(江苏专版)高考数学一轮复习第九章解析几何第八节曲线与方程教案理(含解析)苏教版

(江苏专版)高考数学一轮复习第九章解析几何第八节曲线与方程教案理(含解析)苏教版
(江苏专版)高考数学一轮复习第九章解析几何第八节曲线与方程教案理(含解析)苏教版

(江苏专版)高考数学一轮复习第九章解析几何第八节曲线与方

程教案理(含解析)苏教版

第八节 曲线与方程

1.曲线与方程

一般地,在平面直角坐标系中,如果某曲线C 上的点与一个二元方程f (x ,y )=0的实数解建立了如下关系:

(1)曲线上点的坐标都是这个方程的解.

(2)以这个方程的解为坐标的点都是曲线上的点.那么这个方程叫做曲线的方程,这条曲线叫做方程的曲线.

2.求动点轨迹方程的一般步骤

(1)建立适当的坐标系,用有序实数对(x ,y )表示曲线上任意一点M 的坐标; (2)写出适合条件p 的点M 的集合P ={M |p (M )}; (3)用坐标表示条件p (M ),列出方程f (x ,y )=0; (4)化方程f (x ,y )=0为最简形式;

(5)说明以化简后的方程的解为坐标的点都在曲线上. 3.曲线的交点

设曲线C 1的方程为F 1(x ,y )=0,曲线C 2的方程为F 2(x ,y )=0,则C 1,C 2的交点坐标

即为方程组?

??

??

F 1x ,y =0,F 2x ,y =0

的实数解.若此方程组无解,则两曲线无交点.

[小题体验]

1.已知两定点A (-2,0),B (1,0),如果动点P 满足PA =2PB ,则点P 的轨迹方程为________.

解析:设P 点的坐标为(x ,y ),

∵A (-2,0),B (1,0),动点P 满足PA =2PB , ∴

x +2

2

+y 2

=2

x -1

2

+y 2

平方得(x +2)2

+y 2

=4[(x -1)2

+y 2

], 化简得(x -2)2

+y 2

=4,

∴点P 的轨迹是以(2,0)为圆心、2为半径的圆,方程为(x -2)2

+y 2

=4.

答案:(x -2)2+y 2

=4

2.已知点P 是直线2x -y +3=0上的一个动点,定点M (-1,2),Q 是线段PM 延长线上的一点,且PM =M Q ,则Q 点的轨迹方程是________.

解析:设Q(x ,y ),则P 为(-2-x,4-y ),代入2x -y +3=0,得Q 点的轨迹方程为2x -y +5=0.

答案:2x -y +5=0

3.已知F 是抛物线y =14x 2

的焦点,P 是该抛物线上的动点,则线段PF 中点的轨迹方程

是________.

解析:因为抛物线x 2

=4y 的焦点F (0,1),设线段PF 的中点坐标是(x ,y ),则P (2x,2y -1)在抛物线x 2

=4y 上,所以(2x )2

=4(2y -1),化简得x 2

=2y -1.

答案:x 2

=2y -1

1.曲线与曲线方程、轨迹与轨迹方程是两个不同的概念,前者指曲线的形状、位置、大小等特征,后者指方程(包括范围).

2.求轨迹方程时易忽视轨迹上特殊点对轨迹的“完备性与纯粹性”的影响. [小题纠偏]

1.若M ,N 为两个定点,且|MN |=6,动点P 满足PM ―→·PN ―→

=0,则P 点的轨迹是________. 解析:因为PM ―→·PN ―→

=0,所以PM ⊥PN . 所以点P 的轨迹是以线段MN 为直径的圆. 答案:以线段MN 为直径的圆

2.在△ABC 中,A 为动点,B ,C 为定点,B ? ????-a 2,0,C ? ??

??a

2,0(a >0),且满足条件 sin C -sin B =1

2

sin A ,则动点A 的轨迹方程是________.

解析:由正弦定理得AB 2R -AC 2R =12×BC

2R

即AB -AC =12BC ,故动点A 是以B ,C 为焦点,a

2为实轴长的双曲线右支.

即动点A 的轨迹方程为16x 2

a 2-16y

2

3a 2=1(x >0且y ≠0).

答案:16x 2

a 2-16y

2

3a

2=1(x >0且y ≠0)

考点一 直接法求轨迹方程 基础送分型考点——自主练透

[题组练透]

1.已知点O (0,0),A (1,-2),动点P 满足|PA |=3|PO |,则P 点的轨迹方程是________. 解析:设P 点的坐标为(x ,y ), 则

x -1

2

y +2

2

=3x 2+y 2

整理得8x 2

+8y 2

+2x -4y -5=0. 答案:8x 2

+8y 2

+2x -4y -5=0

2.已知M (-2,0),N (2, 0),求以MN 为斜边的直角三角形的直角顶点P 的轨迹方程. 解:设P (x ,y ),

因为△MPN 为以MN 为斜边的直角三角形, 所以MP 2

+NP 2

=MN 2

所以(x +2)2

+y 2

+(x -2)2

+y 2

=16, 整理得x 2

+y 2=4.

因为M ,N ,P 不共线,所以x ≠±2, 所以轨迹方程为x 2

+y 2

=4(x ≠±2).

3.设F (1,0),点M 在x 轴上,点P 在y 轴上,且MN ―→=2MP ―→,PM ―→⊥PF ―→

,当点P 在y 轴上运动时,求点N 的轨迹方程.

解:设M (x ′,0),P (0,y ′),N (x ,y ), 由MN ―→=2MP ―→

,得(x -x ′,y )=2(-x ′,y ′),

所以?

??

??

x -x ′=-2x ′y =2y ′,解得?

???

?

x ′=-x ,y ′=y

2.

因为PM ―→⊥PF ―→,PM ―→=(x ′,-y ′),PF ―→

=(1,-y ′), 所以(x ′,-y ′)·(1,-y ′)=0, 即x ′+y ′2

=0, 所以-x +? ????y 22

=0,

即y 2

=4x .

因此所求的轨迹方程为y 2

=4x .

[谨记通法]

直接法求轨迹方程的2种常见类型及解题策略

(1)题目给出等量关系,求轨迹方程.可直接代入即可得出方程.

(2)题中未明确给出等量关系,求轨迹方程.可利用已知条件寻找等量关系,得出方程.但

要注意完备性易忽视.

考点二 定义法求轨迹方程

重点保分型考点——师生共研

[典例引领]

1.(2017·扬州模拟)△ABC 的顶点A (-5,0),B (5,0),△ABC 的内切圆圆心在直线x =3上,则顶点C 的轨迹方程是________________.

解析:如图,AD =AE =8,

BF =BE =2,CD =CF ,

所以CA -CB =8-2=6.

根据双曲线的定义,所求轨迹是以A ,B 为焦点, 实轴长为6的双曲线的右支, 方程为x 29-y 216=1(x >3).

答案:x 2

9-y 2

16

=1(x >3)

2.(2019·常熟中学检测)已知动圆M 与直线y =2相切,且与定圆C :x 2

+(y +3)2

=1外切,那么动圆圆心M 的轨迹方程________.

解析:由题意知动圆M 与直线y =2相切,且与定圆C :x 2

+(y +3)2

=1外切, ∴动点M 到C (0,-3)的距离与到直线y =3的距离相等,

由抛物线的定义知,点M 的轨迹是以C (0,-3)为焦点,直线y =3为准线的抛物线, 故所求M 的轨迹方程为x 2

=-12y . 答案:x 2

=-12y

[由题悟法]

定义法求曲线方程的2种策略

(1)运用圆锥曲线的定义求轨迹方程,可从曲线定义出发直接写出方程,或从曲线定义出发建立关系式,从而求出方程.

(2)定义法和待定系数法适用于已知曲线的轨迹类型,其方程是何形式的情况,利用条件把待定系数求出来,使问题得解.

[即时应用]

1.(2019·海门中学检测)已知△ABC 的周长为20,且顶点B (0,-4),C (0,4),则顶点A 的轨迹方程是________.

解析:∵△ABC 的周长为20,顶点B (0,-4),C (0,4), ∴BC =8,AB +AC =20-8=12,

∵12>8,∴点A 到两个定点的距离之和等于定值, ∴点A 的轨迹是椭圆,∵a =6,c =4,∴b 2

=20,

∴椭圆的方程为x 220+y 2

36=1(x ≠0).

