第七章 蛋白质翻译后修饰与加工(医学相关)
蛋白质翻译后修饰

细胞应激反应
在应激条件下,如氧化应激和DNA损伤, 蛋白质翻译后修饰可以调控应激反应相关蛋 白的活性和功能,从而影响细胞的生存和凋
亡。
THANK YOU
泛素化作用
泛素化可以影响靶蛋白的稳定性、定位、活性以及与其他蛋白质的相互作用,从 而调控细胞内的多种生物学过程,如细胞周期、信号转导和自噬等。
泛素化可以标记受损或不需要的蛋白质,引导其被蛋白酶体降解,从而维持细胞 内蛋白质的平衡。
泛素化调控
泛素化过程受到严格的调控,涉及多种酶的协同作用。这些酶包括E1(泛素活化酶)、 E2(泛素结合酶)和E3(泛素连接酶)。
E3酶在泛素化过程中起着关键作用,它能够识别并结合特定的靶蛋白,将泛素分子准 确地连接到靶蛋白上。
此外,去泛素化酶能够逆转泛素化过程,去除已经结合在靶蛋白上的泛素分子,从而对 泛素化进行动态调控。
05
其他翻译后修饰
乙酰化
总结词
乙酰化是一种常见的蛋白质翻译后修饰,通过将乙酰基团连接到蛋白质的特定氨基酸残基上,可以调节蛋白质的 活性和功能。
翻译后修饰可以影响蛋白质的稳定性 ,通过增加或减少蛋白质的降解速率 ,从而影响细胞内蛋白质的水平和功 能。
蛋白质降解
某些翻译后修饰,如泛素化,可以标 记蛋白质进行降解,通过蛋白酶体途 径降解蛋白质,维持细胞内蛋白质的 动态平衡。
蛋白质功能调控
酶活性调节
亚细胞定位
许多蛋白质在翻译后被修饰以改变其酶活性, 例如,磷酸化可以激活或抑制酶的活性,从 而调控代谢过程和信号转导。
03
疾病与磷酸化
许多人类疾病与蛋白质磷酸化的异常有关。例如,一些癌症和神经退行
性疾病的发生与特定蛋白质的异常磷酸化有关。因此,对蛋白质磷酸化
蛋白质翻译后修饰与加工

VS
信号转导
在信号转导过程中,蛋白质的翻译后修饰 可以影响蛋白质与其他信号分子或受体的 结合,从而调控信号转导通路的激活或抑 制。
蛋白质构象变化
构象变化
某些蛋白质在翻译后经过特定的化学修饰, 如磷酸化、乙酰化等,这些修饰可以改变蛋 白质的构象,从而影响蛋白质的功能。
结构域运动
蛋白质的结构域之间可以发生相对运动,这 种运动可以影响蛋白质与其他分子的结合或 构象变化,从而调控蛋白质的功能。
糖基化
总结词
糖基化是一种在蛋白质翻译后发生的修饰,通过将糖链连接到蛋白质的特定氨基酸残基上,影响蛋白质的结构和 功能。
详细描述
糖基化分为两种类型:N-糖基化和O-糖基化。N-糖基化发生在新生蛋白的N-端,而O-糖基化发生在丝氨酸或苏 氨酸残基上。糖基化可以影响蛋白质的稳定性、分泌和细胞间的相互作用,参与多种生物学过程,如细胞识别、 信号转导和免疫应答等。溶酶体途径Fra bibliotek溶酶体
是一种细胞器,内部含有多种水解酶,能够分解各种生物大分子。
溶酶体途径
是指通过溶酶体降解细胞内物质的过程。
04
蛋白质定位与转运
核定位信号
01
02
03
04
核定位信号(NLS)
是一种特殊的氨基酸序列,能 够引导蛋白质进入细胞核。
核输出信号(NES)
存在于某些蛋白质中,能够将 蛋白质从细胞核输出到细胞质 。
酶的激活
某些蛋白质在翻译后经过特定的化学 修饰,如磷酸化、乙酰化或甲基化等, 这些修饰可以改变酶的构象或电荷分 布,从而激活酶的活性。
酶的失活
某些蛋白质经过特定的化学修饰后, 如泛素化或糖基化等,会导致酶的活 性降低或完全失活,从而调控蛋白质 的降解或功能。
蛋白质翻译后修饰在疾病中的作用

蛋白质翻译后修饰在疾病中的作用在生物体内,蛋白质是一种十分重要的生物分子,它们扮演着各种各样的角色,涉及到细胞的结构、代谢、信号传递等重要生命过程。
