电阻焊技术资料讲解
最全的电阻焊知识汇总

电阻焊,是一种以加热方式接合金属或其他热塑性材料如塑料的制造工艺及技术,是工件组合后通过电极施加压力,利用电流通过接头的接触面及邻近区域产生的电阻热进行焊接的方法。
电阻焊特点PART 1优点1、熔核形成时,始终被塑性环包围,熔化金属与空气隔绝,冶金过程简单。
2、加热时间短,热量集中,故热影响区小,变形与应力也小,通常在焊后不必安排校正和热处理工序。
3、不需要焊丝、焊条等填充金属,以及氧、乙炔、氢等焊接材料,焊接成本低。
4、操作简单,易于实现机械化和自动化,改善了劳动条件。
5、生产率高,且无噪声及有害气体,在大批量生产中,可以和其他制造工序一起编到组装线上。
但闪光对焊因有火花喷溅,需要隔离。
缺点1、目前还缺乏可靠的无损检测方法,焊接质量只能靠工艺试样和工件的破坏性试验来检查,以及靠各种监控技术来保证。
2、点、缝焊的搭接接头不仅增加了构件的重量,且因在两板焊接熔核周围形成夹角,致使接头的抗拉强度和疲劳强度均较低。
3、设备功率大,机械化、自动化程度较高,使设备成本较高、维修较困难,并且常用的大功率单相交流焊机不利于电网的平衡运行。
电阻焊分类PART 2电阻焊方法主要有四种,即点焊、缝焊、凸焊、对焊(电阻对焊、闪光对焊),四种工序的示意图例如下↓↓↓点焊点焊是将焊件装配成搭接接头,并压紧在两柱状电极之间,利用电阻热熔化母材金属,形成焊点的电阻焊方法。
点焊主要用于薄板焊接。
点焊的工艺过程:1、预压,保证工件接触良好。
2、通电,使焊接处形成熔核及塑性环。
3、断电锻压,使熔核在压力继续作用下冷却结晶,形成组织致密、无缩孔、裂纹的焊点。
缝焊缝焊的过程与点焊相似,只是以旋转的圆盘状滚轮电极代替柱状电极,将焊件装配成搭接或对接接头,并置于两滚轮电极之间,滚轮加压焊件并转动,连续或断续送电,形成一条连续焊缝的电阻焊方法。
缝焊主要用于焊接焊缝较为规则、要求密封的结构,板厚一般在3mm以下。
对焊对焊是使焊件沿整个接触面焊合的电阻焊方法。
电阻焊

电阻点焊熔核形成过程
(3) 电阻焊过程 预压、通电加热、在压力下冷却结晶或塑 性变形和再结晶。
电阻焊与电弧焊相比有如下两个特征: (1)热效率高 电弧焊是借助外部集中热源,从外部向焊件传导热能; 电阻焊是电阻热由高温区向低温区传导,属于内部热源。 因此,热能损失比较少,热效率比较高。 (2)焊缝致密 一般电弧焊的焊缝是在常压下凝固结晶的; 电阻焊的焊缝是在有外界压力的作用下凝固结晶的,具 有锻压的特征,属于压焊范畴,所以比较容易避免产生缩 孔、疏松和裂缝等缺陷,从而获得致密焊缝。
影响接触电阻的因素:
工件表面状态 表面愈粗糙、氧 化愈严重、接触电阻愈大。 电极压力 压力愈高、接触电阻愈 小。 焊前预热 焊前预热将会使接触 电阻大大下降。
(2) 力
静压力用来调整电阻大小,改善加热。产生塑性变形或 在压力下结晶。 冲击力(锻压力)用来细化晶粒,焊合缺陷等。其压力 变化形式有平压力,阶梯压力和马鞍形压力,其中马鞍形压 力较为理想。
2.焊接(F=FW ,I=IW)
焊件加热熔化形成熔核的阶段,最后输入热量与散失热量平衡时,熔核达 到稳定尺寸。这个过程是焊接的关键,焊点强度取决于熔核尺寸。
对点焊质量的要求 1.熔核尺寸的几个基本概念 1)熔核直径 d (mm) 或
d 2 3
d 5 板厚
c
h
d
2)焊透率 A(%)
2.接触电阻Rw
1)形成原因:焊件表面的微观凸凹不平及不良导体层。
接触电阻形成原因示意图
