9=0.[反思感悟] (1)解决点关于直线对称问题要把握两点:点M 与点N 关于直线l 对称,则线段MN 的中点在直线l 上,直线l 与直线MN 垂直.(2)如果是直线或点关于点成中心对称问题,则只需运用中点公式就可解决问题. (3)若直线l 1,l 2关于直线l 对称,则有如下性质:①若直线l 1与l 2相交,则交点在直线l 上;②若点B 在直线l 1上,则其关于直线l 的对称点B ′在直线l 2上. 【自主体验】 (2013²湖南卷改编)在等腰直角三角形ABC 中,AB =AC =4,点P 是边AB 上异于A ,B 的一点.光线从点P 出发,经BC ,CA 反射后又回到点P (如图).若光线QR 经过△ABC 的重心,则AP 等于________. 解析 以AB 、AC 所在直线分别为x 轴、y 轴建立平面直角坐标系,则A (0,0),B (4,0),C (0,4),得△ABC 的重心D ⎝ ⎛⎭⎪⎫43,43,设AP =x ,从而P (x,0),x ∈(0,4),由光的几何性质可知点P 关于直线BC 、AC 的对称点P 1(4,4-x ),P 2(-x,0)与△ABC 的重心D ⎝ ⎛⎭⎪⎫43,43共线,所以4343+x =43- 4-x 43-4,求得x =43.答案 43基础巩固题组(建议用时:40分钟)一、填空题1.直线l 过点(-1,2)且与直线2x -3y +4=0垂直,则l 的方程是________.解析 由题意知,直线l 的斜率是-32,因此直线l 的方程为y -2=-32(x +1),即3x +2y-1=0.答案 3x +2y -1=02.(2014²济南模拟)已知两条直线l 1:(a -1)x +2y +1=0,l 2:x +ay +3=0平行,则a =________.解析 若a =0,两直线方程分别为-x +2y +1=0和x =-3,此时两直线相交,不平行,所以a ≠0;当a ≠0时,两直线若平行,则有a -11=2a ≠13,解得a =-1或2.答案 -1或23.已知直线l 1的方程为3x +4y -7=0,直线l 2的方程为6x +8y +1=0,则直线l 1与l 2的距离为________.解析 ∵直线l 1的方程为3x +4y -7=0,直线l 2的方程为6x +8y +1=0,即3x +4y +12=0,∴直线l 1与l 2的距离为⎪⎪⎪⎪⎪⎪12+732+42=32.答案 324.(2014²金华调研)当0<k <12时,直线l 1:kx -y =k -1与直线l 2:ky -x =2k 的交点在第________象限.解析 解方程组⎩⎪⎨⎪⎧kx -y =k -1,ky -x =2k得两直线的交点坐标为⎝⎛⎭⎪⎫k k -1,2k -1k -1,因为0<k <12,所以kk -1<0,2k -1k -1>0,故交点在第二象限. 答案 二5.若直线l 1:y =k (x -4)与直线l 2关于点(2,1)对称,则直线l 2经过定点________. 解析 直线l 1:y =k (x -4)经过定点(4,0),其关于点(2,1)对称的点为(0,2),又直线l 1:y =k (x -4)与直线l 2关于点(2,1)对称,故直线l 2经过定点(0,2). 答案 (0,2)6.若三条直线y =2x ,x +y =3,mx +2y +5=0相交于同一点,则m 的值为________.解析 由⎩⎪⎨⎪⎧y =2x ,x +y =3得⎩⎪⎨⎪⎧x =1,y =2.∴点(1,2)满足方程mx +2y +5=0,即m ³1+2³2+5=0, ∴m =-9. 答案 -97.设a 、b 、c 分别是△ABC 中∠A 、∠B 、∠C 所对边的边长,则直线x sin A +ay +c =0与bx -y sin B +sin C =0的位置关系是________.解析 由a sin A =bsin B ,得b sin A -a sin B =0.∴两直线垂直. 答案 垂直8.若直线m 被两平行线l 1:x -y +1=0与l 2:x -y +3=0所截得的线段的长为22,则m 的倾斜角可以是:①15°;②30°;③45°;④60°;⑤75°. 其中正确答案的序号是________.解析 很明显直线l 1∥l 2,直线l 1,l 2间的距离为d =|1-3|2=2,设直线m 与直线l 1,l 2分别相交于点B ,A ,则|AB |=22,过点A 作直线l 垂直于直线l 1,垂足为C ,则|AC |=d =2,则在Rt △ABC 中,sin ∠ABC =|AC ||AB |=222=12,所以∠ABC =30°,又直线l 1的倾斜角为45°,所以直线m 的倾斜角为45°+30°=75°或45°-30°=15°. 答案 ①⑤ 二、解答题9.已知直线l 1:x +my +6=0,l 2:(m -2)x +3y +2m =0,求m 的值,使得: (1)l 1与l 2相交;(2)l 1⊥l 2;(3)l 1∥l 2;(4)l 1,l 2重合. 解 (1)由已知1³3≠m (m -2),即m 2-2m -3≠0, 解得m ≠-1且m ≠3.故当m ≠-1且m ≠3时,l 1与l 2相交. (2)当1²(m -2)+m ²3=0,即m =12时,l 1⊥l 2.