通信原理实验报告二基带传输常用码的编码解码方法

合集下载

通信原理编码与解码实践报告

通信原理编码与解码实践报告

中南大学通信原理课程设计报告专业:通信0901姓名:学号:目录一、实验目的 (3)二、设计内容 (3)三、AMI码 (4)四、CMI码 (4)五、HDB3码 (5)六、用MATLAB仿真码型变 (6)一、实验目的通信原理实验是针对通信工程专业学生的实践教学环节,通过这一环节,可使学生巩固相关课程知识,增强动手能力,提高学生对通信系统的仿真技能。

在强调基本原理的同时,更突出设计过程的锻炼,强化学生的实践创新能力。

二、设计内容码型反变换的仿真实现Ⅰ、基本任务:由抽样判决后的AMI码型和CMI码型数字序列恢复出原始的PCM脉冲编码信号。

主要步骤和要求:(1)由抽样判决后的AMI码型数字序列恢复出原始的PCM脉冲编码信号(0、1信号)。

要求抽样判决后的AMI码型数字序列可以是数字型也可以是字符型;要求画出码型反变换前后的波形图。

(2)由抽样判决后的CMI码型数字序列恢复出原始的PCM脉冲编码信号。

要求抽样判决后的CMI码型数字序列可以是数字型也可以是字符型;要求画出码型反变换前后的波形图。

Ⅱ、选做任务:由抽样判决后的HDB3码型数字序列恢复出原始的PCM 脉冲编码信号。

主要步骤和要求:由抽样判决后的HDB3码型数字序列恢复出原始的PCM脉冲编码信号(0、1信号)。

要求抽样判决后的HDB3码型数字序列可以是数字型也可以是字符型;要求画出码型反变换前后的波形图。

AMI(Alternative Mark Inversion)码的全称是信号交替反转码,是通信编码中的一种,为极性交替翻转码,分别有一个高电平和低电平表示两个极性。

一、编码规则:消息代码中的0 传输码中的0 ,消息代码中的1 传输码中的+1、-1交替例如: 消息代码:1 0 1 0 1 0 0 0 1 0 1 1 1AMI码: +1 0 -1 0 +1 0 0 0 -1 0 +1 -1 +1二、AMI码的特点:1 由AMI码确定的基带信号中正负脉冲交替,而0电位保持不变;所以由AMI码确定的基带信号无直流分量,且只有很小的低频分量;2 不易提取定时信号,由于它可能出现长的连0串。

基带信号的常见码型实验代码

基带信号的常见码型实验代码

基带信号的常见码型实验代码引言随着通信技术的发展和应用的普及,基带信号的处理变得越来越重要。

在通信领域中,基带信号是指未经过调制的信号,是数字数据或模拟信号的直接表达。

基带信号的常见码型是指在数字通信中常用的信号编码方式。

本文将详细探讨基带信号的常见码型实验代码。

1. 基带信号概述基带信号是指信号通过低通滤波器之后的信号。

它是一种携带有用信息的波形信号,可以表示为一个成对的实数或复数函数。

基带信号常用于数字通信系统中的数据传输和调制解调过程。

2. 基带信号的编码方式基带信号的编码方式有很多种,其中常见的包括:2.1 单极性非归零码(Unipolar Non-Return-to-Zero,UNRZ)单极性非归零码是一种简单的基带信号编码方式。

