高中数学二项分布及其应用知识点+练习
高中数学:二项分布、正态分布及其应用练习

高中数学:二项分布、正态分布及其应用练习1.设X ~N (μ1,σ21),Y ~N (μ2,σ22),这两个正态分布密度曲线如图所示.下列结论中正确的是( C )A .P (Y ≥μ2)≥P (Y ≥μ1)B .P (X ≤σ2)≤P (X ≤σ1)C .对任意正数t ,P (X ≤t )≥P (Y ≤t )D .对任意正数t ,P (X ≥t )≥P (Y ≥t ) 解析:由题图可知μ1<0<μ2,σ1<σ2, ∴P (Y ≥μ2)<P (Y ≥μ1),故A 错 ; P (X ≥σ2)>P (X ≤σ1),故B 错; 当t 为任意正数时,由题图可知 P (X ≤t )≥P (Y ≤t ),而P (X ≤t )=1-P (X ≥t ),P (Y ≤t )=1-P (Y ≥t ), ∴P (X ≥t )≤P (Y ≥t ),故C 正确,D 错.2.(福建厦门模拟)袋中装有2个红球,3个黄球,有放回地抽取3次,每次抽取1球,则3次中恰有2次抽到黄球的概率是( D )A.25B.35C.18125D.54125解析:袋中装有2个红球,3个黄球,有放回地抽取3次,每次抽取1球,每次取到黄球的概率P 1=35,∴3次中恰有2次抽到黄球的概率是P =C 23⎝ ⎛⎭⎪⎫352⎝ ⎛⎭⎪⎫1-35=54125. 3.(河北唐山模拟)甲乙等4人参加4×100米接力赛,在甲不跑第一棒的条件下,乙不跑第二棒的概率是( D )A.29 B.49C.23 D.79解析:甲不跑第一棒共有A13·A33=18种情况,甲不跑第一棒且乙不跑第二棒共有两类:(1)乙跑第一棒,共有A33=6种情况;(2)乙不跑第一棒,共有A12·A12·A22=8种情况,∴甲不跑第一棒的条件下,乙不跑第二棒的概率为6+818=79.故选D.4.(山东淄博一模)设每天从甲地去乙地的旅客人数为随机变量X,且X~N(800,502).则一天中从甲地去乙地的旅客人数不超过900的概率为(A)(参考数据:若X~N(μ,σ2),有P(μ-σ<X≤μ+σ)=0.682 6,P(μ-2σ<X≤μ+2σ)=0.954 4,P(μ-3σ<X≤μ+3σ)=0.997 4)A.0.977 2 B.0.682 6C.0.997 4 D.0.954 4解析:∵X~N(800,502),∴P(700≤X≤900)=0.954 4,∴P(X>900)=1-0.954 42=0.022 8,∴P(X≤900)=1-0.022 8=0.977 2.故选A.5.甲、乙两个小组各10名学生的英语口语测试成绩如下(单位:分).甲组:76,90,84,86,81,87,86,82,85,83乙组:82,84,85,89,79,80,91,89,79,74现从这20名学生中随机抽取一人,将“抽出的学生为甲组学生”记为事件A;“抽出的学生的英语口语测试成绩不低于85分”记为事件B,则P(AB),P(A|B)的值分别是(A)A.14,59 B.14,49C.15,59 D.15,49解析:由题意知,P(AB)=1020×510=14,根据条件概率的计算公式得P(A|B)=P(AB)P(B)=14920=59.6.为向国际化大都市目标迈进,某市今年新建三大类重点工程,它们分别是30项基础设施类工程、20项民生类工程和10项产业建设类工程.现有3名民工相互独立地从这60个项目中任选一个项目参与建设,则这3名民工选择的项目所属类别互异的概率是( D )A.12B.13C.14D.16解析:记第i 名民工选择的项目属于基础设施类、民生类、产业建设类分别为事件A i ,B i ,C i ,i =1,2,3.由题意,事件A i ,B i ,C i (i =1,2,3)相互独立,则P (A i )=3060=12,P (B i )=2060=13,P (C i )=1060=16,i =1,2,3,故这3名民工选择的项目所属类别互异的概率是P =A 33P (A i B i C i )=6×12×13×16=16.7.位于坐标原点的一个质点P 按下述规则移动:质点每次移动一个单位,移动的方向为向上或向右,并且向上、向右移动的概率都是12.质点P 移动五次后位于点(2,3)的概率是516.解析:由于质点每次移动一个单位,移动的方向为向上或向右,移动五次后位于点(2,3),所以质点P 必须向右移动两次,向上移动三次,故其概率为C 35⎝ ⎛⎭⎪⎫123·⎝ ⎛⎭⎪⎫122=C 35⎝ ⎛⎭⎪⎫125=C 25⎝ ⎛⎭⎪⎫125=516. 8.(江西南昌模拟)口袋中装有大小形状相同的红球2个,白球3个,黄球1个,甲从中不放回地逐一取球,已知第一次取得红球,则第二次取得白球的概率为35.解析:口袋中装有大小形状相同的红球2个,白球3个,黄球1个,甲从中不放回地逐一取球,设事件A 表示“第一次取得红球”,事件B 表示“第二次取得白球”,则P (A )=26=13,P (AB )=26×35=15,∴第一次取得红球后,第二次取得白球的概率为P (B |A )=P (AB )P (A )=1513=35.9.如图,四边形EFGH 是以O 为圆心,半径为1的圆的内接正方形.将一颗豆子随机地扔到该圆内,用A 表示事件“豆子落在正方形EFGH 内”,B 表示事件“豆子落在扇形OHE (阴影部分)内”,则P (B |A )=14.解析:由题意可得,事件A发生的概率P(A)=S正方形EFGHS圆O=2×2π×12=2π.事件AB表示“豆子落在△EOH内”,则P(AB)=S△EOHS圆O=12×12π×12=12π,故P(B|A)=P(AB)P(A)=12π2π=14.10.某一部件由三个电子元件按如图所示方式连接而成,元件1或元件2正常工作,且元件3正常工作,则部件正常工作.设三个电子元件的使用寿命(单位:小时)均服从正态分布N(1000,502),且各个元件能否正常工作相互独立,那么该部件的使用寿命超过1 000小时的概率为3 8.解析:设元件1,2,3的使用寿命超过1 000小时的事件分别记为A,B,C,显然P(A)=P(B)=P(C)=12,∴该部件的使用寿命超过1 000小时的事件为(A B+A B+AB)C,∴该部件的使用寿命超过1 000小时的概率P=⎝⎛⎭⎪⎫12×12+12×12+12×12×12=38.11.(2014·新课标Ⅰ)从某企业生产的某种产品中抽取500件,测量这些产品的一项质量指标值,由测量结果得如下频率分布直方图:(1)求这500件产品质量指标值的样本平均数x和样本方差s2(同一组中的数据用该组区间的中点值作代表);(2)由直方图可以认为,这种产品的质量指标值Z服从正态分布N(μ,σ2),其中μ近似为样本平均数x,σ2近似为样本方差s2.(ⅰ)利用该正态分布,求P(187.8<Z<212.2);(ⅱ)某用户从该企业购买了100件这种产品,记X表示这100件产品中质量指标值位于区间(187.8,212.2)的产品件数.利用(ⅰ)的结果,求E(X).附:150≈12.2.若Z~N(μ,σ2),则P(μ-σ<Z<μ+σ)=0.682 6,P(μ-2σ<Z<μ+2σ)=0.954 4.解:(1)抽取产品的质量指标值的样本平均数x和样本方差s2分别为x=170×0.02+180×0.09+190×0.22+200×0.33+210×0.24+220×0.08+230×0.02=200,s2=(-30)2×0.02+(-20)2×0.09+(-10)2×0.22+0×0.33+102×0.24+202×0.08+302×0.02=150.(2)(ⅰ)由(1)知,Z~N(200,150),从而P(187.8<Z<212.2)=P(200-12.2<Z<200+12.2)=0.682 6.(ⅱ)由(ⅰ)知,一件产品的质量指标值位于区间(187.8,212.2)的概率为0.682 6,依题意知X~B(100,0.682 6),所以E(X)=100×0.682 6=68.26.12.(广东顺德一模)某市市民用水拟实行阶梯水价,每人月用水量不超过w立方米的部分按4元/立方米收费,超出w立方米的部分按10元/立方米收费,从该市随机调查了100位市民,获得了他们某月的用水量数据,整理得到如下频率分布直方图,并且前四组频数成等差数列.(1)求a ,b ,c 的值及居民月用水量在2~2.5内的频数;(2)根据此次调查,为使80%以上居民月用水价格为4元/立方米,应将w 定为多少?(精确到小数点后2位)(3)若将频率视为概率,现从该市随机调查3名居民的月用水量,将月用水量不超过2.5立方米的人数记为X ,求其分布列及均值.解:(1)∵前四组频数成等差数列, ∴所对应的频率组距也成等差数列,设a =0.2+d ,b =0.2+2d ,c =0.2+3d ,∴0.5(0.2+0.2+d +0.2+2d +0.2+3d +0.2+d +0.1+0.1+0.1)=1, 解得d =0.1,∴a =0.3,b =0.4,c =0.5.居民月用水量在2~2.5内的频率为0.5×0.5=0.25. 居民月用水量在2~2.5内的频数为0.25×100=25. (2)由题图及(1)可知,居民月用水量小于2.5的频率为0.7<0.8, ∴为使80%以上居民月用水价格为4元/立方米, 应规定w =2.5+0.10.15×0.5≈2.83.(3)将频率视为概率,设A (单位:立方米)代表居民月用水量, 可知P (A ≤2.5)=0.7, 由题意,X ~B (3,0.7),P (X =0)=C 03×0.33=0.027, P (X =1)=C 13×0.32×0.7=0.189, P (X =2)=C 23×0.3×0.72=0.441, P (X =3)=C 33×0.73=0.343.∴X 的分布列为X12 3P 0.0270.1890.4410.343∵X~B(3,0.7),∴E(X)=np=2.1.13.(广东茂名一模)设X~N(1,1),其正态分布密度曲线如图所示,那么向正方形ABCD中随机投掷10 000个点,则落入阴影部分的点的个数的估计值是(D)(注:若X~N(μ,σ2),则P(μ-σ<X<μ+σ)=68.26%,P(μ-2σ<X<μ+2σ)=95.44%)A.7 539 B.6 038C.7 028 D.6 587解析:∵X~N(1,1),∴μ=1,σ=1.∵P(μ-σ<X<μ+σ)=68.26%,∴P(0<X<2)=68.26%,则P(1<X<2)=34.13%,∴阴影部分的面积为1-0.341 3=0.658 7.∴向正方形ABCD中随机投掷10 000个点,则落入阴影部分的点的个数的估计值是10 000×0.658 7=6 587.故选D.14.(金华一中模拟)春节放假,甲回老家过节的概率为13,乙、丙回老家过节的概率分别为14,15.假定三人的行动相互之间没有影响,那么这段时间内至少1人回老家过节的概率为(B)A.5960 B.35C.12 D.160解析:“甲、乙、丙回老家过节”分别记为事件A,B,C,则P(A)=13,P(B)=14,P(C)=15,所以P(A)=23,P(B)=34,P(C)=45.由题知A,B,C为相互独立事件,所以三人都不回老家过节的概率P(A B C)=P(A)P(B)P(C)=23×34×45=25,所以至少有一人回老家过节的概率P=1-25=35.15.甲罐中有5个红球,2个白球和3个黑球,乙罐中有4个红球,3个白球和3个黑球.先从甲罐中随机取出一球放入乙罐,分别以A1,A2和A3表示由甲罐取出的球是红球,白球和黑球的事件;再从乙罐中随机取出一球,以B表示由乙罐取出的球是红球的事件,则下列结论中正确的是②④.(写出所有正确结论的序号)①P(B)=2 5;②P(B|A1)=5 11;③事件B与事件A1相互独立;④A1,A2,A3是两两互斥的事件;⑤P(B)的值不能确定,它与A1,A2,A3中哪一个发生都有关.解析:由题意知A1,A2,A3是两两互斥的事件,P(A1)=510=12,P(A2)=210=15,P(A3)=310,P(B|A1)=12×51112=511,由此知,②正确;P(B|A2)=411,P(B|A3)=411,而P(B)=P(A1B)+P(A2B)+P(A3B)=P(A1)P(B|A1)+P(A2)P(B|A2)+P(A3)P(B|A3)=12×511+15×411+310×411=922.由此知①③⑤不正确;A1,A2,A3是两两互斥事件,④正确,故答案为②④.16.(河北石家庄新华模拟)“过大年,吃水饺”是我国不少地方过春节的一大习俗.2018年春节前夕,A市某质检部门随机抽取了100包某种品牌的速冻水饺,检测其某项质量指标值,所得频率分布直方图如下:(1)求所抽取的100包速冻水饺该项质量指标值的样本平均数x(同一组中的数据用该组区间的中点值作代表);(2)①由直方图可以认为,速冻水饺的该项质量指标值Z 服从正态分布N (μ,σ2),利用该正态分布,求Z 落在(14.55,38.45)内的概率;②将频率视为概率,若某人从某超市购买了4包这种品牌的速冻水饺,记这4包速冻水饺中这种质量指标值位于(10,30)内的包数为X ,求X 的分布列和数学期望.附:计算得所抽查的这100包速冻水饺的质量指标值的标准差为σ=142.75≈11.95; 若ξ~N (μ,σ2),则P (μ-σ<ξ≤μ+σ)=0.682 6,P (μ-2σ<ξ≤μ+2σ)=0.954 4.解:(1)所抽取的100包速冻水饺该项质量指标值的平均数x =5×0.1+15×0.2+25×0.3+35×0.25+45×0.15=26.5.(2)①∵Z 服从正态分布N (μ,σ2),且μ=26.5,σ≈11.95,∴P (14.55<Z <38.45)=P (26.5-11.95<Z <26.5+11.95)=0.682 6, ∴Z 落在(14.55,38.45)内的概率是0.682 6. ②根据题意得X ~B ⎝ ⎛⎭⎪⎫4,12,P (X =0)=C 04⎝ ⎛⎭⎪⎫124=116; P (X =1)=C 14⎝ ⎛⎭⎪⎫124=14; P (X =2)=C 24⎝ ⎛⎭⎪⎫124=38; P (X =3)=C 34⎝ ⎛⎭⎪⎫124=14; P (X =4)=C 44⎝ ⎛⎭⎪⎫124=116. ∴X 的分布列为X 0 1 2 3 4 P116143814116∴E (X )=4×12=2.。
高中数学二项分布及其应用知识点+练习