1 )焊件表面氧化膜或污物层,使电流受到较大阻碍, 过厚的氧化膜或污物层会导致电流不能导通。 2 )由于焊件表面是凹陷不平的,使焊件在粗糙表面形 成接触点。在接触点形成电流线的集中,因此增加了 接触处的电阻Rc。 电极压力增加或温度升高使金属达到塑性状态时, 都会导致焊件间接触面积增加,促使接触电阻Rc减小。 因此,当焊件表面较清洁时,接触电阻仅在通电时极 短时间内存在,随后就会迅速减小以至消失。 接触电阻尽管存在时间极短,但在点焊极薄的铝 合金时,对熔化核的形成仍有显著影响。
电阻焊技术及其应用详解

8
纯金属(如镍、钼等)和结晶温度区间窄的 合金(碳钢、合金钢、钛合金等),熔核为柱状 组织;铝合金等熔核为“柱状+等轴”组织,而 熔核凝固组织完全是等轴组织的情况极为罕见。
如图是LY12CZ铝合金枝晶束的形貌。
(2)加热时间短,热量集中,故HAZ小,变形 与应力也小,通常在焊后不必安排校正和热处理 工序。
(3)不需要填充金属,以及氧、乙炔、氢等焊 接材料,焊接成本低。
(4)操作简单,易于实现机械化和自动化,改 善了劳动条件。
(5)生产率高,且无噪声及有害气体,大批量 生产中,可和其它制造工序一起编到组装线上。 但闪光对焊因有火花喷溅,需要隔离。
钢Rew=(1/2)Rc ; 铝合金Rew=(1/25)Rc
12
2、焊件内部电阻
内部电阻是焊接区金属本身所具有的电阻,
2Rw的析出热量占总热量的 90~95%。该区体
积比电极接触面为底圆柱体大,且:
2Rw
KAT
2 d 2 / 4
影响 2Rw的因素有:
材料的热物理性质(电阻
总电阻
率)、力学性能(压溃强 度)、焊接参数及其特征
4
电阻焊的缺点
(1)目前还缺乏可靠的无损检测方法,焊接质 量只能靠工艺试样和工件的破坏性试验来检查, 还有靠各种监控技术来保证。
(2)点、缝焊的搭接接头不仅增加了构件的重 量,且因在两板熔核周围形成夹角,致使接头的 抗拉强度和疲劳强度均较低。
(3) 设备功率大,机械化、自动化程度较高, 使设备成本较高、雄修较困难,并且常用的大功 率单相交流焊机不利于电网的正常一遥行。
电阻焊
第一章 电阻点焊 第三章 缝 焊
电阻焊点焊技术培训资料

电阻焊点焊技术培训资料电阻焊点焊技术是一种常用的金属材料连接方式,通过使用电流通过两个电极之间形成高温,使得两个金属材料在高温下瞬间熔化,然后冷却成为一个整体。
该技术在工业生产中广泛应用,对于提高生产效率和产品质量至关重要。
本文将介绍电阻焊点焊技术的原理、设备及操作方法,旨在为相关人员提供参考。
一、电阻焊点焊技术的原理电阻焊点焊技术基于欧姆定律,通过应用电流通过两个电极之间的接触点产生瞬时热量。
当电流通过电极之间的接触点时,由于电流的通过产生了阻抗,从而产生了热量。
这种瞬时高温可以瞬间熔化两个金属材料的表面,使其在瞬间接触并冷却成形。
点焊头利用了两个电极之间的电热效应,使得点焊头接触点瞬时熔化,并施加一定的压力将两个金属材料连接在一起。
二、电阻焊点焊技术的设备1. 电阻焊控制器:电阻焊控制器是点焊过程的核心设备,用于调整和控制点焊所需的电流、电压、时间等参数。
控制器通常具有数字显示屏和按键控制面板,方便操作者进行参数调整和监控。
2. 焊接电极:焊接电极是与工件接触的部分,通常由铜或铜合金制成,具有良好的导电性和导热性。
焊接电极的形状和尺寸可以根据焊接对象的形状和要求进行定制。
3. 夹具:夹具用于保持和定位工件,以确保焊接点的准确定位。
夹具通常由导电材料制成,以便电流能够顺利通过焊接点。