它的特点是使用一个电平表示数据位,0表示低电平,1表示高电平。

UNRZ码的优点是编码简单,缺点是抗干扰能力较差。

2.2 双极性非归零码(Bipolar Non-Return-to-Zero,BNRZ)双极性非归零码是一种使用正负电平表示数据位的基带信号编码方式。

它的特点是0表示低电平,1表示正负两种高电平。

BNRZ码的优点是抗干扰能力较好,缺点是在传输过程中可能产生直流分量。

2.3 单极性归零码(Unipolar Return-to-Zero,URZ)单极性归零码是一种使用正电平和零电平表示数据位的基带信号编码方式。

它的特点是每个数据位的中间位置都有一个归零点,以实现数据位的识别。

URZ码的优点是抗干扰能力较好,缺点是传输速率较低。

2.4 曼彻斯特编码(Manchester Coding)曼彻斯特编码是一种使用电平转变来表示数据位的基带信号编码方式。

它的特点是每个数据位都包含一个电平转变,0表示电平下降,1表示电平上升。

曼彻斯特编码的优点是时钟恢复容易,缺点是带宽利用率较低。

3. 基带信号码型实验代码为了实现基带信号的编码方式,我们可以使用编程语言编写相应的实验代码。

通信原理实验报告

通信原理实验报告

通信原理实验报告实验一抽样定理实验二 CVSD编译码系统实验实验一抽样定理一、实验目的所谓抽样。

就是对时间连续的信号隔一定的时间间隔T 抽取一个瞬时幅度值(样值),即x(t)*s(t)=x(t)s(t)。

在一个频带限制在(0,f h)内的时间连续信号f(t),如果以小于等于1/(2 f h)的时间间隔对它进行抽样,那么根据这些抽样值就能完全恢复原信号。

抽样定理告诉我们:如果对某一带宽有限的时间连续信号(模拟信号)进行抽样,且抽样速率达到一定数值时,那么根据这些抽样值就能准确地还原信号。

这就是说,若要传输模拟信号,不一定要传输模拟信号本身,可以只传输按抽样定理得到的抽样值。

二、功能模块介绍1.DDS 信号源:位于实验箱的左侧(1)它可以提供正弦波、三角波等信号,通过连接P03 测试点至PAM 脉冲调幅模块的32P010 作为脉冲幅度调制器的调制信号x(t)。

抽样脉冲信号则是通过P09 测试点连至PAM 脉冲调幅模块。

(2)按下复合式按键旋钮SS01,可切换不同的信号输出状态,例如D04D03D02D01=0010对应的是输出正弦波,每种LED 状态对应一种信号输出,具体实验板上可见。

(3)旋转复合式按键旋钮SS01,可步进式调节输出信号的频率,顺时针旋转频率每步增加100Hz,逆时针减小100Hz。

(4)调节调幅旋钮W01,可改变P03 输出的各种信号幅度。

2.抽样脉冲形成电路模块它提供有限高度,不同宽度和频率的抽样脉冲序列,可通过P09 测试点连线送到PAM 脉冲调幅模块32P02,作为脉冲幅度调制器的抽样脉冲s(t)。

P09 测试点可用于抽样脉冲的连接和测量。

该模块提供的抽样脉冲频率可通过旋转SS01 进行调节,占空比为50%。

3.PAM 脉冲调幅模块它采用模拟开关CD4066 实现脉冲幅度调制。

抽样脉冲序列为高电平时,模拟开关导通,有调制信号输出;抽样脉冲序列为低电平,模拟开关断开,无信号输出。

通信系统实验报告

通信系统实验报告

通信系统实验报告一、实验目的本次通信系统实验的主要目的是深入了解通信系统的基本原理和关键技术,通过实际操作和测量,掌握通信系统中信号的传输、调制解调、编码解码等过程,并分析系统性能和影响因素。

二、实验原理1、通信系统的组成通信系统一般由信源、发送设备、信道、接收设备和信宿组成。

信源产生原始信息,发送设备对信号进行处理和变换,使其适合在信道中传输,信道是信号传输的媒介,接收设备对接收的信号进行解调、解码等处理,恢复出原始信息,信宿则是信息的接收者。