二项分布及其应用要求层次重难点条件概率 A 了解条件概率和两个事件相互独立的概念,理解n 次独立重复试验的模型及二项分布,并能解决一些简单的实际问题.事件的独立性A n 次独立重复试验与二项分布B(一) 知识内容条件概率对于任何两个事件A 和B ,在已知事件A 发生的条件下,事件B 发生的概率叫做条件概率,用符号“(|)P B A ”来表示.把由事件A 与B 的交(或积),记做D A B =(或D AB =).(二)典例分析:【例1】 在10个球中有6个红球,4个白球(各不相同),不放回的依次摸出2个球,在第1次摸出红球的条件下,第2次也摸出红球的概率是( )A .35B .23C .59D .13知识框架例题精讲高考要求条件概率事件的独立性独立重复实验二项分布二项分布及其应用板块一:条件概率【例2】某地区气象台统计,该地区下雨的概率是415,刮风的概率是215,既刮风又下雨的概率是110,设A=“刮风”,B=“下雨”,求()()P B A P A B,.【例3】设某种动物活到20岁以上的概率为0.7,活到25岁以上的概率为0.4,求现龄为20岁的这种动物能活到25岁以上的概率.【例4】把一枚硬币抛掷两次,事件A=“第一次出现正面”,事件B=“第二次出现反面”,则()_____P B A=.【例5】抛掷一颗骰子两次,在第一次掷得向上一面点数是偶数的条件下,则第二次掷得向上一面点数也是偶数的概率为.【例6】设某批产品有4%是废品,而合格品中的75%是一等品,任取一件产品是一等品的概率是_____.【例7】掷两枚均匀的骰子,记A=“点数不同”,B=“至少有一个是6点”,求(|)P A B与(|)P B A.【例8】甲、乙两班共有70名同学,其中女同学40名.设甲班有30名同学,而女生15名,问在碰到甲班同学时,正好碰到一名女同学的概率?【例9】从1~100个整数中,任取一数,已知取出的—数是不大于50的数,求它是2或3的倍数的概率.【例10】 袋中装有21n -个白球,2n 个黑球,一次取出n 个球,发现都是同一种颜色的,问这种颜色是黑色的概率是多少?【例11】 一袋中装有10个球,其中3个黑球,7个白球,先后两次从袋中各取一球(不放回)⑴已知第一次取出的是黑球,求第二次取出的仍是黑球的概率; ⑵已知第二次取出的是黑球,求第一次取出的也是黑球的概率; ⑶已知第一次取出的是黑球,求第二次取出的是白球的概率.【例12】 有两箱同类零件,第一箱内装50件,其中10件是一等品;第二箱内装30件,其中18件是一等品.现从两箱中随意挑出一箱,然后从该箱中先后随机取出两个零件(取出的零件均不放回),试求:⑴先取出的零件是一等品的概率;⑵在先取出的零件是一等品的条件下后取出的仍然是一等品的概率.(保留三位有效数字)【例13】 设有来自三个地区的各10名、15名和25名考生的报名表,其中女生的报名表分别为3份、7份和5份.随机地取一个地区的报名表,从中先后抽出两份,⑴求先抽到的一份是女生表的概率p .⑵己知后抽到的一份是男生表,求先抽到的是女生的概率q .(一) 知识内容事件的独立性如果事件A 是否发生对事件B 发生的概率没有影响,即(|)()P B A P B =,这时,我们称两个事件A ,B 相互独立,并把这两个事件叫做相互独立事件.如果事件1A ,2A ,…,n A 相互独立,那么这n 个事件都发生的概率,等于每个事件发生的概率的积,即1212()()()()n n P A A A P A P A P A =⨯⨯⨯,并且上式中任意多个事件i A 换成其对立事件后等式仍成立.(二)典例分析:板块二:事件的独立性cba【例14】 判断下列各对事件是否是相互独立事件⑴容器内盛有5个白乒乓球和3个黄乒乓球,“从8个球中任意取出1个,取出的是白球”与“从剩下的7个球中任意取出1个,取出的还是白球”.⑵一筐内有6个苹果和3个梨,“从中任意取出1个,取出的是苹果”与“把取出的苹果放回筐子,再从筐子中任意取出1个,取出的是梨”.⑶甲组3名男生、2名女生;乙组2名男生、3名女生,今从甲、乙两组中各选1名同学参加演讲比赛,“从甲组中选出1名男生”与“从乙组中选出1名女生”.【例15】 从甲口袋摸出一个红球的概率是13,从乙口袋中摸出一个红球的概率是12,则23是( )A .2个球不都是红球的概率B .2个球都是红球的概率C .至少有一个红球的概率D .2个球中恰好有1个红球的概率【例16】 猎人在距离100m 处射击一只野兔,其命中率为12.如果第一次射击未命中,则猎人进行第二次射击,但距离为150m ;如果第二次又未命中,则猎人进行第三次射击,但在射击瞬间距离野兔为200m .已知猎人命中率与距离的平方成反比,求猎人命中野兔的概率.【例17】 如图,开关电路中,某段时间内,开关a b c 、、开或关的概率均为12,且是相互独立的,求这段时间内灯亮的概率.【例18】 甲、乙、丙三台机床各自独立地加工同一种零件,已知甲机床加工的零件是一等品而乙机床加工的零件不是一等品的概率为14,乙机床加工的零件是一等品而丙机床加工的零件不是一等品的概率为112,甲、丙两台机床加工的零件都是一等品的概率为29.分别求甲、乙、丙三台机床各自加工的零件是一等品的概率.【例19】椐统计,某食品企业一个月内被消费者投诉的次数为012,,的概率分别为0.4,0.5,0.1⑴求该企业在一个月内被消费者投诉不超过1次的概率;⑵假设一月份与二月份被消费者投诉的次数互不影响,求该企业在这两个月内共被消费者投诉2次的概率.【例20】某项选拔共有四轮考核,每轮设有一个问题,能正确回答问题者进入下一轮考核,否则即被淘汰.已知某选手能正确回答第一、二、三、四轮的问题的概率分别为45、35、2 5、15,且各轮问题能否正确回答互不影响.⑴求该选手进入第四轮才被淘汰的概率;⑵求该选手至多进入第三轮考核的概率.【例21】甲、乙二人进行一次围棋比赛,约定先胜3局者获得这次比赛的胜利,比赛结束.假设在一局中,甲获胜的概率为0.6,乙获胜的概率为0.4,各局比赛结果相互独立.已知前2局中,甲、乙各胜1局.⑴求再赛2局结束这次比赛的概率;⑵求甲获得这次比赛胜利的概率.【例22】纺织厂某车间内有三台机器,这三台机器在一天内不需工人维护的概率:第一台为0.9,第二台为0.8,第三台为0.85,问一天内:⑴3台机器都要维护的概率是多少?⑵其中恰有一台要维护的概率是多少?⑶至少一台需要维护的概率是多少?【例23】为拉动经济增长,某市决定新建一批重点工程,分为基础设施工程、民生工程和产业建设工程三类.这三类工程所含项目的个数分别占总数的12,13,16.现有3名工人独立地从中任选一个项目参与建设.求:⑴他们选择的项目所属类别互不相同的概率;⑵至少有1人选择的项目属于民生工程的概率.【例24】甲、乙两个人独立地破译一个密码,他们能译出密码的概率分别为13和14,求:⑴两个人都译出密码的概率;⑵两个人都译不出密码的概率;⑶恰有1个人译出密码的概率;⑷至多1个人译出密码的概率;⑸至少1个人译出密码的概率.【例25】从10位同学(其中6女,4男)中,随机选出3位参加测验,每位女同学能通过测验的概率均为45,每位男同学能通过测验的概率均为35,试求:⑴选出的3位同学中至少有一位男同学的概率;⑵10位同学中的女同学甲和乙及男同学丙同时被抽到,且三人中恰有二人通过测验的概率.【例26】甲、乙两个篮球运动员互不影响地在同一位置投球,命中率分别为12与p,且乙投球2次均未命中的概率为116.⑴求乙投球的命中率p;⑵求甲投球2次,至少命中1次的概率;⑶若甲、乙两人各投球2次,求两人共命中2次的概率.【例27】一汽车沿一街道行驶,需要通过三个设有红绿灯的路口,每个信号灯彼此独立工作,且红绿灯信号显示时间相等.以X表示该汽车首次遇到红灯时已通过的路口个数,求X的分布列以及该汽车首次遇到红灯时至少通过两个路口的概率.【例28】甲、乙二射击运动员分别对一目标射击1次,甲射中的概率为0.8,乙射中的概率为0.9,求:⑴2人都射中的概率?⑵2人中有1人射中的概率?⑶2人至少有1人射中的概率?⑷2人至多有1人射中的概率?【例29】(07福建)甲、乙两名跳高运动员一次试跳2米高度成功的概率分别是0.7,0.6,且每次试跳成功与否相互之间没有影响,求:⑴甲试跳三次,第三次才成功的概率;⑵甲、乙两人在第一次试跳中至少有一人成功的概率;⑶甲、乙各试跳两次,甲比乙的成功次数恰好多一次的概率.【例30】A、B两篮球队进行比赛,规定若一队胜4场则此队获胜且比赛结束(七局四胜制),A、B两队在每场比赛中获胜的概率均为12,X为比赛需要的场数,求X的分布列及比赛至少要进行6场的概率.【例31】已知5只动物中有1只患有某种疾病,需要通过化验血液来确定患病的动物.血液化验结果呈阳性的即为患病动物,呈阴性即没患病.下面是两种化验方法:方案甲:逐个化验,直到能确定患病动物为止.方案乙:先任取3只,将它们的血液混在一起化验.若结果呈阳性则表明患病动物为这3只中的1只,然后再逐个化验,直到能确定患病动物为止;若结果呈阴性则在另外2只中任取1只化验.求依方案甲、乙分别所需化验次数的分布列以及方案甲所需化验次数不少于方案乙所需化验次数的概率.【例32】为防止某突发事件发生,有甲、乙、丙、丁四种相互独立的预防措施可供采用,单独采用甲、乙、丙、丁预防措施后此突发事件不发生的概率(记为P)和所需费用如下表:预防措施甲乙丙丁P 0.90.80.70.6费用(万元)90 60 30 10预防方案可单独采用一种预防措施或联合采用几种预防措施,在总费用不超过120万元的前提下,请确定一个预防方案,使得此突发事件不发生的概率最大.【例33】某公司招聘员工,指定三门考试课程,有两种考试方案.方案一:考试三门课程,至少有两门及格为考试通过;方案二:在三门课程中,随机选取两门,这两门都及格为考试通过.假设某应聘者对三门指定课程考试及格的概率分别是a b c,,,且三门课程考试是否及格相互之间没有影响.⑴分别求该应聘者用方案一和方案二时考试通过的概率;⑵试比较该应聘者在上述两种方案下考试通过的概率的大小.(说明理由)板块三:独立重复试验与二项分布(一)知识内容1.独立重复试验如果每次试验,只考虑有两个可能的结果A 及A ,并且事件A 发生的概率相同.在相同的条件下,重复地做n 次试验,各次试验的结果相互独立,那么一般就称它们为n 次独立重复试验.n 次独立重复试验中,事件A 恰好发生k 次的概率为()C (1)k k n kn n P k p p -=-(0,1,2,,)k n =.2.二项分布若将事件A 发生的次数设为X ,事件A 不发生的概率为1q p =-,那么在n 次独立重复试验中,事件A 恰好发生k 次的概率是()C k k n kn P X k p q -==,其中0,1,2,,k n =.由于表中的第二行恰好是二项展开式0()C C C C n n n n n n q p p q p q p q p q +=++++各对应项的值,所以称这样的离散型随机变量X 服从参数为n ,p 的二项分布,记作~(,)X B n p .(二)典例分析:【例1】 某人参加一次考试,4道题中解对3道则为及格,已知他的解题正确率为0.4,则他能及格的概率为_________(保留到小数点后两位小数)【例2】 某篮球运动员在三分线投球的命中率是12,他投球10次,恰好投进3个球的概率 .(用数值表示)【例3】 接种某疫苗后,出现发热反应的概率为0.80,现有5人接种了该疫苗,至少有3人出现发热反应的概率为 .(精确到0.01)【例4】 甲乙两人进行围棋比赛,比赛采取五局三胜制,无论哪一方先胜三局则比赛结束,假定甲每局比赛获胜的概率均为23,则甲以3∶1的比分获胜的概率为( )A .827B .6481C .49D .89【例5】 一台X 型号的自动机床在一小时内不需要人照看的概为0.8000,有四台这种型号的自动机床各自独立工作,则在一小时内至多有2台机床需要工人照看的概率是( ) A .0.1536 B .0.1808 C .0.5632 D .0.9728【例6】 某商场经销某商品,顾客可采用一次性付款或分期付款购买.根据以往资料统计,顾客采用一次性付款的概率是0.6,经销一件该商品,若顾客采用一次性付款,商场获得利润200元;若顾客采用分期付款,商场获得利润250元. ⑴ 求3位购买该商品的顾客中至少有1位采用一次性付款的概率;⑵ 求3位位顾客每人购买1件该商品,商场获得利润不超过650元的概率.【例7】某万国家具城进行促销活动,促销方案是:顾客每消费1000元,便可获得奖券一张,每张奖券中奖的概率为15,若中奖,则家具城返还顾客现金200元.某顾客消费了3400元,得到3张奖券.⑴求家具城恰好返还该顾客现金200元的概率;⑵求家具城至少返还该顾客现金200元的概率.【例8】某单位为绿化环境,移栽了甲、乙两种大树各2株.设甲、乙两种大树移栽的成活率分别为56和45,且各株大树是否成活互不影响.求移栽的4株大树中:⑴至少有1株成活的概率;⑵两种大树各成活1株的概率.【例9】一个口袋中装有n个红球(5n≥且*n∈N)和5个白球,一次摸奖从中摸两个球,两个球颜色不同则为中奖.⑴试用n表示一次摸奖中奖的概率p;⑵若5n=,求三次摸奖(每次摸奖后放回)恰有一次中奖的概率;⑶记三次摸奖(每次摸奖后放回)恰有一次中奖的概率为P.当n取多少时,P最大?【例10】已知随机变量ξ服从二项分布,1~(4)3Bξ,,则(2)Pξ=等于____【例11】已知随机变量ξ服从二项分布,1~(6)3Bξ,,则(2)Pξ=等于()A.316B.4243C.13243D.80243【例12】从一批由9件正品、3件次品组成的产品中,有放回地抽取5次,每次抽一件,求恰好抽到两次次品的概率(结果保留2位有效数字).【例13】袋子A和B中装有若干个均匀的红球和白球,从A中摸出一个红球的概率是13,从B中摸出一个红球的概率为p.⑴从A中有放回地摸球,每次摸出一个,有3次摸到红球即停止.①求恰好摸5次停止的概率;②记5次之内(含5次)摸到红球的次数为ξ,求随机变量ξ的分布.⑵若A B,两个袋子中的球数之比为1:2,将A B,中的球装在一起后,从中摸出一个红球的概率是25,求p的值.【例14】设在4次独立重复试验中,事件A发生的概率相同,若已知事件A至少发生一次的概率等于6581,求事件A在一次试验中发生的概率.【例15】我舰用鱼雷打击来犯的敌舰,至少有2枚鱼雷击中敌舰时,敌舰才被击沉.如果每枚鱼雷的命中率都是0.6,当我舰上的8个鱼雷发射器同是向敌舰各发射l枚鱼雷后,求敌舰被击沉的概率(结果保留2位有效数字).【例16】某厂生产电子元件,其产品的次品率为5%,现从一批产品中的任意连续取出2件,求次品数ξ的概率分布列及至少有一件次品的概率.【例17】某公司拟资助三位大学生自主创业,现聘请两位专家,独立地对每位大学生的创业方案进行评审.假设评审结果为“支持”或“不支持”的概率都是12.若某人获得两个“支持”,则给予10万元的创业资助;若只获得一个“支持”,则给予5万元的资助;若未获得“支持”,则不予资助.求:⑴该公司的资助总额为零的概率;⑵该公司的资助总额超过15万元的概率.【例18】射击运动员李强射击一次击中目标的概率是0.8,他射击3次,恰好2次击中目标的概率是多少?【例19】设飞机A有两个发动机,飞机B有四个发动机,如有半数或半数以上的发动机没有故障,就能够安全飞行,现设各个发动机发生故障的概率p是t的函数1tp eλ-=-,其中t为发动机启动后所经历的时间,λ为正的常数,试讨论飞机A与飞机B哪一个安全?(这里不考虑其它故障).【例20】假设飞机的每一台发动机在飞行中的故障率都是1P-,且各发动机互不影响.如果至少50%的发动机能正常运行,飞机就可以顺利地飞行.问对于多大的P而言,四发动机飞机比二发动机飞机更安全?【例21】一名学生每天骑车上学,从他家到学校的途中有6个交通岗,假设他在各个交通岗遇到红灯的事件是相互独立的,并且概率都是13.⑴设ξ为这名学生在途中遇到红灯的次数,求ξ的分布列;⑵设η为这名学生在首次停车前经过的路口数,求η的分布列;⑶求这名学生在途中至少遇到一次红灯的概率.【例22】一个质地不均匀的硬币抛掷5次,正面向上恰为1次的可能性不为0,而且与正面向上恰为2次的概率相同.令既约分数ij为硬币在5次抛掷中有3次正面向上的概率,求i j.【例23】某气象站天气预报的准确率为80%,计算(结果保留到小数点后面第2位)⑴5次预报中恰有2次准确的概率;⑵5次预报中至少有2次准确的概率;⑶5次预报中恰有2次准确,且其中第3次预报准确的概率;【例24】某大厦的一部电梯从底层出发后只能在第181920,,层可以停靠.若该电梯在底层载有5位乘客,且每位乘客在这三层的每一层下电梯的概率均为13,求至少有两位乘客在20层下的概率.【例25】10个球中有一个红球,有放回的抽取,每次取一球,求直到第n次才取得()k k n≤次红球的概率.【例26】某车间为保证设备正常工作,要配备适量的维修工.设各台设备发生的故障是相互独立的,且每台设备发生故障的概率都是0.01.试求:⑴若由一个人负责维修20台,求设备发生故障而不能及时维修的概率;⑵若由3个人共同负责维修80台设备,求设备发生故障而不能及时维修的概率,并进行比较说明哪种效率高.【例27】A B,是治疗同一种疾病的两种药,用若干试验组进行对比试验.每个试验组由4只小白鼠组成,其中2只服用A,另2只服用B,然后观察疗效.若在一个试验组中,服用A有效的小白鼠的只数比服用B有效的多,就称该试验组为甲类组.设每只小白鼠服用A有效的概率为23,服用B有效的概率为12.观察3个试验组,求至少有1个甲类组的概率.(结果保留四位有效数字)【例28】已知甲投篮的命中率是0.9,乙投篮的命中率是0.8,两人每次投篮都不受影响,求投篮3次甲胜乙的概率.