核辐射测量方法-第五章

合集下载

核辐射的测量与剂量评估

核辐射的测量与剂量评估

核辐射的测量与剂量评估核辐射是指由放射性物质释放出的高能粒子或电磁波所引起的辐射现象。

核辐射对人体健康具有潜在的危害,因此对核辐射进行测量和剂量评估是非常重要的。

一、核辐射的测量方法核辐射的测量可以通过使用辐射计或剂量仪来进行。

辐射计是一种测量辐射强度的仪器,可以用于测量各种类型的核辐射,如α粒子、β粒子和γ射线等。

剂量仪则是用于测量个人接受的辐射剂量的设备,它可以通过测量辐射的能量来评估个人受到的辐射剂量。

在核辐射测量中,常用的辐射计有闪烁体辐射计、电离室和Geiger-Muller计数器等。

闪烁体辐射计利用放射性物质与闪烁体相互作用产生的闪烁光来测量辐射强度。

电离室则通过测量辐射粒子在气体中产生的电离效应来测量辐射剂量。

Geiger-Muller计数器则是一种常用的辐射计,它通过测量辐射粒子在气体中产生的电离效应来计数辐射粒子的数量。

二、核辐射剂量评估的方法核辐射剂量评估是指对个人或群体接受的辐射剂量进行评估和估算。

核辐射剂量评估通常包括个人剂量监测和环境剂量监测两个方面。

个人剂量监测是通过佩戴剂量仪器来测量个人接受的辐射剂量。

这些剂量仪器可以佩戴在身体的不同部位,如胸前、手腕或颈部等。

通过监测个人接受的辐射剂量,可以评估个人的辐射暴露情况,并采取必要的防护措施。

环境剂量监测是通过对环境中的辐射水平进行监测来评估辐射暴露风险。

这种监测可以通过布设辐射监测站点来进行,监测站点可以布设在不同的地理位置和环境条件下,以获得全面的辐射数据。

通过对环境中的辐射水平进行监测,可以评估辐射暴露的范围和程度,并采取必要的防护措施。

三、核辐射剂量评估的意义核辐射剂量评估对于保护人体健康和环境安全具有重要意义。

首先,核辐射剂量评估可以帮助确定个人或群体接受的辐射剂量,从而评估辐射对健康的潜在影响。

这对于核工业从业人员、医疗人员和核事故受灾人员等来说尤为重要。

其次,核辐射剂量评估可以帮助制定和实施辐射防护措施。

通过评估辐射暴露情况,可以确定合适的防护措施,如佩戴个人防护装备、控制辐射源的使用和改善工作环境等,从而降低辐射对人体健康的风险。

(完整word版)核辐射探测学习题参考答案(修改)

(完整word版)核辐射探测学习题参考答案(修改)

第一章射线与物质的相互作用1.不同射线在同一物质中的射程问题如果已知质子在某一物质中的射程和能量关系曲线,能否从这一曲线求得d (氘核)与t (氚核)在同一物质中的射程值?如能够,请说明如何计算?解:P12”利用Bethe 公式,也可以推算不同带点例子在某一种吸收材料的射程。

”根据公式:)()(22v R M M v R b abb a a ZZ =,可求出。

步骤:1先求其初速度。

2查出速度相同的粒子在同一材料的射程。

3带入公式。

2:阻止时间计算:请估算4MeV α粒子在硅中的阻止时间。

已知4MeV α粒子的射程为17.8μm 。

解:解:由题意得 4MeV α粒子在硅中的射程为17.8um 由T ≌1.2×107-REMa,Ma=4得 T ≌1.2×107-×17.8×106-×44()s =2.136×1012-()s3:能量损失率计算课本3题,第一小问错误,应该改为“电离损失率之比”。

更具公式1.12-重带点粒子电离能量损失率精确表达式。

及公式1.12-电子由于电离和激发引起的电离能量损失率公式。

代参数入求解。

第二小问:快电子的电离能量损失率与辐射能量损失率计算:()20822.34700700()rad iondE E Z dx dEdx*⨯≅=≈4光电子能量:光电子能量:(带入B K ) 康普顿反冲电子能量:200.511m c Mev =ie hv E ε-=220200(1cos ) 2.04(1cos 20) 4.16160.060.3947(1cos )0.511 2.04(1cos 20)0.511 2.040.06Er Ee Mev m c Er θθ--⨯====+-+-+⨯5:Y 射线束的吸收解:由题意可得线性吸收系数10.6cm μ-=,311.2/pb g cm ρ=12220.6 5.3610/11.2/m pb cm cm g g cm μμρ--∴===⨯质量吸收系数 由r N μσ=*可得吸收截面:12322230.6 1.84103.2810/r cm cm N cmμσ--===⨯⨯ 其中N 为吸收物质单位体积中的原子数2233.2810/N cm =⨯ 0()t I t I e μ-=要求射到容器外时强度减弱99.9% 0()0.1%0.001t I t e I μ-∴=∴=即t=5In10 =11.513cm6:已知)1()(tι--=e A t f t 是自变量。

核辐射测量原理复习知识要点

核辐射测量原理复习知识要点

第一章 辐射源1、实验室常用辐射源有哪几类?按产生机制每一类又可细分为哪几种?带电粒子源快电子源: β衰变 内转换 俄歇电子 重带电粒子源: α衰变 自发裂变非带电粒子源电子辐射源:伴随衰变的辐射、湮没辐射、伴随核反应的射线、轫致辐射、特征X 射线 中子源:自发裂变、放射性同位素(α,n )源、光致中子源、加速的带电粒子引起的反应 2、选择辐射源时,常需要考虑的几个因素是什么? 答:能量,活度,半衰期。