答案:x 220+y 2

36

=1(x ≠0)

2.如图,已知△ABC 的两顶点坐标A (-1,0),B (1,0),圆E 是 △ABC 的内切圆,在边AC ,BC ,AB 上的切点分别为P ,Q ,R ,CP =1,动点C 的轨迹为曲线M .求曲线M 的方程.

解:由题知CA +CB =CP +C Q +AP +B Q =2CP +AB =4>AB ,

所以曲线M 是以A ,B 为焦点,长轴长为4的椭圆(挖去与x 轴的交点).

设曲线M :x 2a 2+y 2

b

2=1(a >b >0,y ≠0),

则a 2

=4,b 2

=a 2

-12

=3,

所以曲线M :x 24+y 2

3=1(y ≠0)为所求.

考点三 代入法求轨迹方程

重点保分型考点——师生共研

[典例引领]

如图,已知P 是椭圆x 2

4

+y 2

=1上一点,PM ⊥x 轴于M .若PN ―→=

λNM ―→

.

(1)求N 点的轨迹方程;

(2)当N 点的轨迹为圆时,求λ的值.

解:(1)设点P ,点N 的坐标分别为P (x 1,y 1),N (x ,y ), 则M 的坐标为(x 1,0),且x =x 1, 所以PN ―→

=(x -x 1,y -y 1)=(0,y -y 1), NM ―→

=(x 1-x ,-y )=(0,-y ),

由PN ―→=λNM ―→

得(0,y -y 1)=λ(0,-y ). 所以y -y 1=-λy ,即y 1=(1+λ)y . 因为P (x 1,y 1)在椭圆x 2

4+y 2

=1上,

则x 214+y 2

1

=1,所以x 2

4

+(1+λ)2y 2

=1, 故x 2

4+(1+λ)2y 2

=1即为所求的N 点的轨迹方程. (2)要使点N 的轨迹为圆,则(1+λ)2

=14

解得λ=-12或λ=-3

2

.

所以当λ=-12或λ=-3

2

时,N 点的轨迹是圆.

[由题悟法]

代入法求轨迹方程的4个步骤 (1)设出所求动点坐标P (x ,y ).

(2)寻求所求动点P (x ,y )与已知动点Q(x ′,y ′)的关系. (3)建立P ,Q 两坐标间的关系,并表示出x ′,y ′. (4)将x ′,y ′代入已知曲线方程中化简求解.

[即时应用]

1.(2019·丰县中学检测)定长为3的线段AB 的两个端点A ,B 分别在x 轴,y 轴上滑动,动点P 满足BP ―→=2PA ―→

,求点P 的轨迹方程.

解:设A (x 0,0),B (0,y 0),P (x ,y ),

由BP ―→=2PA ―→

,得(x ,y -y 0)=2(x 0-x ,-y ),

则?

??

??

x =2x 0-2x ,y -y 0=-2y ,即?????

x 0=32x ,

y 0=3y ,

又因为AB 的定长为3,所以x 2

0+y 2

0=9,

所以? ??

??32x 2+(3y )2=9,化简得x 2

4+y 2

=1,

故点P 的轨迹方程为x 2

4

+y 2

=1.

2.已知曲线E :ax 2

+by 2

=1(a >0,b >0),经过点M ?

??

??

33,0的直线l 与曲线E 交于点A ,B ,且MB ―→

=-2MA ―→

.若点B 的坐标为(0,2),求曲线E 的方程.

解:设A (x 0,y 0),因为B (0,2),M ?

??

??

33,0, 故MB ―→=? ????-33,2,MA ―→=? ????

x 0-33,y 0.

由于MB ―→=-2MA ―→

, 所以? ????-

33,2=-2? ??

??x 0-33,y 0.

所以x 0=

32,y 0=-1,即A ? ??

??32,-1. 因为A ,B 都在曲线E 上,

所以????

?

a ·02+

b ·22

=1,a ·? ??

??322

+b ·-12

=1,

解得????

?

a =1,

b =1

4

.

所以曲线E 的方程为x 2

+y 2

4

=1.

一抓基础,多练小题做到眼疾手快

1.方程(x +y -1)x -1=0表示的曲线是______________.

解析:由(x +y -1)x -1=0,得?

??

??

x +y -1=0,

x -1≥0或x -1=0,即x +y -1=0(x ≥1)

或x =1.所以方程表示的曲线是射线x +y -1=0(x ≥1)和直线x =1.

答案:射线x +y -1=0(x ≥1)和直线x =1

2.平面上有三个点A (-2,y ),B ? ????0,y 2,C (x ,y ),若AB ―→⊥BC ―→,则动点C 的轨迹方程为________.

解析:由题意得AB ―→=? ????2,-y 2,BC ―→=? ??

??x ,y 2,由AB ―→⊥BC ―→,得AB ―→·BC ―→

=0,即2x

+? ????-y 2·y

2

=0,所以动点C 的轨迹方程为y 2

=8x .

答案:y 2

=8x

3.(2018·江苏太湖高级中学检测)若动点P (x ,y )满足条件|

x +4

2

+y 2

x -4

2

+y 2

|=6,则点P 的轨迹是________.

解析:|x +4

2

+y 2

x -4

2

+y 2

|=6表示点P 到(4,0),(-4,0)两点的距离

的差的绝对值为6,根据定义得点P 轨迹是双曲线.

答案:双曲线

4.设点A 为圆(x -1)2

+y 2

=1上的动点,PA 是圆的切线,且PA =1,则P 点的轨迹方程为________.

解析:如图,设P (x ,y ),圆心为M (1,0).连结MA ,PM , 则MA ⊥PA ,且MA =1,又因为PA =1, 所以PM =MA 2

+PA 2

=2, 即PM 2

=2,所以(x -1)2

+y 2

=2.

答案:(x -1)2+y 2

=2

5.已知点A (-2,0),B (3,0),动点P (x ,y ),满足PA ―→·PB ―→=x 2

-6,则动点P 的轨迹方程是________.

解析:因为动点P (x ,y )满足PA ―→·PB ―→=x 2

-6, 所以(-2-x ,-y )·(3-x ,-y )=x 2

-6,即y 2

=x , 所以动点P 的轨迹方程是y 2

=x . 答案:y 2

=x

6.已知定点A (4,0)和圆x 2+y 2

=4上的动点B ,动点P (x ,y )满足OA ―→+OB ―→=2OP ―→,则点P 的轨迹方程为________.

解析:设B (x 0,y 0),由?

??

??

4+x 0=2x ,

y 0=2y ,得?

??

??

x 0=2x -4,

y 0=2y ,

代入圆方程得(2x -4)2+4y 2

=4, 即(x -2)2

+y 2

=1. 答案:(x -2)2

+y 2

=1

二保高考,全练题型做到高考达标

1.(2019·盐城一模)设点Q(2,0),圆C :x 2

+y 2

=1,若动点M 到圆C 的切线长与M Q 长的比等于2,则动点M 的轨迹方程是________.

解析:如图,设MN 切圆于N ,则动点M 满足MN =2M Q , ∵圆的半径ON =1, ∴MN 2

=MO 2

-ON 2

=MO 2

-1. 设点M 的坐标为(x ,y ), 则x 2

+y 2

-1=2x -2

2

+y 2,化简得3x 2+3y 2

-16x +

17=

0.

答案:3x 2

+3y 2

-16x +17=0

2.长为3的线段AB 的端点A ,B 分别在x 轴,y 轴上移动,AC ―→=2CB ―→

,则点C 的轨迹方程为________________.

解析:设C (x ,y ),A (a,0),B (0,b ),则a 2

+b 2

=9,① 又AC ―→=2CB ―→

,所以(x -a ,y )=2(-x ,b -y ),

即?????

a =3x ,

b =3

2

y ,②

代入①式整理可得x 2

+y 2

4=1.

答案:x 2

+y 2

4

=1

3.已知A (-1,0),B (1,0)两点,过动点M 作x 轴的垂线,垂足为N ,若MN ―→2=λAN ―→·NB ―→

,当λ<0时,动点M 的轨迹为________.

解析:设M (x ,y ),则N (x,0),所以MN ―→2=y 2

,λAN ―→·NB ―→=λ(x +1,0)·(1-x,0)

=λ(1-x 2

),所以y 2

=λ(1-x 2

),即λx 2

+y 2

=λ,变形为x 2

+y 2

λ

=1.又因为λ<0,所

以动点M 的轨迹为双曲线.