三、电阻焊点焊技术的操作方法1. 准备工作:确认焊接对象的材料和厚度,并根据需要调整电阻焊控制器的参数。
选择合适的焊接电极和夹具,并进行清洁和预热。
2. 夹紧工件:将工件夹紧在夹具上,使焊接接触点正确位置,并确保工件与夹具的接触电阻尽可能低。
3. 设置参数:根据工件的要求和所需的焊接效果,调整电阻焊控制器的电流、电压、时间等参数。
确保参数的准确性和稳定性。
4. 进行焊接:将焊接电极接触工件的焊接接触点,并施加一定的压力。
打开电阻焊控制器,使电流通过焊接接触点,瞬时产生高温。
保持一定的时间后,断开电流,使接触点快速冷却并凝固。
《电阻点焊技术手册》课件

点焊质量检测方法
目视检测
通过肉眼或放大镜观察点焊的外 观和周围区域,检查是否有缺陷
或异常。
超声波检测
利用超声波检测设备对点焊内部进 行检测,以确定是否存在未熔合、 气孔等内部缺陷。
拉伸试验
对点焊进行拉伸试验,以测量其抗 拉强度和伸长率,评估焊接质量。
点焊质量评估与改进
数据分析
对点焊质量检测数据进行统计分析, 找出影响焊接质量的因素,为改进提 供依据。
《电阻点焊技术手册 》ppt课件
目录
CONTENTS
• 电阻点焊技术简介 • 电阻点焊设备与工具 • 电阻点焊工艺与参数 • 电阻点焊质量检测与评估 • 电阻点焊技术案例与实践 • 电阻点焊技术发展与展望
01
电阻点焊技术简介
电阻点焊技术的定义
01
电阻点焊技术是一种利用电阻热 能将两个金属板之间熔化并连接 在一起的焊接技术。
绿色环保
随着环保意识的不断提高,未来电阻点焊技术将更加注重 绿色环保,减少焊接过程中的环境污染和能源消耗,实现 可持续发展。
THANKS
感谢您的观看
断电冷却
焊接完成后,关闭焊接电流, 让点焊部位自然冷却。
点焊参数调整
01
02
03
04
焊接电流
根据工件的材料和厚度,调整 焊接电流的大小,以获得最佳
的焊接效果。
电极压力
适当的电极压力可以保证工件 紧密接触,有利于热量的传递
和熔化。
焊接时间
根据工件的材料和厚度,以及 所需的熔深,调整焊接时间的
长短。
电极直径与间距
02
它通过在两个金属板之间施加电 流,利用电阻热能将接触面熔化 ,然后在压力下形成焊接接头。
电阻焊技术及其应用详解

电阻焊技术及其应用详解电阻焊技术是一种常用的焊接方法,通过利用电流在接触电阻上产生热量,来将两个或多个金属工件连接在一起。
本文将详细介绍电阻焊的原理、分类以及其在不同领域的应用。
一、电阻焊的原理电阻焊是利用电流通过金属工件产生的热量来进行焊接的一种方法。
当电流通过接触电阻时,电流会经过电阻而产生大量的热量,从而将接触部分的金属加热至熔点,使其熔化并形成焊缝。
通过适当的压力,使两个金属工件紧密接触,从而实现焊接。
电阻焊的原理主要包括以下几个方面:1. 电流通过金属工件时,会产生焦耳热,使接触部分温度升高。
2. 温度升高后,金属开始熔化。
3. 在适当的压力作用下,两个金属工件紧密接触,形成焊接。
二、电阻焊的分类根据电流的通道方式和焊接材料的状态,电阻焊可分为以下几类:1. 电阻点焊电阻点焊是指将两个或多个金属工件通过电阻变得热融以形成焊点的一种焊接方法。
它适用于薄板、线材等金属零部件的连接。
电阻点焊广泛应用于汽车制造、电子设备制造等领域。
2. 电阻对焊电阻对焊是指将不同材料的两个金属工件通过电阻产生的热量进行连接的一种焊接方法。
它适用于连接铝、铝合金和铜、铜合金等不同材料的金属工件。
电阻对焊常用于航空航天、电力设备等领域。