3、252Cf 可做哪些辐射源?答:重带点粒子源(α衰变和自发裂变均可)、中子源。

第二章 射线与物质的相互作用电离损失:入射带电粒子与核外电子发生库仑相互作用,以使靶物质原子电离或激发的方式而损失其能量作用机制:入射带电粒子与靶原子的核外电子间的非弹性碰撞。

辐射损失:入射带电粒子与原子核发生库仑相互作用,以辐射光子的方式损失其能量。

作用机制:入射带电粒子与靶原子核间的非弹性碰撞。

能量歧离:单能粒子穿过一定厚度的物质后,将不再是单能的,而发生了能量的离散;这种能量损失的统计分布,称为能量歧离。

引起能量歧离的本质是:能量损失的随机性。

射程:带电粒子沿入射方向所行径的最大距离。

路程:入射粒子在物质中行径的实际轨迹长度。

入射粒子的射程:入射粒子在物质中运动时,不断损失能量,待能量耗尽就停留在物质中,它沿原来入射方向所穿过的最大距离,称为入射粒子在该物质中的射程。

重带电粒子与物质相互作用的特点: 1、主要为电离能量损失2、单位路径上有多次作用——单位路径上会产生许多离子对3、每次碰撞损失能量少4、运动径迹近似为直线5、在所有材料中的射程均很短 电离损失: 辐射损失:快电子与物质相互作用的特点: 1、电离能量损失和辐射能量损失2、单位路径上较少相互作用——单位路径上产生较少的离子对3、每次碰撞损失能量大4、路径不是直线,散射大⎛⎫ ⎪⎝⎭242ion 0dE 4πz e -=NZB dx m v ()()⋅≅rad ion dE/dx E ZdE/dx 800222NZ m E z dx dE rad∝⎪⎭⎫ ⎝⎛-21m S rad ∝E S rad ∝2NZ S rad ∝带电粒子在靶物质中的慢化:(a) 电离损失-带电粒子与靶物质原子中核外电子的非弹性碰撞过程。

核辐射检测方法

核辐射检测方法

核辐射检测方法一、辐射检测的重要性。

1.1 核辐射可不是闹着玩的,那是个无形的“恶魔”。

它悄无声息地存在,可能对人体健康、环境造成巨大危害。

就像隐藏在暗处的刺客,随时可能给我们致命一击。

所以检测核辐射就如同在黑暗中点亮一盏灯,让我们能看清这个危险在哪里。

1.2 从大的方面说,对核设施周围的辐射检测关系到整个地区甚至国家的安全。

一旦核辐射超标,那影响的可是千千万万的老百姓。

这就好比守护一座城池,核辐射检测就是城墙上的瞭望哨,一点都不能马虎。

2.1 辐射剂量仪检测。

这就像是一个小小的“辐射侦探”。

它能直接测量出某个区域的辐射剂量。

这种仪器操作起来比较简单,就像用温度计测温度一样。

一般在一些可能存在核辐射风险的场所,像核电站周边、医院的放射科附近,工作人员就会拿着这个剂量仪到处走走测测。

如果数值超出正常范围,那就得拉响警报,好好排查一下原因了。

2.2 盖革计数器检测。

这可是核辐射检测的“老伙计”了。

它的原理有点像听收音机,只不过它听的是辐射的“声音”。

当有辐射粒子穿过它的检测窗口时,它就会发出“滴答滴答”的声音,就像一个小闹钟在提醒我们辐射的存在。

而且它还能显示出辐射的强度数值。

在一些废旧金属回收厂,为了防止收到被辐射污染的金属,就会用盖革计数器来检测。

要是听到它“滴答”个不停,那这批金属可就有问题了,得小心对待。

2.3 热释光剂量计检测。

这个方法有点特别。

它就像一个默默记录的“小史官”。

热释光剂量计可以长时间放置在需要检测辐射的地方,比如在一些放射性实验室里。

它会把接收到的辐射能量“默默记住”,等到我们去读取它的时候,通过特殊的加热手段,让它把之前记录的辐射信息以光的形式释放出来,我们就能知道这个地方在一段时间内的辐射剂量情况了。

这就好比从一个储蓄罐里倒出之前存的硬币一样,只不过这里存的是辐射的信息。

三、检测时的注意事项。

3.1 准确性的保证。

检测核辐射可不能有半点含糊,那必须得做到准确无误。

就像射箭要射中靶心一样。

核辐射探测第五章 辐射测量方法

核辐射探测第五章 辐射测量方法
由此决定物理分辨时间。
慢符合:成形脉冲宽度>108sec. ; 快符合:成形脉冲宽度<108sec. 。
快符合的符合曲线宽度主要 是脉冲时间离散的贡献。
1
DET1
60 Co *
2
DET2
n(td ) nco nrc
23
0
t
2.符合测量装置 1)、多道符合能谱仪
加速器带电粒子核反应:
d 3H 4He n 17.6MeV
2)用吸收法测得粒子的最大射程,再根据经 验公式求得其最大能量。对衰变伴有射线发 射的样品,一般都通过能谱的测量来确定核素 的含量。
43
5.4 射线能谱的测定
1. 单能能谱的分析 1) 单晶谱仪
常用NaI(Tl),Cs(Tl),Ge(Li),HPGe等探测器
2) 单能射线的能谱
主过程:全能峰——光电效应+所有的累 计效应;康普顿平台、边沿及多次康普顿散 射;单、双逃逸峰。
同步信号频率nco ;
不存在时间离散;
成形脉冲是理想的矩形波。
DL1 DL2
0
td
符合曲线的高度为nco ,半宽度为:
FWHM 2
由此决定电子学分辨时间为: FWHM/2 = 。
电子学分辨时间与成形脉冲宽度、形状、符
合单元的工作特性等因素有关。
22
物理瞬时符合曲线: 探测器输出脉冲时间统计涨落引起的时间晃动; 系统噪声引起的时间晃动; 定时电路中的时间游动。
张立体角为4,减小了散射、吸收和几何 位置的影响。测量误差小,可好于1%。
流气式4正比计数器;(适用于固态放射 源)
内充气正比计数器和液体闪烁计数器; (适用于14C、3H等低能放射性测量,将14C、 3H混于工作介质中)