(保留两位有效数字)【变式】若甲、乙投篮的命中率都是0.5p=,求投篮n次甲胜乙的概率.(1n n∈N,≥)【例29】省工商局于某年3月份,对全省流通领域的饮料进行了质量监督抽查,结果显示,某种刚进入市场的x饮料的合格率为80%,现有甲,乙,丙3人聚会,选用6瓶x饮料,并限定每人喝2瓶,求:⑴甲喝2瓶合格的x饮料的概率;⑵甲,乙,丙3人中只有1人喝2瓶不合格的x饮料的概率(精确到0.01).【例30】在一次考试中出了六道是非题,正确的记“√”号,不正确的记“×”号.若某考生随手记上六个符号,试求:⑴全部是正确的概率;⑵正确解答不少于4道的概率;⑶至少答对2道题的概率.【例31】某大学的校乒乓球队与数学系乒乓球队举行对抗赛,校队的实力比系队强,当一个校现在校、系双方商量对抗赛的方式,提出了三种方案:⑴双方各出3人;⑵双方各出5人;⑶双方各出7人.三种方案中场次比赛中得胜人数多的一方为胜利. 问:对系队来说,哪一种方案最有利?(一) 知识内容二项分布的均值与方差:若离散型随机变量X 服从参数为n 和p 的二项分布,则()E X np =,()D x npq =(1)q p =-.(二)典例分析:【例32】 一盒子内装有10个乒乓球,其中3个旧的,7个新的,每次取一球,取后放回,取4次,则取到新球的个数的期望值是______.【例33】 同时抛掷4枚均匀硬币80次,设4枚硬币正好出现2枚正面向上,2枚反面向上的次数为ξ,则ξ的数学期望是( )A .20B .25C .30D .40【例34】 已知~()X B n p ,,()8E X =,() 1.6D X =,则n 与p 的值分别为( )A .10和0.8B .20和0.4C .10和0.2D .100和0.8【例35】 某服务部门有n 个服务对象,每个服务对象是否需要服务是独立的,若每个服务对象一天中需要服务的可能性是p ,则该部门一天中平均需要服务的对象个数是( )A .(1)np p -B .npC .nD .(1)p p -【例36】 已知随机变量X 服从参数为60.4,的二项分布,则它的期望()E X =_______,方差()D X =_____.【例37】 已知随机变量X 服从二项分布,且() 2.4E ξ=,() 1.44D ξ=,则二项分布的参数n ,p的值分别为__________、_________.【例38】 一个袋子里装有大小相同的3个红球和2个黄球,从中同时取出2个,则其中含红球个数的数学期望是_________.(用数字作答)板块四:二项分布的期望与方差【例39】已知(100.8)X B,,求()E X与()D X.【例40】同时抛掷4枚均匀硬币80次,设4枚硬币正好出现2枚正面向上,2枚反面向上的次数为ξ,则ξ的数学期望是()A.20B.25C.30D.40【例41】甲、乙、丙3人投篮,投进的概率分别是121 352,,.⑴现3人各投篮1次,求3人都没有投进的概率;⑵用ξ表示乙投篮3次的进球数,求随机变量ξ的概率分布及数学期望.【例42】抛掷两个骰子,当至少有一个2点或3点出现时,就说这次试验成功.⑴求一次试验中成功的概率;⑵求在4次试验中成功次数X的分布列及X的数学期望与方差.【例43】某寻呼台共有客户3000人,若寻呼台准备了100份小礼品,邀请客户在指定时间来领取.假设任一客户去领奖的概率为4%.问:寻呼台能否向每一位顾客都发出奖邀请?若能使每一位领奖人都得到礼品,寻呼台至少应准备多少礼品?【例44】某批数量较大的商品的次品率是5%,从中任意地连续取出10件,X为所含次品的个数,求()E X.【例45】某地区为下岗人员免费提供财会和计算机培训,以提高下岗人员的再就业能力,每名下岗人员可以选择参加一项培训、参加两项培训或不参加培训,已知参加过财会培训的有%60,参加过计算机培训的有75%,假设每个人对培训项目的选择是相互独立的,且各人的选择相互之间没有影响.⑴任选1名下岗人员,求该人参加过培训的概率;⑵任选3名下岗人员,记ξ为3人中参加过培训的人数,求ξ的分布和期望.【例46】设进入某商场的每一位顾客购买甲种商品的概率为0.5,购买乙种商品的概率为0.6,且购买甲种商品与购买乙种商品相互独立,各顾客之间购买商品也是相互独立的.记ξ表示进入商场的3位顾客中至少购买甲、乙两种商品中的一种的人数,求ξ的分布及期望.【例47】某班级有n人,设一年365天中,恰有班上的m(m n≤)个人过生日的天数为X,求X的期望值以及至少有两人过生日的天数的期望值.【例48】购买某种保险,每个投保人每年度向保险公司交纳保费a元,若投保人在购买保险的一年度内出险,则可以获得10000元的赔偿金.假定在一年度内有10000人购买了这种保险,且各投保人是否出险相互独立.已知保险公司在一年度内至少支付赔偿金10000元的概率为410-.10.999⑴求一投保人在一年度内出险的概率p;⑵设保险公司开办该项险种业务除赔偿金外的成本为50000元,为保证盈利的期望不小于0,求每位投保人应交纳的最低保费(单位:元).【例49】某安全生产监督部门对5家小型煤矿进行安全检查(简称安检).若安检不合格,则必须进行整改.若整改后复查仍不合格,则强行关闭.设每家煤矿安检是否合格是相互独立的,且每家煤矿整改前安检合格的概率是0.5,整改后安检合格的概率是0.8,计算(结果精确到0.01).⑴恰好有两家煤矿必须整改的概率;⑵平均有多少家煤矿必须整改;⑶至少关闭一家煤矿的概率.个工作日里均无故障,可获利润10万元;发生一次故障可获利润5万元,只发生两次故障可获利润0万元,发生三次或三次以上故障就要亏损2万元.求一周内期望利润是多少?(精确到0.001)【例51】 在汶川大地震后对唐家山堰塞湖的抢险过程中,武警官兵准备用射击的方法引爆从湖坝上游漂流而下的一个巨大的汽油罐.已知只有5发子弹,第一次命中只能使汽油流出,第二次命中才能引爆.每次射击是相互独立的,且命中的概率都是23.⑴求油罐被引爆的概率;⑵如果引爆或子弹打光则停止射击,设射击次数为ξ,求ξ的分布列及E ξ.【例52】 某商场准备在国庆节期间举行促销活动,根据市场调查,该商场决定从2种服装商品,2种家电商品,3种日用商品中,选出3种商品进行促销活动.⑴试求选出的3种商品中至少有一种是日用商品的概率; ⑵商场对选出的某商品采用的促销方案是有奖销售,即在该商品现价的基础上将价格提高150元,同时,若顾客购买该商品,则允许有3次抽奖的机会,若中奖,则每次中奖都获得数额为m 的奖金.假设顾客每次抽奖时获奖与否的概率都是12,请问:商场应将每次中奖奖金数额m 最高定为多少元,才能使促销方案对商场有利?【例53】 将一个半径适当的小球放入如图所示的容器最上方的入口处,小球将自由下落.小球在下落的过程中,将3次遇到黑色障碍物,最后落入A 袋或B 袋中.已知小球每次遇到黑色障碍物时,向左、右两边下落的概率都是12.⑴ 求小球落入A 袋中的概率()P A ;⑵ 在容器入口处依次放入4个小球,记ξ为落入A 袋中的小球个数,试求3ξ=的概率和ξ的数学期望.。
高中数学选修2-3《2.2二项分布及其应用》测试卷解析版

高中数学选修2-3《2.2二项分布及其应用》测试卷解析版一.选择题(共6小题)1.三个元件T1,T2,T3正常工作的概率分别为且是互相独立的,按图种方式接入电路,电路正常工作的概率是()A.B.C.D.【分析】电路正常工作的条件是T1必须正常工作,T2,T3至少有一个正常工作,由此利用相互独立事件乘法公式和对立事件概率公式能求出电路正常工作的概率.【解答】解:∵三个元件T1,T2,T3正常工作的概率分别为且是互相独立的,图种方式接入电路,∴电路正常工作的条件是T1必须正常工作,T2,T3至少有一个正常工作,∴电路正常工作的概率:P=(1﹣)=.故选:C.【点评】本题考查概率的求法,是基础题,解题时要认真审题,注意相互独立事件乘法公式和对立事件概率计算公式的合理运用.2.抛掷3枚质地均匀的硬币,A={既有正面向上又有反面向上},B={至多有一个反面向上},则A与B关系是()A.互斥事件B.对立事件C.相互独立事件D.不相互独立事件【分析】由于A中的事件发生与否对于B中的事件是否发生不产生影响,故A与B是相互独立的,从而得出结论.【解答】解:由于A中的事件发生与否对于B中的事件是否发生不产生影响,故A与B 是相互独立的,故选:C.【点评】本题主要考查相互独立事件的定义,属于基础题.3.某地区空气质量监测资料表明,一天的空气质量为优良的概率是0.75,连续两天为优良的概率是0.6,已知某天的空气质量为优良,则随后一天的空气质量为优良的概率是()A.0.8B.0.75C.0.6D.0.45【分析】设随后一天的空气质量为优良的概率为p,则由题意可得0.75×p=0.6,由此解得p的值.【解答】解:设随后一天的空气质量为优良的概率为p,则由题意可得0.75×p=0.6,解得p=0.8,故选:A.【点评】本题主要考查相互独立事件的概率乘法公式的应用,属于基础题.4.投篮测试中,每人投3次,至少投中2次才能通过测试.已知某同学每次投篮投中的概率为0.6,且各次投篮是否投中相互独立,则该同学通过测试的概率为()A.0.648B.0.432C.0.36D.0.312【分析】判断该同学投篮投中是独立重复试验,然后求解概率即可.【解答】解:由题意可知:同学3次测试满足X∽B(3,0.6),该同学通过测试的概率为=0.648.故选:A.【点评】本题考查独立重复试验概率的求法,基本知识的考查.5.设某批产品合格率为,不合格率为,现对该产品进行测试,设第ε次首次取到正品,则P(ε=3)等于()A.C32()2×()B.C32()2×()C.()2×()D.()2×()【分析】根据题意,P(ε=3)即第3次首次取到正品的概率,若第3次首次取到正品,即前两次取到的都是次品,第3次取到正品,由相互独立事件的概率计算可得答案.【解答】解:根据题意,P(ε=3)即第3次首次取到正品的概率;若第3次首次取到正品,即前两次取到的都是次品,第3次取到正品,则P(ε=3)=()2×();故选:C.【点评】本题考查相互独立事件的概率计算,解题的关键在于正确理解P(ε=3)的意义.6.已知P(B|A)=,P(A)=,则P(AB)=()A.B.C.D.【分析】根据条件概率的公式,整理出求事件AB同时发生的概率的表示式,代入所给的条件概率和事件A的概率求出结果.【解答】解:∵P(B/A)=,P(A)=,∴P(AB)=P(B/A)•P(A)==,故选:D.【点评】本题考查条件概率与独立事件,本题解题的关键是记住并且会利用条件概率的公式,要正确运算数据,本题是一个基础题.二.填空题(共1小题)7.为了考察某校各班参加课外小组的人数,从全校随机抽取5个班级,把每个班级参加该小组的人数作为样本数据,已知样本平均数为7,样本方差为4,且样本数据互不相同,则样本数据中的最大值为10.【分析】本题可运用平均数公式求出平均数,再运用方差的公式列出方差表达式,再讨论样本数据中的最大值的情况,即可解决问题.【解答】解:设样本数据为:x1,x2,x3,x4,x5,平均数=(x1+x2+x3+x4+x5)÷5=7;方差s2=[(x1﹣7)2+(x2﹣7)2+(x3﹣7)2+(x4﹣7)2+(x5﹣7)2]÷5=4.从而有x1+x2+x3+x4+x5=35,①(x1﹣7)2+(x2﹣7)2+(x3﹣7)2+(x4﹣7)2+(x5﹣7)2=20.②若样本数据中的最大值为11,不妨设x5=11,则②式变为:(x1﹣7)2+(x2﹣7)2+(x3﹣7)2+(x4﹣7)2=4,由于样本数据互不相同,这是不可能成立的;若样本数据为4,6,7,8,10,代入验证知①②式均成立,此时样本数据中的最大值为10.故答案为:10.【点评】本题考查的是平均数和方差的求法.计算方差的步骤是:①计算数据的平均数;②计算偏差,即每个数据与平均数的差;③计算偏差的平方和;④偏差的平方和除以数据个数.三.解答题(共9小题)8.某商场一号电梯从1层出发后可以在2、3、4层停靠.已知该电梯在1层载有4位乘客,假设每位乘客在2、3、4层下电梯是等可能的.(Ⅰ)求这4位乘客中至少有一名乘客在第2层下电梯的概率;(Ⅱ)用X表示4名乘客在第4层下电梯的人数,求X的分布列和数学期望.【分析】(I)根据题意知每位乘客在第2层下电梯的概率都是,至少有一名乘客在第2层下电梯的对立事件是没有人在第二层下电梯,根据对立事件和相互独立事件的概率公式得到结果.(II)由题意知X的可能取值为0,1,2,3,4,由题意可得每个人在第4层下电梯的概率均为,且每个人下电梯互不影响,得到变量符合二项分布,根据二项分布的公式写出分布列和期望.【解答】解:(Ⅰ)设4位乘客中至少有一名乘客在第2层下电梯的事件为A,…(1分)由题意可得每位乘客在第2层下电梯的概率都是,…(3分)则.…(6分)(Ⅱ)X的可能取值为0,1,2,3,4,…(7分)由题意可得每个人在第4层下电梯的概率均为,且每个人下电梯互不影响,所以,.…(9分)X01234P…(11分).…(13分)【点评】本题看出离散型随机变量的分布列和期望,本题解题的关键是看出变量符合二项分布的特点,后面用公式就使得运算更加简单9.为了了解某年段1000名学生的百米成绩情况,随机抽取了若干学生的百米成绩,成绩全部介于13秒与18秒之间,将成绩按如下方式分成五组:第一组[13,14);第二组[14,15);…;第五组[17,18].按上述分组方法得到的频率分布直方图如图所示,已知图中从左到右的前3个组的频率之比为3:8:19,且第二组的频数为8.(Ⅰ)将频率当作概率,请估计该年段学生中百米成绩在[16,17)内的人数;(Ⅱ)求调查中随机抽取了多少个学生的百米成绩;(Ⅲ)若从第一、五组中随机取出两个成绩,求这两个成绩的差的绝对值大于1秒的概率.【分析】(1)根据频率分步直方图中小正方形的面积是这组数据的频率,用长乘以宽得到面积,即为频率.(II)根据所有的频率之和是1,列出关于x的方程,解出x的值做出样本容量的值,即调查中随机抽取了50个学生的百米成绩.(III)本题是一个古典概型,试验发生所包含的事件是从第一、五组中随机取出两个成绩,满足条件的事件是成绩的差的绝对值大于1秒,列举出事件数,根据古典概型概率公式得到结果.【解答】解:(Ⅰ)百米成绩在[16,17)内的频率为0.32×1=0.32,则共有1000×0.32=320人;(Ⅱ)设图中从左到右前3个组的频率分别为3x,8x,19x依题意,得3x+8x+19x+0.32+0.08=1,∴x=0.02设调查中随机抽取了n个学生的百米成绩,∴n=50∴调查中随机抽取了50个学生的百米成绩.(Ⅲ)百米成绩在第一组的学生数有3×0.02×1×50=3,记他们的成绩为a,b,c 百米成绩在第五组的学生数有0.08×1×50=4,记他们的成绩为m,n,p,q.则从第一、五组中随机取出两个成绩包含的基本事件有{a,b},{a,c},{a,m},{a,n},{a,p},{a,q},{b,c},{b,m},{b,n},{b,p},{b,q},{c,m},{c,n},{c,p},{c,q},{m,n},{m,p},{m,q},{n,p},{n,q},{p,q},共21个其中满足成绩的差的绝对值大于1秒所包含的基本事件有{a,m},{a,n},{a,p},{a,q},{b,m},{b,n},{b,p},{b,q},{c,m},{c,n},{c,p},{c,q},共12个,∴P=【点评】本题考查样本估计总体,考查古典概型的概率公式,考查频率分布直方图等知识,考查数据处理能力和分析问题、解决问题的能力.10.某校高二年级某班的数学课外活动小组有6名男生,4名女生,从中选出4人参加数学竞赛考试,用X表示其中男生的人数,(1)请列出X的分布列;(2)根据你所列的分布列求选出的4人中至少有3名男生的概率.【分析】(1)本题是一个超几何分步,用X表示其中男生的人数,X可能取的值为0,1,2,3,4.结合变量对应的事件和超几何分布的概率公式,写出变量的分布列和数学期望.(2)选出的4人中至少有3名男生,表示男生有3个人,或者男生有4人,根据第一问做出的概率值,根据互斥事件的概率公式得到结果.