答案:双曲线

4.设圆(x +1)2

+y 2

=25的圆心为C ,A (1,0)是圆内一定点,Q 为圆周上任一点.线段

A Q 的垂直平分线与C Q 的连线交于点M ,则M 的轨迹方程为________.

解析:因为M 为A Q 垂直平分线上一点, 则AM =M Q ,

所以MC +MA =MC +M Q =C Q =5,

故M 的轨迹为以点C ,A 为焦点的椭圆,所以a =5

2,c =1,

则b 2=a 2-c 2

=214

所以椭圆的方程为4x 2

25+4y

2

21=1.

答案:4x 2

25+4y

2

21

=1

5.设过点P (x ,y )的直线分别与x 轴的正半轴和y 轴的正半轴交于A ,B 两点,点Q 与点P 关于y 轴对称,O 为坐标原点.若BP ―→=2PA ―→,且O Q ―→·AB ―→

=1,则点P 的轨迹方程是________.

解析:设A (a,0),B (0,b ),a >0,b >0. 由BP ―→=2PA ―→

,得(x ,y -b )=2(a -x ,-y ), 即a =3

2x >0,b =3y >0.

即AB ―→=? ??

??-32x ,3y ,

点Q(-x ,y ),故由O Q ―→·AB ―→

=1,

得(-x ,y )·? ??

??-32x ,3y =1, 即32

x 2+3y 2

=1. 故所求的轨迹方程为32x 2+3y 2

=1(x >0,y >0).

答案:32

x 2+3y 2

=1(x >0,y >0)

6.(2019·扬州一模)如图,已知椭圆x 2

4

+y 2

=1的焦点为F 1,

F 2,点P 为椭圆上任意一点,过F 2作∠F 1PF 2的外角平分线的垂线,

垂足为点Q ,过点Q 作y 轴的垂线,垂足为N ,线段Q N 的中点为M ,则点M 的轨迹方程为________.

解析:因为点F 2关于∠F 1PF 2的外角平分线P Q 的对称点Q ′在直线F 1P 的延长线上,故

F 1Q ′=PF 1+PF 2=2a =4,

又O Q 是△F 2F 1Q ′的中位线,所以O Q =1

2F 1Q ′=2,

设M (x ,y ),则Q(2x ,y ), 所以有4x 2

+y 2

=4.

故点M 的轨迹方程为y 2

4+x 2

=1.

答案:y 2

4

+x 2

=1

7.在平面直角坐标系xOy 中,动点P 和点M (-2,0),N (2,0)满足|MN ―→|·|MP ―→

|+MN ―→·NP ―→

=0,则动点P (x ,y )的轨迹方程为________.

解析:因为|MN ―→|·|MP ―→|+MN ―→·NP ―→

=0, 所以4

x +2

2

+y 2

+4(x -2)=0,

化简变形,得y 2

=-8x . 答案:y 2

=-8x

8.(2019·通州一模)已知⊙C :(x +1)2

+y 2

=36及点A (1,0),点P 为圆上任意一点,

AP 的垂直平分线交CP 于点M ,则点M 的轨迹方程为________.

解析:由圆的方程可知,圆心C (-1,0),半径等于6,设点M 的坐标为(x ,y ), ∵AP 的垂直平分线交CP 于M ,∴MA =MP ,

又MP +MC =6,∴MC +MA =6>AC =2,∴点M 满足椭圆的定义,且2a =6,2c =2,∴a

=3,c =1,∴b 2=a 2-c 2

=8,∴点M 的轨迹方程为x 29+y 2

8

=1.

答案:x 29+y 2

8

=1

9.已知长为1+2的线段AB 的两个端点A ,B 分别在x 轴,y 轴上滑动,P 是AB 上一点,且AP ―→=22

PB ―→

,求点P 的轨迹方程.

解:设A (x 0,0),B (0,y 0),P (x ,y ),由已知知AP ―→=22PB ―→

又AP ―→=(x -x 0,y ),PB ―→

=(-x ,y 0-y ), 所以x -x 0=-22x ,y =2

2

(y 0-y ), 得x 0=? ?

?

??

1+

22x ,y 0=(1+2)y . 因为AB =1+2, 即x 2

0+y 2

0=(1+2)2

, 所以????

??? ????1+

22x 2+[(1+2)y ]2=(1+2)2

, 化简得x 2

2

+y 2

=1.

即点P 的轨迹方程为x 2

2

+y 2

=1.

10.已知动圆过定点A (4,0),且在y 轴上截得弦MN 的长为8. (1)求动圆圆心的轨迹C 的方程;

(2)已知点B (-1,0),设不垂直于x 轴的直线l 与轨迹C 交于不同的两点P ,Q ,若x 轴是∠PB Q 的角平分线,证明:直线l 过定点.

解:(1)如图,设动圆圆心为O 1(x ,y ), 由题意O 1A =O 1M ,

当O 1不在y 轴上时,过O 1作O 1H ⊥MN 交MN 于H , 则H 是MN 的中点. 所以O 1M =x 2

+42

, 又O 1A =x -42

+y 2

所以

x -4

2

+y 2

=x 2

+42

,化简得y 2

=8x (x ≠0).

当O 1在y 轴上时,O 1与O 重合,点O 1的坐标(0,0)也满足方程y 2

=8x , 所以动圆圆心的轨迹C 的方程为y 2

=8x .

(2)证明:由题意,设直线l 的方程为y =kx +b (k ≠0),P (x 1,

y 1),Q(x 2,y 2),将y =kx +b 代入y 2=8x ,

得k 2x 2

+(2kb -8)x +b 2

=0. 则Δ=-32kb +64>0. 且x 1+x 2=8-2kb

k

2

,① x 1x 2=b 2

k

2,②

因为x 轴是∠PB Q 的角平分线,所以y 1x 1+1=-y 2

x 2+1

, 即y 1(x 2+1)+y 2(x 1+1)=0,

(kx 1+b )(x 2+1)+(kx 2+b )(x 1+1)=0, 2kx 1x 2+(b +k )(x 1+x 2)+2b =0,③

将①②代入③得2kb 2

+(k +b )(8-2kb )+2k 2

b =0, 所以k =-b ,此时Δ>0,

所以直线l 的方程为y =k (x -1),即直线l 过定点(1,0). 三上台阶,自主选做志在冲刺名校

在平面直角坐标系xOy 中,已知两点M (1,-3),N (5,1),若点C 的坐标满足OC ―→

t OM ―→+(1-t )ON ―→

(t ∈R),且点C 的轨迹与抛物线y 2=4x 交于A ,B 两点.

(1)求证:OA ⊥OB ;

(2)在x 轴上是否存在一点P (m,0),使得过点P 任作一条抛物线的弦,并以该弦为直径的圆都过原点.若存在,求出m 的值及圆心的轨迹方程;若不存在,请说明理由.

解:(1)证明:由OC ―→=t OM ―→+(1-t )ON ―→

(t ∈R),可知点C 的轨迹是M ,N 两点所在的直线,

所以点C 的轨迹方程为y +3=1--3

5-1(x -1),

即y =x -4.

联立?

????

y =x -4,y 2

=4x ,化简得x 2

-12x +16=0,

设C 的轨迹方程与抛物线y 2

=4x 的交点坐标为A (x 1,y 1),B (x 2,y 2), 则x 1+x 2=12,x 1x 2=16,

y 1y 2=(x 1-4)(x 2-4)=x 1x 2-4(x 1+x 2)+16=-16,

因为OA ―→·OB ―→

=x 1x 2+y 1y 2=16-16=0, 所以OA ⊥OB .

(2)假设存在这样的P 点,并设AB 是过抛物线的弦,且A (x 1,y 1),B (x 2,y 2),其方程为x =ny +m ,

代入y 2

=4x 得y 2

-4ny -4m =0, 此时y 1+y 2=4n ,y 1y 2=-4m , 所以k OA k OB =y 1x 1·y 2x 2=y 1y 214

·y 2y 224

16y 1y 2=-4

m

=-1,

所以m =4(定值),故存在这样的点P (4,0)满足题意. 设AB 的中点为T (x ,y ),

则y =12(y 1+y 2)=2n ,x =12(x 1+x 2)=12(ny 1+4+ny 2+4)=n 2

(y 1+y 2)+4=2n 2

+4,消去

n 得y 2=2x -8.