(3)当1³3=m (m -2)且1³2m ≠6³(m -2)或m ³2m ≠3³6,即m =-1时,l 1∥l 2. (4)当1³3=m (m -2)且1³2m =6³(m -2),即m =3时,l 1与l 2重合.10.求过直线l 1:x -2y +3=0与直线l 2:2x +3y -8=0的交点,且到点P (0,4)的距离为2的直线方程.解 由⎩⎪⎨⎪⎧x -2y +3=0,2x +3y -8=0,解得⎩⎪⎨⎪⎧x =1,y =2,∴l 1,l 2的交点为(1,2),设所求直线方程为y -2=k (x -1),即kx -y +2-k =0, ∵P (0,4)到直线的距离为2,∴2=|-2-k |1+k 2, 解得k =0或43.∴直线方程为y =2或4x -3y +2=0.能力提升题组 (建议用时:25分钟)一、填空题1.设两条直线的方程分别为x +y +a =0和x +y +b =0,已知a ,b 是关于x 的方程x 2+x+c =0的两个实数根,且0≤c ≤18,则这两条直线之间的距离的最大值和最小值分别为________.解析 ∵d =|a -b |2,a +b =-1,ab =c ,又|a -b |=1-4c ∈⎣⎢⎡⎦⎥⎤22,1,从而d max =22,d min =12.答案22,122.(2014²武汉调研)已知A ,B 两点分别在两条互相垂直的直线2x -y =0与x +ay =0上,且AB 线段的中点为P ⎝ ⎛⎭⎪⎫0,10a ,则线段AB 的长为________. 解析 由两直线垂直,得-1a²2=-1,解得a =2.所以中点P 的坐标为(0,5).则OP =5,在直角三角形中斜边的长度AB =2OP =2³5=10,所以线段AB 的长为10. 答案 103.已知0<k <4,直线l 1:kx -2y -2k +8=0和直线l 2:2x +k 2y -4k 2-4=0与两坐标轴围成一个四边形,则使得这个四边形面积最小的k 值为________.解析 由题意知直线l 1,l 2恒过定点P (2,4),直线l 1的纵截距为4-k ,直线l 2的横截距为2k 2+2,如图,所以四边形的面积S =2k 2³2+(4-k +4)³2³12=4k 2-k +8,故面积最小时,k =18.答案 18二、解答题4.(1)在直线l :3x -y -1=0上求一点P ,使得P 到A (4,1)和B (0,4)的距离之差最大; (2)在直线l :3x -y -1=0上求一点Q ,使得Q 到A (4,1)和C (3,4)的距离之和最小.图1解 (1)如图1,设点B 关于l 的对称点B ′的坐标为(a ,b ),直线l 的斜率为k 1,则k 1²k BB ′=-1.即3²b -4a=-1.∴a +3b -12=0.① 又由于线段BB ′的中点坐标为⎝ ⎛⎭⎪⎫a 2,b +42,且在直线l 上,∴3³a 2-b +42-1=0.即3a -b -6=0.②解①②得a =3,b =3,∴B ′(3,3).于是AB ′的方程为y -13-1=x -43-4,即2x +y -9=0.解⎩⎪⎨⎪⎧3x -y -1=0,2x +y -9=0,得⎩⎪⎨⎪⎧x =2,y =5,即l 与AB ′的交点坐标为P (2,5).图2(2)如图2,设C 关于l 的对称点为C ′,求出C ′的坐标为⎝ ⎛⎭⎪⎫35,245.∴AC ′所在直线的方程为19x +17y -93=0,AC ′和l 交点坐标为⎝⎛⎭⎪⎫117,267,故Q 点坐标为⎝ ⎛⎭⎪⎫117,267.知 识 梳 理1.圆的标准方程(1)方程(x -a )2+(y -b )2=r 2(r >0)表示圆心为(a ,b ),半径为r 的圆的标准方程. (2)特别地,以原点为圆心,半径为r (r >0)的圆的标准方程为x 2+y 2=r 2. 2.圆的一般方程方程x 2+y 2+Dx +Ey +F =0可变形为⎝ ⎛⎭⎪⎫x +D 22+⎝ ⎛⎭⎪⎫y +E 22=D 2+E 2-4F 4,故有:(1)当D 2+E 2-4F >0时,方程表示以⎝ ⎛⎭⎪⎫-D 2,-E 2为圆心,以D 2+E 2-4F 2为半径的圆;(2)当D 2+E 2-4F =0时,方程表示一个点⎝ ⎛⎭⎪⎫-D 2,-E2;(3)当D 2+E 2-4F <0时,方程不表示任何图形. 3.P (x 0,y 0)与圆(x -a )2+(y -b )2=r 2(r >0)的位置关系 (1)若(x 0-a )2+(y 0-b )2>r 2,则点P 在圆外; (2)若(x 0-a )2+(y 0-b )2=r 2,则点P 在圆上; (3)若(x 0-a )2+(y 0-b )2<r 2,则点P 在圆内.4.确定圆的方程主要方法是待定系数法,大致步骤为: (1)根据题意,选择标准方程或一般方程;(2)根据条件列出关于a ,b ,r 或D ,E ,F 的方程组; (3)解出a ,b ,r 或D ,E ,F 代入标准方程或一般方程.辨 析 感 悟1.对圆的方程的理解(1)确定圆的几何要素是圆心与半径.(√) (2)方程x 2+y 2=a 2表示半径为a 的圆.(³) (3)方程x 2+y 2+4mx -2y +5m =0表示圆.(³)(4)(2013²江西卷改编)若圆C 经过坐标原点和点(4,0)且与直线y =1相切,则圆C 的方程是(x -2)2+⎝ ⎛⎭⎪⎫y +322=254.(√)2.对点与圆的位置关系的认识(5)若点M (x 0,y 0)在圆x 2+y 2+Dx +Ey +F =0外,则x 20+y 20+Dx 0+Ey 0+F >0.