核辐射的检测方法

核辐射的检测方法

核辐射的检测方法,指标,仪器,原理和相关的环境标准核辐射与物质间的相互作用是核辐射检测方法的物理基础。

核辐射与物质间的相互作用包括电离作用、核辐射的散射与吸收,利用物质衰变辐射后的电离、吸收和反射作用并结合α、β和γ射线的特点可以完成多种检测工作。

核辐射检测仪器核辐射监测原理及方法能够指示、记录和测量核辐射的材料或装置。

辐射和核辐射探测器内的物质相互作用而产生某种信息(如电、光脉冲或材料结构的变化),经放大后被记录、分析,以确定粒子的数目、位置、能量、动量、飞行时间、速度、质量等物理量。

核辐射探测器是核物理、粒子物理研究及辐射应用中不可缺少的工具和手段。

按照记录方式,核辐射探测器大体上分为计数器和径迹室两大类。

计数器以电脉冲的形式记录、分析辐射产生的某种信息。

计数器的种类有气体电离探测器、多丝室和漂移室、半导体探测器、闪烁计数器和切伦科夫计数器等。

气体电离探测器通过收集射线在气体中产生的电离电荷来测量核辐射。

主要类型有电离室、正比计数器和盖革计数器。

它们的结构相似,一般都是具有两个电极的圆筒状容器,充有某种气体,电极间加电压,差别是工作电压范围不同。

电离室工作电压较低,直接收集射线在气体中原始产生的离子对。

其输出脉冲幅度较小,上升时间较快,可用于辐射剂量测量和能谱测量。

正比计数器的工作电压较高,能使在电场中高速运动的原始离子产生更多的离子对,在电极上收集到比原始离子对要多得多的离子对(即气体放大作用),从而得到较高的输出脉冲。

脉冲幅度正比于入射粒子损失的能量,适于作能谱测量。

盖革计数器又称盖革-弥勒计数器或G-M计数器,它的工作电压更高,出现多次电离过程,因此输出脉冲的幅度很高,已不再正比于原始电离的离子对数,可以不经放大直接被记录。

它只能测量粒子数目而不能测量能量,完成一次脉冲计数的时间较长。

多丝室和漂移室这是正比计数器的变型。

既有计数功能,还可以分辨带电粒子经过的区域。

多丝室有许多平行的电极丝,处于正比计数器的工作状态。

怎样测核辐射

怎样测核辐射

怎样测核辐射
测量核辐射需要使用特殊的仪器和设备。

常见的核辐射测量仪器有放射性侦测器和核辐射计。

以下是一种常见的方法测量核辐射:
1. 使用放射性侦测器:放射性侦测器可以检测和测量辐射来源的强度。

常见的放射性侦测器包括基于气体离子室原理的Geiger-Muller计数器和流量式电离室。

这些侦测器可以测量辐射的剂量率和累计剂量。

- 将放射性侦测器放置在要测量的区域,确保其曝露在辐射源周围。

- 读取侦测器上的剂量率或累计剂量指示器上的数值。

这些数值将显示辐射强度的度量单位,例如希沃特(Sievert)或格雷(Gray)。

2. 使用核辐射计:核辐射计是一种更高级和专业的仪器,用于测量和监测辐射化学内部的辐射水平。

- 首先,确保正确放置核辐射计的探测器,并确保其与测量区域接触。

- 打开核辐射计,启动测量程序。

- 核辐射计会测量辐射来源的电离辐射水平,并将结果显示在仪器的屏幕上。

无论使用哪种方法,进行核辐射测量时应注意以下事项:
- 使用合适的个人防护装备,如防护服、手套和面罩,以最大
限度地保护自己免受核辐射的影响。

- 在测量前和测量后校准测量仪器,以确保其准确性和可靠性。

- 学习正确使用和操作测量仪器的方法,以避免潜在的危险。

- 遵循当地和国家的辐射安全指南和法规,以确保安全操作和
处理可能的辐射源。

核辐射探测复习知识点

核辐射探测复习知识点

第一章辐射与物质的相互作用与物质相互作用:1.带电粒子与靶原子核的核外电子非弹性碰撞(电离,激发)2.带电粒子与靶原子核的非弹性碰撞(辐射损失)3.带电粒子与靶原子核弹性碰撞(核阻止)4.带电粒子与核外电子弹性碰撞电离损失能量:入射带电粒子与核外电子发生非弹性碰撞使靶物质原子电离或激发而损失的能量(电离:核外层电子客服束缚成为自由电子,原子成为正离子激发:使核外电子由低能级跃迁到高能级而使原子处于激发状态)辐射损失能量:入射带电粒子与原子核发生非弹性碰撞以辐射光子损失能量轫致辐射:入射带电粒子与原子核之间的库仑力作用使带电粒子的速度和方向改变,并伴随发射电磁辐射阻止本领:单位路径上的能量损失S=-dE/dx=S ion+S rad重:S=S ion=(1/4πε0)2(4πz2e4/m0v)2NBBethe公式结论:1.电离能了损失率和入射带电粒子速度有关,质量无关2.和电荷数平方z2正比3.S ion随粒子E/n变化曲线:a段:入射粒子能量E较低时, S ion与z2成正比,曲线上升b段(0.03MeV-3000MeV):相对论项作用不显著, S ion与E成反比,曲线下降c段:能量较高时,相对论修正项起作用, S ion与B成正比,曲线上升4.高Z 和ρ物质阻止本领高布拉格曲线:随穿透距离增大而上升,接近径迹末端,由于拾取电荷而下降。