高考数学一轮复习(北师大版理科):第8章平面解析几何第8节曲线与方程学案

第八节 曲线与方程 [考纲传真] (教师用书独具)1.了解方程的曲线与曲线的方程的对应关系.2.了解解析几何的基本思想和利用坐标法研究几何问题的基本方法.3.能够根据所给条件选择适当的方法求曲线的轨迹方程. (对应学生用书第146页) [基础知识填充] 1.曲线与方程 一般地,在直角坐标系中,如果某曲线C (看作满足某种条件的点的集合或轨迹)上的点与一个二元方程f (x ,y )=0的实数解建立了如下的关系: (1)曲线上点的坐标都是这个方程的解. (2)以这个方程的解为坐标的点都是曲线上的点. 那么,这条曲线叫作方程的曲线;这个方程叫作曲线的方程. 2.求动点轨迹方程的一般步骤 (1)建立适当的坐标系,用有序实数对(x ,y )表示曲线上任意一点M 的坐标. (2)写出适合条件p 的点M 的集合P ={M |p (M )}. (3)用坐标表示条件p (M ),列出方程f (x ,y )=0. (4)化方程f (x ,y )=0为最简形式. (5)说明以化简后的方程的解为坐标的点都在曲线上. 3.圆锥曲线的共同特征 圆锥曲线上的点到一个定点的距离与它到一条定直线的距离之比为定值e . (1)当0<e <1时,圆锥曲线是椭圆. (2)当e >1时,圆锥曲线是双曲线. (3)当e =1时,圆锥曲线是抛物线. 4.两曲线的交点 设曲线C 1的方程为f 1(x ,y )=0,曲线C 2的方程为g (x ,y )=0,则 (1)曲线C 1,C 2的任意一个交点坐标都满足方程组? ?? ?? f 1(x ,y )=0, g (x ,y )=0. (2)反之,上述方程组的任何一组实数解都对应着两条曲线某一个交点的坐标. [基本能力自测] 1.(思考辨析)判断下列结论的正误.(正确的打“√”,错误的打“×”) (1)f (x 0,y 0)=0是点P (x 0,y 0)在曲线f (x ,y )=0上的充要条件.( ) (2)方程x 2 +xy =x 的曲线是一个点和一条直线.( )

高考数学圆锥曲线与方程章总结题型详解

圆锥曲线与方程 题型一 定义运用 1..(2017·湖南高考模拟(理))已知抛物线2 2x y = 上一点P 到焦点F 的距离为1,,M N 是直线2y =上 的两点,且2MN =,MNP ?的周长是6,则sin MPN ∠=( ) A . 4 5 B . 25 C . 23 D . 13 【答案】A 【解析】由题意,22p = ,则 122p = ,故抛物线22x y = 的焦点坐标是10,2?? ??? ,由抛物线的定义得,点P 到准线1 2y =- 的距离等于PF ,即为1 ,故点P 到直线2y =的距离为132122d ??=---= ??? . 设 点P 在直线MN 上的射影为P' ,则3 '2 PP = . 当点,M N 在P'的同一侧(不与点P'重合)时,35 2=622 PM PN MN ++> ++ ,不符合题意;当点,M N 在P'的异侧(不与点P'重合)时,不妨设()'02P M x x =<<,则'2P N x =- ,故由 2=6PM PN MN ++= ,解得0x = 或2 ,不符合题意,舍去, 综上,M N 在两点中一定有一点与点P'重合,所以 24552 sin MPN <= = ,故选A. 2.(2017·河南高考模拟(文))已知直线()()20y k x k =+>与抛物线2 :8C y x =相交于A ,B 两点,F 为C 的焦点,若2FA FB =,则点A 到抛物线的准线的距离为( ) A .6 B .5 C .4 D .3 【答案】A 【解析】由题意得,设抛物线2 8y x =的准线方程为:2l x =-,直线()2y k x =+恒过定点()2,0-, 如图过,A B 分别作AM l ⊥于M ,BN l ⊥于N ,连接OB , 由2FA FB =,则2AM BN =,点B 为AP 的中点, 因为点O 是PF 的中点,则1 2 OB AF = ,

第八章向量代数与空间解析几何教案(同济大学版高数)

第八章 向量代数与空间解析几何 第一节 向量及其线性运算 教学目的:将学生的思维由平面引导到空间,使学生明确学习空间解析几何的意义和目的。使学生对(自由)向量有初步了解,为后继内容的学习打下基础。 教学重点:1.空间直角坐标系的概念 2.空间两点间的距离公式 3.向量的概念 4.向量的运算 教学难点:1.空间思想的建立 2.向量平行与垂直的关系 教学内容: 一、向量的概念 1.向量:既有大小,又有方向的量。在数学上用有向线段来表示向量,其长度表示向量的大小,其方向表示向量的方向。在数学上只研究与起点无关的自由向量(以后简称向量)。 2. 量的表示方法有: a 、i 、F 、OM 等等。 3. 向量相等b a =:如果两个向量大小相等,方向相同,则说(即经过平移后能完全重合的向量)。 4. 量的模:向量的大小,记为a 。 模为1的向量叫单位向量、模为零的向量叫零向量。零向量的方向是任意的。 5. 量平行b a //:两个非零向量如果它们的方向相同或相反。零向量与如何向量都平行。 6. 负向量:大小相等但方向相反的向量,记为a - 二、向量的线性运算 1.加减法c b a =+: 加法运算规律:平行四边形法则(有时也称三角形法则),其满足的运算规律有交换率和结合率见图7-4

2.c b a =- 即c b a =-+)( 3.向量与数的乘法a λ:设λ是一个数,向量a 与λ的乘积a λ规定为 0)1(>λ时,a λ与a 同向,||||a a λλ= 0)2(=λ时,0a =λ 0)3(<λ时,a λ与a 反向,||||||a a λλ= 其满足的运算规律有:结合率、分配率。设0 a 表示与非零向量a 同方向的单位向量,那么 a a a 0= 定理1:设向量a ≠0,那么,向量b 平行于a 的充分必要条件是:存在唯一的实数λ, 使b =a λ 例1:在平行四边形ABCD 中,设a =AB ,b =AD ,试用 a 和 b 表示向量MA 、MB 、MC 和MD ,这里M 是平行 四边形对角线的交点。(见图7-5) 图7-4 解:→→==+AM AC 2b a ,于是)(2 1 b a +- =→ MA 由于→ → -=MA MC , 于是)(21 b a += → MC 又由于→→==+-MD BD 2b a ,于是)(2 1 a b -=→MD 由于→→-=MD MB , 于是)(2 1 a b --=→MB 三、空间直角坐标系 1.将数轴(一维)、平面直角坐标系(二维)进一步推广建立空间直角坐标系(三维)如图7-1,其符合右手规则。即以右手握住z 轴,当右手的四个手指从正向x 轴以2 π 角度转向正向y 轴时,大拇指的指向就是z 轴的正向。

2019高考数学真题(理)分类汇编-平面解析几何含答案解析

专题05 平面解析几何 1.【2019年高考全国Ⅰ卷理数】已知椭圆C 的焦点为121,01,0F F -(),(),过F 2的直线与C 交于A ,B 两点.若22||2||AF F B =,1||||AB BF =,则C 的方程为 A .2 212 x y += B .22 132x y += C .22 143 x y += D .22 154 x y += 【答案】B 【解析】法一:如图,由已知可设2F B n =,则212,3AF n BF AB n ===, 由椭圆的定义有121224,22a BF BF n AF a AF n =+=∴=-=. 在1AF B △中,由余弦定理推论得22214991cos 2233 n n n F AB n n +-∠==??. 在12AF F △中,由余弦定理得2 2 14422243n n n n +-??? = ,解得n = 2 2 2 24312,a n a b a c ∴==∴=∴=-=-=∴所求椭圆方程为22 132 x y +=,故选B . 法二:由已知可设2F B n =,则212,3AF n BF AB n ===, 由椭圆的定义有121224,22a BF BF n AF a AF n =+=∴=-=. 在12AF F △和12BF F △中,由余弦定理得222122 2144222cos 4422cos 9n n AF F n n n BF F n ?+-???∠=?+-???∠=?, 又2121,AF F BF F ∠∠互补,2121cos cos 0AF F BF F ∴∠+∠=,两式消去2121cos cos AF F BF F ∠∠, ,得