【解答】解:(1)依题意得,随机变量X服从超几何分布,随机变量X表示其中男生的人数,X可能取的值为0,1,2,3,4..∴所以X的分布列为:X01234P(2)由分布列可知至少选3名男生,即P(X≥3)=P(X=3)+P(X=4)=+=.【点评】本小题考查离散型随机变量分布列和数学期望,考查超几何分步,考查互斥事件的概率,考查运用概率知识解决实际问题的能力.11.某批产品共10件,已知从该批产品中任取1件,则取到的是次品的概率为P=0.2.若从该批产品中任意抽取3件,(1)求取出的3件产品中恰好有一件次品的概率;(2)求取出的3件产品中次品的件数X的概率分布列与期望.【分析】设该批产品中次品有x件,由已知,可求次品的件数(1)设取出的3件产品中次品的件数为X,3件产品中恰好有一件次品的概率为;(2)取出的3件产品中次品的件数X可能为0,1,2,求出相应的概率,从而可得概率分布列与期望.【解答】解:设该批产品中次品有x件,由已知,∴x=2…(2分)(1)设取出的3件产品中次品的件数为X,3件产品中恰好有一件次品的概率为…(4分)(2)∵X可能为0,1,2∴…(10分)∴X的分布为:X012P则…(13分)【点评】本题以实际问题为载体,考查等可能事件的概率,考查随机变量的期望与分布列,难度不大.12.某班组织知识竞赛,已知题目共有10道,随机抽取3道让某人回答,规定至少要答对其中2道才能通过初试,他只能答对其中6道,试求:(1)抽到他能答对题目数的分布列;(2)他能通过初试的概率.【分析】(1)设随机抽出的三道题目某人能答对的道数为X,且X=0、1、2、3,X服从超几何分布,根据超几何分步的概率公式写出概率和分布列.(2)要答对其中2道才能通过初试,则可以通过初试包括两种情况,即答对两道和答对三道,这两种情况是互斥的,根据上一问的计算可以得到.【解答】解:(1)设随机抽出的三道题目某人能答对的道数为X,且X=0、1、2、3,X 服从超几何分布,分布列如下:X0123P即X0123P(2)要答对其中2道才能通过初试,则可以通过初试包括两种情况,这两种情况是互斥的,根据上一问的计算可以得到【点评】本题考查超几何分布,本题解题的关键是看出变量符合超几何分布,这样可以利用公式直接写出结果.13.甲有一个箱子,里面放有x个红球,y个白球(x,y≥0,且x+y=4);乙有一个箱子,里面放有2个红球,1个白球,1个黄球.现在甲从箱子任取2个球,乙从箱子里再取1个球,若取出的3个球颜色全不相同,则甲获胜.(1)试问甲如何安排箱子里两种颜色的个数,才能使自己获胜的概率最大?(2)在(1)的条件下,求取出的3个球中红球个数的数学期望.【分析】(1)根据甲从箱子任取2个球,乙从箱子里在取1个球,若取出的3个球颜色全不相同,则甲获胜,可得甲获胜的概率,再利用基本不等式,可得x,y的值;(2)由题意知取出的3个球中红球个数ξ的取值为1,2,3,4,分别求出其发生的概率,进而求出次数ξ的数学期望【解答】解:(1)由题意,;∴,当且仅当x=y=2时“=”成立所以当红球与白球各2个时甲获胜的概率最大(2)取出的3个球中红球个数ξ=0,1,2,3,所以【点评】本题以摸球为素材,考查等可能事件的概率,考查离散型随机变量的期望,考查基本不等式的运用,解题的关键是理解题意,搞清变量的所有取值.14.甲乙两班进行消防安全知识竞赛,每班出3人组成甲乙两支代表队,首轮比赛每人一道必答题,答对则为本队得1分,答错不答都得0分,已知甲队3人每人答对的概率分别为,,,乙队每人答对的概率都是.设每人回答正确与否相互之间没有影响,用ξ表示甲队总得分.(Ⅰ)求随机变量ξ的分布列及其数学期望E(ξ);(Ⅱ)求在甲队和乙队得分之和为4的条件下,甲队比乙队得分高的概率.【分析】(Ⅰ)由题设知ξ的可能取值为0,1,2,3,分别求出P(ξ=0),P(ξ=1),P (ξ=2),P(ξ=3),由此能求出随机变量ξ的分布列和数学期望E(ξ).(Ⅱ)设“甲队和乙队得分之和为4”为事件A,“甲队比乙队得分高”为事件B,分别求出P(A),P(AB),再由P(B/A)=,能求出结果.【解答】解:(Ⅰ)由题设知ξ的可能取值为0,1,2,3,P(ξ=0)=(1﹣)(1﹣)(1﹣)=,P(ξ=1)=(1﹣)(1﹣)+(1﹣)××(1﹣)+(1﹣)(1﹣)×=,P(ξ=2)=++=,P(ξ=3)==,∴随机变量ξ的分布列为:ξ01 2 3P数学期望E(ξ)=0×+1×+2×+3×=.(Ⅱ)设“甲队和乙队得分之和为4”为事件A,“甲队比乙队得分高”为事件B,则P(A)=++=,P(AB)==,P(B|A)===.【点评】本题考查离散型随机变量的期分布列和数学期望,考查条件概率的求法,是历年高考的必考题型之一,解题时要注意排列组合知识的合理运用.15.如图,李先生家住H小区,他工作在C科技园区,从家开车到公司上班路上有L1、L2两条路线,L1路线上有A1、A2、A3三个路口,各路口遇到红灯的概率均为;L2路线上有B1、B2两个路口,各路口遇到红灯的概率依次为,.(1)若走L1路线,求最多遇到1次红灯的概率;(2)若走L2路线,求遇到红灯次数X的数学期望;(3)按照“平均遇到红灯次数最少”的要求,请你帮助李先生从上述两条路线中选择一条最好的上班路线,并说明理由.【分析】(1)利用二项分布即可得出;(2)利用相互独立事件的概率计算公式及离散型随机变量的期望计算公式即可得出;(3)由于走路线L1时服从二项分布即可得出期望,比较走两条路的数学期望的大小即可得出要选择的路线.【解答】解:(1)设“走L1路线最多遇到1次红灯”为事件A,包括没有遇到红灯和只遇到红灯一次两种情况.则,所以走L1路线,最多遇到1次红灯的概率为.(2)依题意,X的可能取值为0,1,2.,,.随机变量X的分布列为:X012P所以.(3)设选择L1路线遇到红灯次数为Y,随机变量Y服从二项分布Y~,所以.因为EX<EY,所以选择L2路线上班最好.【点评】熟练掌握二项分布列、相互独立事件的概率计算公式及离散型随机变量的期望计算公式及其意义是解题的关键.16.某篮球队与其他6支篮球队依次进行6场比赛,每场均决出胜负,设这支篮球队与其他篮球队比赛中获胜的事件是独立的,并且获胜的概率均为.(1)求这支篮球队首次获胜前已经负了两场的概率;(2)求这支篮球队在6场比赛中恰好获胜3场的概率;(3)求这支篮球队在6场比赛中获胜场数的期望.【分析】(1)首次获胜前已经负了两场说明已经比赛三场,前两场输,第三场嬴,用乘法公式即可求得概率;(2)6场比赛中恰好获胜3场的情况有C63,比赛六场胜三场,故用乘法公式即可.(3)由于X服从二项分布,即X~B(6,),由公式即可得出篮球队在6场比赛中获胜场数的期望.【解答】解:(1)这支篮球队首次获胜前已经负了两场的概率为P==(2)6场比赛中恰好获胜3场的情况有C63,故概率为C63×=20××=(3)由于X服从二项分布,即X~B(6,),∴EX=6×=2【点评】本题考查二项分布与n次独立重复试验的模型,考查根据所给的事件类型选择概率模型的方法,以及用概率模型求概率与期望的能力。
高二数学二项分布及其应用

三
凡是少年时代迷恋过几何解题的人,对阿基米德大约都会有一种同情的理解。刚刚觉醒的求知欲的自我享受实在是莫大的快乐,令人对其余一切视而无睹。当时的希腊,才告别天人浑 然不分的童稚的神话时代,正如同一个少年人一样惊奇地发现了头上的星空和周遭的万物, 试图
凭借自己的头脑对世界作出解释。不过,思维力的运用至多是智慧的一义,且是较不重 要的一义。神话的衰落不仅使宇宙成了一个陌生的需要重新解释的对象,而且使人生成了一 个未知的有待独立思考的难题。至少从苏格拉底开始,希腊哲人们更多地把智慧视作一种人 生觉悟,并且相信这种
境遇。但是,也有无可逃脱的时候,我就是百事无心,不想见任何人,不想做 任何事。 自我似乎喜欢捉迷藏,如同蒙田所说:"我找我的时候找不着;我找着我由于偶然的邂逅比 由于有意的搜寻多。"无聊正是与自我邂逅的一个契机。这个自我,摆脱了一切社会的身份 和关系,来自虚无,
归于虚无。难怪我们和它相遇时,不能直面相视太久,便要匆匆逃离。 可是,让我多坚持一会儿吧,我相信这个可怕的自我一定会教给我许多人生的真理。 自古以来,哲人们一直叮咛我们:"认识你自己!"卡莱尔却主张代之以一个"最新的教义 ":"认识你要做和能做的工作!"因为一个人永
二项式定理的应用习题课
知识回顾
1.二项式定理:
(a + b)n = C n0a n + C n1a n- 1b + C n2a n- 2b2 +
L
+
C
n n
-
1abn -
1
+
C nnbn
2.二项展开式的通项:
T k + 1 = C nka n - kbk
《二项分布及其应用》练习题(教师版)

《二项分布及其应用》练习题一、单选题1.某班学生考试成绩中,数学不及格的占15%,语文不及格的占5%,两门都不及格的占3%, 已知一学生语文不及格,则他数学也不及格的概率是 ( ) A .0.2 B .0.33 C .0.5 D .0.62.抛掷红、黄两颗骰子,当红色骰子的点数为4或6时,两颗骰子的点数之积大于20的概率是( )A .14B .13C .12D .353.从1,2,3,4,5中任取2个不同的数,事件A =“取到的2个数之和为偶数”,事件B =“取到两个数均为偶数”,则()|P B A = ( )A .18B .14C .25D .124.已知P (B )>0,A 1A 2=∅,则下列成立的是( )A .P (A 1|B )>0 B .P (A 1∪A 2|B )=P (A 1|B )+P (A 2|B )C .P (A 12A )≠0D .()12P A A =15.设A 与B 是相互独立事件,则下列命题中正确的命题是( )A .A 与B 是对立事件 B .A 与B 是互斥事件C .A 与B 不相互独立D .A 与B 是相互独立事件 6.甲、乙两人独立地解同一问题,甲解决这个问题的概率是1p ,乙解决这个问题的概率是2p ,那么恰好有1人解决这个问题的概率是A .12p pB .1221(1)(1)p p p p -+-C .121p p -D .121(1)(1)p p ---7.袋中有大小相同的3个红球,7个白球,从中不放回地依次摸取2球,在已知第一次取出白球的前提下,第二次取得红球的概率是 ( )A .15B .13C .38D .378.已知()13P B A =,()25P A =,则()P AB 等于( ) A .56 B .910C .215D .1159.设A,B 为两个事件,且P(A)>0,若P(AB)=13,P(A)=23,则P(B|A)= ( )A .B .C .D .10.抛掷一枚质地均匀的硬币两次,在已知第一次出现正面向上的条件下,两次都是正面向上的概率是A .14B .34C .12 D .1811.下列说法正确的是( )A .()()PB A P AB < B .()()()P B P B A P A =是可能的 C .()()()P AB P A P B =⋅ D .()0P A A =12.一个盒子里有20个大小形状相同的小球,其中5个红的,5个黄的,10个绿的,从盒子中任取一球,若它不是红球,则它是绿球的概率是( )A .56B .34C .23D .1313.有一匹叫Harry 的马,参加了100场赛马比赛,赢了20场,输了80场.在这100场比赛中,有30场是下雨天,70场是晴天,在30场下雨天的比赛中,Harry 赢了15场.如果明天下雨,Harry 参加赛马的胜率是A .15B .12 C .34D .310 14.盒中装有10个乒乓球,其中6个新球,4个旧球,不放回地依次取出2个球使用,在第一次取出新球的条件下,第二次也取到新球的概率为( )A .35B .110C .59D .2515.一袋中装有5只白球,3只黄球,在有放回地摸球中,用A 1表示第一次摸得白球,A 2表示第二次摸得白球,则事件A 1与2A 是( )A .相互独立事件B .不相互独立事件C .互斥事件D .对立事件16.某地一农业科技实验站,对一批新水稻种子进行试验,已知这批水稻种子的发芽率为0.8,出芽后的幼苗成活率为0.9,在这批水稻种子中,随机地抽取一粒,则这粒水稻种子能成长为幼苗的概率为( ) A .0.02 B .0.08 C .0.18 D .0.7217.从混有5张假钞的20张百元钞票中任意抽出2张,将其中1张放到验钞机上检验发现是假钞,则第2张也是假钞的概率为( )A .119B .1718 C .419D .21718.某种电子元件用满3000小时不坏的概率为34,用满8 000小时不坏的概率为12,现有一只此种电子元件,已经用满3000小时不坏,还能用满8000小时的概率是( )A .34B .23C .12 D .1319.若()34P A =,()12P B A =,则()P A B ⋂等于( ) A .23 B .38 C .13 D .5820.如图所示,两个圆盘都是六等分,在两个圆盘中,指针落在本圆盘每个数所在区域的机会均等,那么两个指针同时落在奇数所在区域的概率是( )A .49B .29 C .23 D .1321.甲、乙两人独立地解同一问题,甲解决这个问题的概率是1p ,乙解决这个问题的概率是2p ,那么恰好有1人解决这个问题的概率是( )A .12p pB .1221(1)(1)p p p p -+-C .121p p -D .121(1)(1)p p ---二、填空题22.以集合{}2,4,6,7,8,11,12,13A=中的任意两个元素分别为分子与分母构成分数,已知取出的一个数是12,则取出的数构成可约分数的概率是______.23.如图,J A ,J B 两个开关串联再与开关J C 并联,在某段时间内每个开关能够闭合的概率都是0.5,计算在这段时间内线路正常工作的概率为___.24.在一段线路中并联着3个自动控制的常开开关,只要其中有1个开关能够闭合,线路就能正常工作假定在某段时间内每个开关能够闭合的概率都是0.7,计算在这段时间内线路正常工作的概率.25.某人一周晚上值班2次,在已知他周日一定值班的条件下,则他在周六晚上值班的概率为__________. 26.已知A 、B 、C 相互独立,如果()16P AB =,()18P BC =,()18P ABC =,()P AB =_________. 27.一个袋中装有7个大小完全相同的球,其中4个白球,3个黄球,从中不放回地摸4次,一次摸一球,已知前两次摸得白球,则后两次也摸得白球的概率为________. 28.某气象台统计,该地区下雨的概率为415,刮四级以上风的概率为215,既刮四级以上的风又下雨的概率为110,设A 为下雨,B 为刮四级以上的风,则()P B A =_______,()P A B =__________三、解答题29.现有甲、乙两个靶,某射手向甲靶射击一次,命中的概率为34,命中得1分,没有命中得0分;向乙靶射击两次,每次命中的概率为23,每命中一次得2分,没有命中得0分.该射手每次射击的结果相互独立,假设该射手完成以上三次射击. (1)求该射手恰好命中一次的概率;(2)求该射手的总得分X 的分布列.30.设进入某商场的每一位顾客购买甲种商品的概率为0.5,购买乙种商品的概率为0.6,且购买甲种商品与购买乙种商品相互独立,各顾客之间购买商品也是相互独立的。
高中数学选修2-3同步练习题库:二项分布及其应用(较难)

二项分布及其应用(较难)1、随机变量服从二项分布,且,则等于()A. B. C. D.2、将三颗骰子各掷一次,记事件A=“三个点数都不同”,B=“至少出现一个6点”,则条件概率,分别是()A., B., C., D.,3、锅中煮有芝麻馅汤圆6个,花生馅汤圆5个,豆沙馅汤圆4个,这三种汤圆的外部特征完全相同。