(√) (6)已知圆的方程为x 2+y 2-2y =0,过点A (1,2)作该圆的切线只有一条.(³) [感悟²提升]1.一个性质 圆心在任一弦的中垂线上,如(4)中可设圆心为(2,b ).2.三个防范 一是含字母的圆的标准方程中注意字母的正负号,如(2)中半径应为|a |; 二是注意一个二元二次方程表示圆时的充要条件,如(3);三是过一定点,求圆的切线时,首先判断点与圆的位置关系.若点在圆外,有两个结果,若只求出一个,应该考虑切线斜率不存在的情况,如(6).考点一 求圆的方程【例1】 根据下列条件,求圆的方程.(1)求过P (4,-2),Q (-1,3)两点,且在y 轴上截得的线段长为43的圆的方程. (2)已知圆的半径为10,圆心在直线y =2x 上,圆被直线x -y =0截得的弦长为4 2. 解 (1)设圆的方程为x 2+y 2+Dx +Ey +F =0(D 2+E 2-4F >0).① 将P ,Q 点的坐标分别代入①得⎩⎪⎨⎪⎧4D -2E +F =-20, ②D -3E -F =10, ③令x =0,由①得y 2+Ey +F =0.④由已知|y 1-y 2|=43,其中y 1,y 2是方程④的两根, 所以(y 1-y 2)2=(y 1+y 2)2-4y 1y 2=E 2-4F =48.⑤解②、③、⑤组成的方程组得⎩⎪⎨⎪⎧D =-2,E =0,F =-12或⎩⎪⎨⎪⎧D =-10,E =-8,F =4.故所求圆的方程为x 2+y 2-2x -12=0或x 2+y 2-10x -8y +4=0. (2)法一 设圆的方程为(x -a )2+(y -b )2=10. 由圆心在直线y =2x 上,得b =2a .① 由圆在直线x -y =0上截得的弦长为42, 将y =x 代入(x -a )2+(y -b )2=10, 整理得2x 2-2(a +b )x +a 2+b 2-10=0.由弦长公式得 2 a +b 2-2 a 2+b 2-10 =42, 化简得a -b =±2.②解①、②得a =2,b =4或a =-2,b =-4.故所求圆的方程为(x -2)2+(y -4)2=10或(x +2)2+(y +4)2=10.法二 根据图形的几何性质:半径、弦长的一半、弦心距构成直角三角形.如图,由勾股定理,可得弦心距d =r 2-⎝⎛⎭⎪⎫4222=10-8= 2. 又弦心距等于圆心(a ,b )到直线x -y =0的距离, 所以d =|a -b |2,即|a -b |2= 2.③又已知b =2a .④解③、④得a =2,b =4或a =-2,b =-4. 故所求圆的方程是(x -2)2+(y -4)2=10 或(x +2)2+(y +4)2=10.规律方法 求圆的方程,主要有两种方法:(1)几何法:具体过程中要用到初中有关圆的一些常用性质和定理.如:①圆心在过切点且与切线垂直的直线上;②圆心在任意弦的中垂线上;③两圆相切时,切点与两圆心三点共线. (2)待定系数法:根据条件设出圆的方程,再由题目给出的条件,列出等式,求出相关量.一般地,与圆心和半径有关,选择标准式,否则,选择一般式.不论是哪种形式,都要确定三个独立参数,所以应该有三个独立等式.【训练1】 (1)(2014²济南模拟)若圆C 的半径为1,圆心在第一象限,且与直线4x -3y =0和x 轴都相切,则该圆的标准方程是________.(2)已知圆C 经过A (5,1),B (1,3)两点,圆心在x 轴上,则C 的方程为________. 解析 (1)由于圆心在第一象限且与x 轴相切,故设圆心为(a,1),又由圆与直线4x -3y =0相切,得|4a -3|5=1,解得a =2或-12(舍去).故圆的标准方程为(x -2)2+(y -1)2=1.(2)依题意设所求圆的方程为(x -a )2+y 2=r 2,将A ,B 点坐标分别代入方程得⎩⎪⎨⎪⎧5-a 2+1=r 2,1-a 2+9=r 2,解得⎩⎪⎨⎪⎧a =2,r 2=10.所以所求圆的方程为(x -2)2+y 2=10.答案 (1)(x -2)2+(y -1)2=1 (2)(x -2)2+y 2=10考点二 与圆有关的最值问题【例2】 已知实数x ,y 满足方程x 2+y 2-4x +1=0. (1)求y x的最大值和最小值; (2)求y -x 的最大值和最小值; (3)求x 2+y 2的最大值和最小值.解 原方程可化为(x -2)2+y 2=3,表示以(2,0)为圆心,3为半径的圆. (1)y x的几何意义是圆上一点与原点连线的斜率, 所以设y x=k ,即y =kx .当直线y =kx 与圆相切时,斜率k 取最大值或最小值,此时|2k -0|k 2+1=3,解得k =±3(如。

高考数学一轮复习 第9章 解析几何 第8节 曲线与方程课件 理

高考数学一轮复习 第9章 解析几何 第8节 曲线与方程课件 理

12/11/2021
第五页,共四十一页。
2.求动点轨迹方程的一般步骤 (1)建立适当的坐标系,用有序实数对(x,y)表示曲线上任意一点 M 的坐标; (2)写出适合条件 p 的点 M 的集合 P={M|p(M)}; (3)用坐标表示条件 p(M),列出方程 f(x,y)=0; (4)化方程 f(x,y)=0 为最简形式; (5)说明以化简后的方程的解为坐标的点都在曲线上.