2、调制解调技术调制是将基带信号变换为适合在信道中传输的高频信号的过程,常见的调制方式有幅度调制(AM)、频率调制(FM)和相位调制(PM)。

解调则是从已调信号中恢复出原始基带信号的过程。

3、编码解码技术编码用于提高信号传输的可靠性和有效性,常见的编码方式有差错控制编码(如卷积码、Turbo 码等)和信源编码(如脉冲编码调制PCM)。

解码是编码的逆过程。

三、实验设备及材料本次实验使用的设备包括信号发生器、示波器、频谱分析仪、通信原理实验箱等。

四、实验步骤1、搭建通信系统实验平台按照实验指导书的要求,将实验设备连接好,组成一个完整的通信系统。

2、产生基带信号使用信号发生器产生一定频率和幅度的正弦波作为基带信号。

3、调制将基带信号分别进行 AM、FM 和 PM 调制,观察调制后的信号波形和频谱。

4、信道传输将调制后的信号通过信道传输,模拟信道中的噪声和衰减。

5、解调在接收端对已调信号进行解调,恢复出基带信号,并与原始基带信号进行比较。

6、编码解码对基带信号进行编码处理,然后在接收端进行解码,观察编码解码前后信号的变化。

7、性能分析测量调制解调后的信号的误码率、信噪比等性能指标,分析不同调制方式和编码方式对系统性能的影响。

五、实验结果与分析1、调制实验结果(1)AM 调制AM 调制后的信号波形呈现出包络随基带信号变化的特点,频谱中包含载频和上下边带。

在小信号调制时,调幅指数较小,解调后的信号失真较大;在大信号调制时,调幅指数较大,解调后的信号较为接近原始基带信号。

现代通信原理实验报告

现代通信原理实验报告

太原理工大学现代科技学院现代通信原理课程实验报告专业班级通信17-3 学号 2017101086 姓名丁一帆指导教师李化实验名称 2ASK 调制与解调Matlab Simulink 仿真 同组人专业班级 通信17-3 学号 2017101086 姓名 丁一帆 成绩一、实验目的1.掌握 2ASK 的调制原理和 Matlab Simulink 仿真方法 2.掌握 2ASK 的解调原理和 Matlab Simulink 仿真方法 二、实验原理2ASK 二进制振幅调制就是用二进制数字基带信号控制正弦载波的幅度,使载波振幅随着二进制数字基带信号而变化,而其频率和初始相位保持不变。

信息比特是通过载波的幅度来传递的。

其信号表达式为:0()()cos c e t S t t ω=⋅,S(t)为单极性数字基带信号。

由于调制信号只有0或1两个电平,相乘的结果相当于将载频或者关断,或者接通,它的实际意义是当调制的数字信号“1”时,传输载波;当调制的数字信号为“0”时,不传输载波。

2ASK 信号的时间波形e2ASK(t)随二进制基带信号S(t)通断变化。

所以又被称为通断键控信号 三、实验内容、步骤1 Simulink 模型的建立通过Simulink 的工作模块建立2ASK 二级调制系统,用频谱分析仪观察调制前后的频谱,用示波器观察调制信号前后的波形……………………………………装………………………………………订…………………………………………线………………………………………正弦波源,这里使用的是Signal Processing Blockset\DSP Sources\Sine Wave,设定其幅度为2V,频率为2Hz。

基带信号源,使用的是Communications Blockset\Comm Sources\Random Data Sources\Bernoulli Binary Generator,可以产生随机数字波形。

《通信原理实验报告》实验报告

《通信原理实验报告》实验报告

《通信原理实验报告》内容:实验一、五、六、七实验一数字基带信号与AMI/HDB3编译码一、实验目的1、掌握单极性码、双击行码、归零码、非归零码等基带信号波形特点。

2、掌握AMI、HDB3码的编码规则。

3、掌握从HDB3码信号中提取位同步信号的方法。

4、掌握集中插入帧同步码同步时分复用信号的帧结构特点。

二、实验内容及步骤1、用开关K1产生代码X1110010,K2,K3产生任意信息代码,观察NRZ码的特点为不归零型且为原码的表示形式。

2、将K1,K2,K3置于011100100000110000100000态,观察对应的AMI码和HDB3码为:HDB3:0-11-1001-100-101-11001-1000-10AMI :01-1100-1000001-100001000003、当K4先置左方AMI端,CH2依次接AMI/HDB3模拟的DET,BPF,BS—R和NRZ,观察它们的信号波形分别为:BPF为方波,占空比为50%,BS—R为三角波,NRZ为不归零波形。

DET是占空比等于0.5的单极性归零信号。

三、实验思考题1、集中插入帧同步码同步时分复用信号的帧结构有何特点?答:集中插入法是将标志码组开始位置的群同步码插入于一个码组的前面。

接收端一旦检测到这个特定的群同步码组就马上知道了这组信息码元的“头”。

所以这种方法适用于要求快速建立同步的地方,或间断传输信息并且每次传输时间很短的场合。

检测到此特定码组时可以利用锁相环保持一定的时间的同步。

为了长时间地保持同步,则需要周期性的将这个特定的码组插入于每组信息码元之前。

2、根据实验观察和纪录回答:(1)不归零码和归零码的特点是什么?(2)与信源代码中的“1”码相对应的AMI 码及HDB3 码是否一定相同?答:1)不归零码特点:脉冲宽度τ等于码元宽度Ts归零码特点:τ<Ts2)与信源代码中的“1”码对应的AMI 码及HDB3 码不一定相同。

因信源代码中的“1”码对应的AMI 码“1”、“-1”相间出现,而HDB3 码中的“1”,“-1”不但与信源代码中的“1”码有关,而且还与信源代码中的“0”码有关。