从中任意舀取4个汤圆,则每种汤圆都至少取到1个的概率为()A. B. C. D.4、甲乙两队进行排球比赛,已知在一局比赛中甲队获胜的概率是,没有平局,若采用三局两胜制比赛,即先胜两局者获胜且比赛结束,则甲队获胜的概率等于()A. B. C. D.5、位于坐标原点的一个质点P,其移动规则是:质点每次移动一个单位,移动的方向向上或向右,并且向上、向右移动的概率都是.质点P移动5次后位于点(2,3)的概率是()A. B. C. D.6、在区间[0,]上随机取一个数x,则事件“”发生的概率为()A. B. C. D.7、在一次反恐演习中,我方三架武装直升机分别从不同方位对同一目标发动攻击(各发射一枚导弹),由于天气原因,三枚导弹命中目标的概率分别为0.9,0.9,0.8,若至少有两枚导弹命中目标方可将其摧毁,则目标被摧毁的概率为A.0.998 B.0.046 C.0.002 D.0.9548、三个元件正常工作的概率分别为,将它们中某两个元件并联后再和第三个元件串联接入电路,在如图的电路中,电路不发生故障的概率是 ( )A. B. C. D.9、小王通过英语听力测试的概率是,他连续测试3次,那么其中恰有1次获得通过的概率是。
10、排球比赛的规则是5局3胜制,A、B两队每局比赛获胜的概率分别为和.前2局中B队以2:0领先,则最后 B队获胜的概率为 .11、若血色素化验的准确率是p, 则在10次化验中,有两次不准的概率12、五对夫妻排成一列,则每一位丈夫总是排在他妻子的后面(可以不相邻)的概率为 .13、现时盛行的足球彩票,其规则如下:全部13场足球比赛,每场比赛有3种结果:胜、平、负,13长比赛全部猜中的为特等奖,仅猜中12场为一等奖,其它不设奖,则某人获得特等奖的概率为。
高中数学总复习专题67 二项分布及其应用(解析版)

专题67二项分布及其应用最新考纲1.了解条件概率和两个事件相互独立的概念.2.理解n 次独立重复试验的模型及二项分布.3.能解决一些简单的实际问题.基础知识融会贯通1.条件概率及其性质(1)对于任何两个事件A 和B ,在已知事件A 发生的条件下,事件B 发生的概率叫做条件概率,用符号P (B |A )来表示,其公式为P (B |A )=P ABP A (P (A )>0).在古典概型中,若用n (A )表示事件A 中基本事件的个数,则P (B |A )=n ABn A . (2)条件概率具有的性质 ①0≤P (B |A )≤1;②如果B 和C 是两个互斥事件, 则P (B ∪C |A )=P (B |A )+P (C |A ). 2.相互独立事件(1)对于事件A ,B ,若事件A 的发生与事件B 的发生互不影响,则称事件A ,B 是相互独立事件. (2)若A 与B 相互独立,则P (B |A )=P (B ), P (AB )=P (B |A )P (A )=P (A )P (B ).(3)若A 与B 相互独立,则A 与B ,A 与B ,A 与B 也都相互独立. (4)若P (AB )=P (A )P (B ),则A 与B 相互独立. 3.独立重复试验与二项分布(1)独立重复试验是指在相同条件下可重复进行的,各次之间相互独立的一种试验,在这种试验中每一次试验只有两种结果,即要么发生,要么不发生,且任何一次试验中发生的概率都是一样的.(2)在n 次独立重复试验中,用X 表示事件A 发生的次数,设每次试验中事件A 发生的概率为p ,则P (X =k )=C k n p k (1-p )n -k(k =0,1,2,…,n ),此时称随机变量X 服从二项分布,记为X ~B (n ,p ),并称p 为成功概率.重点难点突破【题型一】条件概率【典型例题】某班组织由甲,乙,丙等5名同学参加的演讲比赛,现采用抽签法决定演讲顺序,在“学生甲不是第一个出场,学生乙不是最后一个出场”的前提下,学生丙第一个出场的概率为()A.B.C.D.【解答】解:设事件A={学生甲不是第一个出场,学生乙不是最后一个出场},事件B={学生丙第一个出场},所以P(AB)P(A),所以P(B|A).故选:A.【再练一题】在由直线x=1,y=x和x轴围成的三角形内任取一点(x,y),记事件A为y>x3,B为y>x2,则P(B|A)=()A.B.C.D.【解答】解:设S(AB)表示A和B同时发生所构成区域的面积,S(A)表示事件A发生构成区域的面积.根据条件概率的概率计算公式P(B|A).故选:D.思维升华 (1)利用定义,分别求P (A )和P (AB ),得P (B |A )=P ABP A ,这是通用的求条件概率的方法. (2)借助古典概型概率公式,先求事件A 包含的基本事件数n (A ),再在事件A 发生的条件下求事件B 包含的基本事件数,即n (AB ),得P (B |A )=n ABn A .【题型二】相互独立事件的概率【典型例题】为了提升全民身体素质,学校十分重视学生体育锻炼.某校篮球运动员进行投篮练习,若他前一球投进则后一球投进的概率为,若他前一球投不进则后一球投进的概率为.若他第1球投进的概率为,则他第2球投进的概率为( ) A .B .C .D .【解答】解:某校篮球运动员进行投篮练习,若他前一球投进则后一球投进的概率为, 若他前一球投不进则后一球投进的概率为.若他第1球投进的概率为, 则他第2球投进的概率为: p.故选:B . 【再练一题】在某段时间内,甲地不下雨的概率为P 1(0<P 1<1),乙地不下雨的概率为P 2(0<P 2<1),若在这段时间内两地下雨相互独立,则这段时间内两地都下雨的概率为( ) A .P 1P 2 B .1﹣P 1P 2C .P 1(1﹣P 2)D .(1﹣P 1)(1﹣P 2)【解答】解:在某段时间内,甲地不下雨的概率为P1(0<P1<1),乙地不下雨的概率为P2(0<P2<1),在这段时间内两地下雨相互独立,则这段时间内两地都下雨的概率为:P=(1﹣P1)(1﹣P2).故选:D.思维升华求相互独立事件同时发生的概率的方法(1)首先判断几个事件的发生是否相互独立.(2)求相互独立事件同时发生的概率的方法①利用相互独立事件的概率乘法公式直接求解;【题型三】独立重复试验与二项分布命题点1根据独立重复试验求概率【典型例题】将一枚质地均匀的硬币抛掷三次,则出现“2次正面朝上,1次反面朝上”的概率为()A.B.C.D.【解答】解:将一枚质地均匀的硬币抛掷三次,则出现“2次正面朝上,1次反面朝上”的概率是P.故选:B.【再练一题】某射手每次射击击中目标的概率是,求这名射手在10次射击中,(1)恰有8次击中目标的概率;(2)至少有8次击中目标的概率.【解答】解:(1)∵某射手每次射击击中目标的概率是,则这名射手在10次射击中恰有8次击中目标的概率为••.(2)至少有8次击中目标的概率为••••.命题点2根据独立重复试验求二项分布【典型例题】设有3个投球手,其中一人命中率为q,剩下的两人水平相当且命中率均为p(p,q∈(0,1)),每位投球手均独立投球一次,记投球命中的总次数为随机变量为ξ.(1)当p=q时,求数学期望E(ξ)及方差V(ξ);(2)当p+q=1时,将ξ的数学期望E(ξ)用p表示.【解答】解:(1)∵每位投球手均独立投球一次,当p=q时,每次试验事件发生的概率相等,∴ξ~B(3,),由二项分布的期望和方差公式得到结果∴Eξ=np=3,Dξ=np(1﹣p)=3(2)ξ的可取值为0,1,2,3.P(ξ=0)=(1﹣q)(1﹣p)2=pq2;P(ξ=1)=q(1﹣p)2+(1﹣q)C21p(1﹣p)=q3+2p2q;P(ξ=2)=qC21p(1﹣p)+(1﹣q)p2=2pq2+p3;P(ξ=3)=qp2.ξ的分布列为E【再练一题】一个盒子里有2个黑球和m个白球(m≥2,且m∈N*).现举行摸奖活动:从盒中取球,每次取2个,记录颜色后放回.若取出2球的颜色相同则为中奖,否则不中.(Ⅰ)求每次中奖的概率p(用m表示);(Ⅱ)若m=3,求三次摸奖恰有一次中奖的概率;(Ⅲ)记三次摸奖恰有一次中奖的概率为f(p),当m为何值时,f(p)取得最大值?【解答】解:(Ⅰ)∵取出2球的颜色相同则为中奖,∴每次中奖的概率p;(Ⅱ)若m=3,每次中奖的概率p,∴三次摸奖恰有一次中奖的概率为;(Ⅲ)三次摸奖恰有一次中奖的概率为f (p )3p 3﹣6p 2+3p (0<p <1),∴f ′(p )=3(p ﹣1)(3p ﹣1),∴f (p )在(0,)上单调递增,在(,1)上单调递减, ∴p时,f (p )取得最大值,即p∴m =2,即m =2时,f (p )取得最大值.思维升华 独立重复试验与二项分布问题的常见类型及解题策略(1)在求n 次独立重复试验中事件恰好发生k 次的概率时,首先要确定好n 和k 的值,再准确利用公式求概率.(2)在根据独立重复试验求二项分布的有关问题时,关键是理清事件与事件之间的关系,确定二项分布的试验次数n 和变量的概率,求得概率.基础知识训练1.已知袋子内有7个球,其中4个红球,3个白球,从中不放回地依次抽取2个球,那么在已知第一次抽到红球的条件下,第二次也抽到红球的概率是( ) A .13B .37C .16D .12【答案】D 【解析】记“第一次抽到红球”为事件A ;记“第二次抽到红球”为事件B()141747C P A C ∴==,()1143117627C C P AB C C == ()()()217427P AB P B A P A ∴===本题正确选项:D2.科目二,又称小路考,是机动车驾驶证考核的一部分,是场地驾驶技能考试科目的简称.假设甲每次通过科目二的概率均为34,且每次考试相互独立,则甲第3次考试才通过科目二的概率为( )A.164B.12131344C⎛⎫⎛⎫⨯⎪ ⎪⎝⎭⎝⎭C.21231344C⎛⎫⎛⎫⨯⎪ ⎪⎝⎭⎝⎭D.364【答案】D 【解析】甲每次通过科目二的概率均为34,且每次考试相互独立,则甲第3次考试才通过科目二的概率为:3333 1144464 P⎛⎫⎛⎫=−⨯−⨯=⎪ ⎪⎝⎭⎝⎭.故选:D.3.甲骑自行车从A地到B地,途中要经过4个十字路口,已知甲在每个十字路口遇到红灯的概率都是13,且在每个路口是否遇到红灯相互独立,那么甲在前两个十字路口都没有遇到红灯,直到第三个路口才首次遇到红灯的概率是()A.13B.427C.49D.127【答案】B 【解析】由题可知甲在每个十字路口遇到红灯的概率都是13,在每个十字路口没有遇到红灯的概率都是12133−=,所以甲在前两个十字路口都没有遇到红灯,直到第三个路口才首次遇到红灯的概率是2214 33327⨯⨯=故选B.4.甲、乙同时参加某次法语考试,甲、乙考试达到优秀的概率分别为0.6,0.7,两人考试相互独立,则甲、乙两人都未达到优秀的概率为()A.0.42B.0.28C.0.18D.0.12【答案】D【解析】由于甲、乙考试达到优秀的概率分别为0.6,0.7,则甲、乙考试未达到优秀的概率分别为0.4,0.3,由于两人考试相互独立,所以甲、乙两人都未达到优秀的概率为:0.40.30.12⨯=故答案选D5.设随机变量X服从二项分布,则函数存在零点的概率是() A.B.C.D.【答案】C 【解析】 ∵函数存存在零点,∵随机变量服从二项分布 .故选:C .6.设随机变量ξ~B(2,p),η~B(4,p),若P(ξ≥1)=,则D(η)= ( ) A . B . C . D . 【答案】C 【解析】由随机变量ξ~B (2,p ),且P (ξ≥1)=, 得P (ξ≥1)=1-P (ξ=0)=,解得.则,随机变量η的方差.本题选择C 选项.7.某次考试共有12个选择题,每个选择题的分值为5分,每个选择题四个选项且只有一个选项是正确的,A 学生对12个选择题中每个题的四个选择项都没有把握,最后选择题的得分为X 分,B 学生对12个选择题中每个题的四个选项都能判断其中有一个选项是错误的,对其它三个选项都没有把握,选择题的得分为Y 分,则()()D Y D X −的值为( ) A .12512B .3512C .274D .234【答案】A 【解析】设A 学生答对题的个数为m ,则得分5x m =(分),112,4m B ⎛⎫~ ⎪⎝⎭,()13912444D m =⨯⨯=,所以()92252544D X =⨯=,同理设B 学生答对题的个数为n ,可知112,3n B ⎛⎫~ ⎪⎝⎭,()12812333D n =⨯⨯=,所以()82002533D Y =⨯=,所以()()2002251253412D Y D X −=−=.故选A. 8.若10件产品中包含8件一等品,在其中任取2件,则在已知取出的2件中有1件不是一等品的条件下,另1件是一等品的概率为()A.1213B.1415C.1617D.1819【答案】C【解析】由题意,记事件A为“取出的2件产品中存在1件不是一等品”,事件B为“取出的2件中,1件是一等品,1件不是一等品”,则11211282282210101716 (),()4545C C C C CP A P ABC C+====,所以()16(|)()17P ABP B AP A==,故选C.9.甲、乙、丙、丁4个人进行网球比赛,首先甲、乙一组,丙、丁一组进行比赛,两组的胜者进入决赛,决赛的胜者为冠军、败者为亚军.4个人相互比赛的胜率如右表所示,表中的数字表示所在行选手击败其所在列选手的概率.那么甲得冠军且丙得亚军的概率是( )A.0.15B.0.105C.0.045D.0.21【答案】C【解析】甲、乙比赛甲获胜的概率是0.3,丙、丁比赛丙获胜的概率是0.5, 甲、丙决赛甲获胜的概率是0.3,根据独立事件的概率等于概率之积,所以, 甲得冠军且丙得亚军的概率:0.30.50.30.045⨯⨯=. 故选C.10.在体育选修课排球模块基本功(发球)测试中,计分规则如下(满分为10分):①每人可发球7次,每成功一次记1分;②若连续两次发球成功加0.5分,连续三次发球成功加1分,连续四次发球成功加1.5分,以此类推,⋯,连续七次发球成功加3分.假设某同学每次发球成功的概率为23,且各次发球之间相互独立,则该同学在测试中恰好得5分的概率是( )A .6523B .5523C .6623D .5623【答案】B 【解析】该同学在测试中恰好得5分有两种情况:四次发球成功,有两个连续得分,此时概率5243146212()()333P C ==;四次发球成功,有三个连续得分,分为连续得分在首尾和不在首尾两类,此时概率6111143223326212()()()333P C C C C =+=,所求概率56512665222333P P P =+=+=;故选B. 11.假定某人在规定区域投篮命中的概率为,现他在某个投篮游戏中,共投篮3次. (1)求连续命中2次的概率;(2)设命中的次数为X ,求X 的分布列和数学期望.【答案】(1);(2)见解析. 【解析】 (1)设表示第次投篮命中,表示第次投篮不中;设投篮连续命中2次为事件,则.(2)命中的次数可取0,1,2,3;,,,所以答:的数学期望为2.12.为了调查高中生的数学成绩与学生自主学习时间之间的相关关系,新苗中学数学教师对新入学的45名学生进行了跟踪调查,其中每周自主做数学题的时间不少于15小时的有19人,余下的人中,在高三模拟考试中数学成绩不足120分的占8,统计成绩后,得到如下的22⨯列联表:(1)请完成上面的22⨯列联表,并判断能否在犯错误的概率不超过0.01的前提下认为“高中生的数学成绩与学生自主学习时间有关”.(2)(i)按照分层抽样的方法,在上述样本中,从分数大于等于120分和分数不足120分的两组学生中抽取9名学生,设抽到的不足120分且周做题时间不足15小时的人数为X,求X的分布列(概率用组合数算式表示).(ii)若将频率视为概率,从全校大于等于120分的学生中随机抽取20人,求这些人中周做题时间不少于15小时的人数的期望和方差.附:()()()()()22n ad bc K a b c d a c b d −=++++【答案】(1)见解析;(2) (i )见解析 (ii )见解析 【解析】 (1)∵()224515161047.287 6.63525201926K ⨯−⨯=≈>⨯⨯⨯.∴能在犯错误的概率不超过0.01的前提下认为“高中生的数学成绩与学生自主学习时间有关”.(2)(i )由分层抽样知大于等于120分的有5人,不足120分的有4人,X 的可能取值为0,1,2,3,4.