高中解析几何知识点

解析几何知识点 一、基本内容 (一)直线的方程 1、直线的方程 确定直线方程需要有两个互相独立的条件,而其中一个必不可少的条件是直线必须经过一已知点.确定直线方程的形式很多,但必须注意各种形式的直线方程的适用范围. 2、两条直线的位置关系 两条直线的夹角,当两直线的斜率k1,k2都存在且k1·k2≠ 外注意到角公式与夹角公式的区别. (2)判断两直线是否平行,或垂直时,若两直线的斜率都存在,可用斜率的关系来判断.但若直线斜率不存在,则必须用一般式的平行垂直条件来判断. 3、在学习中注意应用数形结合的数学思想,即将对几何图形的研究,转化为对代数式的研究,同时又要理解代数问题的几何意义. (二)圆的方程 (1)圆的方程 1、掌握圆的标准方程及一般方程,并能熟练地相互转化,一般地说,具有三个条件(独立的)才能确定一个圆方程.在求圆方程时,若条件与圆心有关,则一般用标准型较易,若

已知圆上三点,则用一般式方便,注意运用圆的几何性质,去简化运算,有时利用圆系方程也可使解题过程简化. 2、 圆的标准方程为(x -a )2+(y -b )2=r 2;一般方程x 2+y 2+Dx+Ey +F =0,圆心坐标 (,)22D E -- 3、 在圆(x -a )2+(y -b )2=r 2,若满足a 2+b 2 = r 2条件时,能使圆过原点;满足a=0,r >0条件时,能使圆心在y 轴上;满足b r =时,能使圆与x 轴相切;r =条件时, 能使圆与x -y =0相切;满足|a |=|b |=r 条件时,圆与两坐标轴相切. 4、 若圆以A (x 1,y 1)B (x 2,y 2)为直径,则利用圆周上任一点P (x ,y ), 1PA PB k k =-求出圆方程(x -x 1)(x -x 2)+(y -y 1)(y -y 2)=0 (2) 直线与圆的位置关系 ①在解决的问题时,一定要联系圆的几何性质,利用有关图形的几何特征,尽可能简化运算,讨论直线与圆的位置关系时,一般不用△>0,△=0,△<0,而用圆心到直线距离d <r ,d=r ,d >r ,分别确定相关交相切,相离的位置关系.涉及到圆的切线时,要考虑过切点与切线垂直的半径,计算交弦长时,要用半径、弦心距、半弦构成直角三角形,当然,不失一般性弦长式 ③已知⊙O 1:x 2+y 2 = r 2,⊙O 2:(x -a )2+(y -b )2=r 2;⊙O 3:x 2+y 2+Dx+Ey +F =0则以M (x 0,y 0)为切点的⊙O 1切线方程为xx 0+yy 0=r 2;⊙O 2切线方程 条切线,切线弦方程:xx 0+yy 0=r 2. (三)曲线与方程 (1)在平面内建立直角坐标系以后,坐标平面内的动点都可以用有序实数对x 、y 表示,这就是动点的坐标(x ,y ).当点按某种规律运动而形成曲线时,动点坐标(x ,y )中的变量x ,y 存在着某种制约关系.这种制约关系反映到代数中,就是含有变量x ,y 方程F (x ,y )=0. 曲线C 和方程F (x ,y )=0的这种对应关系,还必须满足两个条件: (1)曲线上的点的坐标都是这个方程的解; (2)以这个方程的解为坐标的点都在曲线上,这时,我们才能把这个方程叫做曲线的方程,

向量代数与空间解析几何练习题讲课教案

向量代数与空间解析几何练习题

第4章 向量代数与空间解析几何练习题 习题4.1 一、选择题 1.将平行于同一平面的所有单位向量的起点移到同一点, 则这些向量的终点构成的图形是( ) (A )直线; (B ) 线段; (C ) 圆; (D ) 球. 2.下列叙述中不是两个向量a 与b 平行的充要条件的是( ) (A )a 与b 的内积等于零; (B )a 与b 的外积等于零; (C )对任意向量c 有混合积0)(=abc ; (D )a 与b 的坐标对应成比例. 3.设向量a 的坐标为 31 3 , 则下列叙述中错误的是( ) (A )向量a 的终点坐标为),,(z y x ; (B )若O 为原点,且a =, 则点A 的坐标为 ),,(z y x ; (C )向量a 的模长为222z y x ++;(D ) 向量)2/,2/,2/(z y x 与a 平行. 4.行列式2 131323 21的值为( ) (A ) 0 ; (B ) 1 ; (C ) 18 ; (D ) 18-. 5.对任意向量a 与b , 下列表达式中错误的是( ) (A )||||a a -=; (B )||||||b a b a +>+; (C ) ||||||b a b a ?≥?; (D ) ||||||b a b a ?≥?. 二、填空题 1.设在平行四边形ABCD 中,边BC 和CD 的中点分别为M 和N ,且p AM =, q =,则BC =_______________,CD =__________________.

2.已知ABC ?三顶点的坐标分别为A(0,0,2),B(8,0,0),C(0,8,6),则边BC上的中线长为______________________. 3.空间中一动点移动时与点)0,0,2(A和点)0,0,8(B的距离相等, 则该点的轨迹方程是 _______________________________________. 4.设力k + 2+ =, 则F将一个质点从)3,1,0(A移到)1,6,3(, B所做的功为 F5 j i 3 ____________________________. ?_____________________; 5.已知)2,5,3(A, )4,7,1(B, )0,8,2( C, 则= ?____________________;ABC = ?的面积为_________________. 三、计算题与证明题 1.已知1 | |= c, 并且0 |= b, 5 | a, 4 |= | a? b + + ?. b ? +c + c b = c a.计算a 2.已知3 ?b || a?. |= |b a, 求| | |= ?b a, 4 | 3.设力k - =作用在点)1,6,3(A, 求力F对点)2 ,7,1(,- + B的力矩的大小. i j F5 3 2+

高考数学百大经典例题 曲线和方程(新课标)

典型例题一 例1 如果命题“坐标满足方程()0=y x f ,的点都在曲线C 上”不正确,那么以下正确的命题是 (A )曲线C 上的点的坐标都满足方程()0=y x f ,. (B )坐标满足方程()0=y x f ,的点有些在C 上,有些不在C 上. (C )坐标满足方程()0=y x f ,的点都不在曲线C 上. (D )一定有不在曲线C 上的点,其坐标满足方程()0=y x f ,. 分析:原命题是错误的,即坐标满足方程()0=y x f ,的点不一定都在曲线C 上,易知答案为D . 典型例题二 例2 说明过点)1,5(-P 且平行于x 轴的直线l 和方程1=y 所代表的曲线之间的关系. 分析:“曲线和方程”的定义中所列的两个条件正好组成两个集合相等的充要条件,二者缺一不可.其中“曲线上的点的坐标都是方程0),(=y x f 的解”,即纯粹性;“以方程的解为坐标的点都是曲线上的点”,即完备性.这是我们判断方程是不是指定曲线的方程,曲线是不是所给方程的曲线的准则. 解:如下图所示,过点P 且平行于x 轴的直线l 的方程为1-=y ,因而在直线l 上的点的坐标都满足1=y ,所以直线l 上的点都在方程1=y 表示的曲线上.但是以1=y 这个方程的解为坐标的点不会都在直线l 上,因此方程1=y 不是直线l 的方程,直线l 只是方程 1=y 所表示曲线的一部分. 说明:本题中曲线上的每一点都满足方程,即满足纯粹性,但以方程的解为坐标的点不都在曲线上,即不满足完备性. 典型例题三

例3 说明到坐标轴距离相等的点的轨迹与方程x y =所表示的直线之间的关系. 分析:该题应该抓住“纯粹性”和“完备性”来进行分析. 解:方程x y =所表示的曲线上每一个点都满足到坐标轴距离相等.但是“到坐标轴距离相等的点的轨迹”上的点不都满足方程x y =,例如点)3,3(-到两坐标轴的距离均为3,但它不满足方程x y =.因此不能说方程x y =就是所有到坐标轴距离相等的点的轨迹方程,到坐标轴距离相等的点的轨迹也不能说是方程x y =所表示的轨迹. 说明:本题中“以方程的解为坐标点都在曲线上”,即满足完备性,而“轨迹上的点的坐标不都满足方程”,即不满足纯粹性.只有两者全符合,方程才能叫曲线的方程,曲线才能叫方程的曲线. 典型例题四 例 4 曲线4)1(2 2 =-+y x 与直线4)2(+-=x k y 有两个不同的交点,求k 的取值范围.有一个交点呢?无交点呢? 分析:直线与曲线有两个交点、一个交点、无交点,就是由直线与曲线的方程组成的方程组分别有两个解、一个解和无解,也就是由两个方程整理出的关于x 的一元二次方程的判别式?分别满足0>?、0=?、0?即0)52)(12(<--k k ,即 25 21<--k k ,即21k 时,直线与曲线没有公共点. 说明:在判断直线与曲线的交点个数时,由于直线与曲线的方程组成的方程组解的个数 与由两方程联立所整理出的关于x (或y )的一元方程解的个数相同,所以如果上述一元方程是二次的,便可通过判别式来判断直线与曲线的交点个数,但如果是两个二次曲线相遇,两曲线的方程组成的方程组解的个数与由方程组所整理出的一元方程解的个数不一定相同,所以遇到此类问题时,不要盲目套用上例方法,一定要做到具体问题具体分析. 典型例题五