《通信原理实验》AMI、HDB3等实验报告

《通信原理实验》AMI、HDB3等实验报告

《通信原理》实验报告一、实验目的1、了解几种常用的数字基带信号的特征和作用。

2、掌握AMI码的编译规则。

3、掌握HDB3码的编译规则。

4、了解滤波法位同步在码变换过程中的作用。

二、实验器材1、主控&信号源模块,2号、3号、13号模块各一块2、双踪示波器一台3、连接线若干三、实验原理1、AMI编译码实验原理框图2、HDB3编译码实验原理框图四、实验步骤实验项目一AMI编译码(归零码实验)1、用示波器分别观测编码输入的数据TH3和编码输出的数据TH11(AMI输出),观察记录波形,有数字示波器的可以观测编码输出信号频谱,验证AMI编码规则。

时域波形:编码输出信号频谱:注:CH1(上面的波形)为编码输入的数据,CH2(下面的波形)为编码输出的数据。

2、保持示波器测量编码输入数据TH3的通道不变,另一通道测量中间测试点TP5(AMI-A1),观察基带码元的奇数位的变换波形。

注:CH1(上面的波形)为编码输入的数据,CH2(下面的波形)为AMI-A1。

3、保持示波器测量编码输入数据TH3的通道不变,另一通道测量中间测试点TP6(AMI-B1),观察基带码元的偶数位的变换波形。

注:CH1(上面的波形)为编码输入的数据,CH2(下面的波形)为AMI-B1。

4、用示波器减法功能观察AMI-A1与AMI-B1相减后的波形情况,并与AMI编码输出波形相比较。

注:CH1(上面的波形)为AMI-A1,CH2(下面的波形)为AMI-B1,中间的波形为AMI-A1与AMI-B1相减后的情况。

5、用示波器对比观测编码输入的数据和译码输出的数据,观察记录AMI译码波形与输入信号波形。

注:CH1(上面的波形)为编码输入的数据,CH2(下面的波形)为译码输出的数据。

思考:译码过后的信号波形与输入信号波形相比延时多少?1个码元6、用示波器分别观测TP9(AMI-A2)和TP11(AMI-B2),从时域或频域角度了解AMI码经电平变换后的波形情况。

通信编译码实验报告(3篇)

通信编译码实验报告(3篇)

第1篇一、实验目的1. 理解通信编译码的基本原理,包括编码、解码和传输过程中的关键技术。

2. 掌握PCM、HDB3等常用编译码方法的原理和实现方法。

3. 熟悉通信编译码实验设备的使用方法,并能对实验结果进行分析。

二、实验器材1. 双踪示波器一台2. 通信原理型实验箱一台3. M3:PCM与ADPCM编译码模块和M6数字信号源模块4. 麦克风和扬声器一套三、实验原理1. 编码原理:将模拟信号转换为数字信号的过程称为编码。

常见的编码方法有PCM、HDB3等。

(1)PCM编码:PCM(脉冲编码调制)是一种常用的数字编码方法,其原理是将模拟信号进行采样、量化、编码,将连续的模拟信号转换为离散的数字信号。

(2)HDB3编码:HDB3(高密度双极性三电平)编码是一种数字基带信号,它是在AMI(非归零码)编码的基础上,引入破坏性偶极性和倒极性变换,使得信号在传输过程中不会出现连续的零电平,从而提高传输质量。

2. 解码原理:将数字信号恢复为模拟信号的过程称为解码。

解码过程与编码过程相反,主要包括反量化、反采样和低通滤波等步骤。

四、实验步骤1. 连线:根据实验要求,连接双踪示波器、通信原理型实验箱、PCM与ADPCM编译码模块、数字信号源模块、麦克风和扬声器。

2. 设置实验参数:打开实验箱电源,设置PCM与ADPCM编译码模块的参数,包括采样频率、量化位数等。

3. 观察PCM编码输出信号:用示波器观察STA、STB,将其幅度调至2V。

观察PCM编码输出信号,分析其时域和频域特性。

4. 观察HDB3编码输出信号:用示波器观察HDB3编码输出信号,分析其时域和频域特性。

5. 观察解码输出信号:观察解码后的模拟信号,分析其恢复效果。

6. 比较不同编码方法的性能:分析PCM编码和HDB3编码的优缺点,比较它们的性能。

五、实验结果与分析1. 观察到PCM编码输出信号为离散的数字信号,具有较好的抗干扰性能。

2. 观察到HDB3编码输出信号为非归零码,具有较好的传输质量。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验二基带传输常用码的编码解码方法一、实验目的了解基带传输常用码的编码解码方法。

二、实验内容设定一个信息码串,产生常见的编码如单极性非归零、双极性非归零、单极性归零、双极性归零、AMI、HDB3码的时域波形;不考虑噪声影响,以采样电平为依据恢复出原始信息串。