12/11/2021
第二十九页,共四十一页。
考点二 相关点(代入)法求轨迹方程 【例 2】 (2019 届安阳调研)如图所示,动圆 C1:x2+y2=t2, 1<t<3 与椭圆 C2:x92+y2=1 相交于 A,B,C,D 四点.点 A1,A2 分别为椭圆 C2 的左、右顶点,求直线 AA1 与直线 A2B 交点 M 的轨 迹方程.

12/11/2021
第三十一页,共四十一页。
由①②相乘得 y2=x-02-y029(x2-9).

又点 A(x0,y0)在椭圆 C2 上,
故 y20=1-x902.④
将④代入③得x92-y2=1(x<-3,y<0).
因此点 M 的轨迹方程为x92-y2=1(x<-3,y<0).
12/11/2021
12/11/2021
第十四页,共四十一页。
2
12/11/2021
课 堂 ·考 点 突 破
第十五页,共四十一页。
考点 直接法求轨迹方程
|题组突破|
1.已知点 F(0,1),直线 l:y=-1,P 为平面上的动点,过点 P 作直线 l 的垂线,
垂足为 Q,且Q→P·Q→F=F→P·F→Q,则动点 P 的轨迹 C 的方程为( )
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(江苏专版)高考数学一轮复习第九章解析几何第八节曲线与方程教案理(含解析)苏教版第八节 曲线与方程1.曲线与方程一般地,在平面直角坐标系中,如果某曲线C 上的点与一个二元方程f (x ,y )=0的实数解建立了如下关系:(1)曲线上点的坐标都是这个方程的解.(2)以这个方程的解为坐标的点都是曲线上的点.那么这个方程叫做曲线的方程,这条曲线叫做方程的曲线.2.求动点轨迹方程的一般步骤(1)建立适当的坐标系,用有序实数对(x ,y )表示曲线上任意一点M 的坐标; (2)写出适合条件p 的点M 的集合P ={M |p (M )}; (3)用坐标表示条件p (M ),列出方程f (x ,y )=0; (4)化方程f (x ,y )=0为最简形式;(5)说明以化简后的方程的解为坐标的点都在曲线上. 3.曲线的交点设曲线C 1的方程为F 1(x ,y )=0,曲线C 2的方程为F 2(x ,y )=0,则C 1,C 2的交点坐标即为方程组⎩⎪⎨⎪⎧F 1x ,y =0,F 2x ,y =0的实数解.若此方程组无解,则两曲线无交点.[小题体验]1.已知两定点A (-2,0),B (1,0),如果动点P 满足PA =2PB ,则点P 的轨迹方程为________.解析:设P 点的坐标为(x ,y ),∵A (-2,0),B (1,0),动点P 满足PA =2PB , ∴x +22+y 2=2x -12+y 2,平方得(x +2)2+y 2=4[(x -1)2+y 2], 化简得(x -2)2+y 2=4,∴点P 的轨迹是以(2,0)为圆心、2为半径的圆,方程为(x -2)2+y 2=4.答案:(x -2)2+y 2=42.已知点P 是直线2x -y +3=0上的一个动点,定点M (-1,2),Q 是线段PM 延长线上的一点,且PM =M Q ,则Q 点的轨迹方程是________.解析:设Q(x ,y ),则P 为(-2-x,4-y ),代入2x -y +3=0,得Q 点的轨迹方程为2x -y +5=0.答案:2x -y +5=03.已知F 是抛物线y =14x 2的焦点,P 是该抛物线上的动点,则线段PF 中点的轨迹方程是________.解析:因为抛物线x 2=4y 的焦点F (0,1),设线段PF 的中点坐标是(x ,y ),则P (2x,2y -1)在抛物线x 2=4y 上,所以(2x )2=4(2y -1),化简得x 2=2y -1.答案:x 2=2y -11.曲线与曲线方程、轨迹与轨迹方程是两个不同的概念,前者指曲线的形状、位置、大小等特征,后者指方程(包括范围).2.求轨迹方程时易忽视轨迹上特殊点对轨迹的“完备性与纯粹性”的影响. [小题纠偏]1.若M ,N 为两个定点,且|MN |=6,动点P 满足PM ―→·PN ―→=0,则P 点的轨迹是________. 解析:因为PM ―→·PN ―→=0,所以PM ⊥PN . 所以点P 的轨迹是以线段MN 为直径的圆. 答案:以线段MN 为直径的圆2.在△ABC 中,A 为动点,B ,C 为定点,B ⎝ ⎛⎭⎪⎫-a 2,0,C ⎝ ⎛⎭⎪⎫a2,0(a >0),且满足条件 sin C -sin B =12sin A ,则动点A 的轨迹方程是________.解析:由正弦定理得AB 2R -AC 2R =12×BC2R,即AB -AC =12BC ,故动点A 是以B ,C 为焦点,a2为实轴长的双曲线右支.即动点A 的轨迹方程为16x 2a 2-16y23a 2=1(x >0且y ≠0).