同样能量的入射带电粒子经过一定距离后,各个粒子损失的能量不会完全相同,是随机性的,发生了能量离散,即能量歧离. 射程歧离:单能离子的射程也是涨落的为何峰值上升?因为部分粒子已经停止运动,相当于通道变窄,剩余粒子能量集中,导致峰值上升.沿x方向,能量降低,离散程度变大,峰值降低.射程R带电粒子沿入射方向所行径的最大距离路程:实际轨迹长度解释各种粒子的轨迹:重带电粒子质量大,其与物质原子的轨道电子相互作用基本不会导致运动方向有偏差,径迹几乎是直线:由于次级电离,曲线会有分叉:质子和α粒子粗细差别:能量提高,径迹变细.电子的径迹不是直线,散射大. 射程R正比于m/z21.v同两种粒子同物质R1/R2=m1/m2*(z2/z1)22.v同一种粒子两物质R a/R b=√A a/√A b *(ρb/ρa)α粒子空气射程R0=0.318Eα1.5R=3.2*10-4√A/ρ*R air比电离:带电粒子在穿透单位距离介质时产生的离子对的平均数δ射线:带电粒子在穿透介质时产生的电子-离子对中的具有足够能量可以进一步电离的电子电子S rad/S ion=EZ/800快电子S rad正比于z2E/m2*NZ2屏蔽电子材料:当要吸收、屏蔽β射线时,不宜选用重材料:当要获得强的X射线时,选用重材料做靶.电子反散射及效应:电子由原入射方向的反方向反射回来,从入射表面射出.对于放射源,反散射可以提高产额:对于探测器,会产生测量偏差. When反散射严重:对于同种材料,入射电子能量越低反散射越严重:对同样能量的入射电子,原子序数越高的材料,反散射越严重光电效应:光子把全部能量转移给某个束缚电子,使其发射出去而光子本身消失的过程.是光子和整个原子的作用结果,主要集中在内层电子,还会有俄歇电子或特征X射线.(为何不与自由电子-因为入射光子有部分能量传递给原子,使其发生反冲,否则能量不守恒)采用高Z材料可提高探测效率,有效阻挡γ射线:γ光子能量越高,光电效应截面σph 越小. 入射光子能量低时,光电子趋于垂直方向发射:入射光子能量高时,光电子趋于向前发射.康普顿效应:γ射线和核外电子非弹性碰撞,入射光子一部分能量传递给电子,使之脱离原子成为反冲电子,光子受到散射,运动方向和速度改变,成为散射光子. 散射角θ=180时即入射光子和电子对心碰撞,散射光子沿入射光子反方向射出,反冲电子沿入射方向射出-反散射.能量高的入射光子有强烈的向前散射趋势,低的向前向后散射概率相当.康普顿坪:单能入射光子所产生反冲电子的能量为连续分布,在能量较低处反冲电子数随能量变化小,呈平台状:康普顿边缘:在最大能量处,电子数目最多,呈尖锐的边界.峰值Ee=hν-200keV电子对效应:当入射光子能量较高,从原子核旁边经过时,在库伦场作用下转换成一个正电子和一个负电子.电子对效应出现条件:hν>2m0c2=1.022MeV 电子和正电子沿入射光子方向的前向角度发射,能力越高,角度越前倾. 湮没辐射:正电子湮没放出光子的过程.实验上观测到511kev的湮没辐射为正电子的产生标志单双逃逸峰:发生电子对效应后,正电子湮没放出的两个511keV的γ光子可能会射出探测器,使得γ射线在探测器中沉积的能量减小.低能高Z光电,中能低Z康普顿,高能高Z电子对.线形衰减系数μ=σγN 质量衰减系数μm=μ/ρ质量厚度x m=ρx平均自由程: 表示光子每经过一次相互作用之前,在物质中所穿行的平均厚度λ=1/μ 宽束N=N0Be-μd窄束I(x)=I0e-μx半减弱厚度:射线在物质中强度减弱一半时的厚度D1/2= λ ln2第二章气体探测器信息载流子:气体(电子离子对w=30eV,F=0.2-0.5)闪烁体(第一打拿极收集到的光电子w=300ev,F=1)半导体(电子空穴对w=3ev,F=0.1 )平均电离能:带电粒子在气体中产生一对离子对所平均消耗的能量电子和离子相对运动速度:电子漂移速度为离子1000倍,约106cm/s雪崩:电子在气体中碰撞电离的过程. 条件:足够强的电场和电离产生的自由电子非自持放电:雪崩只发生一次自持放电:通过光子作用和二次电子发射,雪崩持续发展R0C0<<1/n脉冲(电子T-<<R0C0n<<T+、离子R0C0n>>T+)、R0C0>>1/n累计(电流、脉冲束)1.仅当正离子漂移时外回路才有离子电流i+(t)2.正离子从初始位置漂移到负极过程,流过外回路电荷量不是离子自身的电荷量e,而是在正极感应电荷量q1 电子电流i-(t)同理本征电流i(t)=i+(t)+i-(t) q1+q2=e电离室构成:高压极,收集极,保护极和负载电阻工作气体:充满电离室内部的工作介质,应选用电子吸附系数小的气体.圆柱型电子脉冲原理:利用圆柱形电场的特点来减少Q-对入射粒子位置的依赖关系,达到利用”电子脉冲”来测量能量的目的.能量分辨率η=ΔE/E*100%=Δh/h*100%=2.36ΔE能谱半高宽FWHM=ηE=2.36=2.36σ探测效率:入射到脉冲探测器灵敏体积内辐射粒子被记录下的百分比总输出电荷量Q=N*e=E/W*e脉冲电离室饱和特性曲线:饱和区斜率成因:灵敏体积增加,对复合的抑制,对扩散的抑制饱和电压V1-对应90%饱和区的脉冲幅度放电电压V2工作电压V=V1+(V2-V1)/3 坪特性曲线:描绘电离室计数率和工作电压关系成因:甄别阈不同电压小于V1时在符合区,但不是每个粒子都能形成一个电子离子对.