而对于蛋白质的生物学研究,蛋白质翻译后修饰便是一个十分重要的研究方向。
蛋白质翻译后修饰通常指的是在蛋白质翻译完成之后,通过一系列的化学反应,将功能上等价但化学性质不同的官能团(如磷酸、葡萄糖、甲基等)或者其他生物分子(如脂质、多糖等)结合到蛋白质分子中,改变蛋白质的生理性状和生物学功能。
这些修饰作用可以分为多种类型,例如丝氨酸/苏氨酸磷酸化、酰化、糖基化、甲基化等。
蛋白质翻译后修饰广泛存在于生物体内的各种重要生命过程中,比如细胞的分裂、凋亡、信号传递、DNA的复制和修复等等。
它对细胞的正常功能、形态和稳定性起着非常重要的作用,也是许多蛋白质功能成功发挥的关键。
然而,一些疾病也与蛋白质翻译后修饰的异常有关。
一、蛋白质翻译后修饰在肿瘤发病中的作用磷酸化修饰是蛋白质修饰中最常见的一种。
在多种类型的肿瘤中,磷酸化的异常是常见的,并且与肿瘤的发生和发展密切相关。
磷酸化修饰导致了一系列细胞生物学功能的改变,比如,增强了细胞的增殖、凋亡抑制和转移等特性。
一个比较典型的例子是SRC家族蛋白激酶。
这个蛋白在正常情况下表达适量,并参与信号传导,细胞增殖,细胞粘附等过程。
但当该蛋白发生磷酸化修饰异常时,它的催化能力就会非常危险并会导致各种癌症的发生。
实验表明,对SRC抑制剂可以有效减少肿瘤的生长和转移。
二、蛋白质翻译后修饰在神经退行性疾病中的作用糖基化是另外一种常见的蛋白质修饰。
在神经退行性疾病中,如愈切-雅克布病、阿尔茨海默氏病等,糖基化修饰的异常会导致脑部神经元失常并逐渐死亡。
这种异常发生的原因便是一些特定的蛋白质糖基化改变。
例如,α-半乳糖转移酶或β-葡萄糖转移酶的缺陷可使蛋白质发生异常糖基化。
糖基化剂也会影响到其他类型的蛋白质修饰,例如磷酸化和甲基化。
因此,糖基化在神经退行性疾病中的作用是十分重要和值得深入研究的。
蛋白质翻译后修饰及其功能

蛋白质翻译后修饰及其功能蛋白质是生命体系中重要的组成部分,扮演着细胞结构支架、催化酶、受体分子等多种角色。
在细胞内,蛋白质是由氨基酸链经过翻译、后修饰后形成的。
其中后修饰对蛋白质结构和功能具有至关重要的作用。
蛋白质翻译后修饰是通过一系列的生物合成途径实现的。
最常见的修饰方式有磷酸化、甲基化、酰化等。
磷酸化是指添加磷酸基团到蛋白质分子上,是最常见也是最重要的修饰方式之一。
磷酸化可以调节蛋白质的活性、稳定性、转运、定位等功能。
甲基化是指添加甲基基团到蛋白质分子上,它可以调节蛋白质的收缩状态,从而改变其结构和功能。
酰化则是指添加酰基团到蛋白质分子上,它主要发生在赖氨酸残基上,可以影响蛋白质间的相互作用和结合。
除了上述常见的修饰方式外,还有其他一些修饰方式,如糖基化、硫酸化、羟基化等。
糖基化是指在蛋白质分子上附加糖类分子,它可以改变蛋白质的结构和稳定性,并影响蛋白质的定位和生物学活性。
硫酸化是指添加硫酸基团到酪氨酸残基上,它可以增加蛋白质的亲水性和溶解度。
羟基化则是指添加羟基基团到蛋白质分子上,它可以改变蛋白质的结构和生物学活性。
蛋白质翻译后修饰对蛋白质功能的影响是多方面的。
首先,修饰可以影响蛋白质的结构和稳定性,从而改变其生物学活性。
例如,磷酸化可以调节蛋白质的活性和稳定性,甲基化可以改变蛋白质的折叠状态,酰化可以影响蛋白质间的相互作用和结合。
其次,修饰可以调节蛋白质的转运和定位。
例如,糖基化可以影响蛋白质的定位和生物学活性,硫酸化可以增加蛋白质的亲水性和溶解度。
最后,修饰还可以影响蛋白质间的相互作用和结合。
例如,酰化可以影响蛋白质间的结合和相互作用,糖基化可以增加蛋白质间的亲和性和识别性。