解析几何求轨迹方程的常用方法

解析几何求轨迹方程的常用方法 求轨迹方程的一般方法: 1. 定义法:如果动点P 的运动规律合乎我们已知的某种曲线(如圆、椭圆、双曲线、抛物线)的定义,则可先设出轨迹方程,再根据已知条件,待定方程中的常数,即可得到轨迹方程。 2. 直译法:如果动点P 的运动规律是否合乎我们熟知的某些曲线的定义难以判断,但点P 满足的等量关系易于建立,则可以先表示出点P 所满足的几何上的等量关系,再用点P 的坐标(x ,y )表示该等量关系式,即可得到轨迹方程。 3. 参数法:如果采用直译法求轨迹方程难以奏效,则可寻求引发动点P 运动的某个几何量t ,以此量作为参变数,分别建立P 点坐标x ,y 与该参数t 的函数关系x =f (t ), y =g (t ),进而通过消参化为轨迹的普通方程F (x ,y )=0。 4. 代入法(相关点法):如果动点P 的运动是由另外某一点P'的运动引发的,而该点的运动规律已知,(该点坐标满足某已知曲线方程),则可以设出P (x ,y ),用(x ,y )表示出相关点P'的坐标,然后把P'的坐标代入已知曲线方程,即可得到动点P 的轨迹方程。 5:交轨法:在求动点轨迹时,有时会出现要求两动曲线交点的轨迹问题,这种问题通常通过解方程组得出交点(含参数)的坐标,再消去参数求得所求的轨迹方程(若能直接消去两方程的参数,也可直接消去参数得到轨迹方程),该法经常与参数法并用。 一:用定义法求轨迹方程 例1:已知ABC ?的顶点A ,B 的坐标分别为(-4,0),(4,0),C 为动点,且满足,sin 4 5 sin sin C A B =+求点C 的轨迹。

例2: 已知ABC ?中,A ∠、B ∠、C ∠的对边分别为a 、b 、c ,若b c a ,,依次构成等差数列,且b c a >>, 2=AB ,求顶点C 的轨迹方程. 【变式】:已知圆 的圆心为M 1,圆 的圆心为M 2,一动圆与这两个圆外切,求动 圆圆心P 的轨迹方程。 【变式】:⊙C :22(3)16x y ++=内部一点(3,0)A 与圆周上动点Q 连线AQ 的中垂线交CQ 于P ,求点P 的轨迹方程. 二:用直译法求轨迹方程 例3:一条线段两个端点A 和B 分别在x 轴和y 轴上滑动,且BM=a ,AM=b ,求AB 中点M 的轨迹方程?

向量代数与空间解析几何教案.doc

第八章向量代数与空间解析几何 第一节向量及其线性运算 教学目的:将学生的思维由平面引导到空间,使学生明确学习空间解析几何的意义和目的。使学生对(自由)向量有初步了解,为后继内容的学习打下基础。教学重点: 1. 空间直角坐标系的概念 2.空间两点间的距离公式 3.向量的概念 4.向量的运算 教学难点: 1. 空间思想的建立 2.向量平行与垂直的关系 教学内容: 一、向量的概念 1.向量:既有大小,又有方向的量。在数学上用有向线段来表示向量,其长度表示向 量的大小,其方向表示向量的方向。在数学上只研究与起点无关的自由向量(以后简称向量)。 2.量的表示方法有: a 、i、F、 OM 等等。 3.向量相等a b :如果两个向量大小相等,方向相同,则说(即经过平移后能完全 重合的向量)。 4.量的模:向量的大小,记为 a 、OM。 模为 1 的向量叫单位向量、模为零的向量叫零向量。零向量的方向是任意的。 5.量平行a // b:两个非零向量如果它们的方向相同或相反。零向量与如何向量都平行。 6.负向量:大小相等但方向相反的向量,记为 a 二、向量的线性运算 b c 1.加减法a b c:加法运算规律:平行四边形法则(有 时也称三角形法则),其满足的运算规律有交换率和结合率见图7 a -4

2.a b c 即 a ( b) c 3.向量与数的乘法 a :设是一个数,向量 a 与的乘积a规定为 (1) 0 时, a 与a 同向, | a | | a | (2) 0 时, a 0 (3) 0 时, a 与a反向,| a | | || a | 其满足的运算规律有:结合率、分配率。设 a 0表示与非零向量 a 同方向的单位向量,那么 a 0a a 定理 1:设向量,那么,向量 b 平行于 a 的充分必要条件是:存在唯一的实数 λ , a≠ 0 使b=a 例 1:在平行四边形ABCD中,设AB a ,AD b ,试用 a 和b表示向量 MA 、MB 、MC 和 MD ,这里M是平行四边形对角线的交点。(见图7-5)图 7- 4 解: a b AC 2 AM ,于是 MA 1 (a b) 2 由于 MC MA ,于是 MC 1 b) (a 2 1 (b a) 又由于 a b BD 2 MD ,于是 MD 1 (b 2 由于 MB MD ,于是 MB a) 2 三、空间直角坐标系 1.将数轴(一维)、平面直角坐标系(二维)进一步推广建立空间直角坐标系(三维) 如图 7- 1,其符合右手规则。即以右手握住z 轴,当右手的四个手指从正向x 轴以角度 2 转向正向 y 轴时,大拇指的指向就是z 轴的正向。 2.间直角坐标系共有八个卦限,各轴名称分别为:x轴、y轴、z轴,坐标面分别 为 xoy 面、yoz面、zox面。坐标面以及卦限的划分如图7-2 所示。 图 图 7-1 右手规则演示 7- 2 空间直角坐标系图图7-3空间两点 M 1 M 2的距离图3.空间点M ( x, y, z)的坐标表示方法。 通过坐标把空间的点与一个有序数组一一对应起来。注意:特殊点的表示

高考数学专题复习曲线与方程

第8讲 曲线与方程 一、选择题 1.若点P 到直线x =-1的距离比它到点(2,0)的距离小1,则点P 的轨迹为( ). A .圆 B .椭圆 C .双曲线 D .抛物线 解析 依题意,点P 到直线x =-2的距离等于它到点(2,0)的距离,故点P 的轨迹是抛物线. 答案 D 2. 动点P (x ,y )满足5x -1 2 y -2 2 =|3x +4y -11|,则点P 的轨迹 是 ( ). A .椭圆 B .双曲线 C .抛物线 D .直线 解析 设定点F (1,2),定直线l :3x +4y -11=0,则|PF |= x -1 2 y -2 2 ,点P 到直线l 的距离d =|3x +4y -11| 5 . 由已知得|PF | d =1,但注意到点F (1,2)恰在直线l 上,所以点P 的轨迹是直 线.选D. 答案 D 3.设圆(x +1)2+y 2=25的圆心为C ,A (1,0)是圆内一定点,Q 为圆周上任一点.线段AQ 的垂直平分线与CQ 的连线交于点M ,则M 的轨迹方程为 ( ). A.4x 221-4y 2 25=1 B.4x 221+4y 2 25=1 C.4x 225-4y 2 21 =1 D.4x 225+4y 2 21 =1 解析 M 为AQ 垂直平分线上一点,则|AM |=|MQ |,∴|MC |+|MA |=|MC |+|MQ |=|CQ |=5,故M 的轨迹为椭圆,∴