仅少数可达到计数阈值h,V0上升至饱和电压后电子离子对N基本不变分辨时间(死时间):能分辨开两个相继入射粒子间的最小时间间隔时滞:入射粒子的入射时刻和输出脉冲产生的时间差累计电离室工作状态要求输出信号的相对均方涨落V I2≈1/nT<<1 V V2≈1/2R0C0n<<1 饱和特性曲线斜率:灵敏体积增大,复合的抑制,漏电流灵敏度η=输出电流或电压值/射粒子流强度(采用多级平行电极系统可提高) why曲线后部分离:部分电子离子对复合,未达到饱和电压,引起输出电流信号偏小正比计数器是一种非自持放电的气体探测器,利用碰撞电荷讲入射粒子直接产生的电离效应进行放大,使得正比计数器的输出信号幅度比脉冲电离室显著增大输出电荷信号主要由正离子漂移贡献r处场强E(r)=V0/rlnb/a V T=ET*alnb/a 只有V0>V T才工作于正比工作区,否则电离室区气体放大倍数A=n(a)/n(r0)A仅于V0V T有关,与入射粒子位置无关气体放大过程(电子雪崩)当电子到打距极丝一定距离r0后,通过碰撞电离过程电子数目不断增加电子与气体分子碰撞过程中碰撞电离,碰撞激发(气体退激发射子外光子,阴极打出次级电子,次级电子碰撞电离) 光子反馈:次级电子在电场加速下发生碰撞电离A t=A/1-γA 光子反馈很快;加入少量多原子分子气体M可以强烈吸收气体分子退激发出的紫外光子变成M*,后来又分解为小分子(超前离解) 气体放大过程中正离子作用:1.停止电子倍增2.再次触发电子倍增(离子反馈)输出信号:1.电流脉冲形状一定,与入射粒子位置无关,电压脉冲为定前沿脉冲2.响应时间快3.R0C0>>T+时,获得最大输出脉冲幅度ANe/C0分辨时间/死时间τD与脉冲宽度正比,τD内产生的脉冲不会被记录造成计数损失,死时间可扩展. m=n/1-nτD m真实n测量时滞:初始电子由产生处漂移到阳极时间时间分辨本领:正比计数器对时间测量的精度正比计数器坪特性曲线斜率:由于负电性气体、末端与管壁效应等,有部分幅度较小的脉冲随工作电压升高而越来越多地被记录下来GM放电过程:1.初始电离和碰撞电离:电子加速发生碰撞电离形成电子潮-雪崩 2.放电传播(光子反馈):Ar*放出紫外光子打到阴极上打出次级电子 3.正离子鞘向阴极漂移,形成离子电流4.离子反馈:正离子在阴极表面电荷中和缺点GM死时间长,仅计数A t=A/1-γA自持放电:阴极新产生电子向阳极漂移引起新的雪崩,从而在外回路形成第二个脉冲,周而复始.-实现自熄:改变工作高压,增加猝熄气体-有机(阻断光子,离子反馈;工作机制:1.电子加速发生碰撞电离形成电子潮-雪崩过程 2.Ar*放出紫外光子被有机气体分子吸收3. 正离子鞘向阴极漂移实现电荷交换4.有机气体离子在阴极电荷中和),卤素(工作机制:1.电离过程靠Ne的亚稳态原子的中介作用形成电子潮2.Ne*退激发出光子在阴极打出电子,或被Br2吸收打出新点子3.正离子鞘Br+向阴极漂移4.Br+在阴极表面与电子中和超前解离)GM管和正比计数器区别:GM输出信号幅度和能量无关,只能计数,死时间非扩展型死时间校正:m=n(mτD+1)GM坪特性曲线坪斜成因:随工作电压增高,正离子鞘电荷量增加,负电性气体电子释放增加,灵敏体积增大,尖端放电增加死时间t d:电子再次在阳极附近雪崩的时间复原时间t e:从死时间到正离子被阴极收集,输出脉冲恢复正常的时间分辨时间t f:从0到第二个脉冲超过甄别阈的时间GM计数管离子对收集数N与工作电压关系图:1.复合区(电压上升,复合减少,曲线上升)2.饱和区(电荷全被收集)3.正比区N=N0M(碰撞电离产生气体放大,总电荷量正比于原电荷量)4.有限正比区N>>N0(M过大,过渡区)5.盖格区(随电压升高形成自持放电,总电离电荷与原电离无关,几条曲线重合)第三章闪烁体探测器优点:1.探测效率高,可测量不带电粒子,对于中子和γ光子可测得能谱2.时间特性好,可实现ns的时间分辨工作过程:射线沉积能量,电离产生荧光,荧光转换为光电子,光电子倍增,信号流经外回路闪烁体探测器组成:闪烁体,光电倍增管,高压电源,低压电源,分压器和前置放大器分类:无机闪烁体(无机盐晶体,玻璃体,纯晶体),有机闪烁体(有机晶体,有机液体闪烁体,塑料闪烁体)气体闪烁体(氩、氙)无机闪烁体发光机制:入射带电粒子可以产生电子空穴对,也可以产生激子(相互转化) 有机闪烁体发光机制:由分子自身激发和跃迁产生激发和发光气体闪烁体发光机制:入射粒子径迹周围部分气体被激发,返回基态时发射出光子产生电子空穴对需要三倍禁带宽度能量光能产额Y ph=n ph/E=4.3*104/MeV 闪烁效率C ph=E ph/E=13%闪烁光子传输和收集通道:反射层,光学耦合剂,光导反射层:把光子反射到窗:镜面反射和漫反射耦合剂(折射系数较大的透明介质,周围介质折射系数n1,闪烁体n0,全反射的临界角θc=sin-1n1/n0):排除空气,减少由全反射造成的闪烁光子损失光导:具有一定形状的光学透明固体材料,连接闪烁体和光电倍增管,有效地把光传输到光电转换器件上:具有较高折射系数,与闪烁体和光电转换器光学接触好. 光电倍增管PMT:把光信号转换为电信号并放大;由入射窗,光阴极,聚焦电极,电子倍增极(打拿极,次级电子产额δ=发射的次级电子数/入射的初级电子数),阳极和密封玻璃外壳组成.光谱效应:光阴极受到光照射后发射光电子的几率为波长的函数量子效率Q k(λ)=发射电子数/入射光子数光阴极的光照灵敏度S k=i k/F S a=i a/F S a=g c*M*S k第一打拿极的电子收集系数g c=第一打拿极收集到的光电子数/光阴极发出的光电子数PMT的电流放大倍数M=阳极收集到的电子数/第一打拿极收集到的电子数飞行时间(渡越时间)te:一个光电子从光阴极到达阳极的平均时间渡越时间离散Δte为te的分布函数的半宽度闪光照射到光阴极时,阳极输出信号可能不同-原因:1.光阴极的灵敏度在不同位置不同2.光阴极不同位置产生的光电子被第一打拿极收集的效率不同解决:1.改进光阴极均匀性 2.改进光电子收集均匀性 3.