总之,蛋白质翻译后修饰是细胞内最重要的调节机制之一。
通过调节蛋白质的结构和生物学活性,修饰可以影响细胞的生殖、分化、维护以及功能发挥。
现代生物学研究中最前沿的蛋白质后修饰研究内容主要涉及该领域内的新修饰方式和应用价值方面。
蛋白质的翻译后修饰

蛋白质的翻译后修饰蛋白质是生物体内最为重要的分子之一,其功能与结构多种多样,而这些功能与结构的多样性与蛋白质的翻译后修饰密切相关。
在蛋白质翻译过程结束后,细胞内往往还需要对蛋白质进行进一步的后修饰,以实现其功能的发挥。
这些后修饰包括糖基化、磷酸化、乙酰化等,它们能够调节蛋白质的结构与功能,从而对细胞的生理过程发挥重要作用。
一、糖基化修饰糖基化修饰是指在蛋白质分子上附加糖基的过程。
这种修饰可以发生在蛋白质的Asn残基上,形成N-糖基化,也可以发生在蛋白质的Ser或Thr残基上,形成O-糖基化。
糖基化修饰能够调节蛋白质的稳定性、可溶性和定位,还可以影响蛋白质与其他分子的相互作用。
例如,MUC1蛋白质的糖基化修饰在肿瘤细胞的侵袭和转移中起到重要的调节作用。
二、磷酸化修饰磷酸化修饰是指在蛋白质分子上附加磷酸基团的过程。
磷酸化修饰通过蛋白激酶的作用来实现,它能够调节蛋白质的活性、稳定性和相互作用,影响蛋白质的信号传导、细胞周期和调控等生理过程。
例如,磷酸化修饰能够激活转录因子NF-κB,参与细胞对炎症和免疫反应的应答。
三、乙酰化修饰乙酰化修饰是指在蛋白质分子上附加乙酰基的过程。
这种修饰通常发生在蛋白质的赖氨酸残基上,通过乙酰转移酶来实现。
乙酰化修饰能够调节蛋白质的稳定性、DNA结合能力和转录调控活性,对细胞发育、增殖和分化等过程具有重要作用。
例如,乙酰化修饰通过调控组蛋白交换和染色质结构的紧凑性,影响基因的表达。
四、其他修饰形式除了糖基化、磷酸化和乙酰化修饰外,蛋白质的翻译后修饰还包括甲基化、泛素化、酰化等多种形式。
这些修饰过程能够进一步改变蛋白质的结构与功能,从而参与调控细胞内的生物学过程。
例如,泛素化修饰能够调节蛋白质的降解和稳定性,参与细胞凋亡和细胞周期控制。
总结蛋白质的翻译后修饰是细胞内多种生物学过程的关键环节,它能够调节蛋白质的结构与功能,从而对细胞的生理过程发挥重要作用。
糖基化、磷酸化、乙酰化以及其他形式的修饰能够改变蛋白质的特性,对细胞信号传导、基因表达和细胞周期等起到调控作用。
蛋白质的翻译和翻译后修饰

蛋白质的翻译和翻译后修饰生命是由许许多多的分子组成的,而蛋白质是其中最为重要的一种。
蛋白质是由一串氨基酸组成的长链,这一长链需要经过翻译才能够转化为具有生物学功能的分子。
蛋白质的翻译和翻译后修饰是生命过程中最为重要的一环。
一、蛋白质的翻译大多数蛋白质翻译是在细胞的核内进行的,当DNA信息需要被转录成RNA信息时,核糖核酸(RNA)由RNA聚合酶开始合成。
生物体内细胞所合成的蛋白质大多是由核内DNA转录所得到的信息指令,它们之间的转化是通过RNA来实现的。
RNA只能单链存在,而DNA是双链的,因此DNA需要转录为RNA。
RNA与DNA之间的差别在于它们的碱基和糖分子不同,RNA的糖分子是核糖糖,而DNA的糖分子是脱氧核糖糖。
RNA分为mRNA、tRNA、rRNA三种类型。
其中,mRNA是单链的,又称为信使RNA,它携带着从DNA中转录来的信息,将这些信息传递到细胞质中的核糖体。
tRNA是转运RNA,它具有一定的三维结构,能够识别对应的氨基酸并将其运输到正在合成蛋白质的核糖体处。
rRNA是核糖体RNA,是组成核糖体的重要组成部分。
mRNA的翻译是通过核糖体完成的。
核糖体是由rRNA和蛋白质组成的复合物,每个核糖体可以同时合成一条蛋白质链。