三、实验原理1、单极性非归零。

它用正电平和零电平分别对应二进制码“1”和“0”,波形特点是电脉冲之间无间隔,极性单一。

2.双极性非归零。

用正负电平的脉冲分别代表二进制代码“1”和“0”。

其正负电平的幅度相等、极性相反。

3.单极性归零。

是单极性非归零波形的形式。

4.双极性归零。

是双极性非归零波形的形式,兼有双极性和归零波形的特点。

5.AMI。

全称是传号交替反转码,其编码规则是将消息码的“1”交替的变换为“+1”和“-1”,而“0”保持不变。

6.HDB3。

全称是三阶高密度双极性码。

编码规则是:1)检查消息码中“0”的个数。

当连“0”数目小于等于3时,HDB3码与AMI码一样,+1、-1交替;2)当连“0”个数超过3时,将每四个连“0”化作一小节,定义为B00V,称为破坏节,其中V称为破坏脉冲,而B称为调节脉冲;3)V与前一个相邻的非“0”脉冲的极性相同,并且要求相邻的V码之间极性必须交替。

V的取值为+1或-1;4)B的取值可选0、+1或-1,以使V同时满足(3)中的两个要求;5)V码后面的传号码极性也要交替。

译码:从收到的符号序列中可以很容易的找到破坏点V,就可以断定V符号及前面的三个符号必须是连“0”符号,从而恢复四个连“0”码,再将所有-1变成+1后便得到原消息代码。

四、实验内容(一)单极性非归零、双极性非归零、单极性归零、双极性归零时域波形。

实验代码:M=10000; %产生码元数L=10; %每码元复制32次dt=0.1; %采样间隔T=L*dt; %码元时间TotalT=M*T; %总时间t=0:dt:TotalT; %时间F=1/dt; %仿真频宽df=1/T otalT; %频率间隔f=-F/2:df:F/2-df; %频率N=M*L; %总长度ShowM=16; %显示码元数ShowN=ShowM*L;ShowT=(ShowN-1)*dt;Showt=0:dt:ShowT; %时间dutyradio=0.5; %占空比randwave=round(rand(1,M)); %产生二进制随机码,M为码元个数randwave(1:16)=[1 0 1 0 0 1 0 0 1 1 0 1 0 1 0 0];onessample=ones(1,L); %定义复制的次数L,L为每码元的采样点数rerandwave=randwave(onessample,:); %复制的第1行复制L次unipolarwave=reshape(rerandwave,1,L*M); %重排成1*L*M数组%单极性不归零码subplot(4,1,1);plot(Showt,unipolarwave(1:ShowN));axis([0 20 -1.2 1.2]);%双极性不归零码bipolarwave=unipolarwave*2-1; %转换成双极性的subplot(4,1,2);plot(Showt,bipolarwave(1:ShowN)); axis([0 20 -1.2 1.2]);%单极性归零码:unipolarzerowave=zeros(1,N);for i=1:dutyradio*L %dutyradio为占空比unipolarzerowave(i+[0:M-1]*L)=randwave;endsubplot(4,1,3);plot(Showt, unipolarzerowave(1:ShowN)); axis([0 20 -1.2 1.2]);%双极性归零码bipolarzerowave=unipolarzerowave*2-1; %转换成双极性的subplot(4,1,4);plot(Showt, bipolarzerowave(1:ShowN)); axis([0 20 -1.2 1.2]);生成图像如下:此次实验产生的二进制码型是1010010011010100(可以更改),从实验结果看,与理论值是一致的。