利用光导把光电子分散在整个光阴极输出信号:闪烁体发出闪烁光子数n ph=Y ph E 第一打拿极收集到光电子数n e=n ph T 阳极收集到电子数n A=n e M 输出电荷量Q=n A e=Y ph TMe电压脉冲型工作状态R0C0>>τ优:脉冲幅度大缺:脉冲前沿后沿慢电流脉冲型工作状态R0C0<<τ优: 脉冲前沿后沿快缺:脉冲幅度小小尺寸闪烁体:仅吸收次级电子的能量,大尺寸闪烁体:吸收全部次级电子、次级电磁辐射能量中尺寸闪烁体:吸收次级电子能量,可能吸收次级电磁辐射能量;康普顿边沿与全能峰之间连续部分-多次康普顿散射造成-康普顿效应产生的散射光子又发生康普顿效应;单逃逸峰-正电子湮没辐射时产生的两个511keV的湮没光子一个逃逸而另一个被吸收,双逃逸峰-两个光子都逃逸;全能峰-对应γ射线能量的单一能峰第四章半导体探测器本征半导体:理想的纯净半导体,价带填满电子,导带无电子禁带宽度硅300K-1.115ev 0K-1.165ev锗300K-0.665ev 0K-0.746ev 电子空穴密度硅n=p=2*1010/cm3锗n=p=2.4*1013/cm3半导体探测器分类:均匀型,PN结型,PIN结型,高纯锗HPG,化合物半导体,雪崩半导体,位置灵敏半导体半导体探测器的优点:1.非常好的位置分辨率 2.很高的能量分辨率3.很宽的线形范围4.非常快的响应时间Si:适合带电粒子测量,射程短Ge:纯度高,可以做成较大的探测器:可用于γ能谱测量掺有施主杂质的半导体中多数载流子是电子,叫做N型半导体:掺有受主杂质的半导体中多数载流子是空穴,叫P型半导体补偿效应:当p>n,N型转换为P型半导体p=n时完全补偿平均电离能特点:1.近似与入射粒子种类和能量无关,根据电子空穴对可推入射粒子能量 2.入射粒子电离产生的电子与空穴数目相等 3.半导体平均电离能约3eV,远小于气体平均电离能30eV 陷落和复合使载流子减少半导体探测器材料特性:长载流子寿命(保证载流子可被收集),高电阻率(漏电流小,结电容小)PN型半导体:适合测量α粒子这类短射程粒子,不适合测量穿透力强的射线势垒高度V0=eN d W2/2ε宽度W=(2εV0/eN d)1/2=(2εV0ρnμn)1/2PIN半导体:温度升高,Li+漂移变快;Li+形成PN结,Li+与受主杂质中和,实现自动补偿形成I区(完全补偿区,耗尽层,灵敏体积),形成PIN结why半导体PN结可作为灵敏区?1.在PN结区可移动的载流子基本被耗尽,只留下电离了的正负电中心,具有高电阻率 2.PN结上加一定负偏压,耗尽区扩展,可达全耗尽,死层极薄,外加电压几乎全部加到PN结上,形成高电场 3.漏电流小,具有高信噪比高纯锗:一面通过蒸发扩散或加速器离子注入施主杂质形成N区,并形成PN结,另一面蒸金属形成P+作为入射窗,两端引出电极第五章辐射探测中的统计学f(t)=me-mt t=1/m σt2=1/m2第六章核辐射测量方法符合事件:两个或以上在时间上相关的事件真符合:用符合电路选择同时事件反符合:用反符合电路来消除同时事件,当一个测量道没有输入信号时,另一道的信号才能从符合装置输出符合道计数率nc=Aεβεγ偶然符合:在偶然情况下同时达到符合电路的非关联事件引起的符合(偶然计数n rc=2τs n1n2) 电子学分辨时间τe=FWHM/2符合计数n c=n co+n rc 真偶符合比R=n co/n rc=1/2τs A电压工作状态脉冲幅度⎺h=Ne/C0 E=Κ1⎺h+K2=Gx+E0 G0增益E0零截α能量分辨率FWHMs=2.36√FEαW0探测器选择α:金硅面垒半导体探测器、屏栅电离室、带窗正比计数器β:半导体探测器、磁谱仪γ:单晶γ谱仪全能峰E f=Eγ单Es= Eγ-511keV双E d= Eγ-1022keVy(i)=y(I p)exp[-(i-I p)2/2σ2] η=FWHM/I p FWHM=2.36σ峰康比p=全能峰的峰值/康普顿平台的峰值半导体峰总比f p/T=特征峰面积/谱总面积第七章中子探测反应堆周期T:反应堆内中子密度变化e倍所需时间平均每代时间τ:上一代中子的产生到被吸收后又产生新一代中子的平均时间K=堆内一代裂变中子总数/堆内上一代裂变中子总数T=τ/K-1反应堆功率测量系统功能:为反应堆提供工况控制信息(控制方面),为反应堆的安全保护系统提供安全保护信号(安全方面)中子测量方法:核反冲法,核反应法,核裂变法,活化法中子能谱测量方法:核反应法,核反冲法,飞行时间法中子探测器原理:通过中子与核相互作用产生可被探测的次级粒子并记录这些刺激粒子探测过程:1.中子和辐射体发生相互作用产生带电粒子或感生放射性2.在某种探测仪表记录这些带电粒子或放射性中子探测器种类:1.气体探测器(BF3正比计数管,涂硼正比计数管,长计数管,平行板电离室,圆柱形电离室,γ补偿电离室,长中子电离室)2.固体探测器(硫化锌快中子屏,硫化锌慢中子屏,含锂闪烁体,有机闪烁体)堆芯外仪表:核仪表系统(2个源量程测量通道2个中间量程测量通道4个功率量程测量通道),提供信号,提供控制信号,监测功能堆芯内仪表:堆芯裂变电离室,涂硼室,γ温度计.自给能探测器堆芯中子注量率测量系统:驱动装置,组选择器,路选择器,中子探头。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
反散射光子能量:
m0 c 2 Ec ( 0.256Mev) 2
一、γ射线仪器谱的形成机制
康普顿散射
一、γ射线仪器谱的形成机制
形成电子对效应
二、“小探测器”的能谱响应
所谓“小”探测器是指探测器的体积小于初始γ射线与吸收 材料相互作用所产生的次级γ辐射的平均自由程;同时假定γ 射线与探测器介质相互作用产生的所有带电粒子(光电子、康普
康普顿散射 散射光子能量:
hv' |
反冲电子能量:
1 2
hv hv m0 C 2
2hv / m0 c 2 Ee | hv[ ] 2 1 2hv / m0 c
一、γ射线仪器谱的形成机制
康普顿散射 入射光子能量与最大反冲电子能量之差:
hv Ec hv Ee | 1 2hv / m0 c 2
二、不同形状γ射线源的照射量率计算方法 γ照射量率常数Γ
dx X dt