a =52,c =1,则 b 2=a 2- c 2=214 , ∴椭圆的标准方程为4x 225+4y 2 21=1. 答案 D 4.在△ABC 中,A 为动点,B ,C 为定点,B ? ? ???- a 2,0,C ? ????a 2,0且满足条件 sin C -sin B =1 2sin A ,则动点A 的轨迹方程是( ) A.16x 2 a 2-16y 2 15a 2=1(y ≠0) B.16y 2a 2-16x 2 3a 2=1(x ≠0) C.16x 2a 2-16y 2 15a 2=1(y ≠0)的左支 D.16x 2a 2-16y 2 3a 2=1(y ≠0)的右支 解析:sin C -sin B =12sin A ,由正弦定理得|AB |-|AC |=12|BC |=12a (定值). ∴A 点的轨迹是以B ,C 为焦点的双曲线的右支,其中实半轴长为a 4,焦距为 |BC |=a . ∴虚半轴长为? ????a 22-? ?? ??a 42 =34a ,由双曲线标准方程得动点A 的轨迹方程 为16x 2 a 2-16y 2 3a 2=1(y ≠0)的右支. 答案:D 5.正方形ABCD 的边长为1,点E 在边AB 上,点F 在边BC 上,AE =BF =3 7 .动点 P 从E 出发沿直线向F 运动,每当碰到正方形的边时反弹,反弹时反射角等于入射角.当点P 第一次碰到E 时,P 与正方形的边碰撞的次数为( ). A .16 B .14 C .12 D .10 解析 当E 、F 分别为AB 、BC 中点时,显然碰撞的结果为4,当E 、F 分别为

解析几何专题03圆锥曲线的定义方程及几何性质

解析几何专题03圆锥曲线的定义、方程及几何性质 学习目标 (1)理解圆锥曲线的定义,并能正确运用圆锥曲线的定义解决一些简单的问题; (2)掌握圆锥曲线的标准方程,并能熟练运用“待定系数法”求圆锥曲线的方程; (3)能根据圆锥曲线的方程研究圆锥曲线的一些几何性质(尤其是焦点、离心率以及双曲线的渐近线等)。 知识回顾及应用 1.圆锥曲线的定义 (1)椭圆 (2)双曲线 (3)抛物线 2.圆锥曲线的方程 (1)椭圆的标准方程 (2)双曲线的标准方程 (3)抛物线的标准方程 3.圆锥曲线的几何性质 (1)椭圆的几何性质 (2)双曲线的几何性质 (3)抛物线的几何性质 4.应用所学知识解决问题: 【题目】已知椭圆的两个焦点坐标分别是(-2,0),(2,0),并且经过点53 (,)22 -, 求椭圆的方程。 答案:22 1106 x y + = 【变式1】写出适合下列条件的椭圆的标准方程: (1)离心率14 e b = =,焦点在x 轴上; (2)4,a c ==焦点在y 轴上; (3)10,a b c +== 答案:(1)22116x y +=;(2)22 116y x +=;(3)2213616x y + =或2213616 y x +=。 【变式2】写出适合下列条件的椭圆的标准方程: (1)3a b =,且经过点(3,0)P ; (2)经过两点3(2-。 答案:(1)22 19x y +=或221819y x +=;(2)2214 x y +=。

问题探究(请先阅读课本,再完成下面例题) 【类型一】圆锥曲线的方程 例1.已知抛物线、椭圆和双曲线都经过点()1,2M ,它们在x 轴上有共同焦点,椭圆 和双曲线的对称轴是坐标轴,抛物线的顶点为坐标原点.求这三条曲线的方程。 解:设抛物线方程为()220y px p =>,将()1,2M 代入方程得2p = 24y x ∴= 抛物线方程为: 由题意知椭圆、双曲线的焦点为()()211,0,1,0,F F -∴ c=1 对于椭圆,1222a MF MF =++(2 2 2222211321 a a b a c ∴=+∴=+=+∴=-=+∴= 椭圆方程为: 对于双曲线,1222a MF MF '=-= 2222221321 a a b c a '∴='∴=-'''∴=-=∴= 双曲线方程为: 练习:1.在平面直角坐标系xOy 中,椭圆C 的中心为原点,焦点12,F F 在x 轴上,离心率为 2 。过1F 的直线L 交C 于,A B 两点,且2ABF 的周长为16,那么C 的方程为 。 答案:22 1168 x y + =求圆锥曲线的方程主要采用“待定系数法” 。需要注意的是在求解此类问题时应遵循“先定位,再定量”的原则。注意:当“焦点所在轴不定”时,要有“分类讨论”意识,

高中数学函数与方程知识点总结例题及解析高考真题及答案

函数与方程 【知识梳理】 1、函数零点的定义 (1)对于函数)(x f y =,我们把方程0)(=x f 的实数根叫做函数)(x f y =的零点。 (2)方程0)(=x f 有实根?函数()y f x =的图像与x 轴有交点?函数()y f x =有零点。因此判断一个函数是否有零点,有几个零点,就是判断方程0)(=x f 是否有实数根,有几个实数根。函数零点的求法:解方程0)(=x f ,所得实数根就是()f x 的零点 (3)变号零点与不变号零点 ①若函数()f x 在零点0x 左右两侧的函数值异号,则称该零点为函数()f x 的变号零点。 ②若函数()f x 在零点0x 左右两侧的函数值同号,则称该零点为函数()f x 的不变号零点。 ③若函数()f x 在区间[],a b 上的图像是一条连续的曲线,则0)()(?)(x f y =有2个零点?0)(=x f 有两个不等实根; 0?=?)(x f y =有1个零点?0)(=x f 有两个相等实根; 0?

(完整版)(整理)第七章空间解析几何

第七章空间解析几何与向量代数内容概要

习题7-1 ★★1.填空: (1) 要使b a b a -=+成立,向量b a , 应满足b a ⊥ (2) 要使 b a b a +=+成立,向量b a , 应满足 //b a ,且同向 ★2.设c b a v c b a u -+-=+-=3 , 2,试用c b a , , 表示向量v u 32- 知识点:向量的线性运算 解:c b a c b a c b a v u 711539342232+-=+-++-=- ★3.设Q , P 两点的向径分别为21 , r r ,点 R 在线段PQ 上,且 n m RQ PR = ,证明点R 的向径为 n m m n += +r r r 12 知识点:向量的线性运算 证明:在OPQ ?中,根据三角形法则PQ OP OQ =-,又)(21r r -+=+= n m m n m m , ∴n m m n n m m PR OP OR ++=-++ =+=22r r r r r 1 11)( ★★4.已知菱形 ABCD 的对角线b a ==B , ,试用向量b a , 表示 , , , 。 知识点:向量的线性运算 解:根据三角形法则, b a ==-==+B D AD , AB AC BC AB ,又ABCD 为菱形, ∴ =(自由向量), ∴222 AB AC BD AB CD DC AB --=-=-?=?=-=-= u u u r u u u r u u u r u u u r u u u r u u u r u u u r a b b a a b ∴2b a +==,2 DA +=-u u u r a b ★★5.把ABC ?的BC 边五等分,设分点依次为4321 , , , D D D D ,再把各分点与点 A 连接,试以 a c ==BC AB , 表示向量 , , 321A D A D A D 和A D 4。

(江苏专版)高考数学一轮复习第九章解析几何第八节曲线与方程教案理(含解析)苏教版

(江苏专版)高考数学一轮复习第九章解析几何第八节曲线与方 程教案理(含解析)苏教版 第八节 曲线与方程 1.曲线与方程 一般地,在平面直角坐标系中,如果某曲线C 上的点与一个二元方程f (x ,y )=0的实数解建立了如下关系: (1)曲线上点的坐标都是这个方程的解. (2)以这个方程的解为坐标的点都是曲线上的点.那么这个方程叫做曲线的方程,这条曲线叫做方程的曲线. 2.求动点轨迹方程的一般步骤 (1)建立适当的坐标系,用有序实数对(x ,y )表示曲线上任意一点M 的坐标; (2)写出适合条件p 的点M 的集合P ={M |p (M )}; (3)用坐标表示条件p (M ),列出方程f (x ,y )=0; (4)化方程f (x ,y )=0为最简形式; (5)说明以化简后的方程的解为坐标的点都在曲线上. 3.曲线的交点 设曲线C 1的方程为F 1(x ,y )=0,曲线C 2的方程为F 2(x ,y )=0,则C 1,C 2的交点坐标 即为方程组? ?? ?? F 1x ,y =0,F 2x ,y =0 的实数解.若此方程组无解,则两曲线无交点. [小题体验] 1.已知两定点A (-2,0),B (1,0),如果动点P 满足PA =2PB ,则点P 的轨迹方程为________. 解析:设P 点的坐标为(x ,y ), ∵A (-2,0),B (1,0),动点P 满足PA =2PB , ∴ x +2 2 +y 2 =2 x -1 2 +y 2 , 平方得(x +2)2 +y 2 =4[(x -1)2 +y 2 ], 化简得(x -2)2 +y 2 =4, ∴点P 的轨迹是以(2,0)为圆心、2为半径的圆,方程为(x -2)2 +y 2 =4.