()416420C 0C P X ==, ()33416420C C 1C P X ⋅==, ()22416420C C 2C P X ⋅==, ()31416420C C 3C P X ⋅==, ()44420C 4C P X ==.则分布列为(ii )设从全校大于等于120分的学生中随机抽取20人,这些人中,周做题时间不少于15小时的人数为随机变量Y ,由题意可知()20,0.6Y B ~, 故()12E Y =,() 4.8D Y =.13.生蚝即牡蛎(oyster),是所有食物中含锌最丰富的,在亚热带、热带沿海都适宜蚝的养殖,我国分布很广,北起鸭绿江,南至海南岛,沿海皆可产蚝.蚝乃软体有壳,依附寄生的动物,咸淡水交界所产尤为肥美,因此生蚝成为了一年四季不可或缺的一类美食.某饭店从某水产养殖厂购进一批生蚝,并随机抽取了40只统计质量,得到的结果如下表所示.(1)若购进这批生蚝500kg ,且同一组数据用该组区间的中点值代表,试估计这批生蚝的数量(所得结果保留整数);(2)以频率估计概率,若在本次购买的生蚝中随机挑选4个,记质量在[)5,25间的生蚝的个数为X ,求X 的分布列及数学期望.【答案】(I )17544(只);(II )85. 【解析】(Ⅰ)由表中的数据可以估算妹纸生蚝的质量为()16101020123084045028.540g ⨯+⨯+⨯+⨯+⨯=, 所以购进500kg ,生蚝的数列均为50000028.517554÷≈(只); (II)由表中数据知,任意挑选一只,质量在[)5,25间的概率为25P =, X 的可能取值为0,1,2,3,4,则()()41314381232160,1562555625P X P X C ⎛⎫⎛⎫⎛⎫====== ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,()()()2231423442321623962162,3,455625556255625P X C P X C P X ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫========= ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭, 所以X 的分布列为所以()216961683346256256255E X =⨯+⨯+⨯= 14.某工厂的检验员为了检测生产线上生产零件的情况,从产品中随机抽取了个进行测量,根据所测量的数据画出频率分布直方图如下:注:尺寸数据在内的零件为合格品,频率作为概率. (Ⅰ) 从产品中随机抽取件,合格品的个数为,求的分布列与期望;(Ⅱ) 从产品中随机抽取件,全是合格品的概率不小于,求的最大值;(Ⅲ) 为了提高产品合格率,现提出两种不同的改进方案进行试验.若按方案进行试验后,随机抽取件产品,不合格个数的期望是;若按方案试验后,抽取件产品,不合格个数的期望是,你会选择哪个改进方案?【答案】(Ⅰ)分布列见解析,; (Ⅱ); (Ⅲ)选择方案.【解析】(Ⅰ)由直方图可知,抽出产品为合格品的频率为,即抽出产品为合格品的概率为, 从产品中随机抽取件,合格品的个数的所有可能取值为且,, 所以的分布列为故数学期望(Ⅱ) 随机抽取件,全是合格品的概率为,依题意,故的最大值为.(Ⅲ) 按方案随机抽取产品不合格的概率是,随机抽取件产品,不合格个数;按方案随机抽取产品不合格的概率是,随机抽取件产品,不合格个数,依题意,解得,因为,所以应选择方案.15.为了引导居民合理用水,某市决定全面实施阶梯水价.阶梯水价原则上以住宅(一套住宅为一户)的月用水量为基准定价,具体划分标准如表:从本市随机抽取了10户家庭,统计了同一月份的月用水量,得到如图茎叶图:(Ⅰ)现要在这10户家庭中任意选取3户,求取到第二阶梯水量的户数X的分布列与数学期望;(Ⅱ)用抽到的10户家庭作为样本估计全市的居民用水情况,从全市依次随机抽取10户,若抽到户月用水量为一阶的可能性最大,求的值.【答案】(1)见解析(2)【解析】(Ⅰ)由茎叶图可知抽取的10户中用水量为一阶的有3户,二阶的有5户,三阶的有2户.第二阶段水量的户数的可能取值为0,1,2,3,,,所以的分布列为的数学期望.(Ⅱ)设为从全市抽取的10户中用水量为一阶的家庭户数,依题意得,,由,解得,又,所以当时概率最大.即从全市依次随机抽取10户,抽到3户月用水量为一阶的可能性最大.能力提升训练1.若已知随机变量,则____.【答案】 【解析】 随机变量,则. 故答案为:.2.某工厂生产电子元件,其产品的次品率为5%,现从一批产品中任意地连续取出2件,写出其中次品ξ的概率分布.【答案】0.9025 0.095 0.0025 【解析】 因()2,0.05B ξ,所以()02200.950.9025P C ξ===,()1210.950.050.095P C ξ==⨯=,()22220.050.0025P C ξ===,故分别填:0.9025,0.095,0.0025. 3.设随机变量1~,4X B n ⎛⎫ ⎪⎝⎭,且()34D X =,则事件“2X =”的概率为_____(用数字作答) 【答案】27128【解析】由1~,4X B n ⎛⎫⎪⎝⎭可知:()1133144164n D x n ⎛⎫=⨯⨯−== ⎪⎝⎭ 4n ∴=()222411272144128P X C ⎛⎫⎛⎫∴==⋅⋅−=⎪⎪⎝⎭⎝⎭ 本题正确结果:271284.如图,在小地图中,一机器人从点()0,0A 出发,每秒向上或向右移动1格到达相应点,已知每次向上移动1格的概率是23,向右移动1格的概率是13,则该机器人6秒后到达点()4,2B 的概率为__________.【答案】20243【解析】由题意,可得6秒内向右移动4次,向上移动2次则所求概率为:4246122033243C ⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭本题正确结果:202435.一批产品的二等品率为0.02,从这批产品中每次随机取一件,有放回地抽取100次,若X 表示抽到的二等品件数,则()V X =_________. 【答案】1.96 【解析】由题意可知,该事件满足独立重复试验,是一个二项分布模型,其中,0.02p =,100n =,则()()1V x np p =−1000.020.98=⨯⨯ 1.96=,故答案为1.966.设随机变量(2,)B p ξ,(4,)B p η,若2()3E ξ=,则(3)P η≥=______.【答案】19【解析】()223E p ξ==13p ∴= 14,3B η⎛⎫∴ ⎪⎝⎭()()()34344412113343339P P P C C ηηη⎛⎫⎛⎫⎛⎫∴≥==+==⨯+= ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭ 本题正确结果:197.为响应绿色出行,某市在推出“共享单车”后,又推出“新能源分时租赁汽车”.其中一款新能源分时租赁汽车,每次租车收费的标准由两部分组成:①根据行驶里程数按1元/公里计费;②行驶时间不超过分时,按元/分计费;超过分时,超出部分按元/分计费.已知王先生家离上班地点15公里,每天租用该款汽车上、下班各一次.由于堵车、红绿灯等因素,每次路上开车花费的时间(分)是一个随机变量.现统计了50次路上开车花费时间,在各时间段内的频数分布情况如下表所示: (分)将各时间段发生的频率视为概率,每次路上开车花费的时间视为用车时间,范围为分.(1)写出王先生一次租车费用(元)与用车时间(分)的函数关系式;(2)若王先生一次开车时间不超过40分为“路段畅通”,设表示3次租用新能源分时租赁汽车中“路段畅通”的次数,求的分布列和期望;(3)若公司每月给1000元的车补,请估计王先生每月(按22天计算)的车补是否足够上、下班租用新能源分时租赁汽车?并说明理由.(同一时段,用该区间的中点值作代表)【答案】(1) (2)见解析(3) 估计王先生每月的车补够上下班租用新能源分时租赁汽车用 【解析】(1)当时,当时,.得:(2)王先生租用一次新能源分时租赁汽车,为“路段畅通”的概率可取.的分布列为或依题意(3)王先生租用一次新能源分时租赁汽车上下班,平均用车时间(分钟),每次上下班租车的费用约为(元)一个月上下班租车费用约为,估计王先生每月的车补够上下班租用新能源分时租赁汽车用.8.甲、乙两支球队进行总决赛,比赛采用五场三胜制,即若有一队先胜三场,则此队为总冠军,比赛就此结束.因两队实力相当,每场比赛两队获胜的可能性均为二分之一.据以往资料统计,第一场比赛可获得门票收入40万元,以后每场比赛门票收入比上一场增加10万元.(1)求总决赛中获得门票总收入恰好为150万元且甲获得总冠军的概率;(2)设总决赛中获得的门票总收入为,求的分布列和数学期望.【答案】(1)(2)见解析【解析】(1)已知总决赛中获得门票总收入恰好为150万元且甲获得总冠军即甲连胜3场,则其概率为;(2)随机变量X可取的值为150,220,300.又P(X=150)=2×=,P(X=220)=C××=,P(X=300)=C××=.分布列如下:所以X的数学期望为E(X)=150×+220×+300×=232.5(万元).9.在某项娱乐活动的海选过程中评分人员需对同批次的选手进行考核并评分,并将其得分作为该选手的成绩,成绩大于等于60分的选手定为合格选手,直接参加第二轮比赛,不超过40分的选手将直接被淘汰,成绩在内的选手可以参加复活赛,如果通过,也可以参加第二轮比赛.(1)已知成绩合格的200名参赛选手成绩的频率分布直方图如图,求a的值及估计这200名参赛选手的成绩平均数;(2)根据已有的经验,参加复活赛的选手能够进入第二轮比赛的概率为,假设每名选手能否通过复活赛相互独立,现有3名选手进入复活赛,记这3名选手在复活赛中通过的人数为随机变量X,求X的分布列和数学期望.【答案】(1),82;(2)见解析【解析】由题意:,估计这200名选手的成绩平均数为.由题意知, X B (3,1/3),X可能取值为0,1,2,3,,所以X的分布列为:X的数学期望为.10.为了解市民对某项政策的态度,随机抽取了男性市民25人,女性市民75人进行调查,得到以下的列联表:(1)根据以上数据,能否有97.5%的把握认为市民“支持政策”与“性别”有关?(2)将上述调查所得的频率视为概率,现在从所有市民中,采用随机抽样的方法抽取4位市民进行长期跟踪调查,记被抽取的4位市民中持“支持”态度的人数为,求的分布列及数学期望。
2020高考数学三轮冲刺 专题 二项分布及其应用练习(含解析)

二项分布及其应用一、选择题(本大题共12小题,共60分)1. 甲乙二人争夺一场围棋比赛的冠军,若比赛为“三局两胜”制,甲在每局比赛中获胜的概率均为,且各局比赛结果相互独立,则在甲获得冠军的情况下,比赛进行了三局的概率为A. B. C. D.(正确答案)B【分析】本题考查条件概率,考查相互独立事件概率公式,属于中档题.求出甲获得冠军的概率、比赛进行了3局的概率,即可得出结论.【解答】解:由题意,甲获得冠军的概率为,其中比赛进行了3局的概率为,所求概率为,故选B.2. 小赵、小钱、小孙、小李到 4 个景点旅游,每人只去一个景点,设事件“4 个人去的景点不相同”,事件“小赵独自去一个景点”,则A. B. C. D.(正确答案)A【分析】本题考查条件概率,考查学生的计算能力,确定基本事件的个数是关键这是求小赵独自去一个景点的前提下,4 个人去的景点不相同的概率,求出相应基本事件的个数,即可得出结论,属于中档题.【解答】解:小赵独自去一个景点,有4个景点可选,则其余3人只能在小赵剩下的3个景点中选择,可能性为种所以小赵独自去一个景点的可能性为种因为4 个人去的景点不相同的可能性为种,所以.故选A.3. 2016年鞍山地区空气质量的记录表明,一天的空气质量为优良的概率为,连续两天为优良的概率为,若今天的空气质量为优良,则明天空气质量为优良的概率是A. B. C. D.(正确答案)C解:一天的空气质量为优良的概率为,连续两天为优良的概率为,设随后一天空气质量为优良的概率为p,若今天的空气质量为优良,则明天空气质量为优良,则有,,故选:C.设随后一天的空气质量为优良的概率是p,利用相互独立事件概率乘法公式能求出结果.本题考查概率的求法,是基础题,解题时要认真审题,注意相互独立事件概率乘法公式的合理运用.4. 投篮测试中,每人投3次,至少投中2次才能通过测试已知某同学每次投篮投中的概率为,且各次投篮是否投中相互独立,则该同学通过测试的概率为A. B. C. D.(正确答案)A解:由题意可知:同学3次测试满足X∽,该同学通过测试的概率为.故选:A.判断该同学投篮投中是独立重复试验,然后求解概率即可.本题考查独立重复试验概率的求法,基本知识的考查.5. 设某种动物由出生算起活到10岁的概率为,活到15岁的概率为现有一个10岁的这种动物,它能活到15岁的概率是A. B. C. D.(正确答案)C解:记该动物从出生起活到10岁为事件A,从出生起活到15岁的为事件AB,而所求的事件为,由题意可得,,由条件概率公式可得,故选C.活到15岁的概率是在活到10岁的概率的情况下发生的,故可用条件概率来求解这个题.本题考点是条件概率,理清楚事件之间的关系是解决问题的关键,属中档题.6. 在10个球中有6个红球和4个白球各不相同,不放回地依次摸出2个球,在第一次摸出红球的条件下,第2次也摸到红球的概率为A. B. C. D.(正确答案)D解:先求出“第一次摸到红球”的概率为:,设“在第一次摸出红球的条件下,第二次也摸到红球”的概率是再求“第一次摸到红球且第二次也摸到红球”的概率为,根据条件概率公式,得:,故选:D.事件“第一次摸到红球且第二次也摸到红球”的概率等于事件“第一次摸到红球”的概率乘以事件“在第一次摸出红球的条件下,第二次也摸到红球”的概率根据这个原理,可以分别求出“第一次摸到红球”的概率和“第一次摸到红球且第二次也摸到红球”的概率,再用公式可以求出要求的概率.本题考查了概率的计算方法,主要是考查了条件概率与独立事件的理解,属于中档题看准确事件之间的联系,正确运用公式,是解决本题的关键.7. 将4个不同的小球装入4个不同的盒子,则在至少一个盒子为空的条件下,恰好有两个盒子为空的概率是A. B. C. D.(正确答案)A解:根据题意,将4个不同的小球装入4个不同的盒子,有种不同的放法,若没有空盒,有种放法,有1个空盒的放法有种,有3个空盒的放法有种,则至少一个盒子为空的放法有种,故“至少一个盒子为空”的概率,恰好有两个盒子为空的放法有种,故“恰好有两个盒子为空”的概率,则则在至少一个盒子为空的条件下,恰好有两个盒子为空的概率;故选:A.根据题意,由分步计数原理计算可得“将4个不同的小球装入4个不同的盒子”的放法数目,进而由排列、组合数公式计算“没有空盒”、“有1个空盒的放法”、“有3个空盒”的放法数目,由古典概型公式计算可得“至少一个盒子为空”以及“恰好有两个盒子为空”的概率,最后由条件概率的计算公式计算可得答案.本题考查条件概率的计算,涉及排列、组合的应用,关键是求出“至少一个盒子为空”以及“恰好有两个盒子为空”的概率.8. 在区间内随机投掷一个点其坐标为,若,则A. B. C. D.(正确答案)A解:根据题意,得,因此,事件AB对应的区间长度为,结合总的区间长度为1,可得又,同理可得因此,故选:A由题意,算出且,结合条件概率计算公式即可得到的值.本题给出投点问题,求事件A的条件下B发生的概率,着重考查了条件概率及其应用的知识,属于基础题.9. 九江气象台统计,5月1日浔阳区下雨的概率为,刮风的概率为,既刮风又下雨的概率为,设A为下雨,B为刮风,那么A. B. C. D.(正确答案)B解:由题意,,,,故选B.确定,,,再利用条件概率公式,即可求得结论.本题考查概率的计算,考查条件概率,考查学生的计算能力,属于基础题.10. 从混有5张假钞的20张一百元纸币中任意抽取2张,将其中一张在验钞机上检验发现是假币,则这两张都是假币的概率为A. B. C. D.(正确答案)D解:解:设事件A表示“抽到的两张都是假钞”,事件B表示“抽到的两张至少有一张假钞”,则所求的概率即.