当mRNA被核糖体识别后,它将被解码以便识别并对应一个氨基酸,这一过程是由tRNA完成的。
tRNA上有一个“反密码子”,它与mRNA相对应的“密码子”匹配,从而指示该tRNA上的氨基酸在蛋白质链的什么位置插入。
每次合成一个氨基酸后,核糖体会相对移动一个密码子,并等待下一个tRNA的到来。
这样反复进行直到整个蛋白质链合成完成。
在蛋白质链合成的过程中,核糖体会自动将一条完整的蛋白质链连在一起。
经过长时间的重复,整个蛋白质链就被合成出来了。
二、蛋白质翻译后修饰在蛋白质合成完成后,蛋白质还需要一些修饰才能够发挥其生物学功能。
蛋白质的修饰分为多种类型,包括切割、糖基化、磷酸化、酰化等,都是通过进一步地化学反应来修改已合成的蛋白质分子结构。
蛋白质的翻译后修饰和调控

蛋白质的翻译后修饰和调控蛋白质是生命活动中最为重要的分子之一,它们既可以是细胞的结构组成,也可以作为代谢酶、激素、调节因子等生物分子的重要载体。
蛋白质的结构和功能不仅与其天然的氨基酸序列有关,还与其经过多种酶催化的修饰过程密切相关。
这些修饰包括:翻译后修饰、翻译后超表达、裂解和脱附等。
本文将重点探讨蛋白质的翻译后修饰和调控。
一、蛋白质翻译后修饰敲蛋白质的翻译过程通常被认为是从N-到C-端,从氨基基团到羧基,由核酸和翻译机械制成。
生物细胞内的合成蛋白质,则需要进行多种酶的修饰,以使其最终呈现出所要求的生物活性和三维结构。
1. 磷酸化磷酸化是蛋白质修饰的最为普遍的一种方式,通常是由一些酪氨酸或苏氨酸上的酸性侧链上结合的磷酸基所完成。
磷酸化可以使蛋白质结构和荷电特性发生改变,进而影响蛋白质的结合和催化活性。
2. 糖基化蛋白质上的糖基化通常是由一种糖基转移酶催化的,常见的糖基包括N-糖基、O-糖基和C-糖基等。
这些糖基化行为通常可以增强蛋白质的稳定性和生物学活性,还可以改变蛋白质的质量和凝聚性质。
3. 甲基化和乙酰化蛋白质上还经常会发生一些特定结构上的编辑修饰,如甲基化和乙酰化等。
这些修饰可以影响某些细胞稳定性和外界刺激对蛋白质的响应。
二、蛋白质翻译后调控蛋白质合成不仅受制于基因表达水平和翻译效率,还受到各种内部和外部因素的调控。
下面分别分析各种调控因素。
1.蛋白酶降解蛋白质的稳定性一般由蛋白酶进行去催化。
当细胞感觉到一定的环境刺激,如氧化应激或低钙离子等,在一个较短的时间内,通常会发生蛋白酶催化或蛋白利氧化等情况。
2.磷酸酶反应蛋白质的翻译后编辑修饰中,蛋白酶对蛋白质的磷酸化处于一种动态调控周期。
在细胞中,有一类蛋白质酶能够催化磷酸化的去除,并且有很好的选择性。
这意味着当细胞需要调节某些类型蛋白质的磷酸化状态时,通过控制这些蛋白质磷酸酶反应来实现。
3.转录因子转录因子是一些能够识别DNA序列的特异性蛋白质,它们可以促进或阻止基因的转录。
蛋白质翻译后修饰的生理和病理作用

蛋白质翻译后修饰的生理和病理作用蛋白质是生命体的重要组成部分,它通过不同的修饰形式发挥着重要的生理和病理作用。
蛋白质翻译后修饰是指在蛋白质翻译完成后,通过各种方式对蛋白质结构或功能的改变,包括糖基化、磷酸化、乙酰化、甲基化、泛素化等。
这些修饰可以调节蛋白质的稳定性、活性、局部化和相互作用,从而影响蛋白质的生理和病理过程。
1. 糖基化修饰糖基化修饰是指在蛋白质表面添加糖分子,形成糖蛋白。
这种修饰在细胞表面重要的生理过程中起着重要作用。
例如,糖蛋白在细胞信号传导、凝集素介导的细胞间相互作用等生理过程中都有着重要的作用。
同时,糖基化也参与到许多疾病的发生和发展中。
例如,糖尿病中的糖基化终产物可以引发炎症反应和细胞凋亡。