3. 电阻缝焊电阻缝焊是指将两个或多个金属工件通过电阻加热至熔点,并在一定的压力下,通过液态金属流动而形成的连接方法。
它适用于管道、容器等大型金属结构的连接。
电阻缝焊广泛应用于石油化工、锅炉制造等领域。
三、电阻焊的应用电阻焊技术在工业生产中有广泛的应用,以下是几个典型的领域:1. 汽车制造在汽车制造领域,电阻点焊是连接车身零部件的一种常用方法。
通过电阻点焊,可以将车身各个零部件焊接在一起,确保车身的结构牢固,提高整车的安全性。
2. 电子设备制造电阻焊技术在电子设备制造中也得到了广泛的应用。
例如,电子电路板上的元件连接、电子元器件之间的引线焊接等,都可以通过电阻焊技术来实现。
3. 航空航天在航空航天领域,电阻对焊是常用的焊接方法。
电阻焊基本知识

第4节电阻焊技术4.1电阻焊概述4.1.1、电阻焊基本原理1.定义:电阻焊,是工件组合后通过电极施加压力,利用电流通过接头的接触面及邻近区域产生电阻热进行焊接的方法,属压焊。
2.电阻焊热源的产生电阻焊是将焊件组合后通过电极施压,利用电流通过接头接触面及邻近区域产生的电阻热进行焊接。
要形成一个牢固的焊接接头,两焊件必须具有足够的共同晶粒。
熔焊是利用外加热源使连接处熔化,凝固晶粒而形成焊缝的,而电阻焊则是利用本身的电阻热和塑性变形的能量,形成结合面的共同晶粒而形成焊缝的,从连接的物理本质来看,二者都是靠焊接金属原子之间的结合力结合在一起的。
但他们的热源不同,在接头的形成过程中有无必要的塑性变形也不同,即实现接头坚固结合的途径不同。
这便是电阻焊与一般的熔焊的不同之处。
4.1.2、电阻焊分类电阻焊的种类很多,可根据所使用的焊接的不同特征进行分类。
图14.1.3、电阻焊的特点1.电阻焊的优点1)焊接生产率高。
点焊时通用点焊机每分钟可焊60点,若用快速点焊机则每分钟可达500点以上;对焊直径为40mm的棒材每分钟可焊一个接头;缝焊厚度为l~3mm的薄板时,其焊接速度通常为0.5~lm/min,滚对焊最高焊接速度可达60m/min。
因此电阻焊非常适合大批量生产。
2)焊接质量好。
从焊接接头来说,由于冶金过程简单,且不易受空气的有害作用,所以焊接接头的化学成分均匀,并且与母材基本一致。
从整体结构来看,由于热量集中,受热范围小,热影响区也很小,所以焊接变形不大,并且易于控制。
此外,点、缝焊时由于焊点处于焊件内部,焊缝表面平整光滑,因而焊件表面质量也较好。
3)焊接成本较低。
电阻焊时不用焊接材料,一般也不用保护气体,所以在正常情况下除必需的电力消耗外,几乎没有什么消耗,因而使用成本低廉。
4)劳动条件较好。
电阻焊时既不会产生有害气体,也没有强光辐射,所以劳动条件比较好。
此外,电阻焊焊接过程简单,易于实现机械化、自动化,因而工人的劳动强度较低。
电阻焊(点焊)培训资料

一、 点焊基本原理:1、 定义焊接是通过加热或者加压,或者两者并用;用或不用填充材料;使两分离的金属表面达到原子间的结合,形成永久性连接的一种工艺方法。
2、 基本原理1) 点焊的热源:电流通过焊接区产生的电阻热——Q=I2RtwwcR 总ew被焊工件电极电极ew图中:R 总——焊接区总电阻Rew ——电极与焊件之间接触电阻 Rw ——焊件内部电阻 Rc ——焊件之间接触电阻2) 点焊的基本循环:预压、焊接、维持、休止。
一个完整的点焊形成过程包括预压程序,焊接程序,维持程序,休止程序。
在预压阶段没有电流通过,只对母材金属施加压力。
在焊接程序和维持程序中,压力处于一定的数值下,通过电流,产生热量熔化母材金属,从而形成熔核。