答案:16x 2a 2-16y23a2=1(x >0且y ≠0)考点一 直接法求轨迹方程 基础送分型考点——自主练透[题组练透]1.已知点O (0,0),A (1,-2),动点P 满足|PA |=3|PO |,则P 点的轨迹方程是________. 解析:设P 点的坐标为(x ,y ), 则x -12+y +22=3x 2+y 2,整理得8x 2+8y 2+2x -4y -5=0. 答案:8x 2+8y 2+2x -4y -5=02.已知M (-2,0),N (2, 0),求以MN 为斜边的直角三角形的直角顶点P 的轨迹方程. 解:设P (x ,y ),因为△MPN 为以MN 为斜边的直角三角形, 所以MP 2+NP 2=MN 2,所以(x +2)2+y 2+(x -2)2+y 2=16, 整理得x 2+y 2=4.因为M ,N ,P 不共线,所以x ≠±2, 所以轨迹方程为x 2+y 2=4(x ≠±2).3.设F (1,0),点M 在x 轴上,点P 在y 轴上,且MN ―→=2MP ―→,PM ―→⊥PF ―→,当点P 在y 轴上运动时,求点N 的轨迹方程.解:设M (x ′,0),P (0,y ′),N (x ,y ), 由MN ―→=2MP ―→,得(x -x ′,y )=2(-x ′,y ′),所以⎩⎪⎨⎪⎧x -x ′=-2x ′y =2y ′,解得⎩⎪⎨⎪⎧x ′=-x ,y ′=y2.因为PM ―→⊥PF ―→,PM ―→=(x ′,-y ′),PF ―→=(1,-y ′), 所以(x ′,-y ′)·(1,-y ′)=0, 即x ′+y ′2=0, 所以-x +⎝ ⎛⎭⎪⎫y 22=0,即y 2=4x .因此所求的轨迹方程为y 2=4x .[谨记通法]直接法求轨迹方程的2种常见类型及解题策略(1)题目给出等量关系,求轨迹方程.可直接代入即可得出方程.(2)题中未明确给出等量关系,求轨迹方程.可利用已知条件寻找等量关系,得出方程.但要注意完备性易忽视.考点二 定义法求轨迹方程重点保分型考点——师生共研[典例引领]1.(2017·扬州模拟)△ABC 的顶点A (-5,0),B (5,0),△ABC 的内切圆圆心在直线x =3上,则顶点C 的轨迹方程是________________.解析:如图,AD =AE =8,BF =BE =2,CD =CF ,所以CA -CB =8-2=6.根据双曲线的定义,所求轨迹是以A ,B 为焦点, 实轴长为6的双曲线的右支, 方程为x 29-y 216=1(x >3).答案:x 29-y 216=1(x >3)2.(2019·常熟中学检测)已知动圆M 与直线y =2相切,且与定圆C :x 2+(y +3)2=1外切,那么动圆圆心M 的轨迹方程________.解析:由题意知动圆M 与直线y =2相切,且与定圆C :x 2+(y +3)2=1外切, ∴动点M 到C (0,-3)的距离与到直线y =3的距离相等,由抛物线的定义知,点M 的轨迹是以C (0,-3)为焦点,直线y =3为准线的抛物线, 故所求M 的轨迹方程为x 2=-12y . 答案:x 2=-12y[由题悟法]定义法求曲线方程的2种策略(1)运用圆锥曲线的定义求轨迹方程,可从曲线定义出发直接写出方程,或从曲线定义出发建立关系式,从而求出方程.(2)定义法和待定系数法适用于已知曲线的轨迹类型,其方程是何形式的情况,利用条件把待定系数求出来,使问题得解.[即时应用]1.(2019·海门中学检测)已知△ABC 的周长为20,且顶点B (0,-4),C (0,4),则顶点A 的轨迹方程是________.解析:∵△ABC 的周长为20,顶点B (0,-4),C (0,4), ∴BC =8,AB +AC =20-8=12,∵12>8,∴点A 到两个定点的距离之和等于定值, ∴点A 的轨迹是椭圆,∵a =6,c =4,∴b 2=20,∴椭圆的方程为x 220+y 236=1(x ≠0).答案:x 220+y 236=1(x ≠0)2.如图,已知△ABC 的两顶点坐标A (-1,0),B (1,0),圆E 是 △ABC 的内切圆,在边AC ,BC ,AB 上的切点分别为P ,Q ,R ,CP =1,动点C 的轨迹为曲线M .求曲线M 的方程.解:由题知CA +CB =CP +C Q +AP +B Q =2CP +AB =4>AB ,所以曲线M 是以A ,B 为焦点,长轴长为4的椭圆(挖去与x 轴的交点).设曲线M :x 2a 2+y 2b2=1(a >b >0,y ≠0),则a 2=4,b 2=a 2-12=3,所以曲线M :x 24+y 23=1(y ≠0)为所求.考点三 代入法求轨迹方程重点保分型考点——师生共研[典例引领]如图,已知P 是椭圆x 24+y 2=1上一点,PM ⊥x 轴于M .若PN ―→=λNM ―→.(1)求N 点的轨迹方程;(2)当N 点的轨迹为圆时,求λ的值.