2. 磷酸化修饰磷酸化修饰是指向蛋白质添加磷酸基团,通过激酶和磷酸酶的相互作用实现。
磷酸化可以调控蛋白质的活性和相互作用。
例如,细胞周期中的多种丝裂原激活激酶等都是通过磷酸化调控蛋白质的活性。
同时,磷酸化还可以影响蛋白质的局部化,例如支持蛋白质在通道中的传输。
3. 乙酰化修饰乙酰化修饰是指向蛋白质添加乙酰基团,调节蛋白质的稳定性、局部化以及相互作用。
乙酰化和脱乙酰化作用相互抵消,调节着蛋白质的活性和功能。
例如核转录因子CREB和p53促进乙酰化增加蛋白质的稳定性,提高其转录和抑制活性。
4. 甲基化修饰甲基化修饰是指向蛋白质添加甲基基团,通过甲基转移酶的作用实现。
这种修饰可以调节蛋白质相互作用、定位和稳定性。
例如,组蛋白的赖氨酸残基甲基化或去甲基化调象整个染色质结构和转录调控。
5. 泛素化修饰泛素化修饰是指向蛋白质添加泛素蛋白质,实现泛素分子和特定的酶机构相互作用,调节蛋白质的降解和相互作用。
例如,泛素化可以将蛋白质定位到蛋白酶体或自噬溶酶体中。
综上所述,蛋白质翻译后修饰对于调节蛋白质的生理和病理过程起着至关重要的作用,这些过程缺陷往往会损害生命的重要机能,造成多种疾病,涉及到生物学从基础到临床的各个领域。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
细胞内许多蛋白质的功能,是通过动态的蛋白质翻译后修 饰来调控的; 细胞的许多生理功能, 例如细胞对外界环 境的应答, 也是通过动态的蛋白质翻译后修饰来实现的。 人类生命过程的复杂性不单是基因直接表达的结果, 正 是蛋白质翻译后修饰, 使得一个基因并不只对应一个蛋 白质, 从而赋予人类生命过程更多的复杂性.
质,然后分泌到胞外;②蛋白质前体被分泌到
胞外或消化道,被蛋白酶加工成有生物活性的
蛋白质,如前胶原分子活化为胶原分子,胰蛋
白酶原激活等。
优质课件
5
第一节 蛋白质的糖基化
大多数蛋白质以糖蛋白形式存在,它们包括酶、免疫球蛋白、 载体蛋白、激素、毒素、凝集素和结构蛋白,功能涉及细胞 识别、信息传递、激素调节、受精、发生、发育、分化、神 经系统和免疫系统恒态维持等各个方面。而且知道,病菌、 病毒的侵染,癌细胞的增殖及转移,自身免疫疾病等都与细 胞表面的糖密切相关。
凝集素可与糖专一性地结合。目前按结合糖的类型, 凝集素可分为六类: D-甘露糖或D-葡萄糖;N-乙 酰氨基葡萄糖; N-乙酰氨基半乳糖; D-半乳糖; L-岩藻糖;唾液酸。
在植物凝集素中,只有麦胚凝集素(WGA)可专一 结合唾液酸。
优质课件
10
优质课件
11
细胞间的粘附是细胞间相互作用起决定 性作用的起始步骤。作为致病的微生物, 首先对宿主细胞进行粘着,然后才能感 染和致病。
细胞表面的凝集素能专一地识别并结合 另一细胞的糖链。凝集素的这种特性, 在细胞与细胞,细胞与基质的粘附中起 一定作用。
优质课件
12
1990年11月,三个小组同时发现了血管内 皮细胞-白细胞黏附分子1(ELAM-1), 后改称E选择素(E-selectin),又称为 动物凝集素,能识别白细胞表面的 SLex(一种血型抗原)四聚糖。
在生物合成过程中新生的肽链N端由去甲酞基酶 去除甲酰甲硫氨酸残基的甲酰基,氨肽酶去除N 端甲硫氨酸或N端某些氨基酸残基。一些分泌性 蛋白质、激素及酶最初合成的是不具有生物活 性的前体,如白蛋白原、胰岛素原等。
蛋白质前体要经过蛋白酶切割,去除一部分肽
段后才具有活性。它可以分为两种类型:①蛋
白质前体在细胞内被加工成有生物活性的蛋白
当组织受损或感染时,白细胞黏附于内皮 细胞,沿血管壁滚动并穿过管壁进入受损 组织,杀灭入侵病原物,但过多的白细胞 聚集,则会引起炎症及类风湿等自身免疫 疾病。