第一个图像是单极性不归零码,第二个图像是双极性不归零码,第三个图像是单极性归零码,第四个图像是双极性归零码。

可以看出,(1)单极性不归零码“1”的表示方法:用正电平表示。

“0”的表示方法:用零电平表示。

(2)双极性不归零码“1”的表示方法:用正电平表示。

“0”的表示方法:用负电平表示。

(3)单极性归零码“1”的表示方法:半个码元周期用正电平表示,半个码元周期用零电平表示。

“0”的表示方法:半个码元周期用负电平表示,半个码元周期用零电平表示。

(4)双极性归零码“1”的表示方法:半个码元周期用正电平表示,半个码元周期用零电平表示。

“0”的表示方法:半个码元周期用负电平表示,半个码元周期用零电平表示。

(二) AMI、HDB3码时域波形实验代码:M=10000; %产生码元数L=20; %每码元复制32次dt=0.001; %采样间隔T=L*dt; %码元时间TotalT=M*T; %总时间t=0:dt:TotalT; %时间F=1/dt; %仿真频宽df=1/TotalT; %频率间隔f=-F/2:df:F/2-df; %频率N=M*L;ShowM=16; %显示码元数ShowN=ShowM*L;ShowT=(ShowN-1)*dt;Showt=0:dt:ShowT; %时间dutyradio=0.5; %占空比randwave=round(rand(1,M)); %产生二进制随机码,M为码元个数randwave(1:16)=[1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0];onessample=ones(1,L); %定义复制的次数L,L为每码元的采样点数rerandwave=randwave(onessample,:); %复制的第1行复制L次unipolarwave=reshape(rerandwave,1,L*M); %重排成1*L*M数组subplot(3,1,1);plot(Showt,unipolarwave(1:ShowN)); %绘制单极性码,便于与AMI码和HDB3码对照ylabel('单极性码');xlabel('时间(s)');axis([0 ShowT -0.2 1.2]);%AMI码生成方法amiwave=zeros(1,N);lastcode=1;for i=0:M-1if (randwave(i+1)==1) %有跳变if (lastcode==1)amiwave(i*L+1:i*L+L)=-1;lastcode=-1;elseamiwave(i*L+1:i*L+L)=1;lastcode=1;endelseamiwave(i*L+1:i*L+L)=0;endendsubplot(3,1,2);plot(amiwave); %绘制AMI码ylabel('AMI码');xlabel('时间(s)');axis([0 ShowN -1.2 1.2]);%解决HDB3码连续4个0及4个0以上的问题hdb3wave=zeros(1,N);lastcode=1; %上一个1状态vonevcount=0; %相邻V之间连1数目zerocount=0; %连零数目for i=0:M-1 %if (randwave(i+1)==1) %有跳变if (lastcode==1)hdb3wave(i*L+1:i*L+L)=-1;lastcode=-1;vonevcount=vonevcount+1;elsehdb3wave(i*L+1:i*L+L)=1;lastcode=1;vonevcount=vonevcount+1;endelsezerocount=zerocount+1;if (zerocount==4)if (mod(vonevcount,2)==1) %相邻V之间有奇数个1 if (lastcode==1) %插入000+Vhdb3wave(i*L+1:i*L+L)=1;else %插入000-Vhdb3wave(i*L+1:i*L+L)=-1;endvonevcount=0;elseif (lastcode==1) %插入-B00-Vhdb3wave((i-3)*L+1:(i-3)*L+L)=-1;hdb3wave(i*L+1:i*L+L)=-1;lastcode=-1;else %插入+B00+Vhdb3wave((i-3)*L+1:(i-3)*L+L)=+1;hdb3wave(i*L+1:i*L+L)=1;lastcode=1;endvonevcount=0;endzerocount=0;elsehdb3wave(i*L+1:i*L+L)=0;endendendsubplot(3,1,3);plot(hdb3wave); %绘制HDB3码ylabel('HDB3码');xlabel('时间(s)');axis([0 ShowN -1.2 1.2]);生成图像如下:此次实验产生的二进制码型是1000010000100000(可以更改),从实验结果看,与理论值是一致的。

第一个图像是单极性不归零码,第二个图像是AMI码,第三个图像是HDB3码。

可以看出,(1)单极性不归零码“1”的表示方法:用正电平表示。

“0”的表示方法:用零电平表示。

(2)AMI码“1”的表示方法:用正电平与负电平交替表示。

“0”的表示方法:用零电平表示。

(3)HDB3码“1”的表示方法:与AMI码一样,用正电平与负电平交替表示。

“0”的表示方法:当连续的0个数少于3个时,表示方法与AMI一样;当连续的0个数多于3个时,每4个0用B00V取代,其中,V必须要与前一个相邻的非零脉冲的极性相同,且两个V 码极性要相反,B可以取正电平、负电平、零电平,以使V的取值满足要求。

五、实验心得这次实验主要是关于基带传输常用码的编码解码方法,主要内容包括单极性非归零、双极性非归零、单极性归零、双极性归零、AMI、HDB3码的编解码。

通过实验,我对于这几种码型之间的区别与联系有了进一步的了解,之前用硬件实现过单极性非归零、双极性非归零、单极性归零、双极性归零、AMI、HDB3码的编解码。

通过此次实验,我明白了软件仿真与硬件实现的统一性,同一问题既可以用软件来实现,也可以用硬件来实现。

相关文档
最新文档