解:(1)设点P ,点N 的坐标分别为P (x 1,y 1),N (x ,y ), 则M 的坐标为(x 1,0),且x =x 1, 所以PN ―→=(x -x 1,y -y 1)=(0,y -y 1), NM ―→=(x 1-x ,-y )=(0,-y ),由PN ―→=λNM ―→得(0,y -y 1)=λ(0,-y ). 所以y -y 1=-λy ,即y 1=(1+λ)y . 因为P (x 1,y 1)在椭圆x 24+y 2=1上,则x 214+y 21=1,所以x 24+(1+λ)2y 2=1, 故x 24+(1+λ)2y 2=1即为所求的N 点的轨迹方程. (2)要使点N 的轨迹为圆,则(1+λ)2=14,解得λ=-12或λ=-32.所以当λ=-12或λ=-32时,N 点的轨迹是圆.[由题悟法]代入法求轨迹方程的4个步骤 (1)设出所求动点坐标P (x ,y ).(2)寻求所求动点P (x ,y )与已知动点Q(x ′,y ′)的关系. (3)建立P ,Q 两坐标间的关系,并表示出x ′,y ′. (4)将x ′,y ′代入已知曲线方程中化简求解.[即时应用]1.(2019·丰县中学检测)定长为3的线段AB 的两个端点A ,B 分别在x 轴,y 轴上滑动,动点P 满足BP ―→=2PA ―→,求点P 的轨迹方程.解:设A (x 0,0),B (0,y 0),P (x ,y ),由BP ―→=2PA ―→,得(x ,y -y 0)=2(x 0-x ,-y ),则⎩⎪⎨⎪⎧x =2x 0-2x ,y -y 0=-2y ,即⎩⎪⎨⎪⎧x 0=32x ,y 0=3y ,又因为AB 的定长为3,所以x 20+y 20=9,所以⎝ ⎛⎭⎪⎫32x 2+(3y )2=9,化简得x 24+y 2=1,故点P 的轨迹方程为x 24+y 2=1.2.已知曲线E :ax 2+by 2=1(a >0,b >0),经过点M ⎝⎛⎭⎪⎫33,0的直线l 与曲线E 交于点A ,B ,且MB ―→=-2MA ―→.若点B 的坐标为(0,2),求曲线E 的方程.解:设A (x 0,y 0),因为B (0,2),M ⎝⎛⎭⎪⎫33,0, 故MB ―→=⎝ ⎛⎭⎪⎫-33,2,MA ―→=⎝ ⎛⎭⎪⎫x 0-33,y 0.由于MB ―→=-2MA ―→, 所以⎝ ⎛⎭⎪⎫-33,2=-2⎝ ⎛⎭⎪⎫x 0-33,y 0.所以x 0=32,y 0=-1,即A ⎝ ⎛⎭⎪⎫32,-1. 因为A ,B 都在曲线E 上,所以⎩⎪⎨⎪⎧a ·02+b ·22=1,a ·⎝ ⎛⎭⎪⎫322+b ·-12=1,解得⎩⎪⎨⎪⎧a =1,b =14.所以曲线E 的方程为x 2+y 24=1.一抓基础,多练小题做到眼疾手快1.方程(x +y -1)x -1=0表示的曲线是______________.解析:由(x +y -1)x -1=0,得⎩⎪⎨⎪⎧x +y -1=0,x -1≥0或x -1=0,即x +y -1=0(x ≥1)或x =1.所以方程表示的曲线是射线x +y -1=0(x ≥1)和直线x =1.答案:射线x +y -1=0(x ≥1)和直线x =12.平面上有三个点A (-2,y ),B ⎝ ⎛⎭⎪⎫0,y 2,C (x ,y ),若AB ―→⊥BC ―→,则动点C 的轨迹方程为________.解析:由题意得AB ―→=⎝ ⎛⎭⎪⎫2,-y 2,BC ―→=⎝ ⎛⎭⎪⎫x ,y 2,由AB ―→⊥BC ―→,得AB ―→·BC ―→=0,即2x+⎝ ⎛⎭⎪⎫-y 2·y2=0,所以动点C 的轨迹方程为y 2=8x .答案:y 2=8x3.(2018·江苏太湖高级中学检测)若动点P (x ,y )满足条件|x +42+y 2-x -42+y 2|=6,则点P 的轨迹是________.解析:|x +42+y 2-x -42+y 2|=6表示点P 到(4,0),(-4,0)两点的距离的差的绝对值为6,根据定义得点P 轨迹是双曲线.答案:双曲线4.设点A 为圆(x -1)2+y 2=1上的动点,PA 是圆的切线,且PA =1,则P 点的轨迹方程为________.解析:如图,设P (x ,y ),圆心为M (1,0).连结MA ,PM , 则MA ⊥PA ,且MA =1,又因为PA =1, 所以PM =MA 2+PA 2=2, 即PM 2=2,所以(x -1)2+y 2=2.答案:(x -1)2+y 2=25.已知点A (-2,0),B (3,0),动点P (x ,y ),满足PA ―→·PB ―→=x 2-6,则动点P 的轨迹方程是________.解析:因为动点P (x ,y )满足PA ―→·PB ―→=x 2-6, 所以(-2-x ,-y )·(3-x ,-y )=x 2-6,即y 2=x , 所以动点P 的轨迹方程是y 2=x . 答案:y 2=x6.已知定点A (4,0)和圆x 2+y 2=4上的动点B ,动点P (x ,y )满足OA ―→+OB ―→=2OP ―→,则点P 的轨迹方程为________.