又,,由公式.故选:D.设事件A表示“抽到的两张都是假钞”,事件B表示“抽到的两张至少有一张假钞”,所求的概率即先求出和的值,再根据,运算求得结果.本题考查概率的求法,是中档题,解题时要认真审题,注意条件概率的合理运用.11. 如图,和都是圆内接正三角形,且,将一颗豆子随机地扔到该圆内,用A表示事件“豆子落在内”,B表示事件“豆子落在内”,则A.B.C.D.(正确答案)D解:如图所示,作三条辅助线,根据已知条件这些小三角形全等,所以,故选:D.作三条辅助线,根据已知条件这些小三角形全等,即可求出.本题考查概率的计算,考查学生的计算能力,正确作出图形是关键.12. 下列说法中正确的是设随机变量X服从二项分布,则已知随机变量X服从正态分布且,则;.A. B. C. D.(正确答案)A解:设随机变量X服从二项分布,则,正确;随机变量服从正态分布,正态曲线的对称轴是.,,,正确;利用积分的几何意义,可知,正确;故不正确.故选:A.分别对4个选项,分别求解,即可得出结论.考查二项分布、正态分布以及定积分的几何意义,考查学生的计算能力,知识综合性强.二、填空题(本大题共4小题,共20分)13. 如果,当取得最大值时, ______ .(正确答案)50解:,当,由组合数知,当时取到最大值.故答案为:50.根据变量符合二项分布,写出试验发生k次的概率的表示式,在表示式中,只有是一个变量,根据组合数的性质,当时,概率取到最大值.本题考查二项分布与n次独立重复试验的模型,考查概率的最值,考查组合数的性质,是一个比较简单的综合题目.14. 抛掷红、蓝两颗骰子,设事件A为“蓝色骰子的点数为3或6”,事件B为“两颗骰子的点数之和大于8”则当已知蓝色骰子点数为3或6时,问两颗骰子的点数之和大于8的概率为______ .(正确答案)解:设x为掷红骰子得的点数,y为掷蓝骰子得的点数,则所有可能的事件与建立对应,显然:,,..故答案为:由题意知这是一个条件概率,做这种问题时,要从这样两步入手,一是做出蓝色骰子的点数为3或6的概率,二是两颗骰子的点数之和大于8的概率,再做出两颗骰子的点数之和大于8且蓝色骰子的点数为3或6的概率,根据条件概率的公式得到结果.本题考查条件概率,条件概率有两种做法,本题采用概率来解,还有一种做法是用事件发生所包含的事件数之比来解出结果,本题出现的不多,以这个题目为例,同学们要认真分析.15. 从标有1,2,3,4,5的五张卡片中,依次抽出2张,则在第一次抽到偶数的条件下,第二次抽到奇数的概率为______.(正确答案)解:在第一次抽到偶数时,还剩下1个偶数,3个奇数,在第一次抽到偶数的条件下,第二次抽到奇数的概率为.故答案为:.根据剩下4个数的奇偶性得出结论.本题考查了条件概率的计算,属于基础题.16. 若随机变量,且,则 ______ .(正确答案)解:随机变量,且,可得,正态分布曲线的图象关于直线对称.,,故答案为:.由条件求得,可得正态分布曲线的图象关于直线对称求得的值,再根据,求得的值.本题主要考查正态分布的性质,正态曲线的对称性,属于基础题.三、解答题(本大题共3小题,共40分)17. 甲、乙两人各进行3次射击,甲每次击中目标的概率为,乙每次击中目标的概率,假设两人射击是否击中目标,相互之间没有影响;每次射击是否击中目标,相互之间没有影响.Ⅰ求甲至少有1次未击中目标的概率;Ⅱ记甲击中目标的次数为,求的概率分布及数学期望;Ⅲ求甲恰好比乙多击中目标2次的概率.(正确答案)解:记“甲连续射击3次,至少1次未击中目标”为事件,由题意知两人射击是否击中目标,相互之间没有影响,射击3次,相当于3次独立重复试验,故.故甲至少有1次未击中目标的概率为;由题意知X的可能取值是0,1,2,3,,,,X的概率分布如下表:X 0 1 2 3P设甲恰比乙多击中目标2次为事件A,甲恰击中目标2次且乙恰击中目标0次为事件,甲恰击中目标 3次且乙恰击中目标 1次为事件,则,,为互斥事件甲恰好比乙多击中目标2次的概率为由题意知,两人射击是否击中目标,相互之间没有影响;甲每次击中目标的概率为,射击3次,相当于3次独立重复试验,根据独立重复试验概率公式得到结果.根据题意看出变量的可能取值,根据变量对应的事件和独立重复试验的概率公式,写出变量对应的概率,写出分布列,做出期望值.甲恰比乙多击中目标2次,包括甲恰击中目标2次且乙恰击中目标0次,甲恰击中目标3次且乙恰击中目标1次,这两种情况是互斥的,根据公式公式得到结果.本题考查离散型随机变量的分布列和期望,考查互斥事件的概率,是一个基础题,这种题目解题的关键是看清题目事件的特点,找出解题的规律,遇到类似的题目要求能做.18. 袋子A和B中装有若干个均匀的红球和白球,从A中摸出一个红球的概率是,从B中摸出一个红球的概率是现从两个袋子中有放回的摸球从A中摸球,每次摸出一个,共摸5次求:恰好有3次摸到红球的概率;设摸得红球的次数为随机变量X,求X的期望;Ⅱ从A中摸出一个球,若是白球则继续在袋子A中摸球,若是红球则在袋子B中摸球,若从袋子B中摸出的是白球则继续在袋子B中摸球,若是红球则在袋子A中摸球,如此反复摸球3次,计摸出的红球的次数为Y,求Y的分布列以及随机变量Y的期望.(正确答案)解:Ⅰ由题意知本题是在相同的条件下进行的试验,且事件发生的概率相同,可以看作独立重复试验,根据独立重复试验公式得到,恰好有3次摸到红球的概率:.由题意知从A中有放回地摸球,每次摸出一个,是独立重复试验,根据独立重复试验公式得到:,.随机变量Y的取值为0,1,2,3;且:;;;;随机变量Y的分布列是:的数学期望是.由题意知本题是在相同的条件下进行的试验,且事件发生的概率相同,可以看作独立重复试验,根据独立重复试验公式得到结果.由题意知从A中有放回地摸球,每次摸出一个,是独立重复试验,根据独立重复试验公式得到答案.由题意知计摸出的红球的次数为Y,随机变量Y的取值为0,1,2,3;由独立试验概率公式得到概率,写出分布列和期望.解决离散型随机变量分布列问题时,主要依据概率的有关概念和运算,同时还要注意题目中离散型随机变量服从什么分布,若服从特殊的分布则运算要简单的多.19. 某射击小组有甲、乙两名射手,甲的命中率为,乙的命中率为,在射击比武活动中每人射击发两发子弹则完成一次检测,在一次检测中,若两人命中次数相等且都不少于一发,则称该射击小组为“先进和谐组”;若,求该小组在一次检测中荣获“先进和谐组”的概率;计划在2011年每月进行1次检测,设这12次检测中该小组获得“先进和谐组”的次数,如果,求的取值范围.(正确答案)解:,,根据“先进和谐组”的定义可得该小组在一次检测中荣获“先进和谐组”的包括两人两次都射中,两人恰好各射中一次,该小组在一次检测中荣获“先进和谐组”的概率该小组在一次检测中荣获先进和谐组”的概率而,所以由知,解得:根据甲的命中率为,乙的命中率为,两人命中次数相等且都不少于一发,则称该射击小组为“先进和谐组”;我们可以求出该小组在一次检测中荣获“先进和谐组”的概率;由已知结合的结论,我们可以求出该小组在一次检测中荣获“先进和谐组”的概率含参数,由,可以构造一个关于的不等式,解不等式结合概率的含义即可得到的取值范围.本题考查的知识点是相互独立事件的概率乘法公式,二项分布与n次独立重复试验的模型,中关键是要列举出该小组在一次检测中荣获“先进和谐组”的所有可能性,的关键是要根据,可以构造一个关于的不等式.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
325--------------- \事件的独立性“ -----------------厂 丿 r]厂独立重复实验二项分布高考要求二项分布及 其应用要求层次重难点条件概率 A 了解条件概率和两个事件相互独立的概念, 理解n 次独立重复试验的模型及二项分布, 并能解决一些简单的实际问题.事件的独立性A n 次独立重复试验与二项 分布B21山迄例题精讲板块一:条件概率(一) 知识内容条件概率对于任何两个事件 A 和B ,在已知事件 A 发生的条件下,事件 B 发生的概率叫做条件概率,用符号 P (B|A ) ”来表示.把由事件 A 与B 的交(或积),记做D=A“B (或D 二AB ).(二)典例分析:【例1】 在10个球中有6个红球,4个白球(各不相同),不放回的依次摸出2个球,在第1次摸出红球的条件下,第2次也摸出红球的概率是()D .知识框架二项分布及其应用【例2】某地区气象台统计,该地区下雨的概率是土 ,刮风的概率是2,既刮风又下雨的概率是丄,15 15 10设A=刮风”,8=下雨”,求P(B A , P(A B).【例3】设某种动物活到20岁以上的概率为0.7,活到25岁以上的概率为0.4,求现龄为20岁的这种动物能活到25岁以上的概率.【例4】把一枚硬币抛掷两次,事件A=第一次出现正面”,事件B=第二次出现反面”,则P(B A)二_____ .【例5】抛掷一颗骰子两次,在第一次掷得向上一面点数是偶数的条件下,则第二次掷得向上一面点数也是偶数的概率为_________________________ .【例6】设某批产品有4%是废品,而合格品中的75%是一等品,任取一件产品是一等品的概率是_________ .【例7】掷两枚均匀的骰子,记A=点数不同”,8=至少有一个是6点”,求P(A|B)与P(B|A).【例8】甲、乙两班共有70名同学,其中女同学40名•设甲班有30名同学,而女生15名,问在碰到甲班同学时,正好碰到一名女同学的概率【例9】从1~100个整数中,任取一数,已知取出的一数是不大于50的数,求它是2或3的倍数的概率.【例10】袋中装有2n_1个白球,2n个黑球,一次取出n个球,发现都是同一种颜色的,问这种颜色是黑色的概率是多少?【例11】一袋中装有10个球,其中3个黑球,7个白球,先后两次从袋中各取一球(不放回)⑴已知第一次取出的是黑球,求第二次取出的仍是黑球的概率;⑵已知第二次取出的是黑球,求第一次取出的也是黑球的概率;⑶已知第一次取出的是黑球,求第二次取出的是白球的概率.【例12】有两箱同类零件,第一箱内装50件,其中10件是一等品;第二箱内装30件,其中18件是一等品•现从两箱中随意挑出一箱,然后从该箱中先后随机取出两个零件(取出的零件均不放回),试求:⑴先取出的零件是一等品的概率;⑵在先取出的零件是一等品的条件下后取出的仍然是一等品的概率. (保留三位有效数字)【例13】设有来自三个地区的各10名、15名和25名考生的报名表,其中女生的报名表分别为3份、7份和5份•随机地取一个地区的报名表,从中先后抽出两份,⑴求先抽到的一份是女生表的概率p •⑵己知后抽到的一份是男生表,求先抽到的是女生的概率q•板块二:事件的独立性(一) 知识内容事件的独立性如果事件A是否发生对事件B发生的概率没有影响,即P(B|A)二P(B), 这时,我们称两个事件A, B相互独立,并把这两个事件叫做相互独立事件.如果事件A , A2,…,A n相互独立,那么这n个事件都发生的概率,等于每个事件发生的概率的积,即P(A P1A门…「代)二P(A) P(^)…P(An),并且上式中任意多个事件A换成其对立事件后等式仍成立.(二)典例分析:【例14】判断下列各对事件是否是相互独立事件⑴容器内盛有5个白乒乓球和3个黄乒乓球,从8个球中任意取出1个,取出的是白球”与 从 剩下的7个球中任意取出1个,取出的还是白球⑵一筐内有6个苹果和3个梨,从中任意取出1个,取出的是苹果”与 把取出的苹果放回筐 子,再从筐子中任意取出1个,取出的是梨”.⑶甲组3名男生、2名女生;乙组2名男生、3名女生,今从甲、乙两组中各选 1名同学参加 演讲比赛, 从甲组中选出1名男生”与 从乙组中选出1名女生”.1,从乙口袋中摸出一个红球的概率是 丄,则-是( 3 2 3 B . 2个球都是红球的概率D . 2个球中恰好有1个红球的概率次射击,但距离为150m ;如果第二次又未命中,则猎人进行第三次射击,但在射击瞬间距离 野兔为200m •已知猎人命中率与距离的平方成反比,求猎人命中野兔的概率.如图,开关电路中,某段时间内,开关 a b 、c 开或关的概率均为 1,且是相互独立的,求 2这段时间内灯亮的概率.甲、乙、丙三台机床各自独立地加工同一种零件,已知甲机床加工的零件是一等品而乙机床加工的零件不是一等品的概率为 1 ,乙机床加工的零件是一等品而丙机床加工的零件不是4 等品的概率为 -,甲、丙两台机床加工的零件都是一等品的概率为12 分别求甲、乙、丙三台机床各自加工的零件是一等品的概率.【例19】椐统计,某食品企业一个月内被消费者投诉的次数为0,1,2的概率分别为0.4 , 0.5 , 0.1⑴ 求该企业在一个月内被消费者投诉不超过 1次的概率;⑵假设一月份与二月份被消费者投诉的次数互不影响,求该企业在这两个月内共被消费者 投诉2次的概率.【例15】从甲口袋摸出一个红球的概率是A . 2个球不都是红球的概率 C .至少有一个红球的概率【例16】猎人在距离100m 处射击一只野兔,其命中率为-.如果第一次射击未命中,2则猎人进行第二【例17】【例18】 c【例20】某项选拔共有四轮考核,每轮设有一个问题,能正确回答问题者进入下一轮考核,否则即被淘汰•已知某选手能正确回答第一、二、三、四轮的问题的概率分别为4、3、?、〕,且5 5 5 5各轮问题能否正确回答互不影响.⑴ 求该选手进入第四轮才被淘汰的概率;⑵求该选手至多进入第三轮考核的概率.【例21】甲、乙二人进行一次围棋比赛,约定先胜3局者获得这次比赛的胜利,比赛结束•假设在一局中,甲获胜的概率为0.6,乙获胜的概率为0.4,各局比赛结果相互独立•已知前2局中, 甲、乙各胜1局.⑴求再赛2局结束这次比赛的概率;⑵ 求甲获得这次比赛胜利的概率.【例22】纺织厂某车间内有三台机器,这三台机器在一天内不需工人维护的概率:第一台为0.9,第二台为0.8,第三台为0.85,问一天内:⑴3台机器都要维护的概率是多少?⑵ 其中恰有一台要维护的概率是多少?⑶至少一台需要维护的概率是多少?【例23】为拉动经济增长,某市决定新建一批重点工程,分为基础设施工程、民生工程和产业建设工程三类•这三类工程所含项目的个数分别占总数的1,1,1•现有3名工人独立地从中任2 3 6选一个项目参与建设•求:⑴ 他们选择的项目所属类别互不相同的概率;⑵ 至少有1人选择的项目属于民生工程的概率.【例24】甲、乙两个人独立地破译一个密码,他们能译出密码的概率分别为1和-,求:3 4⑴两个人都译出密码的概率;⑵两个人都译不出密码的概率;⑶恰有1个人译出密码的概率;⑷至多1个人译出密码的概率;⑸至少1个人译出密码的概率.【例25】从10位同学(其中6女,4男)中,随机选出3位参加测验,每位女同学能通过测验的概率均为4,每位男同学能通过测验的概率均为3,试求:5 5⑴选出的3位同学中至少有一位男同学的概率;⑵10位同学中的女同学甲和乙及男同学丙同时被抽到,且三人中恰有二人通过测验的概率.【例26】甲、乙两个篮球运动员互不影响地在同一位置投球,命中率分别为1与p,且乙投球2次均2未命中的概率为—.16⑴求乙投球的命中率p ;⑵求甲投球2次,至少命中1次的概率;⑶若甲、乙两人各投球2次,求两人共命中2次的概率.【例27】一汽车沿一街道行驶,需要通过三个设有红绿灯的路口,每个信号灯彼此独立工作,且红绿灯信号显示时间相等.以X表示该汽车首次遇到红灯时已通过的路口个数,求X的分布列以及该汽车首次遇到红灯时至少通过两个路口的概率.【例28】甲、乙二射击运动员分别对一目标射击1次,甲射中的概率为0.8,乙射中的概率为0.9,求:⑴2人都射中的概率?⑵2人中有1人射中的概率?⑶2人至少有1人射中的概率?⑷2人至多有1人射中的概率?【例29】(07福建)甲、乙两名跳高运动员一次试跳2米高度成功的概率分别是0.7, 0.6,且每次试跳成功与否相互之间没有影响,求:⑴甲试跳三次,第三次才成功的概率;⑵甲、乙两人在第一次试跳中至少有一人成功的概率;⑶甲、乙各试跳两次,甲比乙的成功次数恰好多一次的概率.