m e i E ,i i 1 i W
m
A贝可 m 光子 m 米2 焦耳 6.242 1018电子伏 1.602110-19 库仑 2 2 ni E ,i 4 l 米 i 1 转变 i 千克 光子 焦耳 33.73电子伏 A m m 库仑 2.36110 2 ni E ,i l i 1 i 千克 秒
----产生电离的本领而作出的一种量度 X=d Q/d m X=Ka e/W
Ka:γ光子在空气中的比释动能;
e:为电子的电荷;
W:在空气中形成一对离子所消耗的平均电离能。
一、基本问题
照射量率 kg· C-1· s-1 ----产生电离的本领而作出的一种量度 X=d Q/d m

X=Ka e/W
I 2Kq [ e
0
0

0 H sec
sin d e ( l 0 H ) sec sin d ]
0
0
3、圆锥台状辐射体上空γ照射量率的计算
引用金格函数Ф(x)
( x) e
x
x e t t 1dt
x


0
0
e x sec sin d ( x) cos 0 ( x sec 0 )
----产生电离的本领而作出的一种量度, X=d Q/d m d m——某体积元的空气质量; d Q——表示在质量为dm的某一体积元内的空气中, 由X射线或γ射线释放出来的全部电子(正电子或 负电子)被完全阻止于空气中时,在空气中产生 的一种符号的离子的总电荷的绝对值;
一、基本问题
照射量率 kg· C-1· s-1
第五章:伽玛射线测量方法
一、基本问题
二、不同放射性源的照射量率计算方法
二、不同探测器的影响
三、谱线复杂化 四、仪器性能指标
一、基本问题 测量γ射线的什么物理量 ??
照射量率
(强度) 能量
kg· C-1· s-1
光子数/m2s
eV、keV、MeV
一、基本问题
照射量率 kg· C-1· s-1
3、圆锥台状辐射体上空γ照射量率的计算
在P点产生的γ射线照射量率dI为:
dm ( r r0 ) 0r0 dI K 2 e Kqe ( r r0 ) 0r0 sin ddrd r
对上式积分,积分限分别取:θ:从0到θ0;φ: 从0到2π;r:r0到r1。
en e X =E W
µ en/ρ:能量为E的光子在空气中的质量吸收系数,它 表征的是能量为E的光子在空气体积元中被吸收能量 的多少
Ф:光子的注量率
一、基本问题
照射量率

kg· C-1· s-1
en e X =E W
两个重要启示:
其一,γ射线照射量率与单位时间内入射到该体积
元内的光子数ф(光子注量率,为单位时间内进入体积 元dv中的光子数目)成正比。
顿电子、正负电子对)的能量全部沉淀在探测器中。
次级γ辐射:

康普顿散射的散射γ射线 正电子湮没产生的γ光子。 轫致辐射
因为次级γ射线的平均自由程一般有几个厘米左右,如果探测器的尺寸不超过 1或2厘米,就算满足‘小”的条件
二、“小探测器”的能谱响应
二、“小探测器”的能谱响应
若入射γ射线能量低于1.02MeV,对能谱的贡献只有康普顿 散射和光电吸收的综合效应产生。相应于康普顿散射电子能 量的连续谱称为康普顿连续谱,而相应于光电子能量的窄峰 称为光电峰。对于“小”探测器,只发生单次相互作用,而 且光电峰下的面积与康普顿连续谱下的面积之比,和探测器 材料的光电截面与康普顿截面之比是相等的。 若入射γ射线能量足够高(几个MeV),那么电子对生成的效 果在电子能谱中也是明显的。对“小”探测器而言,只有负 电子和正电子的动能被积存下来,而湮没辐射逃逸掉了,其 净效应是在低于光电峰2m0c2(1.02MeV)的能谱位臵上叠加一个 双逃逸峰。“双逃逸”这个词是指两个湮没光子不再进行相 互作用就从探测器逃出去
3、圆锥台状辐射体上空γ照射量率的计算
有一个高为l,上台面半径 为R的圆锥台状辐射体出露于 地表,设辐射体密度为ρ,放 射性核素含量为q,圆锥台厚 为l,辐射体和空气对γ射线的 衰减系数分别为μ和μ0。假 设观测点位该圆锥台的圆锥顶 点P,则以P点为原点建立球坐 标系。在圆锥台中取体元 dv(dv=r2sinθdθdrdφ), 其放射性核素含量为dm=qdv,
3、面状源γ照射量率计算(圆盘源、碟源)
(1)P1点
P1点离面状源中心点的垂直距离为a,离面状源中心轴 的距离为d。在面状源上任取一面积元dS=rdrdθ,则面 积元可视为点源,该面积元源在P1点的γ照射量率为:
3、面状源γ照射量率计算(圆盘源、碟源)
对半径为 Ro 的圆盘积分,可得它在 P1 点产 生的照射量率:

2、线状源γ照射量率的计算
线状源是指长条形辐射体的横向直径远小于长 条形辐射体的长度,且远小于观测点到辐射体 的距离。如放射性管道、放射性矿带等。
2、线状源γ照射量率的计算

设线源长度为L厘米,放
射性物质沿线源均匀分布,
总放射性活度为A贝可。 那么,单位长度内的放射
性活度为A/L。又设源的
γ照射量率常数为Γ,并 忽略线源本身的自吸收。 下面分三种情况进行讨论,
圆锥台状γ射线照射量率为
I
2Kq

{( 0 H ) cos 0 ( 0 H sec 0 ) ( l 0 H ) cos 0 [(l 0 H ) sec 0 ]}
3、圆锥台状辐射体上空γ照射量率的计算
(1)无限大辐射层上空的γ射线照射量率
对角θ积分,得:
3、面状源γ照射量率计算(圆盘源、碟源)
对r积分,可得面状源上任一点的γ照射量率:
(2)P2 点 P2点位于源轴心上,在上式中,d=0,于是有:
3、面状源γ照射量率计算(圆盘源、碟源)
不同面积的矿体在不同观测高度上的γ 射线照射量率表
3、圆锥台状辐射体上空γ照射量率的计算 体源计算的考虑: 辐射体对γ射线的自吸收 体源内γ射线多次散射贡献
3
(5.2)
计算公式:
l dX ( ) A dt
2
点源γ 照量率的计算
设点源的活度为A居里,离源R米处的照射量率:
1.点源γ 照量率的计算

当点源处于均匀介质中时,在介质内部距离质 量为m 的点源R 处的γ照射量率为:

m R I K e 2 R
式中,m为放射性物质的质量(g);μ为介质对 γ射线的线衰减系数(cm-1);K为γ常数。
2、线状源γ照射量率的计算
( 2 ) P 2点
P2点在L的垂直平分线上,可视为两个长度为L/ 2的线源在此点所产生的照射量率的叠加,用与 上面同样的方法可得此点的照射率为:
2、线状源γ照射量率的计算
( 3 ) P 3点
P3点离线源另一端点的投影距离为a1,可视为 线源(a1+L)在P3点产生的照射率,减去线源a1 在P3点产生的照射率:
2、线状源γ照射量率的计算
(1)Pl点
设P1点垂直于线源的端点,距离为a。在L上取长度dL,使
dL<<a,故可把dL视为点源,此点源活度为(A/L)dL。P1点到
dL的距离r=asecθ,则点源dL在P1点产生的照射量率为 :
2、线状源γ照射量率的计算 dL=asecθdθ,代入上式得:
上式对整个L积分,即只要从角0到θ1积分, 便可得Pl点的照射量率为:
3、面状源γ照射量率计算(圆盘源、碟源)
面状源是指圆盘状辐射体的厚度远小于圆
盘的横向半径,且远小于观测点到圆盘面上 的距离。如大面积的表面放射性污染、用于 辐射消毒的大型面源、出露地表的无限大铀 矿体等。
3、面状源γ照射量率计算(圆盘源、碟源) 设面状源上放射 性物质分布均匀,其 分布半径为Ro,单位 面积上的活度为A贝 可/米2,γ照射量 率常数为Γ。分两种 情况讨论。
3、圆锥台状辐射体上空γ照射量率的计算
(3)有非放射击性覆盖层 当圆盘走向无限延伸θ0→π/2,厚度为无限大l→∞时
I
2Kq

( 1 h 0 H ) I ( 1h 0 H )
根据上式可以估算在一定测量条件下,地面伽玛测量 可探测的铀矿体直接深度。
6.3
γ射线照射量率与能量测量方法
一、γ射线仪器谱的形成机制
γ射线的探测器必须有两个特殊的功能。 首先,转换介质的作用,入射γ射线在探测器中有 适当的相互作用几率产生一个或更多的快电子; 第二,它对于这些次级电子来说必须起普通探测 器的作用,能够记录这些次级电子在探测器中损失的 能量
一、γ射线仪器谱的形成机制
相关文档
最新文档