解析:设B (x 0,y 0),由⎩⎪⎨⎪⎧4+x 0=2x ,y 0=2y ,得⎩⎪⎨⎪⎧x 0=2x -4,y 0=2y ,代入圆方程得(2x -4)2+4y 2=4, 即(x -2)2+y 2=1. 答案:(x -2)2+y 2=1二保高考,全练题型做到高考达标1.(2019·盐城一模)设点Q(2,0),圆C :x 2+y 2=1,若动点M 到圆C 的切线长与M Q 长的比等于2,则动点M 的轨迹方程是________.解析:如图,设MN 切圆于N ,则动点M 满足MN =2M Q , ∵圆的半径ON =1, ∴MN 2=MO 2-ON 2=MO 2-1. 设点M 的坐标为(x ,y ), 则x 2+y 2-1=2x -22+y 2,化简得3x 2+3y 2-16x +17=0.答案:3x 2+3y 2-16x +17=02.长为3的线段AB 的端点A ,B 分别在x 轴,y 轴上移动,AC ―→=2CB ―→,则点C 的轨迹方程为________________.解析:设C (x ,y ),A (a,0),B (0,b ),则a 2+b 2=9,① 又AC ―→=2CB ―→,所以(x -a ,y )=2(-x ,b -y ),即⎩⎪⎨⎪⎧a =3x ,b =32y ,②代入①式整理可得x 2+y 24=1.答案:x 2+y 24=13.已知A (-1,0),B (1,0)两点,过动点M 作x 轴的垂线,垂足为N ,若MN ―→2=λAN ―→·NB ―→,当λ<0时,动点M 的轨迹为________.解析:设M (x ,y ),则N (x,0),所以MN ―→2=y 2,λAN ―→·NB ―→=λ(x +1,0)·(1-x,0)=λ(1-x 2),所以y 2=λ(1-x 2),即λx 2+y 2=λ,变形为x 2+y 2λ=1.又因为λ<0,所以动点M 的轨迹为双曲线.答案:双曲线4.设圆(x +1)2+y 2=25的圆心为C ,A (1,0)是圆内一定点,Q 为圆周上任一点.线段A Q 的垂直平分线与C Q 的连线交于点M ,则M 的轨迹方程为________.解析:因为M 为A Q 垂直平分线上一点, 则AM =M Q ,所以MC +MA =MC +M Q =C Q =5,故M 的轨迹为以点C ,A 为焦点的椭圆,所以a =52,c =1,则b 2=a 2-c 2=214,所以椭圆的方程为4x 225+4y221=1.答案:4x 225+4y221=15.设过点P (x ,y )的直线分别与x 轴的正半轴和y 轴的正半轴交于A ,B 两点,点Q 与点P 关于y 轴对称,O 为坐标原点.若BP ―→=2PA ―→,且O Q ―→·AB ―→=1,则点P 的轨迹方程是________.解析:设A (a,0),B (0,b ),a >0,b >0. 由BP ―→=2PA ―→,得(x ,y -b )=2(a -x ,-y ), 即a =32x >0,b =3y >0.即AB ―→=⎝ ⎛⎭⎪⎫-32x ,3y ,点Q(-x ,y ),故由O Q ―→·AB ―→=1,得(-x ,y )·⎝ ⎛⎭⎪⎫-32x ,3y =1, 即32x 2+3y 2=1. 故所求的轨迹方程为32x 2+3y 2=1(x >0,y >0).答案:32x 2+3y 2=1(x >0,y >0)6.(2019·扬州一模)如图,已知椭圆x 24+y 2=1的焦点为F 1,F 2,点P 为椭圆上任意一点,过F 2作∠F 1PF 2的外角平分线的垂线,垂足为点Q ,过点Q 作y 轴的垂线,垂足为N ,线段Q N 的中点为M ,则点M 的轨迹方程为________.解析:因为点F 2关于∠F 1PF 2的外角平分线P Q 的对称点Q ′在直线F 1P 的延长线上,故F 1Q ′=PF 1+PF 2=2a =4,又O Q 是△F 2F 1Q ′的中位线,所以O Q =12F 1Q ′=2,设M (x ,y ),则Q(2x ,y ), 所以有4x 2+y 2=4.故点M 的轨迹方程为y 24+x 2=1.答案:y 24+x 2=17.在平面直角坐标系xOy 中,动点P 和点M (-2,0),N (2,0)满足|MN ―→|·|MP ―→|+MN ―→·NP ―→=0,则动点P (x ,y )的轨迹方程为________.解析:因为|MN ―→|·|MP ―→|+MN ―→·NP ―→=0, 所以4x +22+y 2+4(x -2)=0,化简变形,得y 2=-8x . 答案:y 2=-8x8.(2019·通州一模)已知⊙C :(x +1)2+y 2=36及点A (1,0),点P 为圆上任意一点,AP 的垂直平分线交CP 于点M ,则点M 的轨迹方程为________.