优质课件
13
优质课件
14
美籍华裔科学家王启辉首先用酶法合成了SLex,并 已由Cytel公司生产。Glycomed公司则从中药甘草 中,找到了SLex的类似物甘草素,可用于封闭血管 内皮细胞表面的E选择蛋白,从而达到抗炎的目的。
优质课件
15
优质课件
16
Slex及其模拟物的结构
优质课件
17
(3)构成某些抗原的决定子
聚糖与细胞和生物分子的一个很重要的特性就是表型和抗 原性,据此细胞和分子能彼此区别,人类的ABO血型以及 相关血型抗原性是由糖链决定的。A型和B型抗原决定簇的 不同只是在于糖蛋白和糖脂中的糖链的非还原端的一个糖 残基:A型为N-乙酰氨基半乳糖(GalNAc);B型为半乳糖 (Gal)。
第七章 蛋白质翻译后修饰与加工
优质课件
1
蛋白质翻译后修饰, 是指在mRNA被翻译成蛋白质后, 对 蛋白质上个别氨基酸残基进行共价修饰的过程.
蛋白质翻译后修饰在生命体中具有十分重要的作用. 人 类基因组计划的完成是20世纪最伟大的科技成果之一。 在对人类基因组进行仔细研究后发现, 人类基因大约有 30000-50000 个,这仅仅是线虫和果蝇染色体基因数的 3-5倍. 而生命体内复杂生命过程的调控, 仅仅靠这样小 数目的基因远不能满足需要。
优质课件
2
在真核动物 细胞中有20 多种蛋白质 翻译后修饰 过程,常见 的有泛素化、 磷酸化与去 磷酸化、糖 基化与去糖 基化、脂基 化、甲基化 和乙酰化等。
优质课件
3
近年来, 随着人类基因组和蛋 白质组学工作的开 展, 关于蛋白质翻译后修饰的研究也取得一系列进 展.
磷酸化涉及细胞信号转导、神经活动、肌肉收缩以 及细胞的增殖、发育和分化等生理病理过程;
A型血的个体,他们的血液中含有抗B型糖链结构的抗体; B型血的个体,其血液中则有抗A型糖链结构的抗体。一旦 输入不同血型的血液,就有可能引起免疫反应。O型血的 个体的相应的糖链结构少了AB抗原非还原端的Gal或 GalNAc。为此,这样的糖链结构不会和抗A或抗B的抗体结 合引起免疫反应。这样的血型抗原物质不仅存在于一些红
优质课件
7
O-糖肽键连接
N-糖肽键连接
GalNAc 乙酰半乳糖胺
GlcNAc 乙酰葡萄糖胺
优质课件
8
Roles of oligosaccharides
in recognition and adhesion at the cell surface
优质课件
9
(2)凝集素的特异结合作用
凝集素是一类广泛存在于自然界的一大类非免疫来 源的蛋白质或糖蛋白,它能与糖专一性地、非共价 地可逆结合,并且有凝集血细胞的作用,故称为凝 集素。
糖蛋白是蛋白质通过共价键与糖类结合的复合物,其中的糖 基少则只有一个,多则可达数百个,后者的糖基常常连接成 寡糖链,又称为聚糖(glycan)。
优质课件
6
1,糖肽连接键的类型
一条寡糖链与蛋白质中氨基酸残基可通过多种 方式共价连接,从而构成糖蛋白的糖肽连接键 (简称糖肽键)。参与糖肽共价连接的氨基酸 种类较少,常见的是丝氨酸、苏氨酸、天冬酰 胺、羟赖氨酸、羟脯氨酸。
糖基化在许多生物过程中如免疫保护、病毒的复制、 细胞生长、炎症的产生等起着重要的作用;
脂基化对于生物体内的信号转导过程起着非常关键 的作用;
组蛋白上的甲基化和乙酰化与转录调节有关。 在 体内,各种翻译后修饰过程不是孤立存在的。
优质课件
4
原核生物中肽链起始合成时,N端为甲酰甲硫氨 酸,真核肽链合成时N端是甲硫氨酸,但是成熟 的蛋白质中N端并无甲酰甲硫氨酸,大多数蛋自 质的N端也不是甲硫氨酸。