在休止程序中,停止通电,压力也在逐渐减小。
预压的作用:在电极压力的作用下清除一部分接触表面的油污和氧化膜,形成物理接触点。
为以后焊接电流的顺利通过及表面原子的结合作好准备。
焊接、维持的作用:其作用是在热和机械(力)的作用下形成塑性环、熔核,并随着通电加热的进行而长大,直到获得需要的熔核尺寸。
休止的作用:其作用是是液态金属(熔核)在压力作用下更好的冷却结晶。
1、 工艺参数的匹配及影响因素 3.1 点焊工艺参数及其选择1)点焊焊接参数:焊接电流,焊接时间,焊接压力,电极端面直径。
a 焊接电流:焊接时流经焊接回路的电流称焊接电流。
对点焊质量影响最大,电流过大产生喷溅,焊点强度下降。
b 焊接时间:电阻焊时的每一个焊接循环中,自电流接通到停止的持续时间,称焊接通电时间。
时间长短对点焊质量影响也很大,时间过长,热量输入过多也会产生喷溅,降低焊点强度。
焊接电流和焊接时间是通过控制箱进行控制的,可以利用编程器进行设定。
c 电极压力:通过电极施加在焊件上的压力。
当压力过小,易产生喷溅;压力过大时,使焊接区接触面积增大,电流密度减小,熔核尺寸下降,严重时会出现未焊透的缺陷。
一般认为,在增大电极压力的同时,适当加大焊接电流或焊接时间以维持焊接加热程度不变。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
**三、(点焊)焊接循环
预压 通电 维持 休止 典型点焊循环图(P186 图8-8) 简单循环 复杂循环
*软/硬规范的概念iFra bibliotek压力i
t
硬规范(强规范):大电流、短时间
*异种材料及不等厚板点焊的工艺措施: 不等厚及异种材料焊接时、熔核偏向(产热多、散热难)一边 调整原则:增加薄料或导电、热好工件的产热,减小其散热。 具体方法:①薄件一侧电极端面小直径
②薄件一侧同导热性较差之合金作电极材料 ③采用工艺垫片 ④采用硬规范
②接触电阻RC(可从R =ρL/s进行解释)Rew
当表面清理十分洁净时,RC仅在通电开始极短的时间内存在, 随后会迅速消失。但它在焊接时间很短的情况下(如焊薄铝),对
二、热平衡及温度分布
(一)热平衡:热量小部分(10~30%)有用,大部分散失,其中主 要通过电极的热传导而散失。
(二)温度分布: 点(对)焊——中心高,四周低
1. 点焊接头形成过程(如图) 点焊循环:预压 通电 锻压 休止(可以是复杂的循环图) 2. 点焊接设计 接头形式: 搭接 折边 接头设计时应注意考虑: 点距、边距、搭接量、分 流、装配间隙等。
1)点距最小值主要是考虑分流影响。
(1)点距小时,接头会因分流而影响其强度;大的点距
又会限制可安排的点焊数量。因此,必须兼顾点距和焊点数 量,才能获得最大的接头强度。
第八章 电阻焊 (RW)
第一节 电阻焊的实质、分类及特点
一、电阻焊(resistance welding)的实质
定义:将被焊工件压紧于两电极之间,利用流经工件接触面及邻近区域
产生的电阻热将其加热到熔化或塑性状态,使之形成接头的一种焊接
二方、法电。阻焊的分类 按电流形式分:(P182 图8-1)交3、直、脉冲2 按接头特点分:
点焊(spot welding)缝焊(beam welding)对焊( Butt Resistance Welding)
三、电阻焊的特点
优点:生产率高(滚缝60m/min) 焊接质量好:冶金;HAZ小;表面
好) 焊接成本低:无材料;保护气; 劳动条件好:无光;气;自动化
缺点:
对参数波动敏感:t短
焊后难于无损检测?