解析:由圆的方程可知,圆心C (-1,0),半径等于6,设点M 的坐标为(x ,y ), ∵AP 的垂直平分线交CP 于M ,∴MA =MP ,又MP +MC =6,∴MC +MA =6>AC =2,∴点M 满足椭圆的定义,且2a =6,2c =2,∴a=3,c =1,∴b 2=a 2-c 2=8,∴点M 的轨迹方程为x 29+y 28=1. 答案:x 29+y 28=1 9.已知长为1+2的线段AB 的两个端点A ,B 分别在x 轴,y 轴上滑动,P 是AB 上一点,且AP ―→=22PB ―→,求点P 的轨迹方程. 解:设A (x 0,0),B (0,y 0),P (x ,y ),由已知知AP ―→=22PB ―→, 又AP ―→=(x -x 0,y ),PB ―→=(-x ,y 0-y ),所以x -x 0=-22x ,y =22(y 0-y ), 得x 0=⎝ ⎛⎭⎪⎫1+22x ,y 0=(1+2)y . 因为AB =1+2,即x 20+y 20=(1+2)2,所以⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫1+22x 2+[(1+2)y ]2=(1+2)2, 化简得x 22+y 2=1. 即点P 的轨迹方程为x 22+y 2=1. 10.已知动圆过定点A (4,0),且在y 轴上截得弦MN 的长为8.(1)求动圆圆心的轨迹C 的方程;(2)已知点B (-1,0),设不垂直于x 轴的直线l 与轨迹C 交于不同的两点P ,Q ,若x 轴是∠PB Q 的角平分线,证明:直线l 过定点.解:(1)如图,设动圆圆心为O 1(x ,y ),由题意O 1A =O 1M ,当O 1不在y 轴上时,过O 1作O 1H ⊥MN 交MN 于H ,则H 是MN 的中点.所以O 1M =x 2+42,又O 1A =x -42+y 2, 所以x -42+y 2=x 2+42,化简得y 2=8x (x ≠0).当O 1在y 轴上时,O 1与O 重合,点O 1的坐标(0,0)也满足方程y 2=8x ,所以动圆圆心的轨迹C 的方程为y 2=8x .(2)证明:由题意,设直线l 的方程为y =kx +b (k ≠0),P (x 1,y 1),Q(x 2,y 2),将y =kx +b 代入y 2=8x ,得k 2x 2+(2kb -8)x +b 2=0.则Δ=-32kb +64>0.且x 1+x 2=8-2kb k2,① x 1x 2=b 2k2,② 因为x 轴是∠PB Q 的角平分线,所以y 1x 1+1=-y 2x 2+1, 即y 1(x 2+1)+y 2(x 1+1)=0,(kx 1+b )(x 2+1)+(kx 2+b )(x 1+1)=0,2kx 1x 2+(b +k )(x 1+x 2)+2b =0,③将①②代入③得2kb 2+(k +b )(8-2kb )+2k 2b =0,所以k =-b ,此时Δ>0,所以直线l 的方程为y =k (x -1),即直线l 过定点(1,0).三上台阶,自主选做志在冲刺名校在平面直角坐标系xOy 中,已知两点M (1,-3),N (5,1),若点C 的坐标满足OC ―→=t OM ―→+(1-t )ON ―→(t ∈R),且点C 的轨迹与抛物线y 2=4x 交于A ,B 两点.(1)求证:OA ⊥OB ;(2)在x 轴上是否存在一点P (m,0),使得过点P 任作一条抛物线的弦,并以该弦为直径的圆都过原点.若存在,求出m 的值及圆心的轨迹方程;若不存在,请说明理由.解:(1)证明:由OC ―→=t OM ―→+(1-t )ON ―→ (t ∈R),可知点C 的轨迹是M ,N 两点所在的直线,所以点C 的轨迹方程为y +3=1--35-1(x -1), 即y =x -4.联立⎩⎪⎨⎪⎧ y =x -4,y 2=4x ,化简得x 2-12x +16=0,设C 的轨迹方程与抛物线y 2=4x 的交点坐标为A (x 1,y 1),B (x 2,y 2),则x 1+x 2=12,x 1x 2=16,y 1y 2=(x 1-4)(x 2-4)=x 1x 2-4(x 1+x 2)+16=-16,因为OA ―→·OB ―→=x 1x 2+y 1y 2=16-16=0,所以OA ⊥OB .(2)假设存在这样的P 点,并设AB 是过抛物线的弦,且A (x 1,y 1),B (x 2,y 2),其方程为x =ny +m ,代入y 2=4x 得y 2-4ny -4m =0,此时y 1+y 2=4n ,y 1y 2=-4m ,所以k OA k OB =y 1x 1·y 2x 2=y 1y 214·y 2y 224=16y 1y 2=-4m=-1, 所以m =4(定值),故存在这样的点P (4,0)满足题意. 设AB 的中点为T (x ,y ),则y =12(y 1+y 2)=2n ,x =12(x 1+x 2)=12(ny 1+4+ny 2+4)=n 2(y 1+y 2)+4=2n 2+4,消去n 得y 2=2x -8.。

相关文档
最新文档