14高中数学解析几何问题的题型与方法

14高中数学解析几何 问题的题型与方法 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

第14讲 解析几何问题的题型与方法 一、知识整合 高考中解析几何试题一般共有4题(2个选择题, 1个填空题, 1个解答题),共计30分左右,考查的知识点约为20个左右。 其命题一般紧扣课本,突出重点,全面考查。选择题和填空题考查直线、圆、圆锥曲线、参数方程和极坐标系中的基础知识。解答题重点考查圆锥曲线中的重要知识点,通过知识的重组与链接,使知识形成网络,着重考查直线与圆锥曲线的位置关系,求解有时还要用到平几的基本知识和向量..........的基本方法..... ,这一点值得强化。 1. 能正确导出由一点和斜率确定的直线的点斜式方程;从直线的点斜式方程出发推导出直线方程的其他形式,斜截式、两点式、截距式;能根据已知条件,熟练地选择恰当的方程形式写出直线的方程,熟练地进行直线方程的不同形式之间的转化,能利用直线的方程来研究与直线有关的问题了. 2.能正确画出二元一次不等式(组)表示的平面区域,知道线性规划的意义,知道线性约束条件、线性目标函数、可行解、可行域、最优解等基本概念,能正确地利用图解法解决线性规划问题,并用之解决简单的实际问题,了解线性规划方法在数学方面的应用;会用线性规划方法解决一些实际问题. 3. 理解“曲线的方程”、“方程的曲线”的意义,了解解析几何的基本思想,掌握求曲线的方程的方法. 4.掌握圆的标准方程:222)()(r b y a x =-+-(r >0),明确方程中各字母的几何意义,能根据圆心坐标、半径熟练地写出圆的标准方程,能从圆的标准方程中熟练地求出圆心坐标和半径,掌握圆的一般方程:022=++++F Ey Dx y x ,知道该方程表示圆的充要条件并正确地进行一般方程和标准方程的互化,能根据条件,用待定系 数法求出圆的方程,理解圆的参数方程cos sin x r y r θ θ=??=? (θ为参数),明确各字母的意 义,掌握直线与圆的位置关系的判定方法. 5.正确理解椭圆、双曲线和抛物线的定义,明确焦点、焦距的概念;能根据椭圆、双曲线和抛物线的定义推导它们的标准方程;记住椭圆、双曲线和抛物线的各种标准方程;能根据条件,求出椭圆、双曲线和抛物线的标准方程;掌握椭圆、双曲线和抛物线的几何性质:范围、对称性、顶点、离心率、准线(双曲线的渐近线)等,从而能迅速、正确地画出椭圆、双曲线和抛物线;掌握a 、b 、c 、p 、e 之间的关系及相应的几何意义;利用椭圆、双曲线和抛物线的几何性质,确定椭圆、双曲线和抛物线的标准方程,并解决简单问题;理解椭圆、双曲线和抛物线的参数方程,并掌握它的应用;掌握直线与椭圆、双曲线和抛物线位置关系的判定方法. 二、近几年高考试题知识点分析 2004年高考,各地试题中解析几何内容在全卷的平均分值为27.1分,占 18.1%;2001年以来,解析几何内容在全卷的平均分值为29.3分,占19.5%.因此,占全卷近1/5的分值的解析几何内容,值得我们在二轮复习中引起足够的重

高考数学 第八章第八节曲线与方程课后练习 理 人教A版

一、选择题 1.(2012·济南模拟)方程(x -y )2 +(xy -1)2 =0的曲线是( ) A .一条直线和一条双曲线 B .两条双曲线 C .两个点 D .以上答案都不对 解析:(x -y )2 +(xy -1)2 =0???? ?? x -y =0, xy -1=0. ∴??? ? ? x =1,y =1, 或??? ? ? x =-1,y =-1. 答案:C 2.长为3的线段AB 的端点A 、B 分别在x 轴、y 轴上移动,AC =2CB ,则点C 的轨迹是( ) A .线段 B .圆 C .椭圆 D .双曲线 解析:设C (x ,y ),A (a,0),B (0,b ),则a 2 +b 2 =9,① 又AC =2CB ,所以(x -a ,y )=2(-x ,b -y ), 即???? ? a =3x , b =3 2 y ,② 代入①式整理可得x 2 +y 2 4=1. 答案:C 3.如图所示,一圆形纸片的圆心为O ,F 是圆内一定点,M 是圆周上一动点,把纸片折叠使M 与F 重合,然后抹平纸片,折痕为CD ,设 CD 与OM 交于点P ,则点P 的轨迹是( ) A .椭圆 B .双曲线 C .抛物线 D .圆 解析:由条件知|PM |=|PF |, ∴|PO |+|PF |=|PO |+|PM |=|OM |>|OF | ∴P 点的轨迹是以O 、F 为焦点的椭圆. 答案:A 4.已知A (0,7),B (0,-7),C (12,2),以C 为一个焦点作过A ,B 的椭圆,椭圆的另一个焦点F 的轨迹方程是( ) A .y 2 -x 2 48 =1(y ≤-1)

江苏省2019届高考数学专题三解析几何3.1小题考法—解析几何中的基本问题讲义

专题三 解析几何 [江苏卷5年考情分析] 第一讲 小题考法——解析几何中的基本问题 [题组练透] 1.已知点P (3,2)与点Q (1,4)关于直线l 对称,则直线l 的方程为____________. 解析:由题意知直线l 与直线PQ 垂直,所以k l =-1 k PQ =1.又直线l 经过PQ 的中点(2,3), 所以直线l 的方程为y -3=x -2,即x -y +1=0. 答案:x -y +1=0 2.(2018·南通一模)已知圆C 过点(2,3),且与直线x -3y +3=0相切于点(0,3),则圆C 的方程为____________. 解析:设圆心为(a ,b ), 则??? b -3a ·33=-1, a -2 +()b -32 =a 2 + b -3 2 , 解得a =1,b =0,r =2. 即所求圆的方程为(x -1)2 +y 2 =4. 答案:(x -1)2 +y 2 =4 3.(2018·南通、扬州、淮安、宿迁、泰州、徐州六市二调)在平面直角坐标系xOy 中, 若动圆C 上的点都在不等式组??? x ≤3, x - 3y +3≥0x + 3y +3≥0 ,表示的平面区域内,则面积最大的圆 C 的标准方程为____________.

解析:作出不等式组表示的可行域如图中阴影部分所示,面积最大的圆C 即为可行域三角形的内切圆.由对称性可知,圆C 的圆心在x 轴上,设半径为r ,则圆心C (3-r,0),且它与直线x -3y +3=0相切,所以|3-r +3|1+3 =r ,解得r =2,所以面积最大的圆C 的标准方程为(x -1)2 +y 2=4. 答案:(x -1)2 +y 2 =4 [方法技巧] 1.求直线方程的两种方法 [典例感悟] [典例] (1)(2018·无锡期末)过圆x 2 +y 2 =16内一点P (-2,3)作两条相互垂直的弦AB 和CD ,且AB =CD ,则四边形ACBD 的面积为________. (2)(2018·南通、泰州一调)在平面直角坐标系xOy 中,已知点A (-4,0),B (0,4),从直线AB 上一点P 向圆x 2 +y 2 =4引两条切线PC ,PD ,切点分别为C ,D.设线段CD 的中点为 M ,则线段AM 长的最大值为________. [解析] (1)设O 到AB 的距离为d 1,O 到CD 的距离为d 2,则由垂径定理可得d 2 1=r 2 -? ?? ? ? AB 22 ,d 22=r 2 -? ????CD 22,由于AB =CD ,故d 1=d 2,且d 1=d 2=22OP =262,所以? ?? ??AB 22=r 2-d 21=16 -132=192,得AB =38,从而四边形ACBD 的面积为S =12AB ×CD =1 2 ×38×38=19.

相关文档
最新文档