【例30】A、B两篮球队进行比赛,规定若一队胜4场则此队获胜且比赛结束(七局四胜制),A、B 两队在每场比赛中获胜的概率均为 -,X为比赛需要的场数,求X的分布列及比赛至少要进2行6场的概率.【例31】已知5只动物中有1只患有某种疾病,需要通过化验血液来确定患病的动物•血液化验结果呈阳性的即为患病动物,呈阴性即没患病•下面是两种化验方法:方案甲:逐个化验,直到能确定患病动物为止.方案乙:先任取3只,将它们的血液混在一起化验•若结果呈阳性则表明患病动物为这3只中的1只,然后再逐个化验,直到能确定患病动物为止;若结果呈阴性则在另外2只中任取1只化验.求依方案甲、乙分别所需化验次数的分布列以及方案甲所需化验次数不少于方案乙所需化验次数的概率.【例32】为防止某突发事件发生,有甲、乙、丙、丁四种相互独立的预防措施可供采用,:提下,请确定一个预防方案,使得此突发事件不发生的概率最大.【例33】某公司招聘员工,指定三门考试课程,有两种考试方案.方案一:考试三门课程,至少有两门及格为考试通过;方案二:在三门课程中,随机选取两门,这两门都及格为考试通过.假设某应聘者对三门指定课程考试及格的概率分别是 a , b , c,且三门课程考试是否及格相互之间没有影响.⑴分别求该应聘者用方案一和方案二时考试通过的概率;⑵试比较该应聘者在上述两种方案下考试通过的概率的大小.(说明理由)板块三:独立重复试验与二项分(一) 知识内容1 .独立重复试验如果每次试验,只考虑有两个可能的结果A 及A ,并且事件A 发生的概率相同.在相同的条件下,重复地做n 次试验,各次试验的结果相互独立,那么一般就称它们为n 次独立重复试验.n 次独立重复试验中,事件 A 恰好发生k 次的概率为R (k )=丄p k (1—p )n ± (k=0, 1, 2,山,n ).2.二项分布若将事件A 发生的次数设为X ,事件A 不发生的概率为q"-p ,那么在n 次独立重复试验中,事 件A 恰好发生k 次的概率是P (X =k )=V p k q n ±,其中k = 0, 1,2, H|, n . 于是得到X 的分布列由于表中的第二行恰好是二项展开式 (q + p )n =疋p °q n +C : p 1q n 」+||) +C : p k q n 上坤| C : p n q 0各对应项的值,所以称这样的离散型随机变量 X 服从参数为n , p 的二项分布,记作 X ~ B ( n, p ).(二)典例分析:【例1】某人参加一次考试,4道题中解对3道则为及格,已知他的解题正确率为0.4 ,则他能及格的概率为 _____________ (保留到小数点后两位小数)【例2】 某篮球运动员在三分线投球的命中率是-,他投球10次,恰好投进3个球的概率 ____________ .(用2数值表示)【例3】 接种某疫苗后,出现发热反应的概率为 0.80,现有5人接种了该疫苗,至少有 3人出现发热反应的概率为 ____________ .(精确到0.01)【例5】一台X 型号的自动机床在一小时内不需要人照看的概为 0.8000,有四台这种型号的自动机床各自独立工作,则在一小时内至多有 2台机床需要工人照看的概率是()A . 0.1536B . 0.1808C . 0.5632D . 0.9728【例6】某商场经销某商品,顾客可采用一次性付款或分期付款购买•根据以往资料统计,顾客采用【例4】 甲乙两人进行围棋比赛, 局比赛获胜的概率均为 比赛采取五局三胜制,无论哪一方先胜三局则比赛结束,假定甲每-,则甲以3 : 1的比分获胜的概率为()3A . -827B . 6481C.-9一次性付款的概率是0.6,经销一件该商品,若顾客采用一次性付款,商场获得利润200元;若顾客采用分期付款,商场获得利润250元.⑴ 求3位购买该商品的顾客中至少有1位采用一次性付款的概率;⑵ 求3位位顾客每人购买1件该商品,商场获得利润不超过650元的概率.【例7】某万国家具城进行促销活动,促销方案是:顾客每消费1000元,便可获得奖券一张,每张奖券中奖的概率为1,若中奖,贝V家具城返还顾客现金200元•某顾客消费了3400元,得到35张奖券.⑴求家具城恰好返还该顾客现金200元的概率;⑵求家具城至少返还该顾客现金200元的概率.【例8】某单位为绿化环境,移栽了甲、乙两种大树各2株•设甲、乙两种大树移栽的成活率分别为5和4,且各株大树是否成活互不影响•求移栽的4株大树中:6 5⑴至少有1株成活的概率;⑵两种大树各成活1株的概率.【例9】一个口袋中装有n个红球(n》5且「N* )和5个白球,一次摸奖从中摸两个球,两个球颜色不同则为中奖.⑴试用n表示一次摸奖中奖的概率p;⑵若n =5,求三次摸奖(每次摸奖后放回)恰有一次中奖的概率;⑶记三次摸奖(每次摸奖后放回)恰有一次中奖的概率为P •当n取多少时,P最大?1~ B(4 ,-),贝V PC =2)等于 3【例12】从一批由9件正品、3件次品组成的产品中,有放回地抽取5次,每次抽一件,求恰好抽到 两次次品的概率(结果保留 2位有效数字).[例 13】袋子A 和B 中装有若干个均匀的红球和白球,从 A 中摸出一个红球的概率是 -,从B 中摸出3个红球的概率为p .⑴从A 中有放回地摸球,每次摸出一个,有3次摸到红球即停止.① 求恰好摸5次停止的概率;② 记5次之内(含5次)摸到红球的次数为 ,求随机变量 的分布. ⑵若A , B 两个袋子中的球数之比为1:2,将A , B 中的球装在一起后,从中摸出一个红球的概率是-,求p 的值.5【例14】设在4次独立重复试验中,事件 A 发生的概率相同,若已知事件 A 至少发生一次的概率等于 65,求事件A在一次试验中发生的概率.81【例15】我舰用鱼雷打击来犯的敌舰,至少有 2枚鱼雷击中敌舰时,敌舰才被击沉•如果每枚鱼雷的命中率都是0.6,当我舰上的8个鱼雷发射器同是向敌舰各发射 I 枚鱼雷后,求敌舰被击沉的 概率(结果保留2位有效数字).【例10】已知随机变量•服从二项分布, 【例11】已知随机变量■服从二项分布, 1~B(6'3)'则 P —2)等于(A • 2 16 4B . —C . 243 13243 243【例16】某厂生产电子元件,其产品的次品率为 5%,现从一批产品中的任意连续取出 2件,求次品数'的概率分布列及至少有一件次品的概率.【例17】某公司拟资助三位大学生自主创业,现聘请两位专家,独立地对每位大学生的创业方案进行评审•假设评审结果为 支持”或不支持”的概率都是-.若某人获得两个 支持”则给予10万2元的创业资助;若只获得一个 支持”则给予5万元的资助;若未获得 支持”则不予资助.求: ⑴该公司的资助总额为零的概率;⑵ 该公司的资助总额超过15万元的概率.【例18】射击运动员李强射击一次击中目标的概率是 0.8,他射击3次,恰好2次击中目标的概率是多少?【例19】设飞机A 有两个发动机,飞机 B 有四个发动机,如有半数或半数以上的发动机没有故障,就【例20】假设飞机的每一台发动机在飞行中的故障率都是 1 -P ,且各发动机互不影响.如果至少50%的发动机能正常运行,飞机就可以顺利地飞行•问对于多大的P 而言,四发动机飞机比二发 动机飞机更安全?【例21】一名学生每天骑车上学,从他家到学校的途中有 6个交通岗,假设他在各个交通岗遇到红灯的事件是相互独立的,并且概率都是 1 •3⑴设•为这名学生在途中遇到红灯的次数,求 的分布列;⑵设 为这名学生在首次停车前经过的路口数,求的分布列; ⑶求这名学生在途中至少遇到一次红灯的概率.能够安全飞行,现设各个发动机发生故障的概率p 是t 的函数p=1-e 」,其中t 为发动机启 动后所经历的时间, 故障). ■为正的常数,试讨论飞机 A 与飞机B 哪一个安全?(这里不考虑其它【例22】一个质地不均匀的硬币抛掷5次,正面向上恰为1次的可能性不为0,而且与正面向上恰为2 次的概率相同.令既约分数丄为硬币在5次抛掷中有3次正面向上的概率,求i j •【例23】某气象站天气预报的准确率为80%,计算(结果保留到小数点后面第2位) ⑴5次预报中恰有2次准确的概率;⑵5次预报中至少有2次准确的概率;⑶5次预报中恰有2次准确,且其中第3次预报准确的概率;【例24】某大厦的一部电梯从底层出发后只能在第18,19, 20层可以停靠.若该电梯在底层载有5位乘客,且每位乘客在这三层的每一层下电梯的概率均为-,求至少有两位乘客在20层下的概3率.【例25】10个球中有一个红球,有放回的抽取,每次取一球,求直到第n次才取得k(k < n)次红球的概率.【例26】某车间为保证设备正常工作,要配备适量的维修工•设各台设备发生的故障是相互独立的,且每台设备发生故障的概率都是0.01 •试求:⑴若由一个人负责维修20台,求设备发生故障而不能及时维修的概率;⑵若由3个人共同负责维修80台设备,求设备发生故障而不能及时维修的概率,并进行比较说明哪种效率高.【例27】A,B是治疗同一种疾病的两种药,用若干试验组进行对比试验. 每个试验组由4只小白鼠组成,其中2只服用A,另2只服用B,然后观察疗效•若在一个试验组中,服用A有效的小白鼠的只数比服用B有效的多,就称该试验组为甲类组.设每只小白鼠服用A有效的概率为2,服用B有效的概率为丄•观察3个试验组,求至少有1个甲类组的概率.(结果保留四3 2位有效数字)【例28】已知甲投篮的命中率是0.9,乙投篮的命中率是0.8,两人每次投篮都不受影响,求投篮3次甲胜乙的概率.(保留两位有效数字)【变式】若甲、乙投篮的命中率都是p=0.5,求投篮n次甲胜乙的概率.(n・N ,n > 1 )[例29】省工商局于某年3月份,对全省流通领域的饮料进行了质量监督抽查,结果显示,某种刚进入市场的x饮料的合格率为80%,现有甲,乙,丙3人聚会,选用6瓶x饮料,并限定每人喝2瓶,求:⑴甲喝2瓶合格的x饮料的概率;⑵甲,乙,丙3人中只有1人喝2瓶不合格的x饮料的概率(精确到0.01).【例30】在一次考试中出了六道是非题,正确的记“v号,不正确的记“X号.若某考生随手记上六个符号,试求:⑴全部是正确的概率;⑵正确解答不少于4道的概率;⑶至少答对2道题的概率.【例31】某大学的校乒乓球队与数学系乒乓球队举行对抗赛,校队的实力比系队强,当一个校队队员与系队队员比赛时,校队队员获胜的概率为0.6.现在校、系双方商量对抗赛的方式,提出了三种方案:⑴双方各出3人;⑵双方各出5人;⑶双方各出7人.三种方案中场次比赛中得胜人数多的一方为胜利.问:对系队来说,哪一种方案最有利?右单板块四:二项分布的期望与方(一)知识内容二项分布的均值与方差: 若离散型随机变量X服从参数为n和p的二项分布,则E(X)二np , D(x)二npq (q =1 一p).(二)典例分析:【例32】一盒子内装有10个乒乓球,其中3个旧的,7个新的,每次取一球,取后放回,取4次,则取到新球的个数的期望值是______________________ .【例33】同时抛掷4枚均匀硬币80次,设4枚硬币正好出现2枚正面向上,2枚反面向上的次数为',则的数学期望是()A. 20B. 25C. 30D. 40【例34】已知X ~ B(n , p), E(X)=8 , D(X)=1.6,则n与p的值分别为()A . 10和0.8B . 20和0.4 C. 10和0.2 D . 100和0.8【例35】某服务部门有n个服务对象,每个服务对象是否需要服务是独立的,若每个服务对象一天中需要服务的可能性是p,则该部门一天中平均需要服务的对象个数是()A. np(1-p)B. npC. nD. p(1-p)【例36】已知随机变量X服从参数为6,0.4的二项分布,则它的期望E(X)= _________________________ ,方差D(X) = ______ •【例37】已知随机变量X服从二项分布,且E( J =2.4 , D( J =1.44,则二项分布的参数n , p的值分别为____________ 、 __________ •【例38】一个袋子里装有大小相同的3个红球和2个黄球,从中同时取出2个,则其中含红球个数的数学期望是___________________ •(用数字作答)【例39】已知X ~ B(10, 0.8),求E(X)与D(X) •【例40】同时抛掷4枚均匀硬币80次,设4枚硬币正好出现2枚正面向上,2枚反面向上的次数为',则的数学期望是()A • 20 B. 25 C. 30 D. 40【例41】甲、乙、丙3人投篮,投进的概率分别是丄,2,丄•3 5 2⑴ 现3人各投篮1次,求3人都没有投进的概率;⑵ 用•表示乙投篮3次的进球数,求随机变量•的概率分布及数学期望.【例42】抛掷两个骰子,当至少有一个2点或3点出现时,就说这次试验成功. ⑴ 求一次试验中成功的概率;⑵ 求在4次试验中成功次数X的分布列及X的数学期望与方差.【例43】某寻呼台共有客户3000人,若寻呼台准备了100份小礼品,邀请客户在指定时间来领取•假设任一客户去领奖的概率为4% •问:寻呼台能否向每一位顾客都发出奖邀请?若能使每一位领奖人都得到礼品,寻呼台至少应准备多少礼品?【例44】某批数量较大的商品的次品率是5%,从中任意地连续取出10件,X为所含次品的个数,求E(X) •【例45】某地区为下岗人员免费提供财会和计算机培训,以提高下岗人员的再就业能力,每名下岗人员可以选择参加一项培训、参加两项培训或不参加培训,已知参加过财会培训的有60%,参加过计算机培训的有75%,假设每个人对培训项目的选择是相互独立的,且各人的选择相互之间没有影响.⑴任选1名下岗人员,求该人参加过培训的概率;⑵任选3名下岗人员,记■为3人中参加过培训的人数,求'的分布和期望.【例46】设进入某商场的每一位顾客购买甲种商品的概率为0.5,购买乙种商品的概率为0.6,且购买甲种商品与购买乙种商品相互独立,各顾客之间购买商品也是相互独立的•记•表示进入商场的3位顾客中至少购买甲、乙两种商品中的一种的人数,求的分布及期望.【例47】某班级有n人,设一年365天中,恰有班上的m ( m< n )个人过生日的天数为X,求X的期望值以及至少有两人过生日的天数的期望值.【例48】购买某种保险,每个投保人每年度向保险公司交纳保费a元,若投保人在购买保险的一年度内出险,则可以获得10000元的赔偿金•假定在一年度内有10000人购买了这种保险,且各投保人是否出险相互独立•已知保险公司在一年度内至少支付赔偿金10000元的概率为1041 -0.999 .⑴求一投保人在一年度内出险的概率p ;⑵设保险公司开办该项险种业务除赔偿金外的成本为50000元,为保证盈利的期望不小于0 ,求每位投保人应交纳的最低保费(单位:元)【例49】某安全生产监督部门对5家小型煤矿进行安全检查(简称安检)•若安检不合格,则必须进行整改•若整改后复查仍不合格,则强行关闭•设每家煤矿安检是否合格是相互独立的,且每家煤矿整改前安检合格的概率是0.5,整改后安检合格的概率是0.8,计算(结果精确到0.01 )•⑴恰好有两家煤矿必须整改的概率;⑵平均有多少家煤矿必须整改;⑶至少关闭一家煤矿的概率.【例50】设一部机器在一天内发生故障的概率为0.2,机器发生故障时全天停止工作.若一周5个工作日里均无故障,可获利润10万元;发生一次故障可获利润5万元,只发生两次故障可获利润0万元,发生三次或三次以上故障就要亏损2万元.求一周内期望利润是多少?(精确到0.001)【例51】在汶川大地震后对唐家山堰塞湖的抢险过程中,武警官兵准备用射击的方法引爆从湖坝上游漂流而下的一个巨大的汽油罐•已知只有5发子弹,第一次命中只能使汽油流出,第二次命中才能引爆.每次射击是相互独立的,且命中的概率都是-•3⑴求油罐被引爆的概率;⑵如果引爆或子弹打光则停止射击,设射击次数为•,求的分布列及E•【例52】某商场准备在国庆节期间举行促销活动,根据市场调查,该商场决定从2种服装商品,2种家电商品,3种日用商品中,选出3种商品进行促销活动.⑴试求选出的3种商品中至少有一种是日用商品的概率;⑵商场对选出的某商品采用的促销方案是有奖销售,即在该商品现价的基础上将价格提高150元,同时,若顾客购买该商品,则允许有3次抽奖的机会,若中奖,则每次中奖都获得数额为m的奖数额m最高定为多少元,才能使促销方案对商场有利?。