第三节 点焊、凸焊与缝焊
一、点焊(spot welding)(21)
点焊是一种高速、经济的连接方法。它适用于制造可以采用搭接接头、
不要求气密、厚度小于3mm的冲压、轧制的薄板构件。
点焊有时也用于连接厚度≧6mm的金属板,但与熔焊的对接相比较,点焊的承载能力 低,搭接接头增加了构件的重量和成本,且需要昂贵的特殊焊机,因而是不经济的。
通常是根据工件的材料和厚度,参考该种材料的焊接条件表 选取。
首先确定电极的端面形状和尺寸,其次初步选定电极压力和 焊接时间,然后调节焊接电流,以不同的电流焊接试样。经检验 熔核直径符合要求后,再在适当的范围内调节电极压力、焊接时 间和电流,进行试样的焊接和检验,直到焊点质量完全符合技术 条件所规定的要求为止。
结构受较多限制 设备功率大、复杂
四、电阻焊的应用
材料:碳素钢、合金钢、铝、铜及其合金 等
结构:广泛(多为轻型接头)
第二节 电阻焊的基本原理
一、电阻热及影响因素
1、电阻热的产生 电阻热——电阻焊的热源: Q=I2Rt
2、影响产热的因素:
⑴电阻
①焊件本身电阻RW=ρL/s
ρ是重要参数,随温度的升高而增大。(熔化后是熔化前的1~2倍)
以试样选择工艺参数时,要充分考虑试样和工件在分流、铁 磁性物质影响以及装配间隙方面的差异,并适当加以调整。
☆点焊工艺参数之间互相影响,而且还受外界因素(如材料、
结构、设备等)的影响,参数之间要合理匹配,比较复杂,所以, 已将焊接参数标准化,可查阅相关手册、必要时加以修正而得。
点焊质量的检验
最常用的检验试样的方法是撕开法。优质焊点的标志是:在撕 开试样的一片上有圆孔,而另一片上有圆凸台。厚板或淬火材料 有时不能撕出圆孔和凸台,但可通过剪切的断口判断熔核的直径, 必要时,还需进行低倍测量、拉伸试验和X射线检验等,以判定熔 透率、抗剪强度和有无缩孔、裂纹等缺陷。
电流 t
软规范(弱规范):小电流、长时间
四、电阻焊对金属的要求(P186-187)
主要从下列各项指标进行评定: 1、材料的导电性和导热性 导电性和导热性越高,焊接性越差。 2、材料的高温强度 高温(0.5~0.7Tm)屈服强度越高,焊接性越差。易产生()()()等 缺陷 3、材料的塑性温度范围 塑性温度范围越窄,对参数波动越敏感,焊接性越差。要求:焊机控 制精度高、电机随动性好 4、材料对热循环的敏感性 敏感性越强,焊接性越差。 另外——熔点高、线膨胀系数大、易形成致密氧化膜的金属,其焊 接性一般较差。
2)搭接量:一般是边距的两倍。
3)装配间隙必须尽可以能小,通常为0.1~0.2mm。刚度、厚 度越大,许用间隙越小,电极的可达性要好。
单个焊点的抗剪强度取决于两板交界面上熔核的面积。 焊透率应介于20%~80%之间(两板上的焊透率应分别测量)。 焊接不同厚度工件时,每一工件上的最小焊透率可为接头中薄件 厚度的20%,压痕深度不应超过板件厚度的15% 。
3. 点焊方法与工艺 点焊方法:单点、多点焊/单面、双面焊
点焊工艺:
①焊前清理:清理方法分机械清理和化学清理两种。 常用的机械清理方法有喷砂、喷丸、抛光以及用砂布、钢丝 刷清理等。不同的金属和合金,须采用不同的清理方法。
②工艺参数及选择:
电流(KA) (图8—13) 通电时间(周) :(图8—14),对塑性指标影响较大 电极压力(KN)
(2)多列焊点最好交错排列而不要作矩形排列。 (3)采用强条件和大的电极压力时,点距可以适当减小。 (4)若采用热膨胀监控或能够顺序改变各点电流的控制 器时,以及采用能有效地补偿分流影响的其它装置时,点距 可以不受限制。 (5)如果受工件尺寸限制,点距无法拉开而又无上述控 制手段时,为保证榕核尺寸一致,就必须以适当电流先焊各 工件的第一点